TITLE: Host-imposed Control Mechanisms in the Legume-Rhizobia Symbiosis 1 2 3 AUTHORS: Stephanie S. Porter¹, Simon Dupin², Ford Denison³, Toby Kiers², Joel Sachs⁴ 4 5 ¹ School of Biological Sciences, Washington State University, Vancouver, Washington 98685, USA (Ph) 1(818) 522-9662 6 7 stephanie.porter@wsu.edu 8 9 ² Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology & Evolution, Vrije 10 Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands (Ph) +33 11 (0)6 67 35 49 90 12 sd.dupin@gmail.com 13 toby.kiers@vu.nl 14 ³ Department of Ecology, Evolution, and Behavior University of Minnesota, Saint Paul, MN 15 16 55108 (Ph)612-626-6462 17 denis036@umn.edu 18 ⁴Department of Evolution, Ecology & Organismal Biology, University of California, 19 20 Riverside, California 92521, USA (Ph.) 1(951) 827-6357 21 22 joels@ucr.edu 23

ABSTRACT

Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. However, rhizobia vary dramatically in quality, ranging from highly growth-promoting to nonbeneficial. Therefore, optimizing plant benefits from this symbiosis requires host mechanisms that select for beneficial rhizobia and limit losses to nonbeneficial strains. Here, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically demonstrating both molecular and cellular mechanisms and their effects on symbiotic benefits. Pre-infection control requires plant production and detection of precise molecular signals to attract and select compatible rhizobia strains. Post-infection mechanisms leverage nodule- and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation *in planta*. These layers of host preferential allocation act as a series of sieves, each of which contributes to legume fitness by directing host resources to a narrowing subset of more-beneficial rhizobia.

INTRODUCTION

Legumes are among the most diverse and ecologically important plant families, colonizing habitats from deserts to rainforests¹. Their global radiation is often linked to their ability to fix atmospheric N₂ with rhizobia bacteria - a trait that requires complex coordination between host and symbiont². Symbiotic legumes contribute roughly half of all terrestrial nitrogen fixation³, a quarter of agronomic production via crops such as soybean and alfalfa, and a third of human-consumed protein⁴.

To fix N_2 with rhizobia, legumes have evolved novel organs called nodules, of which they
can bear tens to hundreds across their roots systems (Box 1). The evolution of nodulation and
symbiotic nitrogen fixation is of comparable complexity to the evolution of organs such as the
eye, in that coordinated expression of multistep molecular pathways determine organogenesis
and a functional phenotype ^{5–8} . Unlike the eye, the legume nodule is a symbiotic organ, whose
evolution and function require successful integration between the host and bacteria ⁹ . Substantial
progress has uncovered molecular mechanisms of nodule organogenesis and nitrogen fixation ^{8,10} -
¹² . However, less is known about how legumes detect and appropriately respond to rhizobia
symbionts that differ in quality.
Rhizobia encompass diverse alpha- and beta-proteobacteria, defined by their capacity to
nodulate legumes and fix nitrogen ¹³ . Even closely related rhizobia strains show vast differences
in the benefits they provide, with strains on any given host varying from highly beneficial to
nonbeneficial. Moreover, nested within lineages of rhizobia that nodulate and benefit legumes
are strains that lack symbiosis genes and might be adapted to saprophytic, commensal, or

exhibit intense inter-strain competition, lowering host benefit and favoring evolution of host mechanisms to control infection and minimize symbiont exploitation¹⁸. Elucidating how hosts detect and respond to this variation in the quality of mutualistic microbes is equal in importance

parasitic lifestyles^{14–17}. Under longstanding theory, diverse unrelated symbionts are predicted to

to host defense against pathogens, but only recently has become a focus of research advances.

Below we describe mechanisms of infection and host control, understanding that most data come

from few, well-studied host taxa (but see^{19,20}), hence that not all mechanisms are reviewed.

LEGUME-RHIZOBIUM COOPERATION REQUIRES COORDINATION

Legume-rhizobia symbiosis is initiated with a coordinated exchange of molecular signals. Legume roots secrete flavonoids, cocktails of secondary metabolites that attract rhizobia and initiate nodulation^{21,22}. Receptive rhizobia respond by secreting lipochitooligosaccharide nodulation (Nod) factors which are detected by plant LysM receptors⁷. Nod factors induce root hair curling which entraps rhizobia cells, from which an infection thread forms as an invagination of the plant cell membrane^{7,23,24}. Rhizobia reproduce down this tubular structure, either as clones or multiple strains that found the nodule together²⁵ (Box 1), are internalized by developing nodule cells, and differentiate into intracellular bacteroids that fix N₂ into plant-available forms in exchange for fixed carbon^{6,7,16,19,20}.

Rhizobia only fix nitrogen inside legume nodules, which provide the microaerobic and energetic requirements of nitrogenase. A barrier limits oxygen flux into the nodule interior and

energetic requirements of nitrogenase. A barrier limits oxygen flux into the nodule interior and maintains microaerobic concentrations, while leghemoglobin-facilitated diffusion supports rhizobia respiration²⁶. Both partners bear marginal costs. The host supplies reductant, typically organic acids, that fuel N₂ fixation which requires 16 ATP to fix each N₂ molecule. N₂ fixation can compete with rhizobia resource storage and reproduction^{27–30}, and requires substantial allocation of a legume's fixed carbon³¹, reducing host fitness if too many nodules are formed^{32–34}.

Measuring net benefits of symbiosis is challenging. Experimentalists typically inoculate legumes with single rhizobia strains and harvest biomass during vegetative growth. How well this predicts a strain's contribution to host fitness under more natural conditions, where each plant hosts many strains, remains to be determined. Harvesting singly inoculated immature plants could obscure strains' differences in the speed, duration, and N-per-C efficiency of N₂ fixation, as well as impacts of rhizobia alteration of plant hormones³⁵. Despite methodological uncertainties, it is clear that benefits from rhizobia vary among rhizobia genotypes and

conditions - including external nitrogen availability, light levels, and the host genotype^{36–43,44–46}.
 But how do legumes detect and appropriately respond to rhizobia of varying quality as

symbionts? We explore current evidence in the following sections (Fig 1).

PRE-INFECTION CONTROL AND PARTNER CHOICE

Pre-infection control mechanisms operate prior to significant resource investment (sensu^{47–49}; Fig 2) and can enable hosts to preferentially associate with symbionts that confer greater benefit. Partner choice implies that i) host preference enhances plant fitness relative to random nodulation, and ii) filtering among strains occurs in advance of nodule organogenesis. Empirical research supports partner choice, in that some legumes can form more nodules with beneficial strains than with non-fixing ones⁵⁰, and that strain occupancy under mixed inoculations is correlated with the benefit of strains in single inoculation^{51,52}. However, it is difficult to disentangle host effects from those of inter-strain competition among rhizobia, as nodule occupancy patterns are a joint phenotype that depends on the plant and rhizobia genotypes and their interactions⁵³.

Several approaches establish the capacity of legumes to distinguish among rhizobia strains that vary in quality. Split-root experiments eliminate direct interactions between strains to show that some hosts can initiate more nodules with a fixing strain than a non-fixing one⁵⁴. Labeling rhizobia with fluorescence proteins or differentiating them genetically *in planta*, reveals that rhizobia strains that result in more plant biomass with single-strain inoculation also occupy more nodules in mixed inoculation, consistent with plant selection of more-beneficial strains^{55,56}. Furthermore, stronger partner choice can lead to greater fitness benefit when a legume is presented with rhizobia that differ in quality⁵⁵. Studies of wild legumes and co-evolved rhizobia

reveal additional examples consistent with partner choice (reviewed in⁴⁷) -- yet mechanisms by which plants detect and respond to rhizobia quality in advance of N_2 fixation are not well-understood.

In experiments that expose legumes to N₂ fixing rhizobia and isogenic non-fixing mutants, the strains show little difference in nodulation^{28,57}. Thus, partner choice depends upon reliable linkage between rhizobia alleles that encode signals to legumes in advance of N₂ fixation and those that impact benefit to the legume⁴⁷. Alleles that encode determinants of compatibility, such as *nod* genes and Type-III secretion systems, often reside in the same mobile elements as nitrogen fixation genes^{16,58–60}. Host discrimination might maintain linkage among such alleles if strains with compatible signals that confer high benefit have higher relative fitness than strains that confer lower benefit^{39,47,50,61,62}. However, evidence for such genetic linkage is lacking. In fact, loci impacting symbiotic quality reside in genomic regions that are hotspots for gene gain, loss, and recombination^{16,17,63,64}. This means that elucidating the genetics of partner choice remains challenging. One clear pattern is that hosts bear at least two mechanisms to preferentially initiate nodules with superior strains, as described below.

Fundamental Compatibility. Like a match between a lock and key, a legume genotype's fundamental compatibility with a rhizobia genotype is determined by responsiveness to molecular signals produced by the rhizobia, including Nod factors, surface polysaccharides, and Type-III effectors (Box 1). Fundamental compatibility contributes to partner choice if compatible strains provide greater benefit than incompatible strains. For example, hosts possessing the *Rj4* allele common in soybean are incompatible with many less-beneficial, chlorosis-inducing *Bradyrhizobium* strains due to gene-for-gene resistance triggered by the effectors these strains

secrete^{65–67}. Near-isogenic lines of soybeans bearing the alternate allele, rj4, are compatible with these inferior strains, and display reduced fitness relative to Rj4-bearing soybeans when inoculated with these strains^{65,66}. Thus, the Rj4 allele modifies soybean's fundamental compatibility in a pattern consistent with partner choice where such ineffective strains are common.

