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Flow induced rigidity percolation in shear thickening suspensions
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Abstract

Discontinuous shear thickening (DST) is associated with a sharp rise in a suspension’s viscosity with increasing applied shear rate or stress.
Key signatures of DST, highlighted in recent studies, are the very large fluctuations of the measured stress as the suspension thickens with
increasing rate. A clear link between microstructural development and the dramatic increase in stress fluctuations has not been established yet.
To identify the microstructural underpinnings of this behavior, we perform simulations of sheared dense suspensions. Through an analysis of
the particle contact network, we identify a subset of constrained particles that contributes directly to the rapid rise in viscosity and large stress
fluctuations. Indeed, both phenomena can be explained by the growth and percolation of constrained particle networks—in direct analogy to
rigidity percolation. A finite size scaling analysis confirms this to be a percolation phenomenon and allows us to estimate the critical
exponents. Our findings reveal the specific microstructural self-organization transition that underlies DST.© 2024 Published under an

exclusive license by Society of Rheology. https://doi.org/10.1122/8.0000786

. INTRODUCTION

Suspensions, such as colloids, pharmaceuticals, slurries,
and concrete, are central to several environmental and tech-
nological processes. Their flows exhibit phenomena ranging
from shear thinning and thickening to thixotropy, giant stress
fluctuations, and jamming [1,2]. In particular, discontinuous
shear thickening (DST) is ubiquitous and dramatic, with a
rapid rise in stress or viscosity as the applied shear rate
increases (or a sudden shear rate decrease for stress driven
shear). During DST, the flow becomes dilatant [3-5] and
erratic, with giant stress fluctuations in response to the
increasing shear rate [6—10]. The bulk rheology becomes sen-
sitive to surface interactions, roughness, and hence frictional
contacts between particles [11-14], in spite of the presence
of solvent lubrication forces [5,15-21]. However, while parti-
cle surface contacts are strongly material and chemistry
dependent, the overall DST phenomenology is consistent
across all suspensions. The theoretical mean-field approach
of Wyart and Cates [13], in which the microstructure is char-
acterized by the suspension volume fraction and the overall
fraction of frictional contacts produced under shear, demon-
strated that the origin of DST rheology does not depend on
the specifics of the material and surface chemistry. The large
fluctuations of the shear stresses and the scaling properties of
the shear response, observed over a wide range of suspen-
sions [7-10,22,23], are reminiscent of collective processes in
critical phenomena. Together these findings suggest that
larger microstructures, made of many particles and built
under shear, underpin DST [24-26].
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More specifically, there is evidence, from both experiments
and simulations, that spanning clusters or chains of particles
carry large stresses during thickening [11,13,27-30]. We
hypothesize that these or related structures may intermittently
jam under flow, causing the abrupt stress fluctuations and 8
raising the prospect of an underlying percolation transition.
The sharp increase of the viscosity could signal the growth of 3
a percolating, load-bearing microstructure, whose dynamics§
under shear would be at the origin of the giant stress fluctua-
tions. With respect to order-disorder transitions highlighted in
studies of flowing suspensions [31-34], the build-up of a per- °
colating structure responsible for stress transmission, akin to a
rigidity percolation [35-37], requires a more complex self-
organization process, which is nearly undetectable in experi-
ments but possibly recognizable in particle based simulations.

Computational studies that identify and characterize perco-
lation transitions strongly depend on the capability to
perform large scale simulations because a limited system size
can make it impossible to follow the growth of the percolat-
ing structure [38]. Moreover, recognizing a disordered rigid
structure embedded in a 3d disordered environment that may
or may not contribute to its rigidity is a formidable challenge,
even when considering a system at rest. For a shear thicken-
ing suspension, which is typically subjected to high shear
rates or stresses, the conditions to directly test for mechanical
rigidity are highly non trivial even for simulation studies.
Hence, addressing such questions requires dedicated and
extensive numerical resources. Recent simulation studies
have analyzed a variety of geometrical motifs in the particle
force contact networks that emerge during DST [25], includ-
ing structures that would be rigid at rest [26], but did not find
evidence of a percolation transition. A significant knowledge
gap, therefore, still remains, as to whether a percolation
growth underpins DST and its rheological signatures.
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Here, we use large scale 3D simulations of model suspen-
sions to provide evidence that a percolation transition is
indeed at the origin of the stress fluctuations characteristic of
DST. The evidence is obtained once the basic unit of the
microstructure that forms the percolating, stress bearing,
network is identified in terms of locally overconstrained par-
ticles that share frictional contacts. The percolation of this
microstructure can be directly linked to DST, and to the
accompanying large stress fluctuations, and points to the role
of rigidity percolation in this phenomenon. The growth and
percolation of locally overconstrained particle clusters follow
a critical behavior akin to the one of equilibrium systems
close to a critical point, and can be studied via a finite size
scaling analysis, which allows us to estimate the related criti-
cal exponents.

