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ABSTRACT
Real-time numerical differentiation plays a crucial role in many digital control algo-
rithms, such as PID control, which requires numerical differentiation to implement
derivative action. This paper proposes an algorithm for estimating the numerical
derivative of a signal from noisy sampled data measurements. The method uses
adaptive input estimation with adaptive state estimation (AIE/ASE), and thus it
requires only minimal prior information about the signal and noise statistics. Fur-
thermore, since the estimates of the derivative at step k provided by AIE/ASE
depend only on data available up to step k, AIE/ASE is thus implementable in real
time. The accuracy of AIE/ASE is compared numerically to several conventional
numerical differentiation methods. Finally, AIE/ASE is applied to simulated vehicle
position data, generated in the CarSim simulator software.
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1. Introduction

The dual operations of integration and differentiation provide the foundation for
much of mathematics. Analytically, differentiation is often considered less complex
than integration, as evidenced by the relative difficulty encountered in differentiating
versus integrating functions such as log(1+sin2 x3). In numerical analysis, integration
techniques have been extensively developed in Davis and Rabinowitz (1984), whereas
differentiation techniques have been developed more sporadically in Cullum (1971);
Savitzky and Golay (1964), Hamming (1973, pp. 565, 566).

In practice, numerical integration and differentiation techniques are applied to se-
quences of measurements, that is, discrete-time signals composed of sampled data.
Although strictly speaking, integration and differentiation are defined on continuous
spaces and not for discrete-time signals, the goal is to compute a discrete-time “inte-
gral” or “derivative” estimate that approximates the true integral or derivative of the
pre-sampled, analog signal.

In addition to the effect of sampling, numerical integration and differentiation meth-
ods must address the effect of sensor noise in sampled data. For numerical integration
of sampled data, constant noise in data, that is, bias, leads to a spurious ramp, while
stochastic noise leads to random-walk divergence due to the numerical integration of
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noise present in the data. Mitigation of these effects is of extreme importance in appli-
cations such as inertial navigation as shown in Farrell (2008); Grewel, Andrews, and
Bartone (2020).

Compared to numerical integration, the effect of noise on numerical differentiation
is far more severe. This situation is due to the fact that, whereas integration is a
bounded operator on a complete inner-product space, differentiation is an unbounded
operator on a dense subspace. Unboundedness implies a lack of continuity, which is
manifested as high sensitivity to sensor noise. Consequently, numerical differentiation
typically involves assumptions on the smoothness of the signal and spectrum of the
noise as considered in Ahn, Choi, and Ramm (2006); Haimovich, Seeber, Aldana-
López, and Gómez-Gutiérrez (2022); Jauberteau and Jauberteau (2009); Knowles and
Renka (2014); Listmann and Zhao (2013); Stickel (2010).

Numerical differentiation algorithms are crucial elements of many digital control
algorithms. For example, PID control requires numerical differentiation to implement
derivative action as presented in Astrom and Hagglund (2006); Vilanova and Visioli
(2012). Flatness-based control is based on a finite number of derivatives as shown
in Mboup, Join, and Fliess (2009); Nieuwstadt, Rathinam, and Murray (1998). In
feedback control applications, real-time implementation of numerical differentiation
algorithms is essential. However, the phase shift and latency associated with numerical
differentiation can result in performance degradation and even instability. Phase shift
arises from filtering, whereas latency arises from noncausal numerical differentiation,
that is, numerical differentiation algorithms that require future data. For real-time
applications, a noncausal differentiation algorithm that requires data at future time
steps can be implemented causally by delaying the computation until the required
data are available. For feedback controllers that require an estimate of the current
derivative, the delayed estimate provided by a noncausal differentiation algorithm
may not be a sufficiently accurate estimate of the required derivative.

In practice, analog or digital filters are used to suppress the effect of sensor noise,
thereby allowing the use of differencing formulae in the form of inverted “V” filters,
which have the required gain and phase lead at low frequencies and roll off at high fre-
quencies. These techniques assume that the characteristics of the signal and noise are
known, thereby allowing the user to tweak the filter parameters. When both the true
signal and the noise have characteristics that are unknown and may change over time,
filter tuning becomes impossible, significantly increasing the challenge of the problem.
The recent work in Van Breugel, Kutz, and Brunton (2020) articulates these challenges
and proposes a Pareto-tradeoff technique for addressing the absence of prior informa-
tion. Additional techniques include high-gain observer methods, where the observer
approximates the dynamics of a differentiator as shown in Dabroom and Khalil (1999).
Peng Li and Parisini (2018) employed a kernel-based deadbeat observer for numerical
differentiation, utilizing Volterra integral operators. Numerical differentiation based on
integration using Jacobi polynomials was introduced in Da-yan Liu and Perruquetti
(2011). Yet another approach is to apply sliding-mode algorithms as shown in Alwi
and Edwards (2013); Levant (1998, 2003); López-Caamal and Moreno (2019); Mojal-
lizadeh, Brogliato, and Acary (2021); Reichhartinger and Spurgeon (2018). Ibrir and
Diop (2004) presented a method involving a simplified linear optimization problem to
deduce a continuous spline signal, aiding in the estimation of the derivative of sampled
data. Additionally, Polyakov, Efimov, and Perruquetti (2014) analyzed a homogeneous
differentiator based on the implicit Lyapunov function method.