Variation in legume responsiveness to rhizobia Nod factors is another driver of fundamental compatibility^{24,68–70}. Legumes bear receptors (lysine motif receptor-like kinases; LysM-RLKs) that determine which nod factors trigger legume cell calcium oscillations to initiate nodulation^{70–73} and can interact with rhizobia surface polysaccharides, which differ in their efficacy for promoting early infection^{23,74,75}. Furthermore, legume immune responses can terminate nodule formation. Compatible rhizobia must possess mechanisms to evade legume immune responses⁷⁶. For example, during nodule formation rhizobia can present surface exopolysaccharides to evade bacteriocidal actions by the plant immune system, and can secrete effectors^{23,77–80}, such as Nodulation outer proteins (Nops), to dampen legume defenses^{24,74,81,82}.

Nodule-specific cysteine-rich (NCR) peptides allow some legumes to discriminate amongst rhizobia in a strain-specific manner²⁴. By inundating rhizobia with a suite of defensin-like antimicrobial NCR peptides^{83,84}, some legumes force rhizobia to differentiate into swollen, non-reproductive, but nitrogen-fixing bacteroids. Swollen (perhaps nonreproductive) bacteroids are found in many nodules with indeterminate growth but also in some determinate nodules, including *Arachis* spp⁸⁵. For incompatible rhizobia, NCR peptides' antimicrobial properties terminate symbiosis⁴⁶, while for compatible rhizobia they are essential to preserve bacteroid viability⁸⁶. Rhizobia can resist host NCR peptides by cleaving them using host-range restriction peptidases^{84,87,88}, membrane transport proteins⁸⁹ and extracellular polysaccharides⁸². However,

high specificity in strain recognition would not enable discrimination against mutants that retain the same molecular attributes but fix less nitrogen.

Legume taxa vary from specific to generalist in the rhizobia that they nodulate, with a tradeoff between generalism and the benefit gained from symbionts⁴⁰. Consistent with a tradeoff, symbiotically promiscuous legumes, like the common bean *Phaseolus vulgaris*, allow extremely diverse bacteria to gain access to nodules, and can be dominated by strains that are not effective for fixing nitrogen⁹⁰. Loss of specificity could be a byproduct of domestication, as the capacity to select beneficial rhizobia can vary markedly with breeding practices and could be tied to the relaxation of plant defenses^{91,92}. New work in *Lotus spp.* has uncovered a quantitative trait locus that encodes promiscuity, opening the door to research to better understand its evolution and the mechanistic bases of generalism⁹³.

Few molecular mechanisms that restrict fundamental compatibility have been shown to confer an advantage to the host by excluding inferior symbionts. This could be tested using loss and gain of function experiments on hosts. While a host may be fundamentally compatible with a broad swath of symbionts, the ability to preferentially initiate nodulation with superior strains amongst diverse compatible options is a distinct trait, which we discuss next.

Realized Nodulation Compatibility. Legumes can preferentially initiate nodules with some fundamentally compatible rhizobia strains over others, which delineates a legume's realized nodulation. This contributes to partner choice if legumes selectively nodulate with superior compatible strains, as occurs in several wild systems. Surprisingly little is known about how legumes select strains to nodulate from among compatible partners²³. From compatible strains in the rhizosphere, hosts can preferentially nodulate with rhizobia bearing specific early symbiont

recognition signaling pathways. For example, a host can preferentially nodulate with strains that express particular nod factor variants, even if other nod factor variants are compatible⁹⁴. Pea plants exposed to mixed communities of compatible *Rhizobium leguminosarum*, tend to preferentially nodulate with strains bearing characteristic nodulation alleles, plasmid-encoded transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism⁹⁵. In addition, rhizobia tRNA-derived small RNAs can silence target host genes to promote nodulation success in a specific, localized manner⁹⁶.

Overall, partner choice is susceptible to exploitation because rhizobia can rapidly evolve to be less beneficial yet express the same signals as more beneficial strains. Consistent with this susceptibility, legumes are typically unable to select superior partners when faced with novel or genetically manipulated rhizobia genotypes^{47,57,97,98}. Even in natural communities, legumes nodulate with non-beneficial strains. In fact, some rhizobia evolve mixtures of Nod factors that allow them to colonize diverse legumes in which they fix little to no nitrogen^{99,100} and others secrete no Nod factors, but hitchhike into nodules with strains that do^{14,101}. Moreover, successful nodulation can be affected by competitive interactions among rhizobia in the rhizosphere, modulated by antibiotic¹⁰² and antibiotic resistance traits¹⁰³. To qualify as host-imposed partner choice, these interactions would need to be driven by a host's ability to generate rhizoplane conditions that favor more beneficial rhizobia^{104,105}, which remains unknown. Therefore, it is imperative that legumes detect and respond to rhizobia quality once nitrogen fixation has commenced, as discussed next.

SANCTIONS AND OTHER MECHANISMS OF POST-INFECTION CONTROL

Post-infection control mechanisms enable legumes to preferentially allocate resources to rhizobia in nodules, based on net benefit provided to the host (Fig 3). Within post-infection control, hosts may (i) exert sanctions or policing that lead to an accelerated and targeted senescence of nodules or cells within nodules, and/or (ii) impose 'scaled rewards' to preferentially allocate resources to higher-quality symbionts, which could cause nodules or cells containing more-beneficial rhizobia being larger or better provisioned)^{98,100,106,107}. While providing more or fewer resources are two sides of the same coin¹⁰⁸ (i.e., an increase in resources to one nodule is likely linked to a decrease in other nodules on the same plant), our framework highlights that hosts may also have the *potential* to actively harm (e.g., attack) rhizobia^{108,109}.

Compartmentalization. Legume physical structures that spatially separate symbionts, namely nodules and plant cells within them, facilitate host discrimination among rhizobia during symbiosis 110 and reduce direct conflict among symbionts colonizing a single host 111. Legume control mechanisms should satisfy three criteria: (i) allowing hosts to distinguish among compartments with more- vs less-beneficial rhizobia, (ii) enable the host to direct resources to more beneficial rhizobia, ideally, even within coinfected nodules, to increase its fitness return on resource investment, and (iii) minimize tissue damage to the host caused by sanctions on rhizobia in those infected cells.

Nodules represent compartments for hosts to enact control mechanisms, containing populations of rhizobia that the host can regulate independently. Nodule-level controls would be most effective when nodules contain a single rhizobia strain¹¹². If multiple strains share a nodule, this could impair a host's ability to preferentially allocate resources to individual strains. However, cases where $\sim 20\%$ of nodules are co-infected are common in the field^{113–115} and the

laboratory^{28,52,57,116–121}, with some nodules containing up to six different strains²⁵. One solution to this problem is if hosts can enact control at a finer spatial level. Recent work suggests that some legumes can discriminate, at least against completely ineffective rhizobia, even when as much as 50% of the host's nodules are coinfected with a mixture of effective and ineffective strains^{25,50,116,122}. How is this achieved? In the next section we discuss possible control mechanisms.

Host control over resource supply. Preferential allocation of resources, such as carbon or oxygen, to individual nodules could be a mechanism by which hosts scale rewards to rhizobia performance. Such scaled rewards operate in other symbioses, such as those between plants and arbuscular mycorrhizal fungi^{123,124}. LError! Bookmark not defined.egumes can control nodule permeability to oxygen^{125,26,126} allowing hosts to scale rewards. Symbiotic rhizobia depend on precise levels of O₂ for aerobic respiration¹²⁷, requiring sufficient O₂ flux for ATP production but low enough levels to prevent damage to nitrogenase^{128–130}. Nodule-level manipulations of rhizobia defection allows researchers to evaluate legume responses¹³¹. For example, when rhizobia were prevented from fixing N₂ using an Ar:O₂ atmosphere, soybean decreased the oxygen permeability of nodules, and oxygen-limited rhizobia decreased reproduction. However, these manipulations imperfectly mimic nodules with low N₂ fixation because nitrogenase still consumes resources in the N₂-free atmosphere, producing hydrogen gas rather than ammonia. Furthermore, it is not clear whether reduced O₂ influx was directly responsible for decreased rhizobia reproduction¹³².

Nodules containing more effective nitrogen-fixing rhizobia receive greater carbon allocation by the legume. Regulation of carbon access to the nodule apoplastic space or to symbiotic cell could control rhizobia and nodule growth. Legumes provide dicarboxylates, primarily succinate and malate, as energy and electron source donors for N₂ fixation by rhizobia. Sucrose is brought via phloem to the infected nodule cell and metabolized into malate by glycolysis pathways (PEPC-MDH). Malate is used as a carbon skeleton to transport N out of the symbiotic cell and as reductant power by rhizobia to fix N₂. A recent review of nodule metabolism reveals a central role of malate¹³³. However, there are few data on host control of apoplastic carbon metabolism and its connection with endosymbiotic rhizobia fitness. Within nodules containing effective nitrogen-fixing rhizobia, rhizobia proliferate rapidly, whereas nodules with less-beneficial rhizobia tend to stay smaller, and the rhizobia within them divide slowly^{97,98,114,116,132,134,135}. For example, rhizobia that store more polyhydroxybutyrate (PHB) during symbiosis can survive longer in the soil between hosts¹³⁶, but a more-beneficial PHB(-) *Rhizobium etli* knockout provided bean plants with more nitrogen, presumably because PHB accumulation competes with N fixation²⁹. The PHB(-) strain produced roughly two-fold larger nodules than the less-beneficial, wild-type strain, consistent with host sanctions against the latter¹³⁷.

