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ABSTRACT 

Cardiomyocytes (CMs), the contractile heart cells that can be derived from human induced plu-
ripotent stem cells (hiPSCs). These hiPSC derived CMs can be used for cardiovascular disease 
drug testing and regeneration therapies, and they have therapeutic potential. Currently, hiPSC-
CM differentiation cannot yet be controlled to yield specific heart cell subtypes consistently. De-
signing differentiation processes to consistently direct differentiation to specific heart cells is im-
portant to realize the full therapeutic potential of hiPSC-CMs. A model that accurately represents 
the dynamic changes in cell populations from hiPSCs to CMs over the differentiation timeline is a 
first step towards designing processes for directing differentiation. This paper introduces a mi-
crosimulation model for studying temporal changes in the hiPSC-to-early CM differentiation. The 
differentiation process for each cell in the microsimulation model is represented by a Markov chain 
model (MCM). The MCM includes cell subtypes representing key developmental stages in hiPSC 
differentiation to early CMs. These stages include pluripotent stem cells, early primitive streak, 
late primitive streak, mesodermal progenitors, early cardiac progenitors, late cardiac progenitors, 
and early CMs. The time taken by a cell to transit from one state to the next state is assumed to 
be exponentially distributed. The transition probabilities of the Markov chain process and the mean 
duration parameter of the exponential distribution were estimated using Bayesian optimization. 
The results predicted by the MCM agree with the data. 
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INTRODUCTION 

Cardiovascular diseases are the leading cause of 
death worldwide [1]. Almost 695,000 people in the US 
died of cardiovascular disease in 2022 [2]. Cardiomyo-
cytes (CMs), i.e. contracting heart cells, can be derived 
from human induced pluripotent stem cells (hiPSCs) to be 
used for drug testing, regenerative therapies, and dis-
ease modeling for cardiovascular diseases [3]. The mod-
ulation of the Wnt signaling pathway using small mole-
cules and growth factors provides the standard CM dif-
ferentiation protocol, yielding CMs with up to 98% purity 
[4]. However, this benchmark protocol produces mostly 
left ventricular cells, with a little to no atrial cells, or right 
ventricular cells [5]. To model specific diseases in the 
heart requires specific heart cell types. For example, 

atrial diseases like atrial fibrillation and Ebstein's anom-
aly, or right ventricular diseases, such as Tetralogy of 
Fallot or arrhythmogenic right ventricular cardiomyopa-
thy, require atrial CMs and right ventricular CMs respec-
tively [6]. 

Designing a differentiation process to consistently 
yield specific heart cells is essential to fully realize the 
therapeutic, drug testing, and disease modeling potential 
of CMs. The first step in designing a differentiation pro-
cess that directs hiPSCs to specific heart cell subtypes is 
understanding the temporal changes in the cell type pop-
ulations during differentiation.  

Several mathematical models have been developed 
to capture cell differentiation process [7-16]. Stiehl et al 
[7] investigated if stemness (characterization of stem 
cells) can be defined at the single-cell level, and what 
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properties are suitable for defining stem cells. The au-
thors proposed a multi-compartment deterministic 
model, which consists of discrete sets of ordinary differ-
ential equations, to describe the dynamics of cell differ-
entiation and self-renewal regulated by extracellular sig-
naling feedback. The cell behavior is characterized by 
parameters including the proliferative activity, the prob-
ability of differentiation, and the probability of dying. The 
model was developed to predict the cell type population 
and signaling molecule concentration over time. The 
model, calibrated with clinical data from multiple mye-
loma patients undergoing high-dose chemotherapy and 
stem cell transplantation, aimed to observe stem cell dif-
ferentiation and determine cell type populations. Each 
differential equation in the model describes a distinct dif-
ferentiation stage, reflecting the conventional notion that 
within each lineage of blood cell precursors, there is a 
discrete sequence of maturation stages traversed se-
quentially. Models presented in this paper characterize 
stem cells as the population that is most sensitive to en-
vironmental signals. The stem cell differentiation charac-
terization developed in this paper identified stem cells 
and other cell types as a population. However, the model 
could not capture the differentiation mechanism happen-
ing in a single cell. The drawback of this deterministic 
model is that it does not capture the stochastic nature of 
the differentiation process.  

