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Abstract— In this work we deal with the problem of establish-
ing a system architecture to facilitate the real-time autonomous
volumetric mapping alongside the semantic characterization
of sagebrush ecosystem landscapes, in order to support the
pre-fire modeling and analysis required to plan for wildfire
prevention and/or suppression. The world, and more specifically
the broader region of N. Nevada has been facing one of its
most challenging periods over the course of the last decade,
as far as uncontrolled wildfires are concerned. This has led to
the development of research initiatives aimed at the ecosystem-
specific modeling of the pre-, during-, and post-fire process
effects in order to better understand, predict, and address
these phenomena. However, to collect the required wide-field
information that contains both centimeter-level volumetric map-
ping fidelity, as well as semantic details related to plant (sub)-
species, which for the common case of sagebrush can only
be identified based on close-up inspection of their foliage fine
structure, satellite photography remains insufficient. To this
end, we propose a perception and mapping architecture of
an aerial robotic system that is capable of: a) LiDAR-based
centimeter-level reconstruction, b) robust multi-modal sensor
fusion Simultaneous Localization and Mapping (SLAM) lever-
aging LiDAR, IMU, Visual-Inertial Odometry, and Differential
GPS in a global optimization mapping framework, as well as c)
a gimbal-driven point-zoom camera for the efficient real-time
collection of close-up imagery of foliage pertaining to specific
target plants, in order to allow their real-time identification
based on their leaf micro-structure, by leveraging Deep-Learned
classification deployed on a Neural Processing Unit. We present
the associated systems, the overall hardware and software
architecture, as well as a series of field deployment studies
validating the proposed aerial robotic capabilities.

I. INTRODUCTION

Unmanned Aerial Systems (UASs) are increasingly being
utilized across multiple application domains, including ex-
ploration of subterranean environments [1-6], infrastructure
inspection operations [7-11], search and rescue [12-14], as
well as futuristic concepts such as extraterrestrial discovery
robots [15, 16] and perpetually-deployed self-sustainable sys-
tems [17-22]. The relevant advances in autonomy and multi-
modal resilient perception [23-26] have been the backbone
of their success. Across all these, aerial robots are broadly
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Fig. 1. Field demonstration of the Desert Ecology Nevada Drone
(DENDrone) aerial system during data collection for desert landscape 3D
mapping, and plant species characterization. Details: a) Path and derived
LiDAR-inertial & D-RTK GPS-based 3D volumetric map; b) Foliage-based
plant species classification; c¢) Indicative image of the challenging nature of
appearance-based classification for desert environment shrubs.

considered as remote sensing [12] platforms. More recently,
the need has arisen for such airborne deployments to pro-
vide data that facilitate concurrent mapping and semantic
characterization of the operating environment[27], in order
to inform critical decision-making; one such prominent ap-
plication domain is wildfire prevention and/or suppression,
through high-fidelity landscape characterization to drive pre-
dictive fire process modeling.

A major requirement for predicting fire processes involves
accurate characterization of the biomass or volume estima-
tion as well as species characterization and identification
of the foliage. Traditional estimation techniques are based
on either ground measurements or satellite image remote
sensing. Although ground-based methods are more accurate,
they involve destructive methods that eliminate the vegetation
of the landscape, are limited to a small scale, and are unable
to provide a biomass estimate of a bounded region. On
the other hand, satellite imaging-based estimation methods
are non-destructive, but involve high-scale maps over large
landscapes, hence suffering from low spatial resolution, as
well as data retrieval challenges related to atmospheric con-
ditions such as cloud coverage. In contrast, leveraging UASs
for remote sensing provides the best of both approaches,
essentially having the advantage of broad-scale landscape
characterization with the flexibility of close-up examination
for more precise observations.
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In this work we propose a UAS-based system to facil-
itate the pre-fire characterization of desert-type landscapes
encountered in the N. Nevada region; the Desert Ecology
Nevada Drone (DENDrone). The DENDrone’s architecture
integrates multi-modal sensor fusion, relying on LiDAR
/ Inertial / GPS systems for consistent and accurate 3D
mapping of the desert / shrub landscape, despite the robust
perception challenges due to environment’s “flat” structure.
The accurate 3D mapping is a key requirement for fire fuel
estimation contained within plants, as it allows an approxi-
mate but consistent assessment of the enclosed volume. More
importantly however, knowledge of the specific plant species
is required to increase fire fuel estimation accuracy. For
plants endemic to this ecosystem, shrubs such as sagebrush
(Artemisia tridentata), rabbitbrush, are ambiguous when ob-
served at wide camera scales. We propose the use of a
gimbaled mechanism with a high-zoom lens and camera that
unlocks capturing fine detail features, such as the leaf micro-
structure. Such close-up foliage inspection is a common way
for experts to distinguish such plant species. We also propose
and experimentally validate the use of a properly trained
Semantic Segmentation Deep Learning framework, to enable
the automation and systematicity of this critical task.