While nodule-level sanctions could help optimize net legume benefits at the level of whole nodules, it is unlikely that ineffective rhizobia in nodules with mixed infections could be targeted by withholding O₂ or carbon^{133,138}. While it is possible that the peribacteroid membrane could limit carbon influx to particular bacteroids within a nodule^{139,140}, legume control of nodule permeability to gases occurs at the nodule-level and carbon is metabolized via vascular bundles that supply whole nodules. Therefore, control over oxygen flux is unlikely to serve as a mechanism of post-infection control within a co-infected nodule (criterion (ii)).

Host mediation of hormones, antimicrobials and amino acids. Phytohormone concentration is higher in nodules compared to other portions of roots^{141,142} and may play a role

in the regulation of nodule metabolism. For example, together with CLE genes, cytokinines are important in the regulation of nodule numbers¹⁴³. Plant hormones change in concentration throughout nodule developmental stages¹⁴⁴, and hormone transport and concentration in nodules is spatially controlled in the different cell types¹⁴⁵. It is conceivable that spatial control of hormones by hosts could provide a mechanism by which a host could discriminate between beneficial and ineffective rhizobia in mixed nodules, though we lack research that addresses this possibility.

Some legumes secrete antimicrobial peptides that trigger terminal differentiation of bacteroids, which become incapable of reproduction 146–148 and can increase their N-per-C efficiency 149. This does not appear to reduce the resource usage and reproduction of less effective strains as undifferentiated rhizobia clonemates persist in these nodules and are not subject to antimicrobial control 149 (violating criterion II). Pea and alfalfa, both of which host nonreproductive bacteroids 135 exert whole-nodule sanctions. Although sanctions against less-beneficial nonreproductive bacteroids in mixed nodules could conserve plant resources, they would not selectively harm the corresponding reproductive rhizobia 106.

Selective Nodule senescence. Nodule senescence is the natural process by which nodules break down¹⁵⁰. Rhizobia should benefit from a delay in senescence as they can proliferate more within the nodule¹⁵¹, whereas legume hosts would benefit from senescing nodules when costs of rhizobia outweigh benefits. Legumes display two types of nodule senescence. Developmental senescence entails nodule maturation and release of symbionts into the soil, often during fruit set, when legumes shift carbon resources towards seeds and away from nodules. In contrast, induced senescence is triggered if legumes experience stress, such as deficiencies of light¹⁵², water¹⁵³, or failure of bacterial recognition by the plant¹⁵⁴. Morphological changes associated with the two

types of nodule senescence differ. In the latter, changes progress faster and the contents of the symbiosome are degraded without evidence for legume nutrient remobilization¹⁵⁵. Several morphological features of senescence are observed in ineffective nodules.

One of the first morphological changes during senescence is breakdown of the symbiosome membrane¹⁵⁶, which releases bacteroids to the plant cytosol and exposes the rhizobia to the hostile host cell environment¹⁵⁷. In zones of senescence within indeterminate nodules, proteins involved in the formation of vacuoles accumulate, and symbiosomes transform into vacuole-like units^{157,158}. Thus, vacuolar fusion machinery may be necessary for controlling symbiosome lysis. A potentially critical step in nodule senescence is the neutralization of the peribacteroid space that surrounds the symbiosome, an otherwise acidic environment which facilitates import of host resources¹⁵⁹. For instance, non-fixing rhizobia often fail to induce full peribacteroid space acidification, potentially allowing the host to halt symbiosome development¹⁵⁹. Senescence is associated with induced expression of cysteine proteases, which mediate senescence¹⁶⁰. In *Astragalussinicus*, downregulated expression of nodule-specific cysteine protease *Asnodf32*, delays nodule senescence and extends N₂ fixation¹⁶¹. Moreover, the ratio of reactive oxygen species to scavenging enzymes increases during nodule senescence^{156,160,162}.

In experimental work, individual nodules that house ineffective rhizobia are selectively senesced. Within *Acmispon* and *Lotus* nodules coinfected with beneficial and ineffective strains, selective senescence was only associated with individual nodule cells housing ineffective rhizobia¹⁰⁷. Thus, selective senescence is a promising avenue for investigating host control as it fulfills all three criteria described above.

Immunity. Plants respond to pathogens via inducing reactive oxygen species, altering gene expression, remodeling the plant cell wall, and producing antimicrobial compounds such as phytoalexins¹⁶³. A common response is a rapid, localized programmed cell death that occurs where harmful microbes have invaded, known as a hypersensitive response. Many of these responses also occur during rhizobia infection 164,165, however, the role of immunity in legume sanctions is unresolved. Levels of responsive early gene expression are substantially lower in response to nod factors than to the elicitors of defense, suggesting a muted induction 166. The early generation of reactive oxygen species is necessary for rhizobial infection and their increased production leads to increases in nitrogen fixation and a delay in senescence 167. Development in established nodules is not affected by elicitation of immunity¹⁶⁴, though the repression of immunity could be reversed as nodules begin to senesce¹⁶⁸. Lastly, processes similar to a hypersensitive response occur in legume-rhizobia interactions, but in a genotypespecific manner, independent of nitrogen fixing status 169. Immune responses based on strain identity, rather than symbiotic performance, have the same challenge as partner choice, in that less-beneficial mutants could retain the identity signals of their more-beneficial ancestors. Moreover, it is unclear how a host immune response could differentially affect strains within the same nodule, violating criterion (ii). Overall, post-infection control mechanisms are imperfect. Despite the opportunity for postinfection control to divert host resources away from less beneficial rhizobia, a legume that forms nodules with both a less-beneficial and a more-beneficial strain can have lower fitness than a legume that nodulates exclusively with the more-beneficial strain^{51,170,56}, though this cost is not ubiquitous¹⁷¹. In extreme cases, hosts have no control over parasitic rhizobia: the Bradyrhizobium elkanii strain USDA61 produces many nodules on soybean hosts, but fixes little

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

nitrogen¹⁷², and rhizobitoxine-producing strains induce chlorosis⁶⁷. Less-effective strains also represent an opportunity cost for hosts, but the magnitude of these costs is poorly understood.

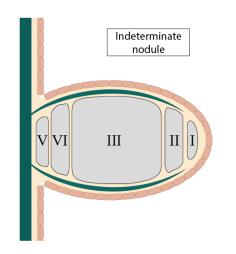
Little is known about how legumes sense rhizobia performance. Legumes could assess rhizobia quality using absolute criteria by comparing nodule performance to a fixed threshold, below which plants do not allocate resources to a strain. Alternatively, legumes could use conditional criteria and compare rhizobia performance to that of other strains available to the legume. Recent research reveals strong support for conditional sanctions: a rhizobium genotype is sanctioned if it is co-inoculated with a strain that confers more benefit to the host, but not if it is co-inoculated with a strain that confers less benefit to the host 55,98. While the ability to distinguish between cooperative and uncooperative rhizobia can impose no detectable cost on a host legume 170, it could be that host-control is costly in some environments. Although the metabolic costs of sensing nodule performance may be negligible, legume fitness could decrease from shutting down *too* many nodules or allocating resources to suboptimal nodules.

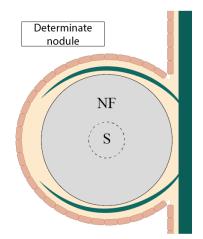
Interestingly, legumes may differ in their ability to sanction, and this may be linked to breeding and/or agricultural conditions under domestication 91,92,173, genetic bottlenecks during breeding, or long term fertilization 174.

CONCLUSION AND FUTURE PERSPECTIVE

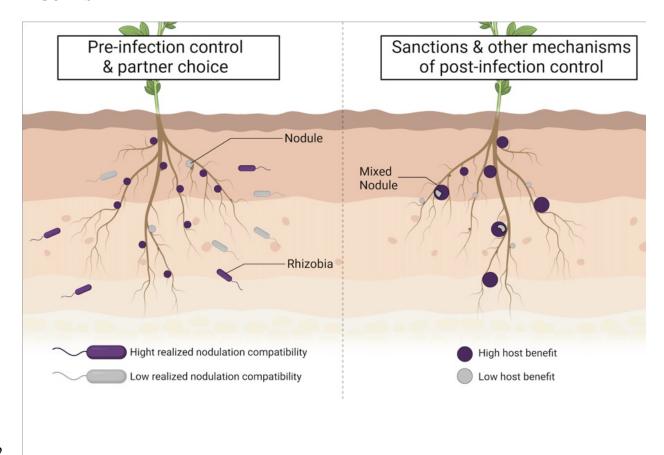
In conclusion, multiple mechanisms of preferential allocation act as a series of sieves, each contributing to legume fitness by directing host resources to a narrowing subset of more beneficial rhizobia⁵⁵. This understanding is critical to future efforts to breed legumes with improved host control. For instance, we must understand how different mechanisms of preferential allocation to rhizobia interact. Are there trade-offs between host control traits that

could constrain their evolution, or could artificial selection improve multiple host control traits in parallel? If some host control traits sufficiently prevent legume exposure to inferior rhizobia, does this relax the selection that maintains other mechanisms of preferential allocation? Host control is imperfect, meaning that hosts often reduce, but do not fully eliminate resources conferred to inferior symbionts^{97,98}. Low costs and imperfect resource allocation could contribute to the evolution of multiple mechanisms of preferential allocation to rhizobia in legumes, which could provide promising novel targets for crop improvement. Understanding these mechanisms will also be important to engineering microbiomes or designing synthetic symbioses, both of which require the host's ability to control symbionts that differ in quality. Artificial selection and engineering efforts that fail to consider host control traits risk producing hosts that are overrun by less-beneficial symbionts.