Paździorek [8] investigated the stochastic stability 
of the model presented by Mar-Czohara and examined 
its response to noise. The deterministic model from [7] 
was transformed into a stochastic process using Ito dif-
ferential equations. Ito calculus addresses processes 
with evolving random variables over time, where the ran-
dom variable here is the cell type population. The random 
behavior of cells, whether differentiating, maturing, dy-
ing, or proliferating was modeled as a Wiener process, 
which is a continuous-time stochastic process. The in-
crements of the Wiener process across disjoint time in-
tervals exhibit a normal distribution. Premslaw demon-
strated that the stochastic model achieves asymptotic 
stability, signifying that over time, stem cells tend to 
reach stable and well-defined states.  

Pisu et al [9] introduced a novel mathematical model 
to simulate the differentiation of mesenchymal stem cells 
into specialized cells to study the effect of growth factors 
on cell proliferation/differentiation mechanisms. The 
model was built on material balances for extracellular ma-
trix compounds, growth factors, and nutrients, along with 
a mass-structured population balance that describes cell 
growth, proliferation, and differentiation. The DNA con-
tent and the glycosaminoglycans (GAG) content present 
in the cells at different time points were used as indica-
tors to identify the cell types. The model incorporated 
several parameters, with key ones being the kinetic con-
stant of GAG synthesis, kinetic constant of collagen 

synthesis, time rate of change of cells, maximum collagen 
and GAG concentration, concentration of 𝑂2 in saturation 
condition, and number of cell types. Regression analysis 
of the model predictions demonstrates that the average 
error for different differentiation pathways is below 20 
percent. 

The models presented in [10-16] also incorporate 
macroscopic analysis, lacking representation of mecha-
nisms occurring at the single-cell level. Capturing the dif-
ferentiation mechanism at the single-cell level will offer 
insights into interactions at the cellular level. This paper 
introduces a microsimulation model (MSM) to study the 
temporal changes in the cell type populations during car-
diac differentiation at cell-level analysis. A microsimula-
tion model, which is a stochastic model, aims to simulate 
individual entities of the system through stochastic pa-
rameters. Each cell is modeled as an individual entity of 
the MSM, and the differentiation process in each cell is 
represented with a continuous-time Markov chain model 
(CTMCM). The states of the CTMCM are cell subtypes 
representing the developmental stages in hiPSC differ-
entiation to early CMs. They include pluripotent stem 
cells, early primitive streak, late primitive streak, meso-
dermal progenitors, early cardiac progenitors, late car-
diac progenitors, and early CMs. The transition probabil-
ities define the probability of a cell transitioning from one 
cell subtype to another or an absorbing state. The hold-
ing times, representing the time a cell spends in each 
state, are modeled using exponential distributions. The 
MSM is embedded in a Bayesian optimization framework 
to estimate the CTMCM parameters, i.e., transition prob-
abilities and mean of the exponential distributions.  

This paper is structured as follows: Next section dis-
cusses the modeling of cell differentiation using the Mar-
kov chain model and modeling the duration of state tran-
sitions using exponential distribution. The application of 
the microsimulation model for simulating the differentia-
tion process is introduced next. The results for the mi-
crosimulation model parameters and a comparison of the 
model predictions to experimental data are in Results and 
Discussion section. Concluding remarks and future direc-
tions are given in the last section. 

MODELING DIFFERENTIATION 

Modeling cell differentiation 
 The data used to build the MSM model was obtained 
from the single-cell RNA sequencing analysis of 2D car-
diac differentiation of two cell lines (WTC cell line and 
SCVI cell line) [5]. The differentiation was carried out for 
6 days and samples were collected from day 1 to day 6 
daily. The collected samples were captured, and single-
cell RNA sequencing was performed. The gene expres-
sion matrix was analyzed and labeled to get the cell type 
population during differentiation from day 1 to day 6. 



