


In this work we propose a UAS-based system to facil-

itate the pre-fire characterization of desert-type landscapes

encountered in the N. Nevada region; the Desert Ecology

Nevada Drone (DENDrone). The DENDrone’s architecture

integrates multi-modal sensor fusion, relying on LiDAR

/ Inertial / GPS systems for consistent and accurate 3D

mapping of the desert / shrub landscape, despite the robust

perception challenges due to environment’s “flat” structure.

The accurate 3D mapping is a key requirement for fire fuel

estimation contained within plants, as it allows an approxi-

mate but consistent assessment of the enclosed volume. More

importantly however, knowledge of the specific plant species

is required to increase fire fuel estimation accuracy. For

plants endemic to this ecosystem, shrubs such as sagebrush

(Artemisia tridentata), rabbitbrush, are ambiguous when ob-

served at wide camera scales. We propose the use of a

gimbaled mechanism with a high-zoom lens and camera that

unlocks capturing fine detail features, such as the leaf micro-

structure. Such close-up foliage inspection is a common way

for experts to distinguish such plant species. We also propose

and experimentally validate the use of a properly trained

Semantic Segmentation Deep Learning framework, to enable

the automation and systematicity of this critical task.

The remainder of this paper is structured as follows:

Section II presents the relevant prior work in the field.

Section III describes our proposed approach for 3D recon-

struction and mapping as well as semantic characterization of

the landscape. Section IV evaluates the results of the seman-

tic segmentation approach. Experimental results presenting

the 3D reconstructed map, volume estimation, and semantic

segmentation are presented in Section V, and our conclusions

are drawn in Section VI.

II. RELATED WORK

Recent advancements in deep–learning approaches have

led to its extensive adoption for various applications, espe-

cially in the field of agriculture robotics and remote sensing

to characterize and identify tree species [28–32], vegetation

[33–36], and weed/invasive species [37–42] in the presence

of challenging lighting conditions and scale variation. These

works pose the characterization problem either as classi-

fication and bounding box regression or as segmentation

(semantic or instance) to identify the species in images

acquired from RGB cameras. Several other works use images

from acquisition devices such as infrared, hyperspectral, or

multispectral [43–46] cameras to train the neural network

allowing better and robust detections under varying lighting

conditions. Given the extensive data requirement of deep–

learning algorithms, these works either rely on existing

datasets or make efforts to collect their own dataset. In

contrast, many studies rely on satellite imagery as means

for data collection and have successfully applied deep–

learning based detection and segmentation techniques for

vegetation identification [47–50]. However, satellite images

suffer from poor spatial resolution required for the task,

depend highly on cloud coverage, and have fixed revisit time

which doesn’t allow for real-time identification. In the past

decade, realizing the potential of Unmanned Aerial Vehicles

(UAVs) for remote sensing as an active and flexible tool

capable of collecting high temporal and spatial resolution

images, recent works have leveraged them for faster and

more precise data collection as well as real-time online

deployment for vegetation characterization [33, 51–56].

Apart from species identification, foliage volume or

biomass estimation has been an area of interest in the

fire evolution community. Traditionally approaches estimate

biomass by destructive sampling methods and rely on manual

calculation of dry weight which are time-consuming, labori-

ous, and limited to small scales[57]. Over the past few years,

non-destructive remote sensing techniques have emerged

for biomass characterization for large-scale areas by using

classical and deep–learning based methods on images[58–

64], while a few works have successfully applied learning–

based methods on other modalities such as lidar [65, 66].

Despite the enormous progress, sagebrush sub-species

identification poses a unique challenge due to their simi-

lar structural characteristics from a distant view that can

only be distinguished upon close-up examination of the

leaf structures which are only a few centimeters long.

Therefore, a system that is capable of flying over large

areas and performing close-up visual inspection, as well

as mapping of sagebrush, is required. In this work, we

propose a UAV system that is capable of centimeter-level

onboard 3D mapping of the scene that allows for sagebrush

volume estimation as well as identification of sagebrush sub-

species in RBG images captured by a high-optical-zoom-lens

gimbal-mounted camera.

III. PROPOSED APPROACH

This section details the primary components of the pro-

posed foliage plant species segmentation.

A. DENDrone UAV platform

In this work, we use the DJI Matrice M600 Pro hexacopter

equipped with an A3 pro flight control system and DJI

Differential Real-time kinematic (D-RTK) module as the

primary localization sensor. The aircraft is modified with 3D

printed structures to equip other sensor modalities, namely,

Ouster OS0-120 LiDAR, VectorNav VN-100 IMU/AHRS,

FLIR Blackfly S USB3 RGB camera as well as an onboard

Intel NUC-I7 PC that allows us to execute onboard 3D

Mapping and other state estimation pipelines. Additionally, a

rigidly mounted Tarrort 3-axis gimbal holds the RGB camera

equipped with a high-optical zoom lens that allows us to

acquire a close-up view of the sagebrush leaf structure. The

gimbal arms that connect to each motor have been replaced

with slightly extended 3D-printed arms to accommodate the

full range of motion of the camera. All the sensors, except

the GPS sensor, gimbal-mounted camera, and the onboard

companion PC are rigidly attached to the bottom of the UAV

platform whereas the DJI D-RTK receiver module is mounted

on the top along with the DJI GPS module. The primary

localization sensor, i.e. D-RTK module offers horizontal

positional accuracy of 1 cm+1 ppm and vertical positional
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year-round monitoring, characterization, and ecological mod-

eling of an area to-scale with the presented experimental

scenario. The mapped shrub ecosystem spans an area of

approximately 3000m2 while the DENDrone followed a

sweeping flight profile with varying altitudes of 3m − 5m

above the ground. The corresponding results are illustrated

in Figure 5.

