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Abstract

Telonemia are one of the oldest identified marine protists that for most part of their history have been recognized as a distinct incertae
sedis lineage. Today, their evolutionary proximity to the SAR supergroup (Stramenopiles, Alveolates, and Rhizaria) is firmly established.
However, their ecological distribution and importance as a natural predatory flagellate, especially in freshwater food webs, still remain
unclear. To unravel the distribution and diversity of the phylum Telonemia in freshwater habitats, we examined over a thousand
freshwater metagenomes from all over the world. In addition, to directly quantify absolute abundances, we analyzed 407 samples from
97 lakes and reservoirs using Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). We recovered Telonemia 18S
rRNA gene sequences from hundreds of metagenomic samples from a wide variety of habitats, indicating a global distribution of this
phylum. However, even after this extensive sampling, our phylogenetic analysis did not reveal any new major clades, suggesting current
molecular surveys are near to capturing the full diversity within this group. We observed excellent concordance between CARD-FISH
analyses and estimates of abundances from metagenomes. Both approaches suggest that Telonemia are largely absent from shallow
lakes and prefer to inhabit the colder hypolimnion of lakes and reservoirs in the Northern Hemisphere, where they frequently bloom,
reaching 10%-20% of the total heterotrophic flagellate population, making them important predatory flagellates in the freshwater

food web.
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Introduction

Freshwaters are extremely diverse ecosystems, with a wide vari-
ety of trophic states along with substantial dynamics within their
complex microbial food webs [1-9]. Bacterivorous protists are
critical components of these food webs, estimated to predate
upon one-fourth of free-living bacteria every day [10, 11]. It is
assumed that the majority of such heterotrophic protists are
generally <5 um (HNF: heterotrophic nanoflagellates), such as
the uncultured CRY1 lineage of cryptophytes that is one of the
most widespread bacterivore and abundant lineages of HNF in
freshwaters [12, 13]. Recent studies have suggested that middle-
sized (5-20 um) HNF are omnivores, feeding not only on bacteria,
but also predating upon algae and other microbial eukaryotes
[11, 14]. Predatory protists are capable of hunting or immobilizing
their prey and ingesting cells of relatively large sizes [15]. Lab-
oratory experiments on microbial food web manipulations with
predatory flagellates revealed doubling times comparable to the
bacterivorous HNF (i.e. hours to days), and appear ahead of the
ciliates in the energy transfer [11]. Some of the known predatory
lineages of flagellates are Diplonemea [16, 17], Cercozoa [13, 18],
Katablepharida [19], MAST-6 lineage [20], and genus Telonema [21].
The predatory role of Telonema is mainly described in marine
and brackish waters [21] and even though it has been frequently
observed in freshwaters, its diversity, distribution, abundance, and
ecological role in freshwater microbial communities remain less
understood.

More than a century ago, Telonema was first described from
the marine habitat as a relatively small (6-8 pm long), colorless,
elliptical, rigid-bodied flagellate without a contractile vacuole
and no close relationship with other known flagellates [22]. A
few decades later, another report of Telonema subtilis appeared,
where it was obtained in culture from brackish waters [23]. Based
upon its morphological similarity to the then Cyathomonas (now
Goniomonas, a colourless Cryptophyte), it was decided to place
Telonema within the family Cyathomonadidae. Subsequently, T.
subtilis was observed in geographically dispersed marine locations
(Arctic, Mediterranean, Japanese coastal waters, etc.) [24, 25] at
a wide temperature range (—1°C to 26°C) in both summer and
autumn seasons. In general, Telonema was found ubiquitously but
at low abundances, yet at times accounted for up to 10%-30% of
total heterotrophic flagellates. Alarger Telonema species (diameter
10-20 um) was observed and provisionally described as Telonema
antarcticum [26] and found to bloom in summer in an annual study
at a bay in Greenland (ca. 200 cells m1~1) [27]. T. antarcticum was
cultured by providing Rhodomonas as a food source and its ultra-
structure was described in detail [21]. This work [21], along with