 

  

Based on the results obtained from 2D cardiac differen-
tiation, the developmental trajectory of hiPSCs to early 
CMs follows a path. The path includes a series of states: 
which are pluripotent stem cells, early primitive streak, 
late primitive streak, mesodermal progenitors, early car-
diac progenitors, late cardiac progenitors, and early CMs. 
At late primitive streaks and mesodermal progenitors 
state, cells may differentiate into non-CM cells. When a 
cell begins differentiation, it either moves into the next 
state in sequence or becomes a non-CM cell type, or re-
mains in the same pluripotent state that it started in. 
There are two possible states from which cells can be-
come non-CMs; cells from the late primitive streak can 
differentiate into hepatic endoderm and definitive endo-
derm, and cells from the mesodermal progenitor state 
can differentiate into endothelial cells, epicardial progen-
itors, and epicardial cells. Differing cell types have differ-
ing timings for differentiation, and, therefore, the time a 
cell spends in one state is dependent on the cell type be-
ing made. Based on this explanation, to model the cell 
differentiation, two questions need to be answered: 

1. What is the next state in the differentiation 
path? 

2. If a cell differentiates to the next state in se-
quence, how long will it stay between those two 
states? 

The important assumptions here are the cells do not 
die during differentiation and they do not split or divide 
during the differentiation. Although we recognize the lim-
itations of these assumptions, given the lack of data for 
modeling cell division and death rates for this differenti-
ation protocol, this preliminary model allows making pro-
gress towards modeling hiPSC to early CM differentiation 
process.  

 

Figure 1. Modeling cell differentiation. 

Continuous time Markov chain model 
The first question can be answered by transition 

probabilities of a Markov chain model (MCM). A Markov 
chain model is a mathematical model that represents a 
sequence of events in a process in which the probability 
of transitioning from one state to another depends solely 
on the current state [17,18,19]. Markov chain models are 
memoryless, meaning the probability of transitioning to 
future states depends only on the current state and is in-
dependent of the sequence of states that led to the cur-
rent state. Markov chains are used for modeling dynamic 
systems like financial markets, weather patterns, and lan-
guage processing. In a Markov chain, the transition 

probability describes the probability of moving from one 
state to another in the chain at each time step. The gen-
eral representation of transition probability, 𝑃𝑖𝑗, for the 
transition from state 𝑖 to 𝑗, is given in Equation (1). 

𝑃𝑖𝑗 = 𝑃(𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖)   (1) 

In Equation 1, 𝑋𝑛 and 𝑋𝑛+1 represent two consecu-
tive states in a Markov chain. The RHS of Equation (1) 
represents the conditional probability that, given the cur-
rent state 𝑋𝑛 = 𝑖, the system will transition to state 𝑋𝑛+1 =

𝑗. Markov chains are characterized by a transition matrix 
that represents the probabilities of moving from one state 
to another. The transition matrix enables predictions and 
analysis of system behavior over time. 

Markov chain models can be classified into different 
types based on time homogeneity (homogenous Markov 
chain and non-homogenous Markov chain), state conti-
nuity (finite state Markov chains and continuous state 
Markov chains), time continuity (discrete-time Markov 
chains and continuous time Markov chains), absorbing or 
non absorbing states (absorbing Markov chains and non-
absorbing Markov chains). [20]. The classifications re-
lated to cell differentiation based on scRNA-seq data are 
discrete-time and absorbing Markov chains. In a dis-
crete-time Markov chain, the transitions between states 
occur at discrete, evenly spaced time intervals. An ab-
sorbing Markov chain is used to model systems where 
certain states, known as absorbing states, act as final 
destinations from which there is no escape. This means 
that in a Markov chain, the transitions between states oc-
cur with probabilities, however, once the system reaches 
an absorbing state, it remains there indefinitely. In other 
words, the probability of transition from an absorbing 
state to any other non-absorbing state is zero. These 
chains can be characterized by their probability of tran-
sition between transient states (non-absorbing states) 
and absorbing states, leading to absorption, which rep-
resents the final resting places of the system.  

A continuous-time absorbing Markov chain model is 
developed to represent hiPSC to CM cell differentiation. 
Figure 2 demonstrates the Markov chain model of cell dif-
ferentiation. Late primate streak can differentiate into en-
doderm cells, and mesodermal cells can differentiate into 
epithelial and epicardial cells. When cells commit to be-
coming endodermal, epicardial, or epithelial cell types, 
they can no longer differentiate into CMs. Hence, the 
transition probability from these cell types to any other 
cell types in the cardiac trajectory is zero. Two absorbing 
states, one from the late primitive streak and the other 
from the mesodermal progenitor state, were included in 
the MCM to denote cells that differentiate into non-CMs. 
Absorbing state 1 consists of hepatic endoderm cells and 
definitive endoderm cells, and absorbing state 2 consists 
of epithelial cells, epicardial progenitors, and epicardial 
cells.  