Il. METHODS

We have utilized a model suspension of spheres that interact
via hydrodynamic lubrication, contact repulsion, and frictional
forces, following recent work on simulations of shear thickening
[34,39,40]. The steric repulsion between particles is modeled as
a Hookean force, depending on the surface separation /2 and a
spring constant k, lubrication forces are regularized at short dis-
tances between the particle surfaces, and Coulomb friction acts
tangentially on surface contacts (see details in Sec. II A). All
spheres have the same size, while all interaction parameters
have been adjusted to match the model in [40]. We integrate the
equations of motion for all particles as in [34], performing sim-
ulations of large systems with LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator) [41] with overdamped
particle motions. The suspension is subject to thermal fluctua-
tions and sheared using Lees—Edwards boundary conditions
and imposing a constant shear rate with a background velocity
field that particle motion can relax to.

All quantities are reported in reduced units as a combina-
tion of basic units: energy scale € = kg7, particle mass m
whose effect is damped by the solvent viscosity 7,, and parti-
cle diameter d. While the natural time unit used in the simu-
lations is the inertial time 7o = \/md?/e, we are solving the
equations of motions in the overdamped limit and in the fol-
lowing the shear rate y is, therefore, scaled by a characteristic
rate ¥, at which the drag force due to the solvent becomes on
the order of a characteristic force at contact [42]. Here, we
use 7, = ko8 /6mnyd?, where 6znyd? is the drag force due to
the solvent of viscosity 17y, ko is the characteristic spring
constant describing the contact mechanics, and we estimate
the characteristic force at contact ko6 when two particles
numerically have an overlap § ~ 107° of their diameter d.

In this work, we present data on particle volume fraction
¢ = 56%, reproducing the same DST features as in [40], but
with the number of particles N ranging between 1687 and
45528 and the simulation box size between 11.64d and
34.92d. When not explicitly indicated, the data always refer
to the largest system size.

A. Simulation details

All simulations were performed with LAMMPS [41].
While generally known for molecular dynamics simulations,

the LAMMPS code has specialized modules that allow for
the modeling of soft sphere suspensions of Brownian parti-
cles. For this application, LAMMPS utilizes a physics-based
discrete element method (DEM) model that simplifies the
detailed flow behavior of the suspension solvent in exchange
for computational efficiency. Hydrodynamic interactions
between spheres are largely controlled by lubrication forces.
Shear flow was imposed along the x direction (with gradient
along z) based on the Lees—Edwards boundary condition,
with an additional Stokesian drag force which causes parti-
cles to follow the imposed shear profile over time. The
robustness of this approach improves with increasing volume
fraction of spheres as a less detailed knowledge of flow of
the background fluid is needed. Indeed, it has been found
that at volume fractions of approximately 40 % and higher,
the flows produced are reasonably consistent with fully
detailed simulations [43]. This is due to the fact that, at
higher volume fractions, the surfaces of the solid inclusions
are close enough such that the lubrication forces dominate
over the long-range hydrodynamics of the background fluid
[44]. A detailed description of this approach can be found in
our previous paper [34].