The remainder of this paper is structured as follows:
Section II presents the relevant prior work in the field.
Section III describes our proposed approach for 3D recon-
struction and mapping as well as semantic characterization of
the landscape. Section IV evaluates the results of the seman-
tic segmentation approach. Experimental results presenting
the 3D reconstructed map, volume estimation, and semantic
segmentation are presented in Section V, and our conclusions
are drawn in Section VI.

II. RELATED WORK

Recent advancements in deep—learning approaches have
led to its extensive adoption for various applications, espe-
cially in the field of agriculture robotics and remote sensing
to characterize and identify tree species [28-32], vegetation
[33-36], and weed/invasive species [37—42] in the presence
of challenging lighting conditions and scale variation. These
works pose the characterization problem either as classi-
fication and bounding box regression or as segmentation
(semantic or instance) to identify the species in images
acquired from RGB cameras. Several other works use images
from acquisition devices such as infrared, hyperspectral, or
multispectral [43—-46] cameras to train the neural network
allowing better and robust detections under varying lighting
conditions. Given the extensive data requirement of deep—
learning algorithms, these works either rely on existing
datasets or make efforts to collect their own dataset. In
contrast, many studies rely on satellite imagery as means
for data collection and have successfully applied deep—
learning based detection and segmentation techniques for
vegetation identification [47-50]. However, satellite images
suffer from poor spatial resolution required for the task,
depend highly on cloud coverage, and have fixed revisit time
which doesn’t allow for real-time identification. In the past
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decade, realizing the potential of Unmanned Aerial Vehicles
(UAVs) for remote sensing as an active and flexible tool
capable of collecting high temporal and spatial resolution
images, recent works have leveraged them for faster and
more precise data collection as well as real-time online
deployment for vegetation characterization [33,51-56].

Apart from species identification, foliage volume or
biomass estimation has been an area of interest in the
fire evolution community. Traditionally approaches estimate
biomass by destructive sampling methods and rely on manual
calculation of dry weight which are time-consuming, labori-
ous, and limited to small scales[57]. Over the past few years,
non-destructive remote sensing techniques have emerged
for biomass characterization for large-scale areas by using
classical and deep—learning based methods on images[58—
64], while a few works have successfully applied learning—
based methods on other modalities such as lidar [65, 66].

Despite the enormous progress, sagebrush sub-species
identification poses a unique challenge due to their simi-
lar structural characteristics from a distant view that can
only be distinguished upon close-up examination of the
leaf structures which are only a few centimeters long.
Therefore, a system that is capable of flying over large
areas and performing close-up visual inspection, as well
as mapping of sagebrush, is required. In this work, we
propose a UAV system that is capable of centimeter-level
onboard 3D mapping of the scene that allows for sagebrush
volume estimation as well as identification of sagebrush sub-
species in RBG images captured by a high-optical-zoom-lens
gimbal-mounted camera.

III. PROPOSED APPROACH

This section details the primary components of the pro-
posed foliage plant species segmentation.