 

  

The probability 𝑃𝑖𝑗 denotes the probability of transi-
tion of the MCM from state 𝑖 to state 𝑗 in the cardiac dif-
ferentiation trajectory and 𝑝𝑖𝑗 denotes the transition 
probability in a specific instance of simulating a Markov 
chain. 𝑃𝑖𝑗 is the Markov chain model parameter and 𝑝𝑖𝑗 is 
the probability of transitioning from state 𝑖 to state 𝑗 dur-
ing a simulation run. In the simulation, for cell types other 
than late primitive streak and mesodermal progenitors, if 
𝑝𝑖𝑗 ≤ 𝑃𝑖𝑗, the cell will differentiate from cell type 𝑖 to cell 
type 𝑗. If a cell is initially in the late primitive streak or 
mesodermal progenitors state, there are three potential 
outcomes for the cell's eventual destination. If 𝑝𝑖𝑗 ≤ 𝑃𝑖𝑗, 
the cell will differentiate into cell type 𝑗, or if 𝑃𝑖𝑗 < 𝑝𝑖𝑗 ≤

𝑃𝑖𝑗 + 𝑃𝑖𝑎, the cell will differentiate into absorbing state, or 
if 𝑃𝑖𝑗 + 𝑃𝑖𝑎 < 𝑝𝑖𝑗, the cell will stay in the same state 𝑖. 
Based on the transition probability parameters of the 
MCM, the cells in the simulation will differentiate into dif-
ferent cell types. The Markov chain stops when the cell 
reaches either an absorbing state or an early CM state. 

 
Figure 2. Markov chain representation of cell differentia-
tion (Table 1 defines cell type abbreviations).  

Table 1: Expansion of the cell types in the MCM. 

Abbreviations Cell types 

hiPSCs Human induced pluripotent stem 
cells 

eps Early primitive streak 

lps Late primitive streak 

as1 Absorbing state 1 
mp Mesodermal progenitors 
as2 Absorbing state 2 
ecp Early cardiac progenitors 
lcp Late cardiac progenitors 
ec Early cardiomyocytes 

 
Modeling state duration in the MCM with exponen-
tial distribution 
The exponential distribution is a continuous probability 
distribution commonly used to model the time between 
events in a Poisson process, where events occur at a 
constant average rate and are independent of each other 
[21]. The probability density function 𝑓(𝑥) of the expo-
nential distribution is given by Equation 2. 

𝑓(𝑥) = 𝜆exp (−𝜆𝑥)    (2) 

In Equation 2, 𝑥 is a non-negative variable repre-
senting the time between events, and 𝜆 is the rate pa-
rameter, which is a positive constant. It determines the 

average number of events occurring per unit of time and 
is also equal to the inverse of the average time between 
events. The rate parameter quantifies the event rate, the 
frequency, on average, of the events occurring. One of 
the notable properties of the exponential distribution is 
memorylessness. It suggests that the probability of the 
next event occurring in the next time increment is the 
same, regardless of how much time has already passed. 
This property of exponential distribution helps modeling 
systems with no memory of past events. 

In the cell differentiation process, the time a cell 
spends between two states is random, with a constant 
average rate of occurrence and the events are independ-
ent of each other. Therefore, the duration spent by a cell 
between two states can be modeled using the exponen-
tial distribution. The average duration 𝑑𝑖𝑗, spent by the 
cells between state 𝑖 and state 𝑗 is the inverse of the rate 
parameter used to model the time spent by the cells be-
tween states.  

