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ABSTRACT

Legumes are ecologically and economically important plants that contribute to nutrient
cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-
fixing rhizobia. However, rhizobia vary dramatically in quality, ranging from highly growth-
promoting to nonbeneficial. Therefore, optimizing plant benefits from this symbiosis requires
host mechanisms that select for beneficial rhizobia and limit losses to nonbeneficial strains.
Here, we examine the considerable scientific progress made in decoding host control over
rhizobia, empirically demonstrating both molecular and cellular mechanisms and their effects on
symbiotic benefits. Pre-infection control requires plant production and detection of precise
molecular signals to attract and select compatible rhizobia strains. Post-infection mechanisms
leverage nodule- and cell-level compartmentalization of symbionts to enable host control over
rhizobia development and proliferation in planta. These layers of host preferential allocation act
as a series of sieves, each of which contributes to legume fitness by directing host resources to a

narrowing subset of more-beneficial rhizobia.

INTRODUCTION

Legumes are among the most diverse and ecologically important plant families, colonizing
habitats from deserts to rainforests!. Their global radiation is often linked to their ability to fix
atmospheric N> with rhizobia bacteria - a trait that requires complex coordination between host
and symbiont?. Symbiotic legumes contribute roughly half of all terrestrial nitrogen fixation?, a
quarter of agronomic production via crops such as soybean and alfalfa, and a third of human-

consumed protein®,
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To fix N with rhizobia, legumes have evolved novel organs called nodules, of which they
can bear tens to hundreds across their roots systems (Box 1). The evolution of nodulation and
symbiotic nitrogen fixation is of comparable complexity to the evolution of organs such as the
eye, in that coordinated expression of multistep molecular pathways determine organogenesis
and a functional phenotype®®. Unlike the eye, the legume nodule is a symbiotic organ, whose
evolution and function require successful integration between the host and bacteria®. Substantial
progress has uncovered molecular mechanisms of nodule organogenesis and nitrogen fixation®!%-
12 However, less is known about how legumes detect and appropriately respond to rhizobia
symbionts that differ in quality.

Rhizobia encompass diverse alpha- and beta-proteobacteria, defined by their capacity to
nodulate legumes and fix nitrogen!®. Even closely related rhizobia strains show vast differences
in the benefits they provide, with strains on any given host varying from highly beneficial to
nonbeneficial. Moreover, nested within lineages of rhizobia that nodulate and benefit legumes
are strains that lack symbiosis genes and might be adapted to saprophytic, commensal, or
parasitic lifestyles!'*!7. Under longstanding theory, diverse unrelated symbionts are predicted to
exhibit intense inter-strain competition, lowering host benefit and favoring evolution of host
mechanisms to control infection and minimize symbiont exploitation'®. Elucidating how hosts
detect and respond to this variation in the quality of mutualistic microbes is equal in importance
to host defense against pathogens, but only recently has become a focus of research advances.
Below we describe mechanisms of infection and host control, understanding that most data come

from few, well-studied host taxa (but see!*2?), hence that not all mechanisms are reviewed.

LEGUME-RHIZOBIUM COOPERATION REQUIRES COORDINATION
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Legume-rhizobia symbiosis is initiated with a coordinated exchange of molecular signals.
Legume roots secrete flavonoids, cocktails of secondary metabolites that attract rhizobia and
initiate nodulation?!?2, Receptive rhizobia respond by secreting lipochitooligosaccharide
nodulation (Nod) factors which are detected by plant LysM receptors’. Nod factors induce root
hair curling which entraps rhizobia cells, from which an infection thread forms as an
invagination of the plant cell membrane’-***, Rhizobia reproduce down this tubular structure,
either as clones or multiple strains that found the nodule together® (Box 1), are internalized by
developing nodule cells, and differentiate into intracellular bacteroids that fix N» into plant-
available forms in exchange for fixed carbon®7-16:1-20,

Rhizobia only fix nitrogen inside legume nodules, which provide the microaerobic and
energetic requirements of nitrogenase. A barrier limits oxygen flux into the nodule interior and
maintains microaerobic concentrations, while leghemoglobin-facilitated diffusion supports
rhizobia respiration®®. Both partners bear marginal costs. The host supplies reductant, typically
organic acids, that fuel N> fixation which requires 16 ATP to fix each N2 molecule. N> fixation
can compete with rhizobia resource storage and reproduction?’’, and requires substantial
allocation of a legume's fixed carbon?!, reducing host fitness if too many nodules are formed3?>34.