A. DENDrone UAV platform

In this work, we use the DJI Matrice M600 Pro hexacopter
equipped with an A3 pro flight control system and DIJI
Differential Real-time kinematic (D-RTK) module as the
primary localization sensor. The aircraft is modified with 3D
printed structures to equip other sensor modalities, namely,
Ouster OS0-120 LiDAR, VectorNav VN-100 IMU/AHRS,
FLIR Blackfly S USB3 RGB camera as well as an onboard
Intel NUC-I7 PC that allows us to execute onboard 3D
Mapping and other state estimation pipelines. Additionally, a
rigidly mounted Tarrort 3-axis gimbal holds the RGB camera
equipped with a high-optical zoom lens that allows us to
acquire a close-up view of the sagebrush leaf structure. The
gimbal arms that connect to each motor have been replaced
with slightly extended 3D-printed arms to accommodate the
full range of motion of the camera. All the sensors, except
the GPS sensor, gimbal-mounted camera, and the onboard
companion PC are rigidly attached to the bottom of the UAV
platform whereas the DJI D-RTK receiver module is mounted
on the top along with the DJI GPS module. The primary
localization sensor, i.e. D-RTK module offers horizontal
positional accuracy of 1 cm + 1 ppm and vertical positional
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accuracy of 2 em + 1 ppm with orientation accuracy of
(0.2/R)°, where R is the baseline distance (distance between
the two Air System antennas) in meters, while the primary
mapping sensor, i.e. Ouster OS0-128 LiDAR, offers 90°
vertical FoV, 100 m maximum range and 128 Channels of
resolution.

Intel Nuc I7

VectorNav VN-100
IMU/AHRS

‘Tarrot 3-Axis Gimbal-
Driven FLIR Blackfly
'USB Camera

Fig. 2. The DENDrone platform: DJI Matrice M600 Pro accompanied with
various sensor modalities such as LiDAR, IMU, D-RTK, GPS, and gimbal—
driven point-—zoom camera as well as i7 intel core companion computer. All
the components are mounted to the UAV by leveraging custom-designed 3D
printed parts.

B. 3D Reconstruction and Mapping

The first fundamental capability of the proposed system
consists of multi-modal Simultaneous Localization and Map-
ping (SLAM) and volumetric reconstruction, Model Predic-
tive Control (MPC), and state estimation pipeline based on
established open—source works [67-70]. The SLAM pipeline
adopts a graph—based approach incorporating multiple fac-
tors from various modalities, namely, LiDAR odometry
factors, IMU preintegration factors, and D-RTK factors to
create a consistent map of the environment. The landscape
considered in this work presents a challenge for the recon-
struction pipeline due to mostly flat nature of the terrain and
therefore lack of prominent LiDAR features to constrain the
optimization problem. Despite the challenge, the proposed
pipeline is successfully able to construct a consistent map
of the environment with centimeter-level accuracy. Given a
reference local region based on the reconstructed map, the
volume of the local bounded region containing the sagebrush
shrub can be estimated. A Normal representation of the
reference region containing the foliage can be used for
ground plane estimation and thus segment the shrub cor-
responding to the sagebrush. Followingly, deploying surface
generation technique over the locally segmented point cloud,
a cad model can be derived which can be used to infer the
corresponding volume.

C. Deep Learning Based Semantic Segmentation

The second capability of the proposed system is a pipeline
that allows for semantic segmentation for sagebrush char-
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acterization. Given a query 3D location based on the 3D
reconstructed map, the proposed approach aims to identify
the sagebrush species. For close—up visual examination, the
UAV positioned directly above the query 3D location with
a downward—facing camera begins descending vertically to
acquire a sequence of images Ty, with the aim of obtain-
ing the sharpest, in-focus image such that it contains the
maximum discernible sagebrush leaf structure. The reason
for obtaining a sharp image is two-fold: first, the shallow
depth of field of the onboard zoom lens limits us to capture
very few features of leaf structures if captured from a poorly
selected viewpoint or if the camera is pointed towards a less
dense area which is exacerbated by other factors such as
insufficient light or sensor noise, and secondly, the downward
gush from propellers causes additional swaying of the foliage
leaves that further contributes to the motion blur. Therefore,
acquiring a focused, sharp image is crucial for real-time
computationally efficient implementation. This is achieved
by denoising each image using Gaussian blur in the sequence
of Images captured 7y and then retrieving the top five
candidate images Zg with the maximum gradient, as follows:
0fij 0fi;
dr = Oy