others [28, 29], described the first molecular phylogenies using
18S rRNA genes and consistently concluded that the sequences
appeared quite distinct from any other eukaryotic group, high-
lighting the still unresolved placement of Telonema spp. Subse-
quent ultrastructural analyses combined with molecular phylo-
genies of 185 rRNA, Hsp90, «, and B-tubulin gene sequences sug-
gested that Telonemia represents a deep branching group, placed
within its own phylum, i.e. Telonemia [30]. The affinity of Telonemia
derived 185 rRNA gene sequences to Cryptophytes (also spec-
ulated before based upon morphological evidence) and Hapto-
phytes was noted, but not considered conclusive. The availability
of additional Telonemia 18S rRNA gene sequences confirmed previ-
ous observations that Telonemia represents a widespread phylum
and can be grouped into two clades: Groupl with T. subtilis and
Group2 with T. antarcticum [31].

The first indication of freshwater Telonemia representatives
stems from a microscopic examination of protist samples from
Sombre Lake in Antarctica [25] and was later confirmed by
sequencing of 18S rRNA gene clone libraries from Lake Pavin
[32]. However, molecular phylogenies showed strong support
for Telonemia being related to Stramenopiles, Alveolates, and
Cercozoans, and not to Cryptophytes as was suggested before.
Another multigene phylogeny (actin, «-tubulin, A-tubulin,
cytosolic HSP70, BIP HSP70, and HSP90) also suggested that
telonemids should be grouped together with the SAR supergroup
(Stramenopiles, Alveolates, and Rhizaria) [33] rather than with
Cryptophytes and Haptophytes. However, a larger phylogenetic
analysis with more than a hundred genes recapitulated the
Telonemia and Cryptophyte grouping [34], and this was retained in
a later work combining ultrastructural analyses and multigene
phylogenies [35]. These incongruencies were finally resolved
with a robust multigene phylogeny, placing Telonemia as a sister
group to the SAR supergroup, forming the TSAR assemblage
(Telonemia 4+ SAR) [36].

Multiple additional environmental surveys using amplicon
sequencing or clone libraries have repeatedly detected Telonemia
in a wide variety of habitats, ranging from marine [37-40] to
brackish [41] and freshwaters [42, 43], though usually at low
abundances. Recently, the dynamics during a spring phytoplank-
ton bloom was reported with the use of a CARD-FISH probe
specific for Telonemia [44]. A more focused study on both marine
and freshwater Telonemia reiterated the presence of multiple
clades of freshwater Telonemia, within the already defined groups
Telo-1 and Telo-2, which suggests the possibility of various
marine-freshwater transitions within this group [43]. One study
also used network analysis of 18S rRNA gene amplicons to
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show Telonemia associated with an unknown ciliate suggestive
of predation of Telonemia itself [45]. Even more recently, multiple
isolates of Telonemia have been obtained and new genera have
been defined, e.g. Lateronema, Arpakorses, mostly from marine
habitats, but also the first freshwater species: T. rivulare has
been described [46]. Additionally, a limited number of studies
have examined protist communities in rivers using 185 rRNA
gene amplicon sequencing in the northern hemisphere including
the Saint-Charles, Great Whale, Nelson, and Churchill rivers in
Canada [47, 48], the Vistula river in Poland [41], and the Yangtze
river in China [49]. These were not focused upon Telonemia per se,
but have reported the presence of Telonemia OTUs, particularly in
colder seasons or in brackish regimes.

A systematic examination of the prevalence of Telonemia in
freshwaters (particularly in lentic habitats), has been missing
until now. Moreover, it is unclear if novel, yet undescribed major
clades of Telonemia thrive in freshwaters. In this work, we used
catalyzed reporter deposition fluorescence in situ hybridization
(CARD-FISH) and a specific probe to directly visualize and quan-
tify Telonemia in 97 lakes across Europe, Africa, South America,
Australia, and Japan. In addition, we examined its seasonal distri-
bution at four different freshwater sites. Furthermore, we recov-
ered almost 250 18S rRNA gene sequences from >1000 freshwater
metagenomes, greatly expanding our knowledge on the ecology
of Telonemia in freshwaters. Our analyses suggest that Telonemia
diversity is restricted to the already described main clades (Telo-
1 and Telo-2) with a worldwide distribution in freshwater lakes,
typically in the cold hypolimnion, and they are largely absent from
shallow or hypertrophic water bodies. Based on their ubiquitous
presence and occasional peaks of very high abundances in this
rather niche, we suggest that Telonemia might represent one of
the major predatory flagellates of the deep microbial food web
in some freshwater lakes.