Measuring net benefits of symbiosis is challenging. Experimentalists typically inoculate
legumes with single rhizobia strains and harvest biomass during vegetative growth. How well
this predicts a strain’s contribution to host fitness under more natural conditions, where each
plant hosts many strains, remains to be determined. Harvesting singly inoculated immature plants
could obscure strains' differences in the speed, duration, and N-per-C efficiency of N> fixation,
as well as impacts of rhizobia alteration of plant hormones?®. Despite methodological

uncertainties, it is clear that benefits from rhizobia vary among rhizobia genotypes and
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conditions - including external nitrogen availability, light levels, and the host genotype36-3-44-46,

But how do legumes detect and appropriately respond to rhizobia of varying quality as

symbionts? We explore current evidence in the following sections (Fig 1).

PRE-INFECTION CONTROL AND PARTNER CHOICE

Pre-infection control mechanisms operate prior to significant resource investment (sensu*’~
4. Fig 2) and can enable hosts to preferentially associate with symbionts that confer greater
benefit. Partner choice implies that i) host preference enhances plant fitness relative to random
nodulation, and ii) filtering among strains occurs in advance of nodule organogenesis. Empirical
research supports partner choice, in that some legumes can form more nodules with beneficial
strains than with non-fixing ones>’, and that strain occupancy under mixed inoculations is
correlated with the benefit of strains in single inoculation’!->2, However, it is difficult to
disentangle host effects from those of inter-strain competition among rhizobia, as nodule
occupancy patterns are a joint phenotype that depends on the plant and rhizobia genotypes and
their interactions™?.

Several approaches establish the capacity of legumes to distinguish among rhizobia strains
that vary in quality. Split-root experiments eliminate direct interactions between strains to show
that some hosts can initiate more nodules with a fixing strain than a non-fixing one**. Labeling
rhizobia with fluorescence proteins or differentiating them genetically in planta, reveals that
rhizobia strains that result in more plant biomass with single-strain inoculation also occupy more
nodules in mixed inoculation, consistent with plant selection of more-beneficial strains®>-°,

Furthermore, stronger partner choice can lead to greater fitness benefit when a legume is

presented with rhizobia that differ in quality®>. Studies of wild legumes and co-evolved rhizobia
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reveal additional examples consistent with partner choice (reviewed in*’) -- yet mechanisms by
which plants detect and respond to rhizobia quality in advance of N> fixation are not well-
understood.

In experiments that expose legumes to N fixing rhizobia and isogenic non-fixing
mutants, the strains show little difference in nodulation?®-”. Thus, partner choice depends upon
reliable linkage between rhizobia alleles that encode signals to legumes in advance of N; fixation
and those that impact benefit to the legume*’. Alleles that encode determinants of compatibility,
such as nod genes and Type-III secretion systems, often reside in the same mobile elements as
nitrogen fixation genes!®>¥-° Host discrimination might maintain linkage among such alleles if
strains with compatible signals that confer high benefit have higher relative fitness than strains

that confer lower benefit3?:47-30:61.62

. However, evidence for such genetic linkage is lacking. In
fact, loci impacting symbiotic quality reside in genomic regions that are hotspots for gene gain,
loss, and recombination'®!7-63%4_ This means that elucidating the genetics of partner choice

remains challenging. One clear pattern is that hosts bear at least two mechanisms to

preferentially initiate nodules with superior strains, as described below.