Another approach to numerical differentiation is to apply state estimation with
integrator dynamics, where the state estimate includes an estimate of the derivative of
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the measurement as shown in Bogler (1987); Kalata (1984). This approach has been
widely used for target and vehicle tracking in H. Khaloozadeh (2009); Jia, Balasuriya,
and Challa (2008); Lee and Tahk (1999); Rana, Halim, Rahamna, and Abdelhadi
(2020). As an extension of state estimation, the present paper applies input estimation
to numerical differentiation, where the goal is to estimate the input as well as the
state. Input and state estimation methods are discussed in Alenezi, Zhang, Hui, and
Zak (2021); Fang, Shi, and Yi (2011); Gillijns and De Moor (2007); Hsieh (2017);
Naderi and Khorasani (2019); Orjuela, Marx, Ragot, and Maquin (2009); Yong, Zhu,
and Frazzoli (2016).

The present paper is motivated by the situation where minimal prior information
about the signal and noise is available. This case arises when the spectrum of the signal
changes slowly or abruptly in an unknown way, and when the noise characteristics vary
due to changes in the environment, such as weather. With this motivation, adaptive
input estimation (AIE) was applied to target tracking in Ansari and Bernstein (2019),
where it was used to estimate vehicle acceleration using position data. In particular,
the approach of Ansari and Bernstein (2019) is based on retrospective cost input esti-
mation (RCIE), where recursive least squares (RLS) is used to update the coefficients
of the estimation subsystem. The error metric used for adaptation is the residual (in-
novations) of the state estimation algorithm, that is, the Kalman filter. This technique
requires specification of the covariances of the process noise, input-estimation error,
and sensor noise.

The present paper extends the approach of Ansari and Bernstein (2019) by replacing
the Kalman filter with an adaptive Kalman filter in which the input-estimation-error
covariance and the sensor-noise covariance are updated online. Adaptive extensions of
the Kalman filter to the case where the variance of the disturbance is unknown are
considered in Moghe, Zanetti, and Akella (2019); Shi, Han, and Liang (2009); Yaesh
and Shaked (2008); Zhang et al. (2020). Adaptive Kalman filters based on the residual
for integrating INS/GPS systems are discussed in Almagbile, Wang, and Ding (2010);
Hide, Moore, and Smith (2003); Mohamed and Schwarz (1999). Several approaches to
adaptive filtering, such as Bayesian, maximum likelihood, correlation, and covariance
matching, are studied in Mehra (1972). A related algorithm involving a covariance
constraint is developed in Mook and Junkins (1988).

The adaptive Kalman filter used in the present paper as part of adaptive input
estimation with adaptive state estimation (AIE/ASE) is based on a search over the
range of input-estimation error covariance. This technique has proven to be easy to
implement and effective in the presence of unknown signal and noise characteristics.
The main contribution of the present paper is a numerical investigation of the ac-
curacy of AIE combined with the proposed adaptive state estimation (ASE) in the
presence of noise with unknown properties. The accuracy of AIE/ASE is compared
to the backward-difference differentiation, Savitzky-Golay differentiation (Mboup et
al. (2009); Savitzky and Golay (1964); Schafer (2011); Staggs (2005)), and numerical
differentiation based on high-gain observers (Dabroom and Khalil (1999)).

The present paper represents a substantial extension of preliminary results presented
in Verma, Sanjeevini, Sumer, Girard, and Bernstein (2022). In particular, the algo-
rithms presented in the present paper extend the adaptive estimation component of
the approach of Verma et al. (2022) in Section 5, and the accuracy of these algorithms
is more extensively evaluated and compared to prior methods in Section 6.

The contents of the paper are as follows. In section 2, we identify the challenges
that arise from implementing numerical differentiation algorithms in real time. These
challenges are primarily due to the delay in the availability of the estimated derivative,
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which results from computation time and non-causality. This section also defines an
error metric for comparing the accuracy of the algorithms considered in this paper.
Section 3 summarizes three baseline numerical differentiation algorithms and identifies
their limitations, which motivates the proposed algorithm. Section 4 summarizes the
adaptive input estimation algorithm. Section 5 provides the paper’s main contribution,
namely, adaptive input estimation with adaptive state estimation (AIE/ASE), along
with its two other variations. Section 6 applies three variations of AIE using harmonic
signals with various noise levels. Finally, Section 7 applies the variations of AIE to
simulated vehicle position data generated by CarSim.

2. Problem Statement and Error Metric

This section presents the problem statement and error metric used to assess the
accuracy of the algorithms presented in this paper. The error metric is specifically
chosen to reflect the implications of real-time implementation.

2.1. Problem Statement

Let y be a continuous-time signal with qth derivative y(q). We assume that the

sampled values yk
△
= y(kTs) are available, where Ts is the sample time. The goal is to

use the sampled values yk to obtain an estimate ŷ
(q)
k of y

(q)
k

△
= y(q)(kTs) in the presence

of measurement noise with unknown properties. This paper focuses on the cases q = 1
and q = 2.

2.2. Real-Time Implementation and Error Metric

The time Tc required for computation in numerical differentiation invariably results
in a delay of δ time steps before the estimated derivative becomes available. In this
paper, we assume that Tc ≤ Ts, and thus the delay due to computation time is δ = 1.

This paper considers both causal and noncausal differentiation methods. To estimate
the derivative at the current step, causal differentiation does not require future data; in
contrast, noncausal differentiation utilizes future data. For real-time implementation,
causal differentiation entails a delay of δ = 1 step due to the computation time Tc,
whereas noncausal differentiation entails a delay of δ ≥ 2 steps. For the case δ = 1,

Figure 1 shows that the estimate ŷ
(q)
k of y

(q)
k is not available until step k + 1.
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Figure 1.: Timing diagram for causal numerical differentiation. The causal numerical
differentiator uses data obtained at step k to estimate the derivative of the signal y.

Because of the computation time Tc, the estimate ŷ
(q)
k of y

(q)
k is not available until step

k + 1. In this case, the delay is δ = 1 step. For noncausal differentiation, δ ≥ 2.