AKNOWLEDGEMENTS


SSP was supported by NSF DEB-1943239 and IOS-1755454 and by DOE BER-RDPP-DE-SC0023150. ETK was supported by an Ammodo grant, NWO VICI grant (VI.C.202.012), NWO Gravity grant MICROP. SD was supported by NWO open competition grant (819.01.007). JLS was supported by NSF DEB 1738009, NIFA-USDA Award 2022-67019-36500, and a USDA Hatch Grant CA-R-EEOB-5200-H. Figures 1, 2 and 3 were created with BioRender.com.

BOX 1. Typical biology of nodulation


Nodules are typically initiated when one or a few rhizobia cells enter root cortical cells via a crack or root hair and are encased by a plant-derived symbiosome membrane, within which they differentiate into bacteroids and can begin fixing nitrogen. Bacteroids typically reside as spatially structured groups within infected plant cells¹¹⁷ and reach exceptionally high numbers, with 1-50 bacteroids within each symbiosome, and 10³-10⁴ symbiosomes in each infected host cell¹⁰⁷. Only a subset of rhizobia in soil are compatible with any host, determined by host responsiveness to rhizobia molecular signals, including Nod factors, surface polysaccharides, and Type-III effectors^{23,77–80}.

Nodule development varies among legume taxa. **Determinate nodules**, such as in *Lotus japonicus*, lack a continuous meristem and are spherical, with a core of infected N₂ fixing cells (NF) surrounded by uninfected host cells. Determinate nodules host homogenous populations of bacteroids, cease growth after their development is complete, and allow nitrogen fixing rhizobia to escape back into the soil during nodule senescence, a process initiating from a senescent zone in the nodule center (S). **Indeterminate nodules**, such as in *Medicago truncatula*, grow throughout the functional association, with a spatial gradation of zones, including undifferentiated meristem cells (I), cells being invaded by bacteria and those undergoing symbiotic differentiation into a nitrogen fixing form (II, III), a nitrogen fixation zone (IV), and a senescent zone (V). In some hosts of each type⁸⁵, bacteroids terminally differentiate and cannot escape the nodule¹⁷⁷, but nonetheless a subset of undifferentiated rhizobia can be released upon nodule senescence¹⁷⁸. In both nodule types, bacteroids within nodules can fix nitrogen, and greatly enhance plant fitness in return for host-derived carbon.

411 FIGURES

Figure 1. Legumes detect and respond to rhizobia of varying benefit via two broad classes of mechanisms. Pre-infection control and partner choice (left) occur if plant production and detection of molecular signals select for beneficial rhizobia (i.e., purple cells and nodules) and exclude less beneficial rhizobia (i.e., grey cells and nodules) Sanctions and other post-infection mechanisms (right) are enabled by compartmentalization of symbionts among nodules and infected plant cells S8,106,107. Here, hosts control rhizobia development and proliferation *in planta*, such that nodules and plant cells infected with highly beneficial rhizobia to grow rapidly and those infected with less beneficial rhizobia grow slowly. Both classes of mechanisms can help optimize the benefits of symbiosis by favoring more beneficial rhizobia strains and selecting against those that provide little or no N₂ fixation.

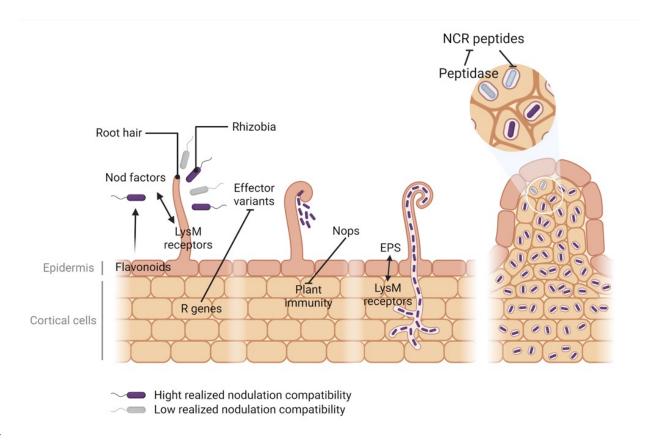


Figure 2. Mechanisms of pre-infection control and partner choice. Pre-infection control by legumes occurs via a multilayer response modulated by back-and-forth molecular communication between plants and rhizobia. The process is initiated by host secretion of species specific flavonoids^{21,22}, a response by compatible rhizobia via production of Nod factors, and detection of Nod factors by plant LysM receptors⁷. Compatible rhizobia, for instance with appropriate Nod factors or Type-III effector variants, must evade legume immune responses, via presenting surface exopolysaccharides (EPS) that minimize host bacteriocidal actions or secretion of Nodulation outer proteins (Nops) that dampen legume defenses^{24,74,81,82}. Nodule-specific cysteine-rich (NCR) peptides allow some legumes to further discriminate among rhizobia using antimicrobial NCR peptides, though some rhizobia possess peptidases that can cleave and inactivate host NCR peptides^{83,84}.

438

439

440

441

442

443

444

445

446

447

448

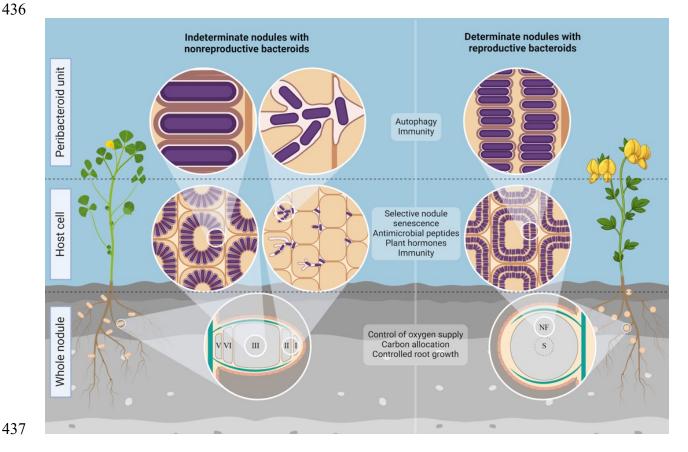


Figure 3. Post-infection control via sanctions and other mechanisms across the compartmentalized structure of the symbiosis. In indeterminate nodules (left, bottom),

rhizobia (purple) often terminally differentiate into bacteroids in a spatial series (Zones II-V) and cannot escape the nodule¹⁷⁷, but undifferentiated rhizobia (Zone I) can be released upon nodule senescence¹⁷⁸. Within peribacteroid units (shown encased in a dark brown peribacteroid membrane) are nitrogen fixing bacteroids that are often nonreproductive ¹²⁸ (Zone III). These hosts appear to exert a form of whole-nodule sanctions. However, in a nodule infected by more than one strain, it is unknown how sanctions could target less-effective rhizobia because N₂ fixing bacteroids in Zone III are separated from reproductive clonemates in Zone I¹⁰⁶. For many, but probably not all, **determinate nodules**⁸⁵ (right, bottom), N₂ fixing bacteroids in the nitrogen fixation Zone (NF) can escape back into the soil during nodule senescence by initiating a

senescent zone at the nodule core (S). In a nodule infected by more than one strain, sanctions can directly target less-effective rhizobia because N_2 fixing bacteroids are reproductive 107 . Sanctions likely occur via changes or breakdown of the symbiosome membrane 156 , which releases bacteroids to the hostile plant cytosol 157 . Host immunity and autophagy (i.e., degradation of intracellular components, top) are both potential functions that could further mediate host selection against ineffective rhizobia 165,168,169,179 .

456 **REFERENCES**

- 1. Sprent, J. I., Ardley, J. & James, E. K. Biogeography of nodulated legumes and their
- nitrogen-fixing symbionts. *New Phytologist* **215**, 40–56 (2017).
- 2. Zhao, Y. *et al.* Nuclear phylotranscriptomics and phylogenomics support numerous
- polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing
- symbiosis in Fabaceae. *Molecular Plant* **14**, 748–773 (2021).
- 462 3. Davies-Barnard, T. & Friedlingstein, P. The Global Distribution of Biological Nitrogen
- 463 Fixation in Terrestrial Natural Ecosystems. *Global Biogeochemical Cycles* **34**,
- 464 e2019GB006387 (2020).
- 465 4. Smýkal, P. et al. Legume Crops Phylogeny and Genetic Diversity for Science and
- Breeding. *Critical Reviews in Plant Sciences* **34**, 43–104 (2015).
- 467 5. Lin, J. shun et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in
- 468 *Medicago truncatula. Nature Plants* **4**, 942–952 (2018).
- 469 6. Martin, F. M., Uroz, S. & Barker, D. G. Ancestral alliances: Plant mutualistic symbioses
- with fungi and bacteria. *Science* **356**, eaad4501 (2017).
- 471 7. Zipfel, C. & Oldroyd, G. E. D. Plant signaling in symbiosis and immunity. *Nature* 543,
- 472 328–336 (2017).
- 473 8. Dong, W. et al. An SHR–SCR module specifies legume cortical cell fate to enable
- 474 nodulation. *Nature* **589**, 586–590 (2021).
- 475 9. Fronk, D. C. & Sachs, J. L. Symbiotic organs: the nexus of host–microbe evolution. *Trends*
- 476 in Ecology & Evolution **37**, 599–610 (2022).