Fundamental Compatibility. Like a match between a lock and key, a legume genotype's
fundamental compatibility with a rhizobia genotype is determined by responsiveness to
molecular signals produced by the rhizobia, including Nod factors, surface polysaccharides, and
Type-I1I effectors (Box 1). Fundamental compatibility contributes to partner choice if compatible
strains provide greater benefit than incompatible strains. For example, hosts possessing the Rj4
allele common in soybean are incompatible with many less-beneficial, chlorosis-inducing

Bradyrhizobium strains due to gene-for-gene resistance triggered by the effectors these strains
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secrete®¢7, Near-isogenic lines of soybeans bearing the alternate allele, rj4, are compatible with
these inferior strains, and display reduced fitness relative to Rj4-bearing soybeans when
inoculated with these strains®>-%°, Thus, the Rj4 allele modifies soybean's fundamental
compatibility in a pattern consistent with partner choice where such ineffective strains are
common.

Variation in legume responsiveness to rhizobia Nod factors is another driver of fundamental
compatibility>*$8-7° Legumes bear receptors (lysine motif receptor-like kinases; LysM-RLKs)
that determine which nod factors trigger legume cell calcium oscillations to initiate nodulation’®-
73 and can interact with rhizobia surface polysaccharides, which differ in their efficacy for
promoting early infection?*7+75, Furthermore, legume immune responses can terminate nodule
formation. Compatible rhizobia must possess mechanisms to evade legume immune responses’®.
For example, during nodule formation rhizobia can present surface exopolysaccharides to evade

23,77-80

bacteriocidal actions by the plant immune system, and can secrete effectors , such as

Nodulation outer proteins (Nops), to dampen legume defenses?*7481:82,
Nodule-specific cysteine-rich (NCR) peptides allow some legumes to discriminate amongst
rhizobia in a strain-specific manner?*. By inundating rhizobia with a suite of defensin-like

antimicrobial NCR peptides®-34

, some legumes force rhizobia to differentiate into swollen, non-
reproductive, but nitrogen-fixing bacteroids. Swollen (perhaps nonreproductive) bacteroids are
found in many nodules with indeterminate growth but also in some determinate nodules,
including Arachis spp®. For incompatible rhizobia, NCR peptides’ antimicrobial properties
terminate symbiosis*®, while for compatible rhizobia they are essential to preserve bacteroid
viability®. Rhizobia can resist host NCR peptides by cleaving them using host-range restriction

84,87,88

eptidases , membrane transport proteins®® and extracellular polysaccharides®?. However,
pep port p poly
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high specificity in strain recognition would not enable discrimination against mutants that retain
the same molecular attributes but fix less nitrogen.

Legume taxa vary from specific to generalist in the rhizobia that they nodulate, with a
tradeoff between generalism and the benefit gained from symbionts*. Consistent with a tradeoff,
symbiotically promiscuous legumes, like the common bean Phaseolus vulgaris, allow extremely
diverse bacteria to gain access to nodules, and can be dominated by strains that are not effective
for fixing nitrogen®. Loss of specificity could be a byproduct of domestication, as the capacity to
select beneficial rhizobia can vary markedly with breeding practices and could be tied to the
relaxation of plant defenses”'?2. New work in Lotus spp. has uncovered a quantitative trait locus
that encodes promiscuity, opening the door to research to better understand its evolution and the
mechanistic bases of generalism®’.

Few molecular mechanisms that restrict fundamental compatibility have been shown to
confer an advantage to the host by excluding inferior symbionts. This could be tested using loss
and gain of function experiments on hosts. While a host may be fundamentally compatible with a
broad swath of symbionts, the ability to preferentially initiate nodulation with superior strains

amongst diverse compatible options is a distinct trait, which we discuss next.