The candidate images Zg are then used for forward infer-
ence to get images Zp; with semantic segmentation mask
corresponding to the sagebrush species. It is highlighted
here, that we only consider semantic masks as positive
candidates that have detection confidence over 85%. An
alternate approach to the process of executing forward infer-
ence operation on a select few images is to instead contin-
uously perform inference on a sub-sample of the captured
image facilitated by hardware acceleration capabilities of
neural compute stick. Deployment of the trained network on
such hardware requires the model weights to be quantized,
essentially converting the floating point weights to lower
bandwidth integer weights, providing accelerated inference
speed while trading off a marginal amount of accuracy.

For each surviving segmentation mask in the image, ray—
casting operation is performed at the centroid of each mask
to get corresponding 3D locations when the ray hits an
occupied cell. These 3D locations can then be transformed
in the world frame and marked for later processing for pre-,
during-, and post-fire processing study. The entire detection
pipeline continues the process for the next query point for
further characterization of the remaining landscape.

It is noted that we use Mask R-CNN with ResNet+FFPN
backbone initialized with MSCOCO pre-trained weights pro-
vided by the detectron2 [71] framework that we fine-tune on
our custom dataset. The backbone version used is ResNet50
which is lightweight and suitable for onboard deployment.
The network adopts a two-stage procedure, with the first
stage being the region proposal network that defines a region
of interest (Rol) where the object may lie, while the second
stage, predicts the class and box offset, a binary mask for
each Rol in parallel.

We use a custom dataset to train the network that is
collected with the UAV system described in the paper. The

argmaz Y, |Gy |, where G, ; =
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Fig. 3. The overarching architecture of the proposed approach, indicating
how the individual capabilities combine together to achieve the envisioned
task of sagebrush identification and characterization

dataset primarily contains images belonging to two species
of sagebrush, namely, a) Artemisia tridentata and b) Rabbit-
brush, with varying lighting conditions captured at different
times of day in the Northern Nevada region, totaling over
200 images. The training, validation, and testing image split
is 60% : 20% : 20% .The images have a spatial resolution
of 1440x1080 pixels, are captured at an acquisition frame
rate of 120 fps, and are hand-labeled [72] with semantic
masks that correspond to each species where the leaves of
the sagebrush are clearly visible and in focus, i.e. we mark
the pixels that are in focus, have visible leaf structure, and
are unaffected by huge motion blur. It is also noted that
the boundary of the mask is arbitrary since the shallow
depth of field gradually blurs one region of the sagebrush
from the other and there is no one particular boundary that
can be considered as a distinct outline for the segmentation
mask. Figure 3 illustrated the overarching system architecture
described in this section.

IV. SYSTEM PERFORMANCE

In this section, we discuss the performance of the trained
Deep Learning network for generating semantic segmenta-
tion masks on our test datasets, essentially demonstrating the
efficacy of the deployed network for our envisioned task.

A. Semantic Segmentation Qualitative Results

Figure 4 provides the inference results of unseen test
image dataset with segmentation masks overlayed on the
classified pixels of the input image. It can be observed that
the network inherently learns to identify only the parts of the
image that are focused and does not attempt to classify any
blurry pixels, which severely reduces the chances of false
positive detections. This is the expected behavior that we
require for our envisioned task. Furthermore, the network is
capable of differentiating between the two species even when
the image sample contains the same color shades (yellow)
as evident from the bottom two rows in Figure 4, essentially
indicating that the network relies more on foliage structural
features as compared to other features. Having the capability
to discern different species based on structural features such
as leaf shape and size, branching pattern, and shrub density
is crucial for sagebrush identification.

Performance of Deep Learning based Semantic Segmentation

Artemisia tridentata Rabbitbrush

T I . 5 R

Fig. 4. The figure depicts the two species of Sagebrush and their
corresponding segmentation mask. The left two columns contain images
belonging to Artemisia tridentata while the two columns on the right contain
images of Rabbitbrush. Out of the two columns in each category, the left
image corresponds to the input to the network while the right one depicts
the detected mask overlayed on the input image.