- 477 10. Soyano, T., Shimoda, Y., Kawaguchi, M. & Hayashi, M. A shared gene drives lateral root
- development and root nodule symbiosis pathways in *Lotus*. *Science* **366**, 1021–1023
- 479 (2019).
- 480 11. Schiessl, K. et al. NODULE INCEPTION Recruits the Lateral Root Developmental
- Program for Symbiotic Nodule Organogenesis in *Medicago truncatula*. Current Biology **29**,
- 482 3657-3668.e5 (2019).
- 483 12. Quilbé, J. et al. Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of
- 484 the rhizobium–legume symbiosis. *Nature Communications* **12**, 1–14 (2021).
- 485 13. Poole, P., Ramachandran, V. & Terpolilli, J. Rhizobia: from saprophytes to endosymbionts.
- 486 *Nature Reviews Microbiology* **16**, 291–303 (2018).
- 487 14. Gano-Cohen, K. A. et al. Nonnodulating Bradyrhizobium spp. modulate the benefits of
- legume-rhizobium mutualism. *Applied and Environmental Microbiology* **82**, 5259–5268
- 489 (2016).
- 490 15. Jones, F. P. et al. Novel European free-living, non-diazotrophic *Bradyrhizobium* isolates
- from contrasting soils that lack nodulation and nitrogen fixation genes A genome
- 492 comparison. Scientific Reports 6, 1–10 (2016).
- 493 16. Porter, S. S., Faber-Hammond, J., Montoya, A. P., Friesen, M. L. & Sackos, C. Dynamic
- 494 genomic architecture of mutualistic cooperation in a wild population of *Mesorhizobium*.
- 495 *ISME Journal* **13**, 301–315 (2019).
- 496 17. Weisberg, A. J. et al. Pangenome Evolution Reconciles Robustness and Instability of
- 497 Rhizobial Symbiosis. *mBio* **13**, e00074-22 (2022).
- 498 18. Frank, S. A. Models of Symbiosis. *The American Naturalist* **150**, S80–S99 (1997).

- 499 19. Quilbé, J., Montiel, J., Arrighi, J.-F. & Stougaard, J. Molecular Mechanisms of Intercellular
- Rhizobial Infection: Novel Findings of an Ancient Process. Frontiers in Plant Science 13,
- 501 (2022).
- 502 20. Adams, M. A., Simon, J. & Pfautsch, S. Woody legumes: a (re)view from the South. Tree
- 503 *Physiology* **30**, 1072–1082 (2010).
- 21. Peck, M. C., Fisher, R. F. & Long, S. R. Diverse Flavonoids Stimulate NodD1 Binding to
- nod Gene Promoters in Sinorhizobium meliloti. Journal of Bacteriology 188, 5417–5427
- 506 (2006).
- 507 22. Wang, Q., Liu, J. & Zhu, H. Genetic and Molecular Mechanisms Underlying Symbiotic
- Specificity in Legume-Rhizobium Interactions. Frontiers in Plant Science 9, 1–8 (2018).
- 509 23. Boivin, S. & Lepetit, M. Partner preference in the legume-rhizobia symbiosis and impact on
- legume inoculation strategies. in *Advances in Botanical Research* vol. 94 323–348
- 511 (Elsevier, 2020).
- 512 24. Walker, L., Lagunas, B. & Gifford, M. L. Determinants of Host Range Specificity in
- Legume-Rhizobia Symbiosis. Frontiers in Microbiology 11, (2020).
- 514 25. Mendoza-Suárez, M. A. et al. Optimizing Rhizobium-legume symbioses by simultaneous
- measurement of rhizobial competitiveness and N₂ fixation in nodules. *Proceedings of the*
- National Academy of Sciences of the United States of America 117, 9822–9831 (2020).
- 517 26. Denison, R. F. & Layzell, D. B. Measurement of Legume Nodule Respiration and O 2
- Permeability by Noninvasive Spectrophotometry of Leghemoglobin. *Plant Physiol.* **96**,
- 519 137–143 (1991).
- 520 27. Porter, S. S. & Simms, E. L. Selection for cheating across disparate environments in the
- legume-rhizobium mutualism. *Ecology Letters* 17, 1121–1129 (2014).

- 522 28. Hahn, M. & Studer, D. Competitiveness of a nif- Bradyrhizobium japonicum mutant
- against the wild-type strain. FEMS Microl. Lett. **33**, 143–148 (1986).
- 524 29. Cevallos, M. A., Encarnacion, S., Leija, A., Mora, Y. & Mora, J. Genetic and physiological
- characterization of a *Rhizobium etli* mutant strain unable to synthesize poly-β-
- 526 hydroxybutyrate. *Journal of Bacteriology* **178**, 1646–1654 (1996).
- 527 30. Ratcliff, W. C., Kadam, S. V. & Denison, R. F. Poly-3-hydroxybutyrate (PHB) supports
- survival and reproduction in starving rhizobia. FEMS Microbiology Ecology 65, 391–399
- 529 (2008).
- 530 31. Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M. & Giller, K. E. Are the rates of
- photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular
- mycorrhizal symbioses? *Soil Biology and Biochemistry* **41**, 1233–1244 (2009).
- 533 32. Song, L., Carroll, B. J., Gresshoff, P. M. & Herridge, D. F. Field assessment of
- supernodulating genotypes of soybean for yield, N2 fixation and benefit to subsequent
- 535 crops. *Soil Biology and Biochemistry* **27**, 563–569 (1995).
- 536 33. Nishida, H. et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule
- 537 symbiosis in *Lotus japonicus*. *Nat Commun* **9**, 499 (2018).
- 538 34. Quides, K. W., Salaheldine, F., Jariwala, R. & Sachs, J. L. Dysregulation of host-control
- causes interspecific conflict over host investment into symbiotic organs. *Evolution* **75**,
- 540 1189–1200 (2021).
- 541 35. Kiers, E. T., Ratcliff, W. C. & Denison, R. F. Single-strain inoculation may create spurious
- 542 correlations between legume fitness and rhizobial fitness. *New Phytologist* **198**, 4–6 (2013).

- 543 36. Heath, K. D., Stock, A. J. & Stinchcombe, J. R. Mutualism variation in the nodulation
- response to nitrate: Variation in the nodule nitrate response. *Journal of Evolutionary*
- 545 *Biology* **23**, 2494–2500 (2010).
- 546 37. Heath, K. D. et al. Light availability and rhizobium variation interactively mediate the
- outcomes of legume–rhizobium symbiosis. *American Journal of Botany* **107**, 229–238
- 548 (2020).
- 549 38. Taylor, B. N. & Menge, D. N. L. Light regulates tropical symbiotic nitrogen fixation more
- strongly than soil nitrogen. *Nature Plants* **4**, 655–661 (2018).
- 551 39. Thrall, P. H., Hochberg, M. E., Burdon, J. J. & Bever, J. D. Coevolution of symbiotic
- mutualists and parasites in a community context. Trends in Ecology and Evolution 22, 120–
- 553 126 (2007).
- 554 40. Perret, X., Staehelin, C. & Broughton, W. J. Molecular basis of symbiotic promiscuity.
- *Microbiology and molecular biology reviews* **64**, 180–201 (2000).
- 556 41. Pahua, V. J. et al. Fitness variation among host species and the paradox of ineffective
- rhizobia. *Journal of Evolutionary Biology* 0–2 (2018).
- 558 42. Freiberg, C. et al. Molecular basis of symbiosis between Rhizobium and legumes. Nature
- **387**, 394–401 (1997).
- 560 43. Ehinger, M. et al. Specialization-generalization trade-off in a *Bradyrhizobium* symbiosis
- with wild legume hosts. *BMC Ecology* **14**, 8 (2014).
- 562 44. Heath, K. D. Intergenomic epistasis and coevolutionary constraint in plants and rhizobia.
- 563 Evolution **64**, 1446–1458 (2010).

- 564 45. Barrett, L. G., Zee, P. C., Bever, J. D., Miller, J. T. & Thrall, P. H. Evolutionary history
- shapes patterns of mutualistic benefit in *Acacia*-rhizobial interactions. *Evolution*;
- international journal of organic evolution **70**, 1473–1485 (2016).
- 567 46. Wang, Q. et al. Host-secreted antimicrobial peptide enforces symbiotic selectivity in
- Medicago truncatula. Proceedings of the National Academy of Sciences 201700715 (2017)
- 569 doi:10.1073/pnas.1700715114.
- 570 47. Younginger, B. S. & Friesen, M. L. Connecting signals and benefits through partner choice
- in plant-microbe interactions. *FEMS Microbiology Letters* 1–11 (2019)
- 572 doi:10.1093/femsle/fnz217.
- 573 48. Frederickson, M. E. Rethinking mutualism stability: cheaters and the evolution of sanctions.
- *Quarterly Review of Biology* **88**, 269–295 (2013).
- 575 49. Bull, J. J. & Rice, W. R. Distinguishing mechanisms for the evolution of co-operation.
- *Journal of Theoretical Biology* **149**, 63–74 (1991).
- 577 50. Regus, J. U., Gano, K. A., Hollowell, A. C. & Sachs, J. L. Efficiency of partner choice and
- sanctions in *Lotus* is not altered by nitrogen fertilization. *Proceedings. Biological sciences* /
- 579 The Royal Society **281**, 20132587 (2014).
- 580 51. Heath, K. D. & Tiffin, P. Context dependence in the coevolution of plant and rhizobial
- mutualists. *Proceedings of the Royal Society B: Biological Sciences* **274**, 1905–1912
- 582 (2007).
- 583 52. Heath, K. D. & Tiffin, P. Stabilizing mechanisms in a legume-rhizobium mutualism.
- 584 Evolution; international journal of organic evolution 63, 652–62 (2009).
- 585 53. Queller, D. C. Joint phenotypes, evolutionary conflict and the fundamental theorem of
- 586 natural selection. *Phil. Trans. R. Soc. B* **369**, 20130423 (2014).