Realized Nodulation Compatibility. Legumes can preferentially initiate nodules with some
fundamentally compatible rhizobia strains over others, which delineates a legume's realized
nodulation. This contributes to partner choice if legumes selectively nodulate with superior
compatible strains, as occurs in several wild systems. Surprisingly little is known about how
legumes select strains to nodulate from among compatible partners*. From compatible strains in

the rhizosphere, hosts can preferentially nodulate with rhizobia bearing specific early symbiont
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recognition signaling pathways. For example, a host can preferentially nodulate with strains that
express particular nod factor variants, even if other nod factor variants are compatible®*. Pea
plants exposed to mixed communities of compatible Rhizobium leguminosarum, tend to
preferentially nodulate with strains bearing characteristic nodulation alleles, plasmid-encoded
transporters, proteins involved in the biosynthesis of cofactors, and proteins related to
metabolism”. In addition, rhizobia tRNA-derived small RNAs can silence target host genes to
promote nodulation success in a specific, localized manner®®.

Overall, partner choice is susceptible to exploitation because rhizobia can rapidly evolve to
be less beneficial yet express the same signals as more beneficial strains. Consistent with this
susceptibility, legumes are typically unable to select superior partners when faced with novel or
genetically manipulated rhizobia genotypes*”>7"-%8, Even in natural communities, legumes
nodulate with non-beneficial strains. In fact, some rhizobia evolve mixtures of Nod factors that

99,100

allow them to colonize diverse legumes in which they fix little to no nitrogen and others

14,101

secrete no Nod factors, but hitchhike into nodules with strains that do . Moreover, successful

nodulation can be affected by competitive interactions among rhizobia in the rhizosphere,

103 To qualify as host-imposed partner

modulated by antibiotic'%? and antibiotic resistance traits
choice, these interactions would need to be driven by a host's ability to generate rhizoplane
conditions that favor more beneficial rhizobia!**1% which remains unknown. Therefore, it is

imperative that legumes detect and respond to rhizobia quality once nitrogen fixation has

commenced, as discussed next.

SANCTIONS AND OTHER MECHANISMS OF POST-INFECTION CONTROL
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Post-infection control mechanisms enable legumes to preferentially allocate resources to rhizobia
in nodules, based on net benefit provided to the host (Fig 3). Within post-infection control, hosts
may (i) exert sanctions or policing that lead to an accelerated and targeted senescence of nodules
or cells within nodules, and/or (ii) impose ‘scaled rewards’ to preferentially allocate resources to
higher-quality symbionts, which could cause nodules or cells containing more-beneficial
rhizobia being larger or better provisioned)®®19%:196.197 While providing more or fewer resources
are two sides of the same coin'® (i.e., an increase in resources to one nodule is likely linked to a
decrease in other nodules on the same plant), our framework highlights that hosts may also have

the potential to actively harm (e.g., attack) rhizobia!%%:1%%,

Compartmentalization. Legume physical structures that spatially separate symbionts, namely
nodules and plant cells within them, facilitate host discrimination among rhizobia during
symbiosis'!? and reduce direct conflict among symbionts colonizing a single host!'!!. Legume
control mechanisms should satisfy three criteria: (i) allowing hosts to distinguish among
compartments with more- vs less-beneficial rhizobia, (ii) enable the host to direct resources to
more beneficial rhizobia, ideally, even within coinfected nodules, to increase its fitness return on
resource investment, and (iii) minimize tissue damage to the host caused by sanctions on
rhizobia in those infected cells.

Nodules represent compartments for hosts to enact control mechanisms, containing
populations of rhizobia that the host can regulate independently. Nodule-level controls would be
most effective when nodules contain a single rhizobia strain!!?. If multiple strains share a nodule,
this could impair a host’s ability to preferentially allocate resources to individual strains.

However, cases where ~20% of nodules are co-infected are common in the field!!'*-''> and the

10
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2852571167121 "yyith some nodules containing up to six different strains?>. One solution to

laboratory
this problem is if hosts can enact control at a finer spatial level. Recent work suggests that some
legumes can discriminate, at least against completely ineffective rhizobia, even when as much as
50% of the host’s nodules are coinfected with a mixture of effective and ineffective

strains?>%116:122 How is this achieved? In the next section we discuss possible control

mechanisms.