B. Semantic Segmentation Quantitative results

Table I provides the average precision (AP) score for var-
ious IoU thresholds and area thresholds. It can be observed
that the mean AP is lower than AP 0.5 IoU threshold and
as we increase the IoU threshold to 0.75 the AP drops
even further. This is primarily because of the nature of
the collected data and the absence of a single delineating
boundary for ground truth segmentation mask as mentioned
in the subsection III-C. Since a single clear mask boundary
is hard to establish it is an expected behavior to observe
a drop in the AP values for a higher threshold of IoU. A
similar pattern can be observed for the AP over the average
IoU when compared to different areas, i.e. for larger mask
areas more sharp features are visible which leads to better
model performance as compared to the smaller areas.

TABLE I
AVERAGE PRECISION SCORE OF THE SEMANTIC NETWORK TESTED ON
OUR CUSTOM SAGEBRUSH DATASET

AP @[ IoU=0.50:0.95 | area= all ] 31.1
AP @[ IoU=0.50 area= all ] 52.7
AP @[ IoU=0.75 area= all ] 37.3
AP @[ ToU=0.50:0.95 | area= small ] 12.6
AP @[ IoU=0.50:0.95 | area= medium ] | 35.7
AP @[ IoU=0.50:0.95 | area= large ] 51.9

V. EXPERIMENTAL STUDY

We present a comprehensive set of results that showcase
the proposed DENDrone system’s field capabilities related
to the characterization of pre-fire landscapes in N. Nevada.
More specifically, the collected dataset is from a desert /
shrub ecosystem near Reno, Nevada, one of the candidate
sites being considered for the deployment of the HDRFS
project infrastructure, which aims toward the systematic
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Fig. 5. Experimental Validation of the DENDrone’s pre-fire landscape characterization capabilities. a): The 3D-mapped desert environment comprising
mostly sagebrush plants. b): Size of experimental “plot”. ¢): Dataset collection path and online 3D-reconstructed result. d): Normals-estimation colormap
indicating the viability of ground/plant segmentation for desert-type landscapes. e-#): Sample shrub volumetric segmentation and manifold-enclosing volume
estimation. 7): Wide lens flyby indicating the lack of species-identifying features at this scale. j): Zoomed-in image capture enabling foliage micro-structure-
based classification with a Deep-Learned Semantic Segmentation framework.
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year-round monitoring, characterization, and ecological mod-
eling of an area to-scale with the presented experimental
scenario. The mapped shrub ecosystem spans an area of
approximately 3000m? while the DENDrone followed a
sweeping flight profile with varying altitudes of 3m — 5m
above the ground. The corresponding results are illustrated
in Figure 5.

Typically, multimodal sensor mapping methods rely on
datasets that include ground truth information generated
by GPS modules for benchmarking their algorithms. As
one of the initial efforts in characterizing and mapping
such challenging terrain, where existing LiDAR-inertial/GPS
solutions fail, an existing dataset with ground truth trajectory
is lacking. Leveraging the centimeter-level accuracy provided
by the D-RTK (Differential Real-Time Kinematic) system for
localization, the trajectory generated by this system can serve
as a reliable ground truth reference for future benchmarking
efforts.

A. Desert Terrain Ecology Consistent 3D Mapping

The first set of rows in Figure 5 demonstrates the 3D
mapping consistency achieved by the system despite the
challenging “flat” nature of the desert landscape.

In the top row, a) showcases the 3D pointcloud result of
LiDAR / Inertial / D-RTK GPS mapping over the aforemen-
tioned area. As is evident by the elevation-based colormap,
lack of vertically-high structures in the natural environment
justifies our selection for a ground-pointed LiDAR configu-
ration.

In the following row, b) presents the metric size of
the 3D-mapped area of our experimental “plot”, and c)
illustrates the DENDrone’s path that was followed to collect
the associated data. It is mentioned that the indicated 3D
mapping result of this picture is achieved onboard the
system in flight; nevertheless, the collected raw data can
be used for offline 3D mapping without suffering any real-
time constraint requirements, in order to facilitate higher
mapping consistency. Finally, d) shows a possible approach
to facilitate the detection of Regions-Of-Interest that contain
shrub vegetation. More specifically, this subfigure presents
a normals-based colormap for the derived pointcloud, which
is more consistent than an elevation map in separating the
ground from the plant based on the estimated per-point
normals values.