To quantify the accuracy of each numerical differentiation algorithm, for all k ≥
δ, we define the relative root-mean-square error (RMSE) of the estimate of the qth
derivative as

ρ
(q)
k

△
=

√√√√√√√√√√
k∑

i=δ

(y
(q)
i − ŷ

(q)
i−δ)

2

k∑
i=δ

(y
(q)
i−δ)

2

. (1)

Note that the numerator of (1) accounts for the effect of the delay δ. For real-time
implementation, the relevant error metric depends on the difference between the true
current derivative and the currently available estimate of the past derivative, as can be
seen in the numerator of (1). When the derivative estimates are exact, (1) determines
an RMSE value that can be viewed as the delay floor for the qth derivative, that is,
the error due solely to the fact that a noncausal differentiation algorithm must be
implemented with a suitable delay. Note that the delay floor depends on δ and is
nonnegative.

The true values of y
(q)
k are the sampled values of y(q) in the absence of sensor noise.

Of course, the true values of y
(q)
k are unknown in practice and thus cannot be used as

an online error criterion. However, these values are used in (1), which is computable
in simulation for comparing the accuracy of the numerical differentiation algorithms.

3. Comparison and Limitations of Baseline Algorithms

This section summarizes three algorithms for numerically differentiating sampled
data. These algorithms provide a baseline for evaluating the accuracy of the adaptive
input and state estimation algorithms described in Section 5.
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3.1. Backward-Difference (BD) Differentiation

As define in Astrom and Hagglund (2006), let q−1 denote the backward-shift oper-
ator. Then the backward-difference single differentiator is given by

Gsd(q
−1)

△
=

1− q−1

Ts
, (2)

and the backward-difference double differentiator is given by

Gdd(q
−1)

△
=

(1− q−1)2

T 2
s

. (3)

3.2. Savitzky–Golay (SG) Differentiation

As shown in Savitzky and Golay (1964); Schafer (2011); Staggs (2005), in SG dif-
ferentiation at each step k, a polynomial

Pk(s) =

pd∑
i=0

ai,ks
i (4)

of degree pd is fit over a sliding data window of size 2ℓ + 1 centered at step k, where
ℓ ≥ 1. At each step k, this leads to the least-squares problem

min ∥Yk −AkXk∥, (5)

where

Yk
△
=

yk−ℓ
...

yk+ℓ

 , Xk
△
=

 a0,k
...

apd,k

 , (6)

Ak
△
=

1 (k − ℓ)Ts ... ((k − ℓ)Ts)
pd

...
...

. . .
...

1 (k + ℓ)Ts ... ((k + ℓ)Ts)
pd

 . (7)

Solving (5) with q ≤ pd ≤ 2ℓ yields

X̂k =

 â0,k
...

âpd,k

 . (8)

Differentiating (4) q times with respect to s, setting s = kTs, and replacing the co-

efficients of Pk in (4) with the components of X̂k, the estimate ŷ
(q)
k of y

(q)
k is given
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by

ŷ
(q)
k =

pd∑
i=q

Qi,qâi,k(kTs)
i−q, (9)

where, for all i = q, . . . , pd,

Qi,q
△
=

q∏
j=1

(i− j + 1). (10)

3.3. High-Gain-Observer (HGO) Differentiation

A state space model for the rth-order continuous-time HGO in Dabroom and Khalil
(1999) is given by

˙̂x = Acox̂+Bcoy, ŷ = Cox̂, (11)

Aco
△
=

[
0(r−1)×1 Ir−1

0 01×(r−1)

]
−H

[
1 01×(r−1)

]
, (12)

Co
△
=

[
0(r−1)×1 Ir−1

]
, (13)

Bco = H
△
=

[
α1

ε

α2

ε2
· · ·

αr

εr

]T
, (14)

where ε > 0 and α1, . . . , αr are constants chosen such that the polynomial

p(s)
△
= sr + α1s

r−1 + · · ·+ αr−1s+ αr (15)

is Hurwitz. The transfer function from y to ŷ is given by

G(s) = Co(sI −Aco)
−1H = D−1

G (s)NG(s), (16)

where

DG(s)
△
= εrsr + α1ε

r−1sr−1 + · · ·+ αr−1εs+ αr, (17)

NG(s)
△
=


α2ε

r−2sr−1 + · · ·+ αr−1εs
2 + αrs

α3ε
r−3sr−1 + · · ·+ αr−1εs

3 + αrs
2

...
αr−1εs

r−1 + αrs
r−2

αrs
r−1

 . (18)

Since

lim
ε→0

G(s) =
[
s s2 · · · sr−1

]T
, (19)
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it follows that, for all i = 1, . . . , r − 1, the ith component of ŷ is an approximation of
y(i). Applying the bilinear transformation to (11) yields the discrete-time observer

x̂k+1 = Adox̂k +Bdoyk, ŷk = Cox̂k, (20)

where

Ado
△
= (Ir − 1

2TsAco)
−1(Ir +

1
2TsAco), (21)

Bdo
△
= (Ir − 1

2TsAco)
−1BcoTs. (22)

Implementation of (20) provides estimates ŷ
(1)
k , . . . , ŷ

(r−1)
k of y

(1)
k , . . . , y

(r−1)
k .

Several noteworthy differences exist among BD, SG, and HGO. First, BD differen-
tiation operates on adjacent pairs of data points, whereas SG differentiation operates
on a moving window of data points. Consequently, SG differentiation is potentially
more accurate than BD differentiation.