Host control over resource supply. Preferential allocation of resources, such as carbon or
oxygen, to individual nodules could be a mechanism by which hosts scale rewards to rhizobia
performance. Such scaled rewards operate in other symbioses, such as those between plants and
arbuscular mycorrhizal fungi!?*!2¢, LError! Bookmark not defined.egumes can control nodule

125.26.126 a]lowing hosts to scale rewards. Symbiotic rhizobia depend on

permeability to oxygen’
precise levels of Ox for aerobic respiration'?’, requiring sufficient O flux for ATP production but
low enough levels to prevent damage to nitrogenase'?*~!3°. Nodule-level manipulations of
rhizobia defection allows researchers to evaluate legume responses!®!. For example, when
rhizobia were prevented from fixing N> using an Ar:O; atmosphere, soybean decreased the
oxygen permeability of nodules, and oxygen-limited rhizobia decreased reproduction. However,
these manipulations imperfectly mimic nodules with low N fixation because nitrogenase still
consumes resources in the No-free atmosphere, producing hydrogen gas rather than ammonia.
Furthermore, it is not clear whether reduced O influx was directly responsible for decreased
rhizobia reproduction!*2.

Nodules containing more effective nitrogen-fixing rhizobia receive greater carbon allocation

by the legume. Regulation of carbon access to the nodule apoplastic space or to symbiotic cell

11
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could control rhizobia and nodule growth. Legumes provide dicarboxylates, primarily succinate
and malate, as energy and electron source donors for N> fixation by rhizobia. Sucrose is brought
via phloem to the infected nodule cell and metabolized into malate by glycolysis pathways
(PEPC-MDH). Malate is used as a carbon skeleton to transport N out of the symbiotic cell and as
reductant power by rhizobia to fix N». A recent review of nodule metabolism reveals a central

133, However, there are few data on host control of apoplastic carbon metabolism

role of malate
and its connection with endosymbiotic rhizobia fitness. Within nodules containing effective
nitrogen-fixing rhizobia, rhizobia proliferate rapidly, whereas nodules with less-beneficial
rhizobia tend to stay smaller, and the rhizobia within them divide slowly?”-?8114116.132.134.135 "Fqp
example, rhizobia that store more polyhydroxybutyrate (PHB) during symbiosis can survive
longer in the soil between hosts'*¢, but a more-beneficial PHB(-) Rhizobium etli knockout
provided bean plants with more nitrogen, presumably because PHB accumulation competes with
N fixation?. The PHB(-) strain produced roughly two-fold larger nodules than the less-
beneficial, wild-type strain, consistent with host sanctions against the latter!®”.

While nodule-level sanctions could help optimize net legume benefits at the level of whole
nodules, it is unlikely that ineffective rhizobia in nodules with mixed infections could be targeted
by withholding O or carbon!**138, While it is possible that the peribacteroid membrane could
limit carbon influx to particular bacteroids within a nodule!3%!14°, legume control of nodule
permeability to gases occurs at the nodule-level and carbon is metabolized via vascular bundles
that supply whole nodules. Therefore, control over oxygen flux is unlikely to serve as a
mechanism of post-infection control within a co-infected nodule (criterion (ii)).

Host mediation of hormones, antimicrobials and amino acids. Phytohormone

141,142

concentration is higher in nodules compared to other portions of roots and may play a role

12
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in the regulation of nodule metabolism. For example, together with CLE genes, cytokinines are
important in the regulation of nodule numbers!#*. Plant hormones change in concentration
throughout nodule developmental stages'#*, and hormone transport and concentration in nodules
is spatially controlled in the different cell types'#*. It is conceivable that spatial control of
hormones by hosts could provide a mechanism by which a host could discriminate between
beneficial and ineffective rhizobia in mixed nodules, though we lack research that addresses this
possibility.