In addition to the hydrodynamic forces, frictional forces
are included following the contact model of Mari et al.
[11,12] The steric repulsion between particles is modeled as
a Hookean force, with a normal force of Fy = kh that
depends only on particle surface separation 7 and spring
constant k. This allows for particle contact, which is the crite- §
rion for activating frictional forces. As in [11,12], to mimic a§
hard contact, we use a high spring constant of k = koy, 3
with ko values between 107 and 10® in our reduced units.§
With these parameters, we observe particle overlap always 8
<3%, comparable to the criteria used in other recent simu-g
lations [45]. The dependence on the shear rate arises from
the fact that a higher spring constant is needed to limit
overlap at higher shear rates due to collisions happening
more frequently and at greater velocities. Alternatively,
one could use a fixed, high value of k, corresponding to
what is required for the highest shear rate, at all rates.
However, this requires a smaller timestep to adequately
resolve collisions, and the variable spring constant
approach was found to reduce computational cost while
producing results that matched the results from the cons-
tant k approach [45].

The frictional forces act tangentially to the particle contact
and also follow a simple Hookean model. Any tangential dis-
placement of particles after making contact, Ar;, is acted
upon by a restoring frictional force F, = kAr,, with the con-
straint that F;, < Fy (Coulomb’s friction law with a friction
coefficient of 1). The contact/friction model we use is rela-
tively simple compared to some recent studies that have
explicitly included a more detailed description of the particle
surface roughness [17,20], which produces the frictional con-
tacts. However, for all these models the DST exhibits similar
behavior, and the simpler model also compares favorably
with experiments [46]. While a more detailed study of the
different contact models is beyond the scope of this work, we
note that the recent studies that use rolling friction [47], or
hydrodynamic interactions with surface roughness [17,20], as
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the main microscopic mechanism for frictional contacts, find
a shift in the DST onset but, overall, recover the same DST
phenomenology obtained with sliding friction and simpler
contact laws. On this basis, a more detailed and complex
contact model is needed to quantitatively predict the value of
the stress or shear rate corresponding to the DST onset, but it
is not expected to significantly change the nature of the
microstructural growth underpinning the rheology.

B. Data analysis

Simulations for all system sizes were run for at least 40
strain units to ensure sufficient sampling of the steady state
flow. The data shown, except in cases where it is plotted as a
function of y, are averages over all sampled points with
y > 10. The error bars correspond to the standard deviation
of the average and are smaller than the symbol size when not
visible.

The stress is calculated from the particle contributions to
the stress tensor, following [48], as

1 | i
o8 =y [Z (ﬂrﬁ’) - mﬁ] M

i J#i

where o and B can be x, y, or z to generate the components
of the stress tensor, V is the system volume, Fi and # are
the force and position vectors between particles i and j, and
W = Vi 1 — 72X is the deviation of the particle velocity from
the flow profile set by the shear rate. The suspension viscos-
ity is computed from the shear stress o,, and shear rate y as
=0y / 7.

For the clustering analysis, particles are considered con-
nected when they are in contact. In our simulation model, the
contact can be exactly determined by a distance threshold
between particle centers: r; < d means particles overlap,
experience steric repulsion, and are frictionally constrained.
We have verified that particles experiencing slipping
contacts, i.e., contacts precisely at the Coulomb threshold,
are statistically negligible. We identify particles with at least
k contacts (k-neighbor particles) and clusters of them. After
sorting the particles, clusters of k-neighbor particles can be
identified by searching for contacts between k-neighbor parti-
cles. k-neighbor particles and their clusters may seem quite
similar to k-core clusters used in network theory to character-
ize connectivity patterns in random networks and recently
employed in the forced contact network analysis close to
DST [25]. However, k-core clusters are defined using sub-
graphs of the initial contact network in which all member
particles have k or more frictional contacts with other
members of the same subgraph. In k-neighbor clusters,
instead, all member particles have k or more frictional con-
tacts. That is, particles belonging to k-neighbor clusters have
k or more frictional contacts but not necessarily with particles
in the same clusters, i.e., the contact particles may have
fewer than k contacts (see Fig. 1). The difference in the two
definitions may appear subtle but is important, as it will
appear in our analysis in Sec. IIl. In fact, k-core structures
select particles on the basis of their degree of connectivity

k-neighbor particles

) (09 QD @2

&)

Cluster of
2-neighbor @
/' particles @l )*Cluster of
@1 4-neighbor
particles

FIG. 1. A 2D schematic representation of what we refer to as k-neighbor
particles and examples of clusters they may form. All the simulations
reported here are in 3D.