To compare the presented baseline algorithms, we consider numerical differentiation
of the continuous-time signal y(t) = sin(20t), where t is time in seconds. The signal
y(t) is sampled with sample time Ts = 0.01 sec. The measurements are assumed to be
corrupted by noise, and thus the noisy sampled signal is given by yk = sin(0.2k)+Dvk,
where vk is standard (zero-mean, unit-variance, Gaussian) white noise. The value of
D is chosen to set the desired signal-to-noise ratio (SNR).

For single differentiation with SG, let ℓ = 2 and pd = 3. For single differentiation
with HGO, let HGO/1 denote HGO with r = 2, α1 = 2, α2 = 1, and ε = 0.2, and let
HGO/2 denote HGO/1 with ε = 0.2 replaced by ε = 0.7. Note that δ = 1 for BD and
HGO, whereas δ = ℓ+ 1 for SG with window size 2ℓ+ 1. Figure 2 shows the relative

RMSE ρ
(1)
kf

of the estimate of the first derivative for SNR ranging from 20 dB to 60
dB, where kf = 2000 steps.
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Figure 2.: Relative RMSE ρ
(1)
kf

of the estimate of the first derivative versus SNR, where
kf = 2000 steps, for BD, SG, HGO/1, and HGO/2. For the first derivative, the red
dashed line denotes the delay floor for δ = 1, and the black dashed line denotes the
delay floor for δ = 3.

The comparison between HGO/1 and HGO/2 in Figure 2 shows that the perfor-
mance of HGO differentiation depends on the noise level, and thus tuning is needed to
achieve the best possible performance. When the noise level is unknown, however, this
tuning is not possible. Hence, we now consider a differentiation technique that adapts
to the actual noise characteristics.

4. Adaptive Input Estimation

This section summarizes adaptive input estimation (AIE), which is a specialization
of retrospective cost input estimation (RCIE) derived in Ansari and Bernstein (2019).
This section explains how AIE specializes RCIE to the problem of causal numerical
differentiation.

Consider the linear discrete-time system

xk+1 = Axk +Bdk, (23)

yk = Cxk +D2vk, (24)

where k ≥ 0 is the step, xk ∈ Rn is the state, dk
△
= d(kTs) ∈ R, vk ∈ R is standard

white noise, and D2vk ∈ R is the sensor noise. The matrices A ∈ Rn×n, B ∈ Rn×1,
C ∈ R1×n, and D2 ∈ R are assumed to be known. Define the sensor-noise covariance

V2
△
= D2D

T
2 . The goal of AIE is to estimate dk and xk.

AIE consists of three subsystems, namely, the Kalman filter forecast subsystem, the
input-estimation subsystem, and the Kalman filter data-assimilation subsystem. First,
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consider the Kalman filter forecast step

xfc,k+1 = Axda,k +Bd̂k, (25)

yfc,k = Cxfc,k, (26)

zk = yfc,k − yk, (27)

where d̂k is the estimate of dk, xda,k ∈ Rn is the data-assimilation state, xfc,k ∈ Rn is
the forecast state, zk ∈ R is the residual, and xfc,0 = 0.

Next, to obtain d̂k, the input-estimation subsystem of order ne is given by

d̂k =

ne∑
i=1

Pi,kd̂k−i +

ne∑
i=0

Qi,kzk−i, (28)

where Pi,k ∈ R and Qi,k ∈ R are time-varying coefficients. Note that (28) represents
an exactly proper transfer function. AIE minimizes zk by using recursive least squares
(RLS) to update Pi,k andQi,k as shown below. The subsystem (28) can be reformulated
as

d̂k = Φkθk, (29)

where the regressor matrix Φk is defined by

Φk
△
=

[
d̂k−1 · · · d̂k−ne

zk · · · zk−ne

]
∈ R1×lθ , (30)

the coefficient vector θk is defined by

θk
△
=

[
P1,k · · · Pne,k Q0,k · · · Qne,k

]T ∈ Rlθ , (31)

and lθ
△
= 2ne + 1.

In terms of the backward-shift operator q−1, (28) can be written as

d̂k = Gd̂z,k(q
−1)zk, (32)

where

Gd̂z,k

△
= D−1

d̂z,k
Nd̂z ,k , (33)

Dd̂z,k(q
−1)

△
= Ild − P1,kq

−1 − · · · − Pne,kq
−ne , (34)

Nd̂z,k(q
−1)

△
= Q0,k +Q1,kq

−1 + · · ·+Qne,kq
−ne . (35)

To update the coefficient vector θk, we define the filtered signals

Φf,k
△
= Gf,k(q

−1)Φk, d̂f,k
△
= Gf,k(q

−1)d̂k, (36)
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where, for all k ≥ 0,

Gf,k(q
−1) =

nf∑
i=1

q−iHi,k, (37)

Hi,k
△
=


CB, k ≥ i = 1,
CAk−1 · · ·Ak−(i−1)B, k ≥ i ≥ 2,
0, i > k,

(38)

and Ak
△
= A(I +Kda,kC), where Kda,k is the Kalman filter gain given by (44) below.

Furthermore, define the retrospective variable

zr,k(θ̂)
△
= zk − (d̂f,k − Φf,kθ̂), (39)

where the coefficient vector θ̂ ∈ Rlθ denotes a variable for optimization, and define the
retrospective cost function

Jk(θ̂)
△
=

k∑
i=0

[Rzz
2
r,i(θ̂) +Rd(Φiθ̂)

2] + (θ̂ − θ0)
TRθ(θ̂ − θ0), (40)

where Rz ∈ (0,∞), Rd ∈ (0,∞), and Rθ ∈ Rlθ×lθ is positive definite. Then, for all
k ≥ 0, the unique global minimizer θk+1 of (40) is given by the RLS update as shown
in Islam and Bernstein (2019)

Pk+1 = Pk − PkΦ̃
T
kΓkΦ̃kPk, (41)

θk+1 = θk − PkΦ̃
T
kΓk(z̃k + Φ̃kθk), (42)

where

P0
△
= R−1

θ , Γk
△
= (R̃−1 + Φ̃kPkΦ̃

T
k )

−1, Φ̃k
△
=

[
Φf,k

Φk

]
,

z̃k
△
=

[
zk − d̂f,k

0

]
, R̃

△
=

[
Rz 0
0 Rd

]
.