Some legumes secrete antimicrobial peptides that trigger terminal differentiation of

bacteroids, which become incapable of reproduction!46-148

and can increase their N-per-C
efficiency!'#. This does not appear to reduce the resource usage and reproduction of less
effective strains as undifferentiated rhizobia clonemates persist in these nodules and are not
subject to antimicrobial control'# (violating criterion II). Pea and alfalfa, both of which host

nonreproductive bacteroids'¥

exert whole-nodule sanctions. Although sanctions against less-
beneficial nonreproductive bacteroids in mixed nodules could conserve plant resources, they
would not selectively harm the corresponding reproductive rhizobia!%.

Selective Nodule senescence. Nodule senescence is the natural process by which nodules
break down!*?. Rhizobia should benefit from a delay in senescence as they can proliferate more

within the nodule!’!

, whereas legume hosts would benefit from senescing nodules when costs of
rhizobia outweigh benefits. Legumes display two types of nodule senescence. Developmental
senescence entails nodule maturation and release of symbionts into the soil, often during fruit set,
when legumes shift carbon resources towards seeds and away from nodules. In contrast, induced

senescence is triggered if legumes experience stress, such as deficiencies of light!>2, water!3, or

failure of bacterial recognition by the plant'>*. Morphological changes associated with the two

13
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types of nodule senescence differ. In the latter, changes progress faster and the contents of the
symbiosome are degraded without evidence for legume nutrient remobilization'*>. Several
morphological features of senescence are observed in ineffective nodules.

One of the first morphological changes during senescence is breakdown of the symbiosome
membrane!>®, which releases bacteroids to the plant cytosol and exposes the rhizobia to the

t157

hostile host cell environment'>’. In zones of senescence within indeterminate nodules, proteins

involved in the formation of vacuoles accumulate, and symbiosomes transform into vacuole-like

unitS157,158

. Thus, vacuolar fusion machinery may be necessary for controlling symbiosome lysis.
A potentially critical step in nodule senescence is the neutralization of the peribacteroid space
that surrounds the symbiosome, an otherwise acidic environment which facilitates import of host
resources'’. For instance, non-fixing rhizobia often fail to induce full peribacteroid space
acidification, potentially allowing the host to halt symbiosome development!>®. Senescence is
associated with induced expression of cysteine proteases, which mediate senescence!'®. In
Astragalussinicus, downregulated expression of nodule-specific cysteine protease Asnodf32,
delays nodule senescence and extends N> fixation!é!. Moreover, the ratio of reactive oxygen
species to scavenging enzymes increases during nodule senescence!%6:160:162,

In experimental work, individual nodules that house ineffective rhizobia are selectively
senesced. Within Acmispon and Lotus nodules coinfected with beneficial and ineffective strains,
selective senescence was only associated with individual nodule cells housing ineffective

107

rhizobia'®’. Thus, selective senescence is a promising avenue for investigating host control as it

fulfills all three criteria described above.

14
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Immunity. Plants respond to pathogens via inducing reactive oxygen species, altering gene
expression, remodeling the plant cell wall, and producing antimicrobial compounds such as

phytoalexins!®®

. A common response is a rapid, localized programmed cell death that occurs
where harmful microbes have invaded, known as a hypersensitive response. Many of these
responses also occur during rhizobia infection!¢416> however, the role of immunity in legume
sanctions is unresolved. Levels of responsive early gene expression are substantially lower in
response to nod factors than to the elicitors of defense, suggesting a muted induction!®. The
early generation of reactive oxygen species is necessary for rhizobial infection and their
increased production leads to increases in nitrogen fixation and a delay in senescence!®”.
Development in established nodules is not affected by elicitation of immunity!'®*, though the

repression of immunity could be reversed as nodules begin to senesce!®

. Lastly, processes
similar to a hypersensitive response occur in legume-rhizobia interactions, but in a genotype-
specific manner, independent of nitrogen fixing status!®®. Immune responses based on strain
identity, rather than symbiotic performance, have the same challenge as partner choice, in that
less-beneficial mutants could retain the identity signals of their more-beneficial ancestors.
Moreover, it is unclear how a host immune response could differentially affect strains within the
same nodule, violating criterion (ii).