Materials and Methods
Study sites and sampling

Samples for CARD-FISH were collected from 97 freshwater
and brackish water habitats covering a broad diversity of
trophic states (ultraoligotrophic, oligotrophic, mesotrophic,
eutrophic, and dystrophic), continental biomes (e.g. arctic, alpine,
continental, Mediterranean, and boreal) at elevations of up
to 1921 m asl (Lake Cadagno), and depths of 2-300 m. The
sampled habitats spanned across a wide geographical distribution
covering five continents (Europe, Asia, Oceania, Africa, and South
America). However, we must point out that tropical lakes are
underrepresented in our sample collection. For each lake, water
samples were collected from the epilimnetic and hypolimnetic
layers (except for shallow lakes where samples were collected
only from the surface). Several timelines were collected from
specific lakes. Four hypertrophic ponds and three dimictic
reservoirs of different trophic status in the Czech Republic were
studied monthly for six and nine months, respectively. Monthly
samples from a monomictic and oligo-mesotrophic lake (Lake
Biwa, Japan) were collected for a whole year. Samples were
also collected from a temporal high-resolution spring campaign
(three times a week) in Rimov reservoir, Czech Republic. In
total, we examined 407 CARD-FISH samples from these sites.
A complete list of all samples used in this work, along with
all physicochemical parameters measured for each sample is
provided in Supplementary Table S1.

Catalyzed reporter deposition-fluorescence in
situ hybridization

Samples were fixed with formaldehyde (2% final concentration)
for up to 24 h at 4°C. About, 30 ml of epilimnetic and 90 ml of
hypolimnetic water were filtered on 0.8-um polycarbonate filters
(47 mm), and stored at —20°C for further processing. We used
the oligonucleotide probe Telo-1250 (5" CAGYCAAGGTGGACAAC-
TYGTT 3') targeting all Telonemia [44]. CARD-FISH was performed
following the protocol described elsewhere [50] with fluorescein-
labeled tyramides. CARD-FISH preparations were analyzed using
an epifluorescence microscope (Olympus BX53, Japan) at 1000x
magnification. Microscopic images were taken using Zeiss Imager
Z2, Carl Zeiss, Oberkochen, DE equipped with a Colibri LED
system.

Preprocessing and assembly of publicly available
metagenomic datasets

Adaptor sequences and low-quality bases were removed from
the (Illumina) sequences using the bbmap package (http://
sourceforge.net/projects/bbmap/). Briefly, the reads were quality
trimmed by bbduk.sh (using a Phred quality score of 18).
Subsequently, bbduk.sh was used for trimming adapters, and
also for the identification/removal of possible PhiX and p-Fosil2
contamination. De novo adapter identification with bbmerge.sh
was also performed in order to ensure that the datasets meet the
quality threshold necessary for assembly. Wherever necessary,
metagenomic datasets were assembled independently with
MEGAHIT (v1.1.5) (—-k-list 49 69 89109129149) and default
settings, otherwise previously available assemblies were used
[4,51-57]. A complete list of all metagenomes used in this work is
provided in Supplementary Table S2.

Retrieval of Telonemia 18S rRNA gene sequences
from assembled shotgun metagenomic datasets
Telonemia 18S rRNA gene sequences were gathered from previ-
ous publications [21, 30, 31, 43, 46]. The metagenomic assem-
blies were scanned for 18S rRNA gene sequences using ssu-align
[58]. All recovered 18S rRNA gene sequences were submitted
to the SILVA [59] online classification (https://www.arb-silva.de/
aligner/) to identify bonafide Telonemia sequences. Telonemia 18S
TRNA from metagenomic assemblies and published 18S rRNA
gene sequences were clustered at 95% nucleotide identity and
100% coverage using cd-hit-est [60]. The representative sequences
obtained (n =21) were individually submitted to the IMG/ER ser-
vice that allows retrieval of related sequences by megablast [61].
All retrieved sequences from IMG/ER were also submitted to
the SILVA online classification to confirm that they belonged to
Telonemia. Finally, only those Telonemia sequences with a minimum
length of 400 bp were retained for further analysis. A complete
table of all sequences (n=771), their sources of origin, and the
sequences is provided in Supplementary Table S3.