B. Shrub Volume Estimation for Pre-Fire Fuel Characteri-
zation

The subsequent row in Figure 5 illustrates the application
of DENDrone’s results to facilitate the critical process of fuel
estimation for a pre-fire landscape.

More specifically, e) presents a close-up of the normals-
colored pointcloud at an area which contains a shrub, il-
lustrating how this information can support ground plane
segmentation to isolate the vegetation. Subfigure f) shows
the 3D segmented plant part corresponding to the previously
mentioned shrub (points are height-color mapped in this
instance), and followingly g) illustrates 3D mesh estimation
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of the isolated plant manifold. It is noted that actual fire
fuel estimation is not a self-evident process: First, because
mesh volume estimation assumes a solid manifold, which is
not the case for plants whose actual volume is determined
by structural details (branches, leaves) hidden underneath
the foliage and impenetrable by LiDAR. Secondly, because
the actual fuel capacity depends on the plant species, its
characteristics, and the time-of-year. This is a goal of the
HDRES project’s objectives which depends on the integration
of data and methods between fire, ecology, and robotics
science experts; nevertheless, it depends on the demonstrated
DENDrone system’s capacity for 3D reconstruction and can
be supported by approximate volume estimation methods,
such as the one shown in h).

C. Shrub Species Classification for Vegetation Characteri-
zation

The last set of rows in Figure 5 is focused on the foliage-
based plant species classification capabilities of DENDrone.
As previously highlighted, this is critical information to
support the accurate pre-fire fuel estimation of desert-like
landscapes.

Row i) showcases a flyby of the shrub which was dis-
cussed in the previous subsections, denoting it on the frame
captured by a wide Field-of-View camera. As discussed,
even if the segmentation of shrubs in such an ecosystem
can be achieved with traditional UAV-borne sensing, the
identification of (sub-)species between bush-like plants is
exceptionally difficult based on their macroscopic appearance
(even with color cameras).

Towards this goal, the DENDRone system supports the
RGB-capture of high-optical-zoom images with the gimbal-
mounted camera mechanism, as previously discussed. Row
j) illustrates two instances of such an operation in this
landscape, indicating the effectiveness of the employed ap-
proach. Not only is the leaf-micro structure and its details
accurately captured, but as shown in the callout boxes,
the proposed Semantic Segmentation framework achieves
classification across widely differently-looking scenes: The
first presented case (easy) contains multiple Artemisia tri-
dentata (sagebrush) leaves, which are correctly identified by
the trained Deep Learning network, but the second picture
(hard) contains same-species flowers and branches mostly;
nevertheless, the system correctly identifies the plant by even
the very few leaves in the frame, without getting confused
by its training for rabbitbrush-type flower structures.

Overall, the DENDrone system experimentally demon-
strates its ability to achieve the goals of robust and consistent
centimeter-level accurate 3D mapping of desert-like land-
scapes, as well as shrub (sub-)species classification by re-
lying on appropriately tailored macro-lens airborne imagery
and a Deep-Learned Semantic Segmentation framework.

VI. CONCLUSIONS

In this work, we presented a system for the systematic
collection of data to support pre-fire fuel estimation of desert
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ecosystems and landscapes. The facilitating system, DEN-
Drone, is capable of centimeter-level accurate and consistent
mapping of such landscapes through LiDAR / Inertial /
D-RTK GPS fusion, but is additionally capable of macro-
imagery collection of plants, in order to examine their foliage
micro-structure. Through this, as well as a properly trained
Deep-Learned Semantic Segmentation framework, it enables

the

plant species identification even between difficult-to-

distinguish shrubs, which is a key capacity to unlock ac-
curate fire fuel estimation enclosed within a plant’s volume.
The proposed system was demonstrated w.r.t. its operating
performance in real-world field conditions, comprehensively
showcasing the associated capabilities.
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