Overall, post-infection control mechanisms are imperfect. Despite the opportunity for post-
infection control to divert host resources away from less beneficial rhizobia, a legume that forms
nodules with both a less-beneficial and a more-beneficial strain can have lower fitness than a
legume that nodulates exclusively with the more-beneficial strain>!:17%-36, though this cost is not

ubiquitous!’!. In extreme cases, hosts have no control over parasitic rhizobia: the

Bradyrhizobium elkanii strain USDAG61 produces many nodules on soybean hosts, but fixes little

15
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nitrogen!”?, and rhizobitoxine-producing strains induce chlorosis®’. Less-effective strains also
represent an opportunity cost for hosts, but the magnitude of these costs is poorly understood.
Little is known about how legumes sense rhizobia performance. Legumes could assess
rhizobia quality using absolute criteria by comparing nodule performance to a fixed threshold,
below which plants do not allocate resources to a strain. Alternatively, legumes could use
conditional criteria and compare rhizobia performance to that of other strains available to the
legume. Recent research reveals strong support for conditional sanctions: a rhizobium genotype
is sanctioned if it is co-inoculated with a strain that confers more benefit to the host, but not if it
is co-inoculated with a strain that confers less benefit to the host>>-?%, While the ability to
distinguish between cooperative and uncooperative rhizobia can impose no detectable cost on a

host legume!7°

, it could be that host-control is costly in some environments. Although the
metabolic costs of sensing nodule performance may be negligible, legume fitness could decrease
from shutting down foo many nodules or allocating resources to suboptimal nodules.
Interestingly, legumes may differ in their ability to sanction, and this may be linked to breeding

91,92,173

and/or agricultural conditions under domestication , genetic bottlenecks during breeding,

or long term fertilization!"*.

CONCLUSION AND FUTURE PERSPECTIVE

In conclusion, multiple mechanisms of preferential allocation act as a series of sieves, each
contributing to legume fitness by directing host resources to a narrowing subset of more
beneficial rhizobia®. This understanding is critical to future efforts to breed legumes with
improved host control. For instance, we must understand how different mechanisms of

preferential allocation to rhizobia interact. Are there trade-offs between host control traits that

16
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could constrain their evolution, or could artificial selection improve multiple host control traits in
parallel? If some host control traits sufficiently prevent legume exposure to inferior rhizobia,
does this relax the selection that maintains other mechanisms of preferential allocation ? Host
control is imperfect, meaning that hosts often reduce, but do not fully eliminate resources

conferred to inferior symbionts®”-8

. Low costs and imperfect resource allocation could contribute
to the evolution of multiple mechanisms of preferential allocation to rhizobia in legumes, which
could provide promising novel targets for crop improvement. Understanding these mechanisms
will also be important to engineering microbiomes or designing synthetic symbioses, both of
which require the host’s ability to control symbionts that differ in quality. Artificial selection and

engineering efforts that fail to consider host control traits risk producing hosts that are overrun

by less-beneficial symbionts.
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BOX 1. Typical biology of nodulation

Nodules are typically initiated when one or a few rhizobia cells enter root cortical cells via a
crack or root hair and are encased by a plant-derived symbiosome membrane, within which they
differentiate into bacteroids and can begin fixing nitrogen. Bacteroids typically reside as spatially
structured groups within infected plant cells'!” and reach exceptionally high numbers, with 1-50
bacteroids within each symbiosome, and 10°-10* symbiosomes in each infected host cell'??. Only
a subset of rhizobia in soil are compatible with any host, determined by host responsiveness to
rhizobia molecular signals, including Nod factors, surface polysaccharides, and Type-III
effectors?377-80,