- 587 54. Gubry-Rangin, C., Garcia, M. & Béna, G. Partner choice in Medicago truncatula-
- 588 Sinorhizobium symbiosis. Proceedings. Biological sciences / The Royal Society 277, 1947—
- 589 51 (2010).
- 590 55. Montoya, A. P. et al. Hosts winnow symbionts with multiple layers of absolute and
- conditional discrimination mechanisms. *Proc. R. Soc. B.* **290**, 20222153 (2023).
- 592 56. Rahman, A. et al. Competitive interference among rhizobia reduces benefits to hosts.
- 593 *Current Biology* **33**, 2988-3001.e4 (2023).
- 594 57. Amarger, N. Competition for nodule formation between effective and ineffective strains of
- *Rhizobium meliloti. Soil Biology and Biochemistry* **13**, 475–480 (1981).
- 596 58. Bailly, X., Olivieri, I., De Mita, S., Cleyet-Marel, J. C. & Bena, G. Recombination and
- selection shape the molecular diversity pattern of nitrogen-fixing *Sinorhizobium*
- spassociated to *Medicago*. *Mol. Ecol.* **15**, 2719–2734 (2006).
- 599 59. Cannon, S. B. et al. Legume genome evolution viewed through the Medicago truncatula
- and Lotus japonicus genomes (vol 103, pg 14959, 2006). Proc. Natl. Acad. Sci. U. S. A.
- **103**, 18026–18026 (2006).
- 602 60. Geddes, B. A., Kearsley, J., Morton, R., diCenzo, G. C. & Finan, T. M. The genomes of
- 603 rhizobia. in *Advances in Botanical Research* vol. 94 213–249 (Elsevier, 2020).
- 604 61. Grillo, M. A., Stinchcombe, J. R. & Heath, K. D. Nitrogen addition does not influence pre-
- infection partner choice in the legume-rhizobium symbiosis. *American Journal of Botany*
- **103**, 1763–1770 (2016).
- 607 62. Spoerke, J. M., Wilkinson, H. H. & Parker, M. A. Nonrandom genotypic associations in a
- legume *Bradyrhizobium* mutualism. *Evolution* **50**, 146–154 (1996).

- 609 63. Heath, K. D., Batstone, R. T., Cerón Romero, M. & McMullen, J. G. MGEs as the MVPs of
- Partner Quality Variation in Legume-Rhizobium Symbiosis. *mBio* (2022).
- 611 64. Weisberg, A. J., Sachs, J. L. & Chang, J. H. Dynamic Interactions Between Mega
- Symbiosis ICEs and Bacterial Chromosomes Maintain Genome Architecture. *Genome*
- 613 *Biology and Evolution* **14**, evac078 (2022).
- 614 65. Devine, T. E., Kuykendall, L. D. & O'Neill, J. J. The Rj4 allele in soybean represses
- nodulation by chlorosis-inducing bradyrhizobia classified as DNA homology group II by
- antibiotic resistance profiles. *Theoret. Appl. Genetics* **80**, 33–37 (1990).
- 617 66. Devine, T. E. & Kuykendall, L. D. Host genetic control of symbiosis in soybean (Glycine
- 618 max L.). in Current Issues in Symbiotic Nitrogen Fixation (eds. Elkan, G. H. & Upchurch,
- 619 R. G.) 173–187 (Springer Netherlands, 1996).
- 620 67. Tang, F., Yang, S., Liu, J. & Zhu, H. Rj4, a Gene Controlling Nodulation Specificity in
- Soybeans, Encodes a Thaumatin-Like Protein But Not the One Previously Reported. *Plant*
- 622 *Physiol.* **170**, 26–32 (2016).
- 623 68. Oldroyd, G. E. D., Mitra, R. M., Wais, R. J. & Long, S. R. Evidence for structurally
- specific negative feedback in the Nod factor signal transduction pathway. *The Plant*
- 625 *Journal* **28**, 191–199 (2001).
- 626 69. Bisseling, T. & Geurts, R. Specificity in legume nodule symbiosis. Science (New York,
- 627 *N.Y.*) **369**, 620–621 (2020).
- 628 70. Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are major
- determinants of specificity. *Science* **369**, 663–670 (2020).
- 630 71. Oldroyd, G. E. D. & Downie, J. A. Calcium, kinases and nodulation signalling in legumes.
- Nature Reviews Molecular Cell Biology 5, 566–576 (2004).

- 632 72. Bozsoki, Z. et al. Receptor-mediated chitin perception in legume roots is functionally
- separable from Nod factor perception. *Proceedings of the National Academy of Sciences*
- 634 **114**, E8118–E8127 (2017).
- 635 73. Gough, C., Cottret, L., Lefebvre, B. & Bono, J.-J. Evolutionary History of Plant LysM
- Receptor Proteins Related to Root Endosymbiosis. Frontiers in Plant Science 9, (2018).
- 637 74. Kawaharada, Y. et al. Receptor-mediated exopolysaccharide perception controls bacterial
- 638 infection. *Nature* **523**, 308–312 (2015).
- 639 75. Kelly, S., Radutoiu, S. & Stougaard, J. Legume LysM receptors mediate symbiotic and
- pathogenic signaling. Current Opinion in Plant Biology **39**, 152–158 (2017).
- 641 76. Cao, Y., Halane, M. K., Gassmann, W. & Stacey, G. The Role of Plant Innate Immunity in
- the Legume-Rhizobium Symbiosis. *Annual Review of Plant Biology* **68**, 535–561 (2017).
- 643 77. Hubber, A., Vergunst, A. C., Sullivan, J. T., Hooykaas, P. J. J. & Ronson, C. W. Symbiotic
- phenotypes and translocated effector proteins of the *Mesorhizobium loti* strain R7A
- VirB/D4 type IV secretion system. *Molecular Microbiology* **54**, 561–574 (2004).
- 646 78. Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and
- mechanistic insights. *Nature Reviews Microbiology* **13**, 343–359 (2015).
- 648 79. Bernal, P., Llamas, M. A. & Filloux, A. Type VI secretion systems in plant-associated
- bacteria. *Environmental Microbiology* **20**, 1–15 (2018).
- 650 80. Teulet, A. et al. The rhizobial type III effector ErnA confers the ability to form nodules in
- 651 legumes. *Proc. Natl. Acad. Sci. U.S.A.* **116**, 21758–21768 (2019).
- 81. Skorupska, A., Janczarek, M., Marczak, M., Mazur, A. & Król, J. Rhizobial
- exopolysaccharides: Genetic control and symbiotic functions. *Microbial Cell Factories* 5, 7
- 654 (2006).

- 82. Arnold, M. F. F., Penterman, J., Shabab, M., Chen, E. J. & Walker, G. C. Important Late-
- Stage Symbiotic Role of the *Sinorhizobium meliloti* Exopolysaccharide Succinoglycan.
- 657 *Journal of Bacteriology* **200**, (2018).
- 83. Herczeg, R. et al. Morphotype of bacteroids in different legumes correlates with the number
- and type of symbiotic NCR peptides. Proceedings of the National Academy of Sciences
- 660 **114**, 5041–5046 (2017).
- 84. Pan, H. & Wang, D. Nodule cysteine-rich peptides maintain a working balance during
- nitrogen-fixing symbiosis. *Nature Plants* **3**, 17048 (2017).
- 85. Oono, R., Schmitt, I., Sprent, J. I. & Denison, R. F. Multiple evolutionary origins of legume
- traits leading to extreme rhizobial differentiation. *New Phytologist* **187**, 508–520 (2010).
- 86. Kim, M. et al. An antimicrobial peptide essential for bacterial survival in the nitrogen-
- fixing symbiosis. Proceedings of the National Academy of Sciences of the United States of
- 667 *America* **112**, 15238–15243 (2015).
- 87. Price, P. A. et al. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and
- mediates symbiotic compatibility. *Proceedings of the National Academy of Sciences* **112**,
- 670 15244–15249 (2015).
- 88. Wendlandt, C. E. et al. Decreased coevolutionary potential and increased symbiont
- fecundity during the biological invasion of a legume-rhizobium mutualism. *Evolution* **75**,
- 673 731–747 (2021).
- 89. diCenzo, G. C., Zamani, M., Ludwig, H. N. & Finan, T. M. Heterologous Complementation
- Reveals a Specialized Activity for BacA in the *Medicago–Sinorhizobium meliloti*
- 676 Symbiosis. *Molecular Plant-Microbe Interactions* ® **30**, 312–324 (2017).