(e.g., all particles in a cluster have the same connectivity),
whereas k-neighbor structures end up selecting for local
geometry of particles (independently from how low or high
the connectivity of their neighbors is). With using
k-neighbor particle clusters, our hypothesis is that the local
geometric arrangement of the particles in a cluster, signaled
by their number of neighbors, can be a proxy for local rigid-
ity and mechanical stability. This hypothesis will be sup-
ported by the results obtained. We provide a simple 2D
visualization of k-neighbor particles and the clusters they
can form (Fig. 1).

For each k, the whole distribution of possible cluster sizes
is obtained from each simulation snapshot, with the size being g
the “mass,” i.e., the number s of particles which satisfy the cri- §
terion chosen and belong to the same cluster, as usually done
in percolation problems [38]. The cluster size distribution indi- 5
cates the number of clusters of a given size s per particle. Tog
sort the clusters efficiently and obtain the complete cluster size 8
distributions for each k and for all shear rates considered, we
use the Hoschen—Kopelman algorithm [49]. Once the cluster
analysis is completed, a cluster of k-neighbor particles is
defined to be percolating in a direction if, when we split our
system into thin (< .45d) slices along that axis, at least 1 par-
ticle from the cluster is in each slice. The percolation probabil-
ity R at any given y is computed as the fraction of sampled y
values at which a percolating cluster exists. The probability P
of a particle being in the percolating cluster is determined
from the number of particles in the percolating cluster com-
pared to the total N.

From all non-percolating clusters and their size distribu-
tions computed at each shear rate y, k value, and at each
strain y, we compute the size of the largest clusters Sp,x and
average it over the whole strain window available. The mean
cluster size S is the second moment of the cluster size distri-
bution, given as

S = Z sny, )

where s is a cluster size and n; is the cluster size distribution
(i.e., number of clusters of size s normalized by N) obtained
for a given k value, at each shear rate, and for each y. Also
here, we average S over the whole strain window.
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Finally, to visualize local contributions to the overall
stress, the virial formulation of the stress tensor is broken up
into particle contributions as

O':Zﬂ — Z {E Fgrg] — mv;v’p 3)

J#i

and the particle contribution to the total are colored accord-
ing to their magnitude.

lll. RESULTS
A. DST and stress fluctuations

As mentioned above, the data reported here refer to simu-
lation boxes containing 1688, 13500, and 45 563 spheres,
with edge length, L= 11.64 d, 23.28 d, and 34.92 d, respec-
tively. The medium and larger sizes are much larger than in
the previous studies, which is essential to address the critical-like
behavior of stress fluctuations and to deal with the finite-size
effects typical of percolation transitions. We use the convention
that x corresponds to the flow direction, y to the vorticity direc-
tion, and z to the shear gradient direction.

We use the shear component o,, of the stress tensor,
obtained from interparticle forces, relative positions, and parti-
cle velocities [Eq. (3)] [50] to extract the relative viscosity 7,,
plotted in Fig. 2(a) as a function of the shear rate y for the
three system sizes. The data show a steep increase in viscosity
at a threshold shear rate y ~ 5, and increasing the system size
confirms the sharp viscosity increase, indicating that DST here
is not an artifact of limited sample sizes used in simulations.
The shear stress distributions, extracted from the time series,
are Gaussian at low rates, but, as y approaches DST, they
develop exponential tails consistent with experiments [10].
The non-Gaussian tails are more pronounced for the larger
system sizes, indicating that the large stress fluctuations and
their non-Gaussian nature are not merely the result of limited
statistics. The time series from which the viscosity is extracted

n(y)

OxzlY

104.
O L=11.64d - A
A L=2328d A O
M L=34.92d

103_

IS
102.
10-1 10°

in the steady state are plotted in Fig. 2(b), showing (for the
intermediate system size of 13 500 particles) o,,/7 as a func-
tion of the strain y for several shear rates. The data clearly
feature large fluctuations of shear stress at DST.