Nodule development varies among legume taxa. Determinate nodules, such as in Lotus
Jjaponicus, lack a continuous meristem and are spherical, with a core of infected N fixing cells
(NF) surrounded by uninfected host cells. Determinate nodules host homogenous populations of
bacteroids, cease growth after their development is complete, and allow nitrogen fixing rhizobia
to escape back into the soil during nodule senescence, a process initiating from a senescent zone
in the nodule center (S). Indeterminate nodules, such as in Medicago truncatula, grow
throughout the functional association, with a spatial gradation of zones, including
undifferentiated meristem cells (I), cells being invaded by bacteria and those undergoing
symbiotic differentiation into a nitrogen fixing form (II, III), a nitrogen fixation zone (IV), and a
senescent zone (V). In some hosts of each type®®, bacteroids terminally differentiate and cannot
escape the nodule!”’, but nonetheless a subset of undifferentiated rhizobia can be released upon
nodule senescence!’®. In both nodule types, bacteroids within nodules can fix nitrogen, and

greatly enhance plant fitness in return for host-derived carbon.
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Figure 1. Legumes detect and respond to rhizobia of varying benefit via two broad classes
of mechanisms. Pre-infection control and partner choice (left) occur if plant production and
detection of molecular signals select for beneficial rhizobia (i.e., purple cells and nodules) and
exclude less beneficial rhizobia (i.e., grey cells and nodules)*’~#°. Sanctions and other post-
infection mechanisms (right) are enabled by compartmentalization of symbionts among nodules

and infected plant cells?®106.107

. Here, hosts control rhizobia development and proliferation in
planta, such that nodules and plant cells infected with highly beneficial rhizobia to grow rapidly
and those infected with less beneficial rhizobia grow slowly. Both classes of mechanisms can

help optimize the benefits of symbiosis by favoring more beneficial rhizobia strains and selecting

against those that provide little or no N fixation.
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Figure 2. Mechanisms of pre-infection control and partner choice. Pre-infection control by
legumes occurs via a multilayer response modulated by back-and-forth molecular
communication between plants and rhizobia. The process is initiated by host secretion of species
specific flavonoids®!??, a response by compatible rhizobia via production of Nod factors, and
detection of Nod factors by plant LysM receptors’. Compatible rhizobia, for instance with
appropriate Nod factors or Type-III effector variants, must evade legume immune responses, via
presenting surface exopolysaccharides (EPS) that minimize host bacteriocidal actions or
secretion of Nodulation outer proteins (Nops) that dampen legume defenses?*7+81:82, Nodule-
specific cysteine-rich (NCR) peptides allow some legumes to further discriminate among
rhizobia using antimicrobial NCR peptides, though some rhizobia possess peptidases that can

cleave and inactivate host NCR peptides®*#4,
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Figure 3. Post-infection control via sanctions and other mechanisms across the
compartmentalized structure of the symbiosis. In indeterminate nodules (left, bottom),
rhizobia (purple) often terminally differentiate into bacteroids in a spatial series (Zones II-V) and
cannot escape the nodule'”’, but undifferentiated rhizobia (Zone I) can be released upon nodule

senescence'’®

. Within peribacteroid units (shown encased in a dark brown peribacteroid
membrane) are nitrogen fixing bacteroids that are often nonreproductive!?® (Zone III). These
hosts appear to exert a form of whole-nodule sanctions. However, in a nodule infected by more
than one strain, it is unknown how sanctions could target less-effective rhizobia because N>
fixing bacteroids in Zone III are separated from reproductive clonemates in Zone 1'%, For many,

but probably not all, determinate nodules®® (right, bottom), N fixing bacteroids in the nitrogen

fixation Zone (NF) can escape back into the soil during nodule senescence by initiating a

22



449

450

451

452

453

454

455

senescent zone at the nodule core (S). In a nodule infected by more than one strain, sanctions can
directly target less-effective rhizobia because N> fixing bacteroids are reproductive!?’. Sanctions

likely occur via changes or breakdown of the symbiosome membrane!®, which releases
y

1157

bacteroids to the hostile plant cytosol'>’. Host immunity and autophagy (i.e., degradation of

intracellular components, top) are both potential functions that could further mediate host

selection against ineffective rhizobia!6>168:169.179
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