- 90. Moura, F. T., Ribeiro, R. A., Helene, L. C. F., Nogueira, M. A. & Hungria, M. So many
- 678 rhizobial partners, so little nitrogen fixed: The intriguing symbiotic promiscuity of common
- 679 bean (*Phaseolus vulgaris* L.). *Symbiosis* **86**, 169–185 (2022).
- 680 91. Porter, S. S. & Sachs, J. L. Agriculture and the Disruption of Plant–Microbial Symbiosis.
- 681 *Trends in Ecology and Evolution* **35**, 426–439 (2020).
- 682 92. Kiers, E. T., Hutton, M. G. & Denison, R. F. Human selection and the relaxation of legume
- defences against ineffective rhizobia. Proceedings of the Royal Society B: Biological
- 684 *Sciences* **274**, 3119–3126 (2007).
- 685 93. Zarrabian, M. et al. A Promiscuity Locus Confers Lotus burttii Nodulation with Rhizobia
- from Five Different Genera. MPMI **35**, 1006–1017 (2022).
- 687 94. Bourion, V. et al. Co-inoculation of a Pea Core-Collection with Diverse Rhizobial Strains
- Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct
- traits in the Interaction. Frontiers in Plant Science 8, 2249 (2018).
- 690 95. Bellabarba, A. et al. Competitiveness for Nodule Colonization in Sinorhizobium meliloti:
- 691 Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis.
- 692 mSystems **6**:4 (2020).
- 693 96. Ren, B., Wang, X., Duan, J. & Ma, J. Rhizobial tRNA-derived small RNAs are signal
- molecules regulating plant nodulation. *Science* eaav8907 (2019).
- 695 97. Westhoek, A. et al. Policing the legume-Rhizobium symbiosis: a critical test of partner
- 696 choice. *Scientific Reports* **7**, 1419 (2017).
- 697 98. Westhoek, A. et al. Conditional sanctioning in a legume-Rhizobium mutualism.
- 698 Proceedings of the National Academy of Sciences of the United States of America 118, 1–8
- 699 (2021).

- 700 99. Pueppke, S. G. & Broughton, W. J. Rhizobium sp. strain NGR234 and R. fredii USDA257
- share exceptionally broad, nested host ranges. *Molecular Plant-Microbe Interactions* 12,
- 702 293–318 (1999).
- 703 100. Sachs, J. L., Quides, K. W. & Wendlandt, C. E. Legumes versus rhizobia: a model for
- ongoing conflict in symbiosis. New Phytologist 1–8 (2018) doi:10.1111/nph.15222.
- 705 101. Porter, S. S., Faber-Hammond, J. J. & Friesen, M. L. Co-invading symbiotic mutualists of
- 706 *Medicago polymorpha* retain high ancestral diversity and contain diverse accessory
- genomes. FEMS Microbiology Ecology **94**, 1–12 (2018).
- 708 102. Naamala, J., Jaiswal, S. K. & Dakora, F. D. Antibiotics Resistance in Rhizobium: Type,
- Process, Mechanism and Benefit for Agriculture. *Curr Microbiol* **72**, 804–816 (2016).
- 710 103. Hollowell, A. C. et al. Native California soils are selective reservoirs for multidrug-resistant
- bacteria. Environmental Microbiology Reports 7, 442–449 (2015).
- 712 104. Archetti, M. et al. Let the right one in: A microeconomic approach to partner choice in
- 713 mutualisms. *American Naturalist* **177**, 75–85 (2011).
- 714 105. Wheatley, R. M. et al. Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis.
- 715 Proceedings of the National Academy of Sciences of the United States of America 117,
- 716 23823–23834 (2020).
- 717 106. Denison, R. F. Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia.
- 718 *The American Naturalist* **156**, 567–576 (2000).
- 719 107. Regus, J. U. et al. Cell autonomous sanctions in legumes target ineffective rhizobia in
- 720 nodules with mixed infections. *American Journal of Botany* **104**, 1299–1312 (2017).

- 721 108. Engelhardt, S. C., Taborsky, M., Ågren, J. A., Davies, N. G. & Foster, K. R. Reply to:
- Broad definitions of enforcement are unhelpful for understanding evolutionary mechanisms
- of cooperation. *Nature Ecology and Evolution* **4**, 323 (2020).
- 109. Ågren, J. A., Davies, N. G. & Foster, K. R. Enforcement is central to the evolution of
- 725 cooperation. *Nat Ecol Evol* **3**, 1018–1029 (2019).
- 726 110. Steidinger, B. S. & Bever, J. D. Host discrimination in modular mutualisms: a theoretical
- framework for meta-populations of mutualists and exploiters. *Proceedings of the Royal*
- 728 *Society B: Biological Sciences* **283**, 20152428 (2016).
- 729 111. Chomicki, G., Werner, G. D. A., West, S. A. & Kiers, E. T. Compartmentalization drives
- 730 the evolution of symbiotic cooperation: Compartmentalisation drives symbiosis.
- 731 *Philosophical Transactions of the Royal Society B: Biological Sciences* **375**, (2020).
- 732 112. West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability:
- 733 why do rhizobia fix nitrogen? *Proc. R. Soc. Lond. Ser. B-Biol. Sci.* **269**, 685–694 (2002).
- 734 113. Van Berkum, P., Elia, P., Song, Q. & Eardly, B. D. Development and application of a
- 735 multilocus sequence analysis method for the identification of genotypes within genus
- 736 Bradyrhizobium and for establishing nodule occupancy of soybean (Glycine max L. Merr).
- 737 *Molecular Plant-Microbe Interactions* **25**, 321–330 (2012).
- 738 114. Simms, E. L. et al. An empirical test of partner choice mechanisms in a wild legume-
- 739 rhizobium interaction. *Proceedings. Biological sciences / The Royal Society* **273**, 77–81
- 740 (2006).
- 741 115. Moawad, M. & Schmidt, E. L. Occurrence and nature of mixed infections in nodules of
- field-grown soybeans (Glycine max). *Biology and Fertility of Soils* **5**, 112–114 (1987).

- 743 116. Sachs, J. L. *et al.* Host control over infection and proliferation of a cheater symbiont.
- *Journal of Evolutionary Biology* **23**, 1919–1927 (2010).
- 745 117. Gage, D. J. Analysis of infection thread development using Gfp- and DsRed-expressing
- 746 Sinorhizobium meliloti. Journal of Bacteriology **184**, 7042–7046 (2002).
- 747 118. Bromfield, E. S. P. & Jones, D. G. Studies on double strain occupancy of nodules and the
- competitive ability of *Rhizobium trifolii* on red and white clover grown in soil and agar.
- 749 *Ann Applied Biology* **94**, 51–59 (1980).
- 750 119. Brockwell, J., Schwinghamer, E. A. & Gault, R. R. Ecological studies of root-nodule
- bacteria introduced into field environments—V. A critical examination of the stability of
- antigenic and streptomycin-resistance markers for identification of strains of *Rhizobium*
- 753 tripolii. Soil Biology and Biochemistry 9, 19–24 (1977).
- 120. Labandera, C. A. & Vincent, J. M. Competition between an introduced strain and native
- 755 Uruguayan strains of *Rhizobium trifolii*. *Plant and Soil* **42**, 327–347 (1975).
- 756 121. Johnston, A. W. B. & Behringer, J. E. Identification of the rhizobium strains in pea root
- nodules using genetic markers. *Journal of General Microbiology* **87**, 343–350 (1975).
- 758 122. Daubech, B. et al. Spatio-temporal control of mutualism in legumes helps spread symbiotic
- 759 nitrogen fixation. *eLife* **6**, 1–21 (2017).
- 760 123. Hammer, E. C., Pallon, J., Wallander, H. & Olsson, P. A. Tit for tat? A mycorrhizal fungus
- accumulates phosphorus under low plant carbon availability: P accumulation in an AMF
- under low plant C status. FEMS Microbiology Ecology 76, 236–244 (2011).
- 763 124. Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis.
- 764 *Science* **333**, 880–882 (2011).

- 765 125. Sheehy, JE, Minchin, FR, Witty, JF. Biological Control of the Resistance to Oxygen Flux in
- 766 Nodules. *Annals of Botany* **52**, 565–571 (1983).
- 767 126. Schulte, C. C. M. et al. Metabolic control of nitrogen fixation in rhizobium-legume
- symbioses. *Science Advances* 7, eabh2433.
- 769 127. King, B. J. & Layzell, D. B. Effect of increases in oxygen concentration during the argon-
- induced decline in nitrogenase activity in root nodules of soybean. *Plant Physiology* **96**,
- 771 376–381 (1991).
- 128. Jiang, S. et al. NIN-like protein transcription factors regulate leghemoglobin genes in
- 773 legume nodules. *Science* **374**, 625–628 (2021).
- 129. Hunt, S. & Layzell, D. B. Gas exchange of legume nodules and the regulation of
- 775 nitrogenase activity. Annual Review of Plant Physiology and Plant Molecular Biology 44,
- 776 483–511 (1993).
- 130. Layzell, D. B. Oxygen Regulation and Adenylates in Legume Nodules. in *Nitrogen*
- 778 Fixation: From Molecules to Crop Productivity 367–368 (2005).
- 779 131. Kiers, E. T., Rousseau, Robert A. & Denison, R. F. Measured sanctions: legume hosts
- detect quantitative variation in rhizobium cooperation and punish accordingly. *Evolutionary*
- 781 *Ecology Research* **8**, 1077–1086 (2006).
- 782 132. Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume-
- 783 rhizobium mutualism. *Nature* **425**, 78–81 (2003).
- 784 133. Schwember, A. R., Schulze, J., del Pozo, A. & Cabeza, R. A. Regulation of Symbiotic
- Nitrogen Fixation in Legume Root Nodules. *Plants* **8**, 333 (2019).