Using the updated coefficient vector given by (42), the estimated input at step k +

1 is given by replacing k by k + 1 in (29). We choose θ0 = 0, and thus d̂0 = 0.
Implementation of AIE requires that the user specify the orders ne and nf , as well as
the weightings Rz, Rd, and Rθ. These parameters are specified for each example in
the paper.

4.1. State Estimation

The forecast variable xfc,k given by (25) is used to obtain the estimate xda,k of xk
given by the Kalman filter data-assimilation step

xda,k = xfc,k +Kda,kzk, (43)
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where the state estimator gain Kda,k ∈ Rn, the data-assimilation error covariance
Pda,k ∈ Rn×n, and the forecast error covariance Pf,k+1 ∈ Rn×n are given by

Kda,k = −Pf,kC
T(CPf,kC

T + V2,k)
−1, (44)

Pda,k = (In +Kda,kC)Pf,k, (45)

Pf,k+1 = APda,kA
T + V1,k, (46)

where Pf,0 = 0 and V1,k
△
= Bvar(dk− d̂k)B

T+Acov(xk−xda,k, dk− d̂k)B
T+Bcov(dk−

d̂k, xk − xda,k)A
T.

4.2. Application of AIE to Numerical Differentiation

To apply AIE to causal numerical differentiation, (23) and (24) are used to model

a discrete-time integrator. AIE then yields an estimate d̂k of the derivative of the
sampled output yk. For single discrete-time differentiation, A = 1, B = Ts, and C = 1,
whereas, for double discrete-time differentiation,

A =

[
1 Ts

0 1

]
, B =

[
1
2T

2
s

Ts

]
, C =

[
1 0

]
. (47)

5. Adaptive Input and State Estimation

In practice, V1,k and V2,k may be unknown in (46) and (44). To address this problem,
three versions of AIE are presented. In each version, V1,k and V2,k may or may not be
adapted. These versions are summarized in Table 1.

V1,k Adaptation V2,k Adaptation
AIE/NSE No No
AIE/SSE Yes No
AIE/ASE Yes Yes

Table 1.: Definitions of AIE/NSE, AIE/SSE, and AIE/ASE. Each version of AIE is
determined by whether or not V1,k and/or V2,k is adapted in the state-estimation
subsystem.

To adapt V1,k and V2,k, at each step k we define the computable performance metric

Jk(V1, V2)
△
= |Ŝk − Sk|, (48)

12



where Ŝk is the sample variance of zk over [0, k] given by

Ŝk =
1

k

k∑
i=0

(zi − zk)
2, (49)

zk =
1

k + 1

k∑
i=0

zi, (50)

and Sk is the variance of the residual zk given by the Kalman filter, that is,

Sk
△
= C(APda,k−1A

T + V1)C
T + V2. (51)

Note that (48) is the difference between the theoretical and empirical variances of zk,
which provides an indirect measure of the accuracy of V1 and V2.

5.1. AIE with Non-adaptive State Estimation (AIE/NSE)

In AIE/NSE, V1 is fixed at a user-chosen constant value, and V2 is assumed to be
known and fixed constant at its true value. AIE/NSE is thus a specialization of AIE
with V1,k ≡ V1 in (46) and V2,k ≡ V2,true in (44), where V2,true is the true value of the
sensor-noise covariance. A block diagram of AIE/NSE is shown in Figure 3.

Physical
system

Kalman filter
forecast

Kalman filter
data-assimilation 

Unknown
input

Unknown
noise

Adaptive 

Input Estimation
(AIE) subsystem

Non-Adaptive 

State Estimation (NSE)


subsystem


Figure 3.: Block diagram of AIE/NSE. The unknown input d is the signal whose
estimates are desired, v is sensor noise, and y is the noisy measurement. In this version
of AIE, V1 is fixed at a user-chosen value and V2 is fixed at its true value. The state
estimator is thus not adaptive.

5.2. AIE with Semi-adaptive State Estimation (AIE/SSE)

In AIE/SSE, V1 is adapted, and V2 is assumed to be a known and fixed constant
at its true value. Let V1,adapt,k denote the adapted value of V1,k. AIE/SSE is thus a
specialization of AIE with V1,k = V1,adapt,k in (46) and V2,k ≡ V2,true in (44). For all

k ≥ 0, we assume that V1,adapt,k ≜ ηkIn and we define ηk ∈ R as

ηk
△
= argmin

η∈[ηL,ηU]
Jk(ηIn, V2,true), (52)
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where 0 ≤ ηL ≤ ηU. Using (48) and (51) to rewrite (52) yields

ηk = argmin
η∈[ηL,ηU]

∣∣Ŝk − CAPda,k−1A
TCT − V2,true − ηkCCT

∣∣. (53)

A block diagram of AIE/SSE is shown in Figure 4.

Kalman filter
forecast

Kalman filter
data-

assimilation

 

Adaptive 

Input Estimation
(AIE) subsystem

Semi-Adaptive

 State Estimation (SSE)


subsystem

Adaptation of

Physical
systemUnknown

input

Unknown
noise

Figure 4.: Block diagram of AIE/SSE. In this version of AIE, V1 is adapted and V2 is
fixed at its true value. The state estimator is thus semi-adaptive.