Previous work [25] has shown that, close to shear thicken-
ing, the shear stress increases with the mean number of fric-
tional contacts per particle, which peaks at 3 and 4 for large
shear rates. However, in terms of the mean frictional contact
number, a distinction could not be made between continuous
shear thickening (CST) and DST, whereas they clearly have
different rheological signatures. These findings support the
idea that not just the mean frictional contact number but rather
the local microstructural environment and its larger scale con-
nectivity determines the nature of the stress transmission
through particle suspension. To search for the microscopic
origin of the stress fluctuations, we, therefore, consider the
hierarchy of structures built up by particles that share frictional
contacts with a minimum k neighbors. In the graph theory,
this defines a contact graph (or network) composed of nodes
with degree k at minimum [51,52]. As explained in the previ-
ous section, we define a neighbor, for each particle, as a parti-
cle close enough in proximity that it can interact with said
particle by frictional forces. In our frictional model, this
occurs when the sphere surfaces are in contact. The frictional
force is proportional to the normal force between the neighbor-
ing spheres and acts to resist transverse motion relative to
surface normal between neighboring spheres. We refer to par-
ticles with at least k neighbors as k-neighbor particles.

B. Constrained particle percolation

Testing k values from 2 to 6, we directly connect the per-
colation of k-neighbor particles to the rapid rise in viscosity
and the large stress fluctuations corresponding to the DST.
For each k, we identify the k-neighbor particles, sort them
into clusters, obtain the cluster size distribution, and identify
configurations in which at least one percolating cluster is

02:2£:€2 G20z Aeniged 9z
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FIG. 2. (a) The average relative viscosity (7,) as a function of shear rate () at ¢ = 56% and different system sizes. The error bars represent one standard devi-
ation from the mean calculated, after reaching steady state, from a running average over 25 strain units. The jump in the viscosity does not vary with increasing
system size nor Reynolds number (albeit reducing Reynolds number produces a plateau at very high rates). The vertical dashed lines indicate the shear rates
used in (b), showing instantaneous viscosity (stress/shear rate) as a function of applied strain y. The jump in 7, is accompanied by large fluctuations of the

stress near the critical shear rate.
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FIG. 3. Ri(y) (equal to 1 if a percolating cluster of k-neighbor particles
exists and O otherwise) plotted for different k& values alongside the stress
0xz/{(0xz) (dashed black line). The percolation of 4-neighbor particles corre-
sponds to the giant stress fluctuations.

present in all directions. We have performed this analysis for
all shear rates approaching the shear thickening transition in
Fig. 2, and found that the percolation of 4-neighbor clusters
is directly correlated to the stress fluctuations and DST. The
plot in Fig. 3 superimposes the time series for the presence
of a percolating cluster of k-neighbor particles (R = 1) or
not (R, = 0), for different k, to the time series of the shear
stress close to DST (y = 5.1). The data show that clusters of
3-neighbor particles always percolate, independently from
the stress fluctuations, which also happens for k = 2 (data not
shown). In contrast, the percolation of a 4-neighbor cluster
exactly corresponds to the spikes in the shear stress of the
suspension. This behavior is confirmed across all shear rates
around DST, whereas at low enough y, where DST does not
occur and stress fluctuations are Gaussian, the percolation of
4-neighbor particles was not observed. Note, the 4-neighbor
particles locally satisfy the Maxwell criterion for rigidity in
the presence of tangential frictional forces [37]. At higher k
values, percolation is significantly reduced for all shear rates.
Indeed, Fig. 3 show that percolation of 6-neighbor particles,
which, incidentally, correspond to locally rigid structures for
frictionless spheres, does not occur close to DST. Our find-
ings now strongly suggest that the self-organization of
locally rigid, overconstrained particles into a percolating
structure, reminiscent of shear jamming in granular fluids
[53,54], is at the origin of the large stress fluctuations typical
of DST, playing a significant role in this phenomenon.
Indeed, the percolation of the rigid 4-neighbor particles can
support the transmission of stress and bear most of the load
also over an extended period of time, in contrast to
k-neighbor particles with lower k values, which can be more
easily disrupted. The percolation of the rigid 4-neighbor par-
ticles could, therefore, be central to the self-organization of
the suspension microstructure under flow, when DST occurs.