CARD-FISH probe specificity

The retrieved sequences were used to test the coverage of probe
Telo-1250. After removing sequences that did not have the tar-
get region, the alignment of the remaining 476 sequences was
imported into the software ARB [62]. As the probe has degenerated
bases, all four non-degenerated sequences were tested using the
probematch tool. The probe matched 90% of sequences when
no mismatches were allowed, and 100% with O weighted mis-
matched option. The probe matched three nontarget sequences
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retrieved from organisms with distinct morphology (Symbiodinium,
Syndiniales Group, Cercozoa Novel Clade 2). It is unclear how
prevalent Cercozoa Novel Clade 2 is in freshwaters, but it has
been observed to be abundant in enrichments from brackish
water [18] and the single sequence that matched the probe was
retrieved from a coastal margin of the Columbia river [63], which
is very different from other sequences in this lineage. Moreover,
examination of 185 rRNA gene abundances of these groups in
the metagenomes of the same samples, from which CARD-FISH
was performed, revealed that most of the time, Symbiodinium
was <1%. On the other hand, Cercozoa Clade 2 appeared to be
quite widespread and abundant in these metagenomes; however,
we detected no CARD-FISH signal from Telonemia at those sites
with high cercozoan abundances (ca. 20%), strongly suggesting
that overestimation of Telonemia using this probe is negligible
(Supplementary Table S4). Moreover, Telonemia has larger, pear-
shaped cells, a characteristic triangular nucleus, and can be dis-
tinguished from flagellates of Cercozoa Novel Clade 2.

18S rRNA phylogenetic tree construction

All Telonemia 18S rRNA gene sequences retrieved from literature
or from metagenomes as described above (minimum sequence
length 400 bp) were dereplicated at several nucleotide identity
levels (95, 96, 97,98, 99, and 100%). Alignments were created using
mafft-linsi [64] and PASTA [65] at all these dereplication settings
and maximum-likelihood phylogenetic trees were constructed
using Iqtree2 v.2.2.2.6 31 (settings: -B 1000 —alrt 1000 -m MFP) [66,
67]. The best-fitting evolutionary models were chosen by Mod-
elFinder [68] according to the Bayesian information criterion (BIC).
Cryptophyte 18S rRNA gene sequences were used as outgroups
for all phylogenetic trees. The delineation of clades Telo-1 and
Telo-2 was based upon previous studies [43, 46]. All sequences,
alignments, and phylogenetic trees are available at Zenodo (doi:
10.5281/zenodo.11237305). The resulting trees were visualized in
1TOL (http://itol.embl.de).

Quantification of Telonemia 18S rRNA gene
sequences in metagenomic datasets:

SILVA 138.1 eukaryotic 18S rRNA gene sequences (nr99) were
downloaded locally. All Telonemia sequences gathered from liter-
ature and from locally assembled metagenomes or public servers
(IMG/ER) were dereplicated at 99% identity using cd-hit-est [60]
and added to the local SILVA 138.1 (nr99) database.

18S rRNA gene sequences were identified in the short-read
metagenomes using ssu-align [58]. These short-read eukary-
otic metagenomic 18S rRNA sequences were compared using
MMsegs?2 [69] to the Telonemia supplemented nr99 SILVA database
(minimum %identity 80, minimum alignment length 100, e-
value le-5) using a best-hit strategy. 18S rRNA gene sequences
originating from organisms known for their extensive rRNA
operon presence, such as Dinoflagellata and Ciliophora, were
removed before further analysis. Additionally, sequences from
multicellular organisms like Metazoa and Embryophyta, as well
as those originating from nucleomorphs of Cryptophyceae, were
excluded. The results were converted to percentages. The category
“others” is a collection of all groups that were either unclassified
or < 1% across all datasets.

Correlation analysis

Spearman correlations between Telonemia abundance (CARD-
FISH) and environmental parameters were calculated using the R

function “cor” [70]. The results of these correlations are provided
in Supplementary Table S5.