MODELING CELL POPULATIONS 

Microsimulation models 
Microsimulation models (MSM) are computational 

models designed to simulate individual-level behavior 
using individual entities within a population [22,23]. Each 
entity is represented with specific attributes. In the case 
of modeling cell populations, the individual entity denotes 
each cell in the differentiation process, and the attributes 
denote transition probability and the average duration 
parameters. MSM consists of three components, the 
agents, rules, and environment. The agents represent in-
dividual cells. The rules denote the behavior and deci-
sion-making processes for each cell, which means the 
transition of cells into different states that are controlled 
by the Markov chain probabilities. The environment rep-
resents the context in which the cells interact. The con-
straint in the MSM is the sum of probability in each state 
should add up to one. 
 In the developed MSM (Figure 3), each cell in the 
simulation will move into the next state based on the 
transition probability of the Markov chain model, and 
whenever the cell moves to the next state, the duration 
the cell spends in that state is sampled from the expo-
nential distribution. For transition from states 𝑖 to 𝑗, ex-
cluding absorbing states, the sampled time interval is cal-
culated based on the average duration parameter, 𝜆𝑖𝑗. 
The age associated with the cell in a state is obtained by 
adding the sampled time for that state to the age of the 
cell in the previous state. Since we are modeling the cell 
population at the end of each differentiation day, the re-
sult obtained from the simulation is converted into a bi-
nary matrix, in which the rows represent the differentia-
tion days, and the column represents the cell states. For 
example, let us consider that the age of a cell when it 



 

  

reaches the early primitive streak is 0.78 days, and the 
age of a cell when it reaches the late primitive streak is 
2.4 days and it stays in the late primitive streak. In the 
given example, at the end of day 1, the cell state is the 
early primitive streak, so in the binary matrix, in the day 1 
row, the eps column will have a value of 1. From 0.78 days 
to 2.4 days, the cell remains in the early primitive streak 
state, meaning at the end of day 2, the cell in the eps 
column will have a value of one, and the rest of the day 2 
row will have a value of 0. From 2.4 days up to day 6, the 
cell will stay in the late primitive streak, and therefore, for 
the rows from day 3 to day 6, the lps column will have a 
value of 1, and the rest equal to zero. Five thousand cells 
were run in the simulation to generate the cell type matrix 
for each cell. The number of cells in each cell type at the 
end of each differentiation day was added and then nor-
malized by the total number of cells. By this procedure, 
the cell population percentage matrix can be obtained 
using the microsimulation model with the Markov chain 
process.  

 

 
Figure 3. Modeling cell population using a microsimula-
tion model. 

Parameter estimation 
 The MSM parameters, transition probabilities, and 
the average durations were estimated using Bayesian 
optimization by minimizing the mean squared error be-
tween the model output and the experimental data. 
Bayesian optimization, driven by Bayesian inference and 
surrogate modeling, is a versatile and efficient approach 
for solving complex optimization problems [24,25]. 
Bayesian optimization uses a surrogate model, typically a 
Gaussian process (GP) model, to estimate the unknown 
objective function. Bayesian optimization balances ex-
ploration (sampling in uncertain regions), and exploitation 
(sampling in the regions with the highest estimated ob-
jective value), to find the global optimum efficiently. The 

objective function (Equation 3) used is the mean squared 
error between the model output and the experimental 
data. 

𝑓 =
1

𝑛
((𝑌 − 𝑋1)2 + (𝑌 − 𝑋2)2)   (3) 

𝑌 = 𝑀𝑆𝑀(𝑃𝑖𝑗 , 𝑑𝑖𝑗)     (4) 

𝑃𝑙𝑝𝑠,𝑚𝑝 + 𝑃𝑙𝑝𝑠,𝑎1 ≤ 1    (5) 

𝑃𝑚𝑝,𝑎2 + 𝑃𝑚𝑝,𝑒𝑐𝑝 ≤ 1    (6) 

0 ≤ 𝑃𝑖𝑗 < 1; 𝑑𝑖𝑗 ≥ 0    (7) 

 𝑌 is the MSM output. The variables 𝑋1 and 𝑋2 repre-
sent the cell population matrices obtained from the sin-
gle-cell RNA sequencing of the cell samples. These sam-
ples were collected from two cell lines during differenti-
ation days 1-6, as mentioned in the ‘Modeling cell differ-
entiation’ section. The cell population matrix for WTC cell 
line, 𝑋2, is shown in Table 2 as an example.  Equation 4 
states that the model output is a function of the decision 
variables 𝑃𝑖𝑗 and 𝑑𝑖𝑗. To ensure the probabilities at the cell 
states having two states always less than or equal to 1, 
constraints (Equations 5, 6 and 7) were included in the 
model. 
 Bayesian optimization begins with generating an in-
itial set of samples from the model. The Gaussian Process 
(GP) model is built based on the initial samples. The ac-
quisition function selects the next sample for evaluation, 
balancing the exploration and exploitation. The selected 
point is evaluated in the true objective function. The sur-
rogate model is updated with new data and the process 
iterates. 