C. Finite size scaling

Encouraged by these results, we now study the growth of
4-neighbor particle clusters using percolation theory. If a

percolation transition emerges at a well-defined critical shear
rate, we would like to identify the critical exponents which
control the self-similar nature of the stress carrying structures,
characterized by a linear size (or connectivity correlation
length) that diverges approaching the transition. Recognizing
that to extract such quantities is challenging even for static
systems, here we expect additional challenges because of the
highly dynamical nature of shear thickening systems.

We first try to determine if there is a critical shear rate that
we could associate with a percolation threshold, by examin-
ing the probability of percolation, R, defined as the average
occurrence of percolating clusters of 4-neighbor particles
over each time series at different shear rates and for the three
different system sizes. The data for R as a function of the
shear rate (Fig. 4 inset) show, for all system sizes, a transition
from O to 1. The larger the system size, the steeper the transi-
tion from O to 1 in probability, akin to the behavior of the
percolation probability close to a percolation transition,
where, due to finite size effects, the percolation probability
increases earlier and the fluctuations smear out the transition
region in smaller systems. With increasing system size,
however, the transition region shrinks but does not signifi-
cantly shift, suggesting that the percolation threshold of the
4-neighbor particles could indeed correspond to a specific,
finite shear rate even in the limit of an infinite system. In per-
colation problems, a rough estimate of the percolation thresh-
old (corresponding to the limit of an infinite system) can be
obtained considering the point where the percolation proba-§
bility curves for different system sizes intersect, which in our &
case corresponds to ¥, = 5. ¥, points to a characteristic time%
scale over which a stable percolating network may be built or §
destroyed at a given shear rate. We expect this characteristic &
timescale to vary with the specific experimental system or
microscopic parameters of the simulations (see appendix), as
indeed observed for the DST threshold [20,23,47,55].

Close to a percolation transition, the percolation probabil-
ity, and all other quantities related to the growth of
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FIG. 4. Main frame: The probability R of 4-neighbor particles to form a per-
colating cluster as a function of the scaling variable (7 — 7.)L'/" for three
system sizes. Data collapse onto a unique curve for ., = 5.2 and v = 0.6.
Inset: The probability R of 4-neighbor particles to form a percolating cluster
as a function of the shear rate for different system sizes.
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connectivity, should follow the percolation finite size scaling
ansatz [38]. That is, they vary with the distance from the
transition threshold (in our case y.) and the system size
L only through a specific combination of both, which pro-
vides a scaling variable ( — ¥.)L!/". In analogy with critical
phenomena, the difference in the rate from the y,. is related to
a correlation length £ in the system, which diverges at
the percolation threshold with a critical exponent v, and
(y — ;/'C)L'/ ¥ can be interpreted as (L/ 5)1/ ", As in equilibrium
critical phenomena, this property is the result of the self-
similarity of a system close to a critical point [56], however,
for percolation the property applies to a purely geometrical
critical point related to the growth of connectivity. The finite
size scaling ansatz provides the way to directly test the
hypothesis that the system is indeed close to a percolation
transition by verifying the presence of this regime for differ-
ent quantities. Moreover, since the scaling variable and the
scaling behavior depend on the critical exponents, one simul-
taneously obtains independent estimates of the critical expo-
nents that describe their critical behavior.

Following percolation theory, we first attempt to collapse
all the data for the percolation probability in terms of a
scaling variable ( — 7,)L'/", which accounts for the statisti-
cal nature of percolation due to the system finite size, and
where v is the critical exponent that describes the divergence
of the connectivity correlation length close to the percolation
threshold. The data collapse obtained (Fig. 4, main frame)
supports the validity of the finite size scaling ansatz. It only
holds for a narrow range of values of the critical exponent v,
providing an estimate v ~ 0.6, and allows us to obtain a
more accurate estimate of y,. ~ 5.2.

D. Estimating critical exponents

From the same cluster analysis of 4-neighbor particles,
and having calculated the whole cluster size distribution, we
can then compute the probability P of a 4-neighbor random
particle being in the percolating cluster, the mean cluster size
(i.e., the second moment of the cluster size distribution), and
the maximum cluster size [38]. For all these quantities, the
same finite scaling ansatz predicts that, once rescaled by a
factor L%V where a is the specific critical exponent (with
sign) for a given quantity, they only depend on (y — 7, )L'/".
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For example, since the probability P of a random particle
being in the percolating cluster goes to O close to the percola-
tion threshold y, as (y — }'/C)/j in an infinite system, for any
given finite system size L the same probability will follow
the scaling PL?/V oc ( — y,)L'/V. For the mean cluster size
S, which is the second moment of the cluster size distribution
and diverges as S oc (y — 7,.)”7 in an infinite system, the pre-
dicted scaling is SL™7/" oc (y — 7,)L'/¥, and so on.