Results and Discussion

Phylogenetic analysis of freshwater Telonemia
18S rRNA

In order to get an impression of the occurrence of Telone-
mia in highly diverse freshwaters, we used a collection of
1027 metagenomic assemblies, in addition to mining assem-
blies from public databases (see section Materials and Meth-
ods, Supplementary Table S1). We recovered 574 Telonemia
185 rRNA gene sequences, of which 249 sequences were
derived from freshwaters (see section Materials and Methods,
Supplementary Table S3). Currently, this represents the largest
recovery of Telonemia sequences from freshwaters and suggests
they are widespread in these habitats but clearly not uniformly
distributed.

Phylogenetic analyses of these recovered sequences with refer-
ence sequences from cultured species recapitulated the groupings
of Telo-1 (including T. subtilis) and Telo-2 (including T. antarcticum)
as have been obtained before (Fig. 1, Supplementary Figs S1-54).
However, whereas Telo-1 appears to be a well-defined clade in
these phylogenetic trees, this is not the case for Telo-2, which has
been also earlier described as a polyphyletic clade [46]. Moreover,
inferring phylogenetic relationships within Telonemia using 185
rRNA gene sequences alone is problematic owing to most clades
having low bootstrap support (Fig. 1, Supplementary Figs S1-54).
Using 18S rRNA gene sequences for placing Telonemia within the
tree of life has largely provided conflicting placements to multiple
different groups, which were finally resolved through a phyloge-
nomics approach. It also appears that there is little additional
phylogenetic signal within the 18S rRNA sequences themselves
for a robust within-phylum clade delineation. The relatively low
diversity within the phylum can be illustrated by the recovery of
only 17 representative sequences at 95% identity levels. At 96,
97, 98, 99, and 100% identity, we obtained 23, 36, 61, 134, and
430 representative sequences, respectively. No new consistently
supported clades were observed. Given the wide diversity of habi-
tats examined here, it is possible that 18S rRNA diversity within
this phylum has been exhaustively sampled. We recovered more
sequences from the Telo-2 clade (metagenomic: 177 marine, 194
freshwater; clone libraries: 105 marine, 35 freshwater) than for
Telo-1 (metagenomic: 69 marine, 66 freshwater; clone libraries: 31
marine, 8 freshwaters), suggesting a generally wider distribution
of Telo-2 in freshwaters than Telo-1.

Abundance of Telonemia in freshwater
metagenomes

We examined 589 freshwater metagenomes to obtain a rough esti-
mate of the relative abundances of Telonemia in freshwater habi-
tats with respect to other protistan taxa (Supplementary Fig. S5,
Supplementary Table S2). Reads of Telonemia were found at >1%
in 117 samples, >5% in 21 samples, and >10% in six samples
(Supplementary Table S2). The highest abundance (ca. 22%) was
found in an under-ice sample of Lake Parsens (Sweden). Clus-
tering of 185 rRNA gene taxonomy profiles of samples where
Telonemia was present did not reveal any outstanding commonal-
ities (Supplementary Fig. S5). These results suggest that Telonemia
shows a preference for deeper waters as most samples with
higher abundances were frequently derived from lake hypolimnia
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Figure 1. (A) Maximum likelihood phylogenetic tree of representative Telonemia 18S rRNA gene sequences clustered at 97% nucleotide identity (shown
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Rimov reservoir.

(Fig. 1). This was also supported by a weak, but significant correla-
tion between Telonemia percentages by 185 rRNA gene and depth
(n =407, Spearman’s R=0.174, P value =4.2e-04). Moreover, exam-
ination of longer metagenomic time-series of two sites (Rimov
reservoir, Czechia, and Lake Mendota, Wisconsin, USA) showed
quite different abundances even though both temperate water
bodies are largely eutrophic. Read abundance levels of Telonemia
18S rRNA gene sequences in the Lake Mendota dataset were
never >1% at any time (Supplementary Table S2). On the other
hand, the Rimov reservoir had multiple time points with very
high abundances (up to 18%), suggesting Telonemia are almost
always present in the hypolimnion (Fig. 1). Furthermore, Telonemia
declined during winter in the hypolimnion, whereas maxima

during winter were recorded for the epilimnion. This may also
be due in part to the general higher abundance of prey in the
epilimnion coupled with the more favorable lower temperatures
in winter.