RESULTS AND DISCUSSION 

 Five thousand cells were simulated in the Markov 
chain model embedded within the microsimulation 
model. The parameters obtained using Bayesian optimi-
zation are shown in Table 3. Based on the data, the opti-
mization result showed that the probability of transition-
ing from psc state to eps state, and eps state to lps state 
is 1. During these two transitions, the cells spend an av-
erage duration of 0.45 days and 1.32 days, respectively. 

Table 2: Cell population matrix from WTC cell line (𝑋1) used in the optimization problem (Equation 3). All numeri-
cal values are expressed as percentages. 

 Days hiPSCs eps lps as1 mp as2 Ecp lcp Ec 

Day 1 18.9 80.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 
Day 2 0.6 8.3 90.8 0.0 0.3 0.0 0.0 0.0 0.0 
Day 3 0.8 1.8 22.8 17.5 50.6 0.0 6.5 0.0 0.0 
Day 4 0.4 0.0 1.9 30.2 20.7 4.1 42.6 0.2 0.0 
Day 5 0.8 0.0 0.8 31.7 5.8 7.2 36.5 17.3 0.0 
Day 6 0.3 0.0 0.0 39.7 0.8 9.2 17.0 31.3 1.7 

 



 

  

At the lps state, 16% of cells transition into hepatic endo-
derm and definitive endoderm cells. These 16% of cells 
never become CMs. The remaining 84% of the cells take 
about 1.3 days to enter the mesoderm state, where 42% 
of these cells (35% of the initial number of cells) become 
endothelial cells, epicardial progenitors, and epicardial 
cells. The remaining 42% of the cells take about one day 
to enter the early cardiac progenitor state. After reaching 
the early progenitor state, 69% of these cells become late 
cardiac progenitors. Following this, 31% of the late pro-
genitors become early cardiomyocytes. These cells 
spend about 3.58 days to become late cardiac progeni-
tors and 2.98 days to become early CMs.  

Table 3: MSM parameters obtained using Bayesian opti-
mization. 

Current 
state 

Next state Transition 
probability 

Average 
duration 

hiPSCs eps 1 0.45 

eps lps 1 1.32 

lps mp 0.81 1.30 

lps as1 0.16 - 
mp ecp 0.52 0.98 
mp as2 0.42 - 
ecp lcp 0.69 3.58 
lcp ec 0.31 2.98 

  
 Figure 4 shows the predicted cell population versus 
the experimental data. From the plot, we can see that 
there are differences between the WTC cell line data and 
the SCVI cell line data. Since the aim of this work is to 
develop a model that is independent of the cell line, the 
effect of the cell line is not introduced in the model. This 
can also be observed in Figure 4, where the predicted cell 
type populations by the MSM model are between the two 
datasets. The mean squared error and the 𝑅2  between 
the model and the data are 0.004 and 0.43, respectively. 
The performance of the developed model will undergo 
validation with further experimental data in the future. 

CONCLUSION AND FUTURE DIRECTIONS 

 Using the cardiac cell type population obtained from 
2D cardiac differentiation, a microsimulation model with 
a Markov chain model was developed to predict the car-
diomyocyte cell type population during differentiation. 
The model parameters were obtained using Bayesian op-
timization. The results showed that the simulation model 
predicted the cell type population with a low mean square 
error. The developed model can act as a digital twin to 
the cardiac differentiation experiment. The data for train-
ing this model was generated in a 2D environment follow-
ing the modulated Wnt signaling differentiation protocol, 

which mostly yields ventricular cells. This protocol will be 
tested to analyze if the ventricular cells can be produced 
on a large-scale using 3D techniques. The model will also 
be trained with data using the 3D differentiation protocol. 
If different sets of experimental parameters are used to 
obtain different cell-type populations, the model can be 
trained on those datasets, and a set of transition proba-
bilities and average duration parameters can be esti-
mated for each set of experimental parameters. Finding 
the relationship between the experimental parameters 
and the model parameters will help tune the experimental 
parameters to get the desired CM percentage on a cer-
tain differentiation day. 

 
Figure 4. MSM predicted cell population vs differentia-
tion experiment. 
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