We can, therefore, test the finite size scaling ansatz by
examining whether all data obtained in the simulations for
different ¥ and different L indeed collapse onto a unique
scaling function when plotted as a function of the scaling
variable as it happened for the percolation probability just
discussed. The occurrence of the data collapse is highly non-
trivial and can be used to clearly identify the vicinity of a
critical percolation regime.

Varying independently the values of critical exponents
and percolation threshold across all three quantities, we iden-
tify the unique combinations producing the predicted data
collapse [38] (Fig. 5). We note that we have significantly
expanded the system sizes with respect to the existing litera-
ture on computational study of DST, however, we are far
from being able to vary L by several orders of magnitudes,
which would be required in this type of studies of critical
behavior (Fig. 5, insets). Nevertheless, the evidence of the
data collapse associated with a critical-like regime is striking
(Fig. 5, main frames).

With this procedure, we confirm the estimated Value;?1
v = 0.6 for the critical behavior of the correlation length, and§
independently determine the critical exponents 8 ~ 0.18,2
y =~ 1.3, and o =~ 0.75, respectively, describing the probabil—§
ity of a random particle to belong to a percolating cluster, the 8
mean cluster size (related to the variance of the cluster sizeg
distribution), and the maximum cluster size. The exact deter-
mination of the critical exponents will require additional
studies, but we note that the results obtained here show a sig-
nificant discrepancy from the mean field values [56], and
from those for the connectivity random percolation transition
in 3D [38], suggesting that the percolation of the 4-neighbor
particles during DST may correspond to a distinct universal-
ity class. Rigidity percolation studies, in which the percola-
tion transition is associated to the growth of a rigid structure,
are quite limited especially in 3D but do suggest a distinct
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FIG. 5. Left: PLP/¥, with P the probability of a random 4-neighbor particle to belong to the percolating cluster, as a function of the scaling variable
(y — }'/L.)Ll/ v and for different system sizes. Center: SL~7/¥, with § the second moment of the cluster size distribution (or mean cluster size), as a function of
¥ — ;'/C)Ll/ Y. Right: SmaxL™/"%, with Spax the maximum cluster size, as a function of (7 — }'/()L'/ ¥ and for different system sizes. Using 7. = 5.1 obtained from
the percolation probability (see Fig.3), data collapse for 8 ~ 0.18, o ~ 0.75, and y ~ 1.3. Insets: P (left), S (center), and Spx (right) plotted against ¢ for differ-

ent system sizes.
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FIG. 6. Snapshots showing the frictional contacts between 4-neighbor particles at y = 5. The connections are colored by the magnitude of the local shear
stress, |o,;|. In the left snapshot, o, = 500 k3T /d>, and we show all 4-neighbor particles. These are distributed homogeneously but do not percolate. The snap-
shot on the right corresponds to one of the spikes in the stress time series in Fig. 3. Here, only the percolating cluster is shown. The differences between these
snapshots highlight the large microstructural rearrangements that can and do happen even in an apparent steady state.

universality class, and frictional rigidity percolation studies
(in which frictional contacts are specifically included) found
similar discrepancies [37,57].

Finally, we have also verified that varying the model
parameters within a reasonable range shifts the DST thresh-
old but does not seem to change the overall critical behavior
(see appendix) [17,20,58]. We anticipate that modifying fric-
tional constraints to include, for example, rolling friction
[42], or varying the particle size distribution, may change the
particle configurations that constitute locally rigid units, but
we expect the percolation transition of said units to be robust.