CARD-FISH analyses of Telonemia in freshwater
lakes

CARD-FISH counts of 407 samples confirmed the results already
seen in the 185 rRNA gene abundance results (Fig. 1), and Telone-
mia are more abundant in the deeper layers of lakes, where
temperatures are generally below 10°C (Fig. 2). In a more extreme
case, relative abundances of up to 50% of all eukaryotes were
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Figure 2. (A) Geographic locations of lake samples used for CARD-FISH in this work. Samples are color-coded according to the maximum %Telonemia
found at that site using CARD-FISH (see key top left). Sites where Telonemia was not detected at all are shown as empty circles. A complete list of all
samples is provided in Supplementary Table S1. (B) CARD-FISH counts (%Telonemia) in CARD-FISH filters (only those more than 1% are shown here),
sorted by decreasing temperature. Epilimnion and hypolimnion samples, along with lake trophic status are shown in different colors.

recorded in the hypolimnion of mesotrophic Lake Cincis (Roma-
nia) (Figs 2 and 3, Supplementary Fig. S6). We also did not observe
Telonemia in lakes from Africa (Lake Malawi), or from Australia and
South America (Fig. 2, Supplementary Table S1) likely because of
their elevated temperature (>20°C). We found a strong correlation
between the abundance assessments (as % Telonemia) between
CARD-FISH and from metagenomes (n=51, Spearman’s R=0.715,
P value =3.84e-09, Supplementary Fig. S7), often not observed for
many protist groups [71]. Some possible reasons for concordance
may be most likely related to the relatively limited diversity of
Telonemia 18S rRNA gene sequences, the divergence from other
protist groups, and the high specificity of the CARD-FISH probe for
this group. Additionally, Telonemia were completely absent at sam-
pling sites with a maximum depth of ca. 12 m (79 samples) except
for two instances where it was still <1% (Supplementary Table S1).

These counts reveal that Telonemia are widely distributed
in freshwater habitats (in particular deeper ones) at given
conditions, but do not reveal any distinct seasonal patterns
that are better examined using time-series analyses. To discover
such patterns, we conducted monthly sampling for one year
from four distinct water bodies. Seasonal profiles of Telonemia

abundance differed greatly. In Rimov reservoir, Telonemia appeared
to be present in the hypolimnion throughout the entire year
reaching low levels only in the coldest time of the year,
concomitantly with maxima in the epilimnion (Fig. 3D). In the
Klicava reservoir, Telonemia reached maxima of up to 40% of all
eukaryotes in the epilimnion during the colder months but could
also be simultaneously detected in the hypolimnion (unlike in
Rimov). Telonemia were completely absent in Kli¢ava in summer
and autumn when the reservoir is strongly stratified even though
the temperatures in the hypolimnion remained stable around 5°C.
In Zlutice reservoir, Telonemia almost completely disappeared in
the autumn-winter months, and appeared again in spring and
further increased in the hypolimnion until autumn. Thereafter,
they disappeared from the hypolimnion for almost the entire
winter period. Increasing temperatures in summer also coincided
with the disappearance of Telonemia in the Zlutice reservoir at
around 10°C in the epilimnion (Fig. 3D). The hypolimnion in this
reservoir is anoxic at this time of the year, which may also explain
Telonemia’s disappearance there. The lowest abundances, however,
were recorded in Lake Biwa, where Telonemia were undetected
most of the time, or at very low abundances (<5%), but reached
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Figure 3. CARD-FISH images of Telonemia targeted by the probe Telo-1250. Green: CARD-FISH probe, blue: DAPI, red: autofluorescence (A) from Lake
Cincig (20 m) (B) from Rimov reservoir (0.5 m), Telonemia ingesting a Rhodomonas. A larger Cryptomonas and smaller Rhodomonas are also seen left and
right, respectively, and (C) a dividing Telonemia cell from Breiter Luzin hypohmmon (50 m). All scale bars are 10 um, panel (A) is in magnification 40X,
and panels (B) and (C) are in 100X magnification. (D) Four annual time-series from Rimov reservoir, Lake Biwa, Kli¢ava reservoir and Zlutice reservoir
showing relative abundances of Telonemia (using CARD-FISH) in epilimnion and hypolimnion. Temperatures are shown as green (epilimnion) and
gray-dotted (hypolimnion) lines. (E) Relative abundances of Telonemia in epilimnion and hypolimnion during a high-resolution sampling of a spring
phytoplankton bloom in Rimov reservoir. Counts of the most abundant Cryptophyte (Rhodomonas) are shown as a blue background and temperatures

as lines.