5.3. AIE with Adaptive State Estimation (AIE/ASE)

In AIE/ASE, both V1 and V2 are adapted. Let V1,adapt,k = ηkIn, where ηk ≥ 0, and
V2,adapt,k denote the adapted values of V1 and V2, respectively. Hence, AIE/ASE can be
viewed as a specialized form of AIE, with V1,k = V1,adapt,k in (46) and V2,k = V2,adapt,k

in (44). The objective is thus to determine ηk ≥ 0 and V2,adapt,k ≥ 0 such that Jk
in (48) is minimized, that is,

(ηk, V2,adapt,k)
△
= argmin

η∈[ηL,ηU],V2≥0
Jk(ηIn, V2), (54)

where 0 ≤ ηL < ηU. The following result provides the minimizing values of ηk and
V2,adapt,k.

Proposition 5.1. Consider the optimization problem (54). Define the function
Jf,k : Rn×n → R by

Jf,k(V1)
△
= Ŝk − C(APda,k−1A

T + V1)C
T, (55)

and the set

Jf,k
△
= {Jf,k(ηIn) : Jf,k(ηIn) > 0, ηL ≤ η < ηU} ⊆ (0,∞). (56)
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If Jf,k is empty, then a minimizer (ηk, V2,adapt,k) of (54) is given by

ηk = argmin
η∈[ηL,ηU]

|Jf,k(ηIn)|, (57)

V2,adapt,k = 0, (58)

and the minimum value of Jk is

Jk(ηkIn, V2,adapt,k) = Ŝk − CAPda,k−1A
TCT − ηkCCT.

Now, assume that Jf,k is not empty, and let Ĵf,k ∈ [minJf,k,maxJf,k]. Then, a mini-
mizer (ηk, V2,adapt,k) of (54) is given by

ηk = argmin
η∈[ηL,ηU]

|Jf,k(ηIn)− Ĵf,k|, (59)

V2,adapt,k = Jf,k(ηkIn), (60)

and the minimum value of Jk is

Jk(ηkIn, V2,adapt,k) = 0. (61)

Proof. First note that, for all η ∈ [ηL, ηU] and V2 ≥ 0,

Jk(ηIn, V2) = |Jf,k(ηIn)− V2|. (62)

We first consider the case where Jf,k is empty. In this case, for all η ∈ [ηL, ηU],
Jf,k(ηIn) ≤ 0. Hence it follows from (62) that (54) is minimized by (57) and (58).

Next, we consider the case where Jf,k is not empty, and thus Ĵf,k > 0. With ηk given
by (59), it follows that V1,adapt,k = ηkIn. Hence, it follows from (59) and (60) that the
minimum value of (54) is given by

Jk(V1,adapt,k, V2,adapt,k) = |Jf,k(V1,adapt,k)− V2,adapt,k|
= |Jf,k(ηkIn)− Jf,k(ηkIn)|
= 0. □

Numerical examples show that

Ĵf,k = 1
2 [minJf,k +maxJf,k] (63)

yields a value of ηk that approximately minimizes the RMSE (1) of the estimate of
the derivative. A block diagram of AIE/ASE is shown in Figure 5. AIE/ASE is
summarized by Algorithm 1.
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data-
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Adaptive 

Input Estimation
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Adaptive
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systemUnknown

input

Unknown
noise

Figure 5.: Block diagram of AIE/ASE. In this version of AIE, both V1 and V2 are
adapted. The state estimator is thus adaptive.
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Algorithm 1 Adaptive Input Estimation/Adaptive State Estimation (AIE/ASE)

1: Choose ne ≥ 1, nf ≥ 1, Rz, Rd, Rθ, ηL, ηU.
2: Set xfc,0 = 0, Pf,0 = 0n×n, Kda,0 = 0n×1, d̂0 = 0, θkn−1 = 0lθ×1, Pkn−1 = R−1

θ ,
V1,adapt,0 = 0n×n, V2,adapt,0 = 0.

3: kn = max(ne, nf); R̃ = blockdiag(Rz, Rd);
4: for k = 0 to N − 1 do

(▷)Residual
5: yfc,k = Cxfc,k;
6: zk = yfc,k − yk;

(▷)Adaptive Input Estimation
7: if k < kn − 1 do
8: d̂k = d̂0;
9: else do

10: Φk =
[
d̂k−1 · · · d̂k−ne

zk · · · zk−ne

]
;

11: d̂k = Φkθk;
12: Ak−1 = A(In +Kda,k−1C);
13: for i = 2 to nf do
14: Hi,k = CAk−1 · · ·Ak−(i−1)B;

15: end for
16: H̃k =

[
CB H2,k · · · Hnf ,k

]
;

17: Φf,k = H̃k

[
ΦT
k−1 · · · ΦT

k−nf

]T
;

18: d̂f,k = H̃k

[
d̂Tk−1 · · · d̂Tk−nf

]T
;

19: Φ̃k =
[
ΦT
f,k ΦT

k

]T
;

20: z̃k =
[
(zk − d̂f,k)

T 0
]T

;

21: Γk = (R̃−1 + Φ̃kPkΦ̃
T
k )

−1;

22: Pk+1 = Pk − PkΦ̃
T
kΓkΦ̃kPk;

23: θk+1 = θk − PkΦ̃
T
kΓk(z̃k + Φ̃kθk);

24: end if
(▷)Adaptive State Estimation
25: if k ≥ 1 do

26: Jf,k = [ ]; (▷) empty set

27: Ŝk = variance([z0 · · · zk]); (▷)using (49)
28: for i = 0 to w do (▷)Choose w > 0
29: ηi = ηL + i(ηU − ηL)/w;

30: P̃f,k,i = APda,k−1A
T + ηiIn;

31: J̃f,k,i = Ŝk − CP̃f,k,iC
T;