Typically, multimodal sensor mapping methods rely on

datasets that include ground truth information generated

by GPS modules for benchmarking their algorithms. As

one of the initial efforts in characterizing and mapping

such challenging terrain, where existing LiDAR-inertial/GPS

solutions fail, an existing dataset with ground truth trajectory

is lacking. Leveraging the centimeter-level accuracy provided

by the D-RTK (Differential Real-Time Kinematic) system for

localization, the trajectory generated by this system can serve

as a reliable ground truth reference for future benchmarking

efforts.

A. Desert Terrain Ecology Consistent 3D Mapping

The first set of rows in Figure 5 demonstrates the 3D

mapping consistency achieved by the system despite the

challenging “flat” nature of the desert landscape.

In the top row, a) showcases the 3D pointcloud result of

LiDAR / Inertial / D-RTK GPS mapping over the aforemen-

tioned area. As is evident by the elevation-based colormap,

lack of vertically-high structures in the natural environment

justifies our selection for a ground-pointed LiDAR configu-

ration.

In the following row, b) presents the metric size of

the 3D-mapped area of our experimental “plot”, and c)

illustrates the DENDrone’s path that was followed to collect

the associated data. It is mentioned that the indicated 3D

mapping result of this picture is achieved onboard the

system in flight; nevertheless, the collected raw data can

be used for offline 3D mapping without suffering any real-

time constraint requirements, in order to facilitate higher

mapping consistency. Finally, d) shows a possible approach

to facilitate the detection of Regions-Of-Interest that contain

shrub vegetation. More specifically, this subfigure presents

a normals-based colormap for the derived pointcloud, which

is more consistent than an elevation map in separating the

ground from the plant based on the estimated per-point

normals values.

B. Shrub Volume Estimation for Pre-Fire Fuel Characteri-

zation

The subsequent row in Figure 5 illustrates the application

of DENDrone’s results to facilitate the critical process of fuel

estimation for a pre-fire landscape.

More specifically, e) presents a close-up of the normals-

colored pointcloud at an area which contains a shrub, il-

lustrating how this information can support ground plane

segmentation to isolate the vegetation. Subfigure f) shows

the 3D segmented plant part corresponding to the previously

mentioned shrub (points are height-color mapped in this

instance), and followingly g) illustrates 3D mesh estimation

of the isolated plant manifold. It is noted that actual fire

fuel estimation is not a self-evident process: First, because

mesh volume estimation assumes a solid manifold, which is

not the case for plants whose actual volume is determined

by structural details (branches, leaves) hidden underneath

the foliage and impenetrable by LiDAR. Secondly, because

the actual fuel capacity depends on the plant species, its

characteristics, and the time-of-year. This is a goal of the

HDRFS project’s objectives which depends on the integration

of data and methods between fire, ecology, and robotics

science experts; nevertheless, it depends on the demonstrated

DENDrone system’s capacity for 3D reconstruction and can

be supported by approximate volume estimation methods,

such as the one shown in h).

C. Shrub Species Classification for Vegetation Characteri-

zation

The last set of rows in Figure 5 is focused on the foliage-

based plant species classification capabilities of DENDrone.

As previously highlighted, this is critical information to

support the accurate pre-fire fuel estimation of desert-like

landscapes.

Row i) showcases a flyby of the shrub which was dis-

cussed in the previous subsections, denoting it on the frame

captured by a wide Field-of-View camera. As discussed,

even if the segmentation of shrubs in such an ecosystem

can be achieved with traditional UAV-borne sensing, the

identification of (sub-)species between bush-like plants is

exceptionally difficult based on their macroscopic appearance

(even with color cameras).

Towards this goal, the DENDRone system supports the

RGB-capture of high-optical-zoom images with the gimbal-

mounted camera mechanism, as previously discussed. Row

j) illustrates two instances of such an operation in this

landscape, indicating the effectiveness of the employed ap-

proach. Not only is the leaf-micro structure and its details

accurately captured, but as shown in the callout boxes,

the proposed Semantic Segmentation framework achieves

classification across widely differently-looking scenes: The

first presented case (easy) contains multiple Artemisia tri-

dentata (sagebrush) leaves, which are correctly identified by

the trained Deep Learning network, but the second picture

(hard) contains same-species flowers and branches mostly;

nevertheless, the system correctly identifies the plant by even

the very few leaves in the frame, without getting confused

by its training for rabbitbrush-type flower structures.

Overall, the DENDrone system experimentally demon-

strates its ability to achieve the goals of robust and consistent

centimeter-level accurate 3D mapping of desert-like land-

scapes, as well as shrub (sub-)species classification by re-

lying on appropriately tailored macro-lens airborne imagery

and a Deep-Learned Semantic Segmentation framework.

VI. CONCLUSIONS

In this work, we presented a system for the systematic

collection of data to support pre-fire fuel estimation of desert
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ecosystems and landscapes. The facilitating system, DEN-

Drone, is capable of centimeter-level accurate and consistent

mapping of such landscapes through LiDAR / Inertial /

D-RTK GPS fusion, but is additionally capable of macro-

imagery collection of plants, in order to examine their foliage

micro-structure. Through this, as well as a properly trained

Deep-Learned Semantic Segmentation framework, it enables

the plant species identification even between difficult-to-

distinguish shrubs, which is a key capacity to unlock ac-

curate fire fuel estimation enclosed within a plant’s volume.

The proposed system was demonstrated w.r.t. its operating

performance in real-world field conditions, comprehensively

showcasing the associated capabilities.
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