a maximum of ca. 20% in a single winter sample. Lake Biwa
hypolimnion temperatures appear higher than other lakes (7°C),
which is still well below 10°C. Thus, although temperature does
appear to be an important factor shaping the occurrence of
Telonemia, it does not explain entirely the observed patterns
in the time series. We also found no correlations with Chl-
a, dissolved oxygen, or any other physicochemical parameters
(e.g. ammonia, nitrites, nitrates, pH) with relative abundances of
Telonemia (Supplementary Table S5).

There were several occasions on which Telonemia were also
found in the epilimnion. On one such occasion, i.e. the spring
phytoplankton bloom, they reached up to 15% of all HNF [44]. We
analyzed CARD-FISH samples from a high-frequency sampling
during the phytoplankton spring bloom (ca. every 3 days) [4] and
observed Telonemia peaking in the epilimnion (up to 10%) and even
ingesting the most abundant Cryptophyte Rhodomonas (Fig. 3B).
This is likely due to the still relatively low temperatures in the
epilimnion in this season and also to the high availability of prey
organisms such as cryptophytes. Later in the season, Telonemia
abundance seems to decrease with increasing temperatures and
decreasing abundance of its prey.

Our analyses provide new insights into the distribution and
seasonal patterns (at both long and short time intervals) offering
clues on possible niche preferences of Telonemia in lentic water
bodies, which appear to be predicated by a low-temperature
regime frequently associated with higher depth (<12 m). It was
almost completely absent from shallow or hypertrophic sites.
Additionally, Telonemia appeared also absent from sites with tem-
peratures >10°C. It also seems that potential prey availability does

not appear to be the main driving agent as habitats with extremely
high microbial and flagellate populations (e.g. fish ponds) appear
totally devoid of Telonemia and lake hypolimnia where they are
usually resident have lower bacterial and flagellate abundances
than surface layers. This is in contrast to the omnipresent occur-
rence pattern of major bacterivorous flagellates affiliated to the
CRY1 lineage, which can be found in a wide temperature range,
stretching from the cold hypolimnion to the relatively warmer
fish ponds [13]. Indeed, it is likely that Telonemia predate upon the
CRY1 lineage, which is almost always found in deep hypolimnion
at high abundances [13]. The preference of Telonemia for deeper
water bodies also suggests they are primarily a resident in the
hypolimnion, and depending upon favorable environmental con-
ditions (e.g. lower surface temperatures in winter or spring bloom)
can transition to the epilimnion. It may also be derived from
this that algae like Rhodomonas are not their primary prey. How-
ever, Telonemia show much larger fluctuations in population size,
suggesting that even within what appears as a relatively stable
hypolimnion, there is sufficient instability in resources through
different sedimentation rates, and invasions of additional prey
during seasonal algal bloom, thus eventually promoting sudden
Telonemia blooms (i.e. >20% of all HNF at several sites).
Freshwater food webs, particularly in the hypolimnion, remain
little understood. Classical models in ecology have focused largely
upon surface layers that show dramatic changes in response to
environmental factors [1]. Recently, the distribution and dynamics
of protist groups in deeper water layers are increasingly studied
revealing a host of diverse flagellates (e.g. kinetoplastids, kat-
ablepharids, cercozoans) preying both upon bacteria and other

Gz0z Aeniga vz uo 1senb Aq 26829/ 7/ /L 9BIM/L /g /8|one/fawsl/woo dno-olwepese//:sdiy woll papeojumod


https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wrae177#supplementary-data

8 | Boukheloua et al.

flagellates or smaller algal cells [11, 13, 72]. However, many of
these lineages are known solely from sequence data and cultured
representatives are scarce (unlike Telonemia). This work shows that
Telonemia are mostly found in cold, deeper freshwaters making
them likely significant predatory flagellates in the food web of
deep lakes. However, interactions of Telonemia flagellates with
the larger microbial community still remain obscure. The general
approach taken in this work applied to other important and as
yet not fully understood lineages in freshwaters will be key to
unravel their identities, lifestyles, and dynamics in the largest, yet
less studied habitat of deep lakes.
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