32: if J̃f,k,i > 0 do

33: Jf,k = append(Jf,k, J̃f,k,i);
34: end if
35: end for
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Algorithm 1 Adaptive Input Estimation/Adaptive State Estimation (AIE/ASE)
(continued)

36: if Jf,k is non-empty do

37: Ĵf,k = (minJf,k +maxJf,k)/2;

38: V1,adapt,k = argmin
ηIn

|Jf,k(ηIn)− Ĵf,k|;

39: V2,adapt,k = Jf,k(V1,adapt,k);
40: else do
41: V1,adapt,k = argmin

ηIn

|Jf,k(ηIn)|;

42: V2,adapt,k = 0;
43: end if
44: end if
(▷) Kalman Filter Data−Assimilation
45: Kda,k = −Pf,kC

T(CPf,kC
T + V2,adapt,k)

−1;
46: Pda,k = (In +Kda,kC)Pf,k;
47: xda,k = xfc,k +Kda,kzk;
(▷) Kalman Filter Forecast
48: Pf,k+1 = APda,kA

T + V1,adapt,k;

49: xfc,k+1 = Axda,k +Bd̂k
50: end for

6. Numerical Differentiation of Two-Tone Harmonic Signal

In this section, a numerical example is given to compare the accuracy of the numer-
ical differentiation algorithms discussed in the previous sections. We consider a two-
tone harmonic signal, and we compare the accuracy (relative RMSE) of BD, HGO/1,
SG, AIE/NSE, AIE/SSE, and AIE/ASE. For single and double differentiation, the
parameters for HGO/1 and SG are given in Section 2.

Example 6.1. Differentiation of a two-tone harmonic signal
Consider the continuous-time signal y(t) = sin(20t) + sin(30t), where t is time in

seconds. The signal y(t) is sampled with sample time Ts = 0.01 sec. The measurements
are assumed to be corrupted by noise, and thus the noisy sampled signal is given by
yk = sin(0.2k) + sin(0.3k) +D2vk, where vk is standard white noise.

Single Differentiation. For AIE/NSE, let ne = 12, nf = 25, Rz = 1, Rd = 10−5, Rθ =
10−1I25, V1 = 10−6, and V2 = 0.01 for SNR 20 dB. For AIE/SSE, the parameters are
the same as those of AIE/NSE, except that V1,k is adapted, where ηL = 10−6 and
ηU = 102 in Section 5.2. Similarly, for AIE/ASE, the parameters are the same as those
of AIE/SSE except that V2,k is adapted as in Section 5.3.

Figure 6 compares the true first derivative with the estimates obtained from
AIE/NSE, AIE/SSE, and AIE/ASE. Figure 7 shows that AIE/ASE has the best ac-
curacy over the range of SNR. Figure 8 shows that the accuracy of AIE/ASE is close
to the best accuracy of AIE/NSE.
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Figure 6.: Example 6.1: Single differentiation of a sampled two-tone harmonic signal.
(a) The numerical derivatives estimated by AIE/NSE, AIE/SSE with V2 = V2,true,

and AIE/ASE follow the true first derivative y(1) after an initial transient. (b) Zoom
of (a). At steady state, AIE/ASE is more accurate than both AIE/NSE and AIE/SSE
with V2 = V2,true. The SNR is 20 dB.
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Figure 7.: Example 6.1: Relative RMSE ρ
(1)
kf

of the estimate of the first derivative of a
two-tone harmonic signal versus SNR. AIE/ASE has the best accuracy over the range
of SNR. Here kf = 2000 steps.
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Figure 8.: Example 6.1: Relative RMSE ρ
(1)
kf

of the estimate of the first derivative of
a two-tone harmonic signal versus η, such that V1 = η. AIE/SSE with V2 = V2,true

is more accurate than AIE/SSE with V2 = 2V2,true, which shows the effect of V2 on
accuracy. The accuracy of AIE/ASE is close to the best accuracy of AIE/NSE. The
SNR is 20 dB, and kf = 2000 steps.

Double Differentiation. For AIE/NSE, let ne = 12, nf = 20, Rz = 1, Rd =
10−5, Rθ = 10−0.1I25, V1 = 10−1I2, and V2 = 0.0001 for SNR 40 dB. For AIE/SSE,
the parameters are the same as those of AIE/NSE, except that V1,k is adapted, where
ηL = 10−6 and ηU = 1 in Section 5.2. Similarly, for AIE/ASE, the parameters are the
same as those of AIE/SSE except that V2,k is adapted as in Section 5.3.

Figure 9 compares the true second derivative with the estimates obtained from
AIE/NSE, AIE/SSE with V2 = V2,true, and AIE/ASE. Figure 10 shows that AIE/ASE
has the best accuracy over the range of SNR. Figure 11 shows that the accuracy of
AIE/ASE is close to the best accuracy of AIE/NSE.
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Figure 9.: Example 6.1: Double differentiation of a sampled two-tone harmonic signal.
(a) The numerical derivatives estimated by AIE/NSE, AIE/SSE with V2 = V2,true, and

AIE/ASE follow the true second derivative y(2) after an initial transient. (b) Zoom of
(a). At steady state, AIE/ASE is more accurate than AIE/SSE with V2 = V2,true and
AIE/NSE. The SNR is 40 dB.
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Figure 10.: Example 6.1: Relative RMSE ρ
(2)
kf

of the estimate of the second derivative
of a two-tone harmonic signal versus SNR. AIE/ASE has the best accuracy over the
range of SNR. Here kf = 2000 steps.
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Figure 11.: Example 6.1: Relative RMSE ρ
(2)
kf

of the estimate of the second derivative
of a two-tone harmonic signal versus η, such that V1 = ηI2. AIE/SSE with V2 = V2,true

is more accurate than AIE/SSE with V2 = 2V2,true, which shows the effect of V2 on
accuracy. The accuracy of AIE/ASE is close to the best accuracy of AIE/NSE. The
SNR is 40 dB, and kf = 2000 steps.