IV. CONCLUSIONS

Using 3D simulations of particle suspensions, we have
identified the microstructural units whose percolation corre-
sponds to the onset of DST—providing the first direct evi-
dence of a critical percolation transition underlying DST.
These units build a locally rigid network of frictional con-
tacts, and their cluster statistics follow the finite size scaling
ansatz typical of critical phenomena and percolation theory.
The percolation growth implies that, close to the percolation
threshold, a few giant (percolating) clusters may coexist with
a large number of large but non-percolating ones [38]. This
coexistence could justify the viscosity, or the average shear
stress, having a weak dependence on the system size
[Fig. 2(a)], being dominated by the large number of non-
percolating clusters. The fluctuations of the shear stress are,
instead, distinctly controlled by the appearance of percolating
clusters [see Figs. 2(b) and 3]. As also shown in Fig. 6, these
fluctuations correspond to large microstructural rearrange-
ments of 4-neighbor particles. Hence, the non-Gaussian
nature of the large stress fluctuations is the consequence of
spatially correlated rigid domains associated to percolating
clusters of 4-neighbors particles.

Our findings call on experimental approaches to recognize
the locally rigid structures, which, however, may be challeng-
ing even with stress field imaging [9,59,60]. Capability to

identify the mechanical constraints acting locally on particles
in the suspension contact network may be central to build on
the insight gained here. As extensive simulations could
allow, in the future, to precisely determine the universality
class from the percolation exponents, experimental rheologi-
cal tests and scaling analysis of experimental flow curves
[19,23,30] could complement the microscopic understanding &
developed here. Following the hierarchical self-organizationg
of k-neighbor particle structures under shear and identifying§
possible precursors of the rigidity percolation could provide §
novel insight into shear thickening instabilities. N

There are several paths to expand on the work discussed &
here. For the high friction coefficient considered, any shear
induced ordering [34] is completely disrupted, hence, we
carried out our study for a monodisperse particle suspension,
without recurring to a bidisperse or polydisperse mixtures
[11,17,42,61]. With lower friction coefficients, however,
or depending on the details of the particle contacts and
boundaries, there could be some cases where some of
degree of ordering survives in the presence of frictional
contacts, as for example, also suggested by some experi-
ments [62]. Another set of interesting questions concern
the persistence of k-neighbor clusters and of their percola-
tion behavior in the case of the continuous shear thicken-
ing regime (CST), where lubricated contacts play a more
important role. Investigating the percolation of the
k-neighbor clusters at different volume fractions, for
example, will help us build a broader understanding of the
flow induced organization of the particle microstructure in
shear thickening suspensions.
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APPENDIX: TIME SCALES

We tested the dependence of the DST on ky and 7, to
help gain insight into factors that may ultimately lead to the
formation of the percolating structures herein described.
Predictably, changing these parameters affected the critical
rate at which DST was observed but does not seem to change
the statistics of the 4-neighbor cluster close to the transition.
We initially hypothesized that the shift in the critical rate
might be explained by the changes in dimensionless numbers
such as the Peclet number or Reynolds number (Re) but that
does not seem to be the case in the flow regimes we studied.
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FIG. 7. Top: The relative viscosity plotted as a function of stress. The criti-
cal stress depends on parameters 7, and k. Bottom: Rescaling the stress by
1o and multiplying by the harmonic time scale \/m/k gives a dimensionless
quantity which collapses the data to a single curve with a critical point close
to 1.

However, it should be pointed out that increasing Re pro-
duces a gradual increase in viscosity for Re >1 . If we
instead plot the relative viscosity vs the stress (Fig. 7), we
can see that there appears to be a shift in the critical stress
that is coupled to the value of 7ny. From this, we began to
consider other time scales in the system.

One inverse time scale could be constructed from the ratio
o/ng. This is the shear rate we expect from the Newtonian
solvent without any particles. The natural rate related to kg is
the resonant frequency of our Hookean model, /k/m.
Plotting 7, vs a dimensionless number given by the competi-
tion of these two rates (% \/%) produces a rather convincing

data collapse, shown in Fig. 7. In addition, the DST transi-
tion appears close to n% \/% = 1, suggesting that shear-rates

sufficiently high compared to the particle spring frequency
are needed to allow the build-up of a percolating and stress-
bearing frictional network. Putting it another way, when the
time scale of particle flow is sufficiently low compared to the
time scale of particle contact, DST can occur.
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