- 786 134. Quides, K. W., Stomackin, G. M., Lee, H.-H., Chang, J. H. & Sachs, J. L. Lotus japonicus
- alters in planta fitness of *Mesorhizobium loti* dependent on symbiotic nitrogen fixation.
- 788 (2017).
- 789 135. Oono, R., Anderson, C. G. & Denison, R. F. Failure to fix nitrogen by non-reproductive
- symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive
- 791 clonemates. *Proceedings. Biological sciences / The Royal Society* **278**, 2698–703 (2011).
- 792 136. Muller, KE, D., RF. Prolonged absence of soybean in the field selects for rhizobia that
- accumulate more polyhydroxybutyrate during symbiosis. *Agronomy Journal*, **In press**,
- 794 (2024).
- 795 137. Oono, R., Muller, K. E., Ho, R., Jimenez Salinas, A. & Denison, R. F. How do less-
- expensive nitrogen alternatives affect legume sanctions on rhizobia? *Ecology and Evolution*
- 797 **10**, 10645–10656 (2020).
- 798 138. White, J., Prell, J., James, E. K. & Poole, P. Nutrient sharing between symbionts. *Plant*
- 799 *Physiology* **144**, 604–614 (2007).
- 800 139. Udvardi, M. K. & Day, D. A. Metabolite transport across symbiotic menbranes of legume
- nodules. Annu Rev Plant Physiol Plant Mol Biol 48, 493–523 (1997).
- 802 140. Lodwig, E. & Poole, P. Metabolism of *Rhizobium* Bacteroids. Critical Reviews in Plant
- 803 Sciences **22**, 37–78 (2003).
- 804 141. Williams, P. M. & De Mallorca, M. S. Abscisic acid and gibberellin-like substances in roots
- and root nodules of *Glycine max*. *Plant and Soil* **65**, 19–26 (1982).
- 806 142. Liu, H., Zhang, C., Yang, J., Yu, N. & Wang, E. Hormone modulation of legume-rhizobial
- symbiosis. *Journal of Integrative Plant Biology* **60**, 632–648 (2018).

- 808 143. Mortier, V., De Wever, E., Vuylsteke, M., Holsters, M. & Goormachtig, S. Nodule numbers
- are governed by interaction between CLE peptides and cytokinin signaling. *The Plant*
- 810 *Journal* **70**, 367–376 (2012).
- 811 144. Dangar, T. K. & Basu, P. S. Seasonal changes and metabolism of plant hormones in root
- 812 nodules of Lens sp. *Biologia Plantarum* **26**, 253–259 (1984).
- 813 145. Fisher, J., Gaillard, P., Fellbaum, C. R., Subramanian, S. & Smith, S. Quantitative 3D
- imaging of cell level auxin and cytokinin response ratios in soybean roots and nodules.
- 815 *Plant Cell and Environment* **41**, 2080–2092 (2018).
- 816 146. Van De Velde, W. et al. Plant peptides govern terminal differentiation of bacteria in
- 817 symbiosis. *Science* **327**, 1122–1126 (2010).
- 818 147. Wang, C. et al. Sinorhizobium meliloti 1021 loss-of-function deletion mutation in chvl and
- its phenotypic characteristics. *Molecular Plant-Microbe Interactions* **23**, 153–160 (2010).
- 820 148. Haag, A. F. et al. Protection of Sinorhizobium against host cysteine-rich antimicrobial
- peptides is critical for symbiosis. *PLoS Biology* **9**, (2011).
- 822 149. Oono, R. & Denison, R. F. Comparing Symbiotic Efficiency between Swollen versus
- Nonswollen Rhizobial Bacteroids. *Plant Physiology* **154**, 1541–1548 (2010).
- 150. Thomas, H. Senescence, ageing and death of the whole plant. New Phytol 197, 696–711
- 825 (2013).
- 826 151. Muller, J. et al. Redifferentiation of bacteria isolated from Lotus japonicus root nodules
- colonized by *Rhizobium sp.* NGR234. *Journal of Experimental Botany* **52**, 2181–2186
- 828 (2001).
- 829 152. Gogorcena, Y. et al. N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules
- of Dark-Stressed Common Bean Plants. *Plant Physiology* **113**, 1193–1201 (1997).

- 831 153. Gonzalez, E. M. et al. Water-deficit effects on carbon and nitrogen metabolism of pea
- nodules. *Journal of Experimental Botany* **49**, 1705–1714 (1998).
- 833 154. Banba, M., Siddique, A.-B. M., Kouchi, H., Izui, K. & Hata, S. Lotus japonicus Forms
- Early Senescent Root Nodules with *Rhizobium etli. MPMI* **14**, 173–180 (2001).
- 835 155. Guerra, J. C. P. et al. Comparison of developmental and stress-induced nodule senescence
- in *Medicago truncatula*. *Plant Physiology* **152**, 1574–1584 (2010).
- 837 156. Puppo, A. et al. Legume nodule senescence: Roles for redox and hormone signaling in the
- orchestration of the natural aging process. *New Phytologist* **165**, 683–701 (2005).
- 839 157. Van De Velde, W. et al. Aging in legume symbiosis. A molecular view on nodule
- senescence in *Medicago truncatula*. *Plant Physiology* **141**, 711–720 (2006).
- 841 158. Gavrin, A. et al. Adjustment of host cells for accommodation of symbiotic bacteria:
- Vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in medicago. *Plant*
- 843 *Cell* **26**, 3809–3822 (2014).
- 844 159. Pierre, O. et al. Peribacteroid space acidification: A marker of mature bacteroid functioning
- in Medicago truncatula nodules. Plant, Cell and Environment **36**, 2059–2070 (2013).
- 846 160. Dupont, L. et al. The Legume Root Nodule: From Symbiotic Nitrogen Fixation to
- 847 Senescence. *Senescence* (2012) doi:10.5772/34438.
- 848 161. Li, Y. et al. A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule
- senescence and nitrogen fixation activity of the green manure legume *Astragalus sinicus*.
- 850 *New Phytologist* **180**, 185–192 (2008).
- 851 162. Loscos, J., Matamoros, M. A. & Becana, M. Ascorbate and homoglutathione metabolism in
- 852 common bean nodules under stress conditions and during natural senescence. *Plant*
- 853 *Physiology* **146**, 1282–1292 (2008).

- 854 163. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant-
- pathogen interactions. *Nat Rev Genet* 11, 539–548 (2010).
- 856 164. Lopez-Gomez, M., Sandal, N., Stougaard, J. & Boller, T. Interplay of flg22-induced
- defence responses and nodulation in *Lotus japonicus*. *Journal of Experimental Botany* **63**,
- 858 393–401 (2012).
- 859 165. Tóth, K. & Stacey, G. Does plant immunity play a critical role during initiation of the
- legume-rhizobium symbiosis? *Frontiers in Plant Science* **6**, 1–7 (2015).
- 861 166. Nakagawa, T. et al. From defense to symbiosis: limited alterations in the kinase domain of
- LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. *The*
- 863 *Plant Journal* **65**, 169–80 (2011).
- 864 167. Arthikala, M. K. et al. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances
- symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs
- mycorrhizal colonization. *New Phytologist* **202**, 886–900 (2014).
- 867 168. Bourcy, M. et al. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required
- for bacteroid persistence and prevention of nodule early senescence and defense-like
- reactions. *New Phytologist* **197**, 1250–1261 (2013).
- 870 169. Parniske, M., Zimmermann, C., Cregan, P. B. & Werner, D. Hypersensitive Reaction of
- Nodule Cells in the *Glycine sp./Bradyrhizobium japonicum*-Symbiosis Occurs at the
- 872 Genotype-Specific Level. *Botanica Acta* **103**, 143–148 (1990).
- 873 170. Simonsen, A. K. & Stinchcombe, J. R. Standing genetic variation in host preference for
- 874 mutualist microbial symbionts. *Proc. R. Soc. B* **281**, 20142036 (2014).
- 875 171. Checcucci, A. et al. Mixed Nodule Infection in Sinorhizobium meliloti–Medicago sativa
- 876 Symbiosis Suggest the Presence of Cheating Behavior. *Front. Plant Sci.* 7, (2016).

- 877 172. Yasuda, M. et al. Effector-triggered immunity determines host genotype-specific
- incompatibility in legume-rhizobium symbiosis. *Plant and Cell Physiology* **57**, 1791–1800
- 879 (2016).
- 880 173. Ortiz-Barbosa, G. S. et al. No disruption of rhizobial symbiosis during early stages of
- cowpea domestication. *Evolution* **76**, 496–511 (2022).
- 174. Weese, D. J., Heath, K. D., Dentinger, B. T. M. M. & Lau, J. A. Long-term nitrogen
- addition causes the evolution of less-cooperative mutualists. *Evolution* **69**, 631–642 (2015).
- 884 175. Foster, K. R. & Kokko, H. Cheating can stabilize cooperation in mutualisms. *Proc. R. Soc.*
- 885 *B.* **273**, 2233–2239 (2006).
- 886 176. Heath, K. D. & Stinchcombe, J. R. Explaining mutualism variation: a new evolutionary
- parado? Evolution **68**, 309–317 (2014).
- 888 177. Mergaert, P. et al. Eukaryotic control on bacterial cell cycle and differentiation in the
- Rhizobium-legume symbiosis. *Proceedings of the National Academy of Sciences* **103**,
- 890 5230–5235 (2006).
- 891 178. Paau, A. S., Bloch, C. B. & Brill, W. J. Developmental fate of *Rhizobium meliloti*
- bacteroids in alfalfa nodules. *Journal of Bacteriology* **143**, 1480–1490 (1980).
- 893 179. Lopez-Gomez, M., Sandal, N., Stougaard, J. & Boller, T. Interplay of flg22-induced
- defence responses and nodulation in *Lotus japonicus*. *Journal of Experimental Botany* **63**,
- 895 393–401 (2012).