7. Application to Ground-Vehicle Kinematics

In this section, CarSim is used to simulate a scenario in which an oncoming vehicle
(the white van in Figure 12) slides over to the opposing lane. The host vehicle (the
blue van) performs an evasive maneuver to avoid a collision. Relative position data
along the global y-axis (shown in Figure 12) is differentiated to estimate the relative
velocity and acceleration along the same axis. Figure 13 shows the relative position
trajectory of the vehicles on the x-y plane.
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Figure 12.: Collision-avoidance scenario in CarSim. In this scenario, the oncoming
vehicle (the white van) enters the opposite lane, and the host vehicle (the blue van)
performs an evasive maneuver to avoid a collision.
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Figure 13.: Collision-avoidance scenario in CarSim. Relative position trajectory of the
host and the target vehicles on x-y plane.

Example 7.1. Differentiation of CarSim position data.
Discrete-time position data generated by CarSim is corrupted with discrete-time,

zero-mean, Gaussian white noise whose variance is chosen to vary the SNR.

23



Single Differentiation

For AIE/NSE, let ne = 25, nf = 50, Rz = 1, Rd = 10−6, Rθ = 10−0.1I51, V1 = 10−5,
and V2 = 0.0049 for SNR 40 dB. For AIE/SSE, the parameters are the same as those
of AIE/NSE, except that V1,k is adapted, where ηL = 10−6 and ηU = 10−2 in Section
5.2. Similarly, for AIE/ASE, the parameters are the same as those of AIE/SSE except
that V2,k is adapted as in Section 5.3.

Figure 14 compares the true first derivative with the estimates obtained from
AIE/NSE, AIE/SSE with V2 = V2,true, and AIE/ASE. Figure 15 shows that the accu-
racy of AIE/ASE is close to the best accuracy of AIE/NSE.

Figure 14.: Example 7.1: Single differentiation of CarSim data. (a) The numerical
derivatives estimated by AIE/NSE, AIE/SSE with V2 = V2,true, and AIE/ASE follow

the true first derivative y(1) after an initial transient of 200 steps. (b) Zoom of (a).
At steady state, AIE/ASE is more accurate than both AIE/NSE and AIE/SSE with
V2 = V2,true. The SNR is 40 dB.
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Figure 15.: Example 7.1: Relative RMSE ρ
(1)
kf

of the estimate of the first derivative of
CarSim data versus η, such that V1 = η. AIE/SSE with V2 = V2,true is more accurate
than AIE/SSE with V2 = 2V2,true, which shows the effect of V2 on accuracy. The
accuracy of AIE/ASE is close to the best accuracy of AIE/NSE. The SNR is 40 dB,
and kf = 1500 steps.

Double Differentiation

For AIE/NSE, Let ne = 25, nf = 21, Rz = 1, Rd = 10−5, Rθ = 10−8I51, V1 = 10−3I2,
and V2 = 0.0049 for SNR 40 dB. For AIE/SSE, the parameters are the same as those
of AIE/NSE, except that V1,k is adapted, where ηL = 10−3 and ηU = 1 in Section 5.2.
Similarly, for AIE/ASE, the parameters are the same as those of AIE/SSE except that
V2,k is adapted as in Section 5.3.

Figure 16 compares the true second derivative with the estimates obtained from
AIE/NSE, AIE/SSE with V2 = V2,true, and AIE/ASE. Figure 17 shows that the accu-
racy of AIE/ASE is close to the best accuracy of AIE/NSE.
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Figure 16.: Example 7.1: Double differentiation of CarSim data. (a) The numerical
derivatives estimated by AIE/NSE, AIE/SSE with V2 = V2,true, and AIE/ASE follow

the true first derivative y(2) after an initial transient. (b) Zoom of (a). At steady state,
AIE/ASE is more accurate than both AIE/NSE and AIE/SSE with V2 = V2,true. The
SNR is 40 dB.
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Figure 17.: Example 7.1: Relative RMSE ρ
(2)
kf

of the estimate of the second derivative
of CarSim data versus η, such that V1 = ηI2. AIE/SSE with V2 = V2,true is more
accurate than AIE/SSE with V2 = 2V2,true, which shows the effect of V2 on accuracy.
The accuracy of AIE/ASE is close to the best accuracy of AIE/NSE. The SNR is 40
dB, and kf = 1500 steps.
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8. Conclusions

This paper presented the adaptive input and state estimation algorithm AIE/ASE
for causal numerical differentiation. AIE/ASE uses the Kalman-filter residual to adapt
the input-estimation subsystem and an empirical estimate of the estimation error
to adapt the input-estimation and sensor-noise covariances. For dual-tone harmonic
signals with various levels of sensor noise, the accuracy of AIE/ASE was compared to
several conventional numerical differentiation methods. Finally, AIE/ASE was applied
to simulated vehicle position data generated by CarSim.

Future work will focus on the following extensions. The minimization of (54) was
performed by using a gridding procedure; more efficient optimization is possible. Fur-
thermore, it is of interest to compare the accuracy of AIE/ASE to the adaptive sliding
mode differentiator in Alwi and Edwards (2013). Finally, in practice, the spectrum of
the measured signal and sensor noise may change abruptly. In these cases, it may be
advantageous to replace the RLS update (41), (42) with RLS that uses variable-rate
forgetting in Bruce, Goel, and Bernstein (2020); Mohseni and Bernstein (2022).
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