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ABSTRACT 24 

Legumes are ecologically and economically important plants that contribute to nutrient 25 

cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-26 

fixing rhizobia. However, rhizobia vary dramatically in quality, ranging from highly growth- 27 

promoting to nonbeneficial. Therefore, optimizing plant benefits from this symbiosis requires 28 

host mechanisms that select for beneficial rhizobia and limit losses to nonbeneficial strains. 29 

Here, we examine the considerable scientific progress made in decoding host control over 30 

rhizobia, empirically demonstrating both molecular and cellular mechanisms and their effects on 31 

symbiotic benefits. Pre-infection control requires plant production and detection of precise 32 

molecular signals to attract and select compatible rhizobia strains. Post-infection mechanisms 33 

leverage nodule- and cell-level compartmentalization of symbionts to enable host control over 34 

rhizobia development and proliferation in planta. These layers of host preferential allocation act 35 

as a series of sieves, each of which contributes to legume fitness by directing host resources to a 36 

narrowing subset of more-beneficial rhizobia.  37 

 38 

INTRODUCTION 39 

Legumes are among the most diverse and ecologically important plant families, colonizing 40 

habitats from deserts to rainforests1. Their global radiation is often linked to their ability to fix 41 

atmospheric N2 with rhizobia bacteria - a trait that requires complex coordination between host 42 

and symbiont2. Symbiotic legumes contribute roughly half of all terrestrial nitrogen fixation3, a 43 

quarter of agronomic production via crops such as soybean and alfalfa, and a third of human-44 

consumed protein4.  45 



3 
 

To fix N2 with rhizobia, legumes have evolved novel organs called nodules, of which they 46 

can bear tens to hundreds across their roots systems (Box 1). The evolution of nodulation and 47 

symbiotic nitrogen fixation is of comparable complexity to the evolution of organs such as the 48 

eye, in that coordinated expression of multistep molecular pathways determine organogenesis 49 

and a functional phenotype5–8. Unlike the eye, the legume nodule is a symbiotic organ, whose 50 

evolution and function require successful integration between the host and bacteria9. Substantial 51 

progress has uncovered molecular mechanisms of nodule organogenesis and nitrogen fixation8,10–52 

12. However, less is known about how legumes detect and appropriately respond to rhizobia 53 

symbionts that differ in quality.  54 

Rhizobia encompass diverse alpha- and beta-proteobacteria, defined by their capacity to 55 

nodulate legumes and fix nitrogen13. Even closely related rhizobia strains show vast differences 56 

in the benefits they provide, with strains on any given host varying from highly beneficial to 57 

nonbeneficial. Moreover, nested within lineages of rhizobia that nodulate and benefit legumes 58 

are strains that lack symbiosis genes and might be adapted to saprophytic, commensal, or 59 

parasitic lifestyles14–17. Under longstanding theory, diverse unrelated symbionts are predicted to 60 

exhibit intense inter-strain competition, lowering host benefit and favoring evolution of host 61 

mechanisms to control infection and minimize symbiont exploitation18. Elucidating how hosts 62 

detect and respond to this variation in the quality of mutualistic microbes is equal in importance 63 

to host defense against pathogens, but only recently has become a focus of research advances. 64 

Below we describe mechanisms of infection and host control, understanding that most data come 65 

from few, well-studied host taxa (but see19,20), hence that not all mechanisms are reviewed. 66 

 67 

LEGUME-RHIZOBIUM COOPERATION REQUIRES COORDINATION 68 
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Legume-rhizobia symbiosis is initiated with a coordinated exchange of molecular signals. 69 

Legume roots secrete flavonoids, cocktails of secondary metabolites that attract rhizobia and 70 

initiate nodulation21,22. Receptive rhizobia respond by secreting lipochitooligosaccharide 71 

nodulation (Nod) factors which are detected by plant LysM receptors7. Nod factors induce root 72 

hair curling which entraps rhizobia cells, from which an infection thread forms as an 73 

invagination of the plant cell membrane7,23,24. Rhizobia reproduce down this tubular structure, 74 

either as clones or multiple strains that found the nodule together25 (Box 1), are internalized by 75 

developing nodule cells, and differentiate into intracellular bacteroids that fix N2 into plant-76 

available forms in exchange for fixed carbon6,7,16,19,20.  77 

Rhizobia only fix nitrogen inside legume nodules, which provide the microaerobic and 78 

energetic requirements of nitrogenase. A barrier limits oxygen flux into the nodule interior and 79 

maintains microaerobic concentrations, while leghemoglobin-facilitated diffusion supports 80 

rhizobia respiration26. Both partners bear marginal costs. The host supplies reductant, typically 81 

organic acids, that fuel N2 fixation which requires 16 ATP to fix each N2 molecule. N2 fixation 82 

can compete with rhizobia resource storage and reproduction27–30, and requires substantial 83 

allocation of a legume's fixed carbon31, reducing host fitness if too many nodules are formed32–34. 84 

Measuring net benefits of symbiosis is challenging. Experimentalists typically inoculate 85 

legumes with single rhizobia strains and harvest biomass during vegetative growth. How well 86 

this predicts a strain’s contribution to host fitness under more natural conditions, where each 87 

plant hosts many strains, remains to be determined. Harvesting singly inoculated immature plants 88 

could obscure strains' differences in the speed, duration, and N-per-C efficiency of N2 fixation, 89 

as well as impacts of rhizobia alteration of plant hormones35. Despite methodological 90 

uncertainties, it is clear that benefits from rhizobia vary among rhizobia genotypes and 91 
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conditions - including external nitrogen availability, light levels, and the host genotype36–43,44–46. 92 

But how do legumes detect and appropriately respond to rhizobia of varying quality as 93 

symbionts? We explore current evidence in the following sections (Fig 1). 94 

  95 

PRE-INFECTION CONTROL AND PARTNER CHOICE 96 

Pre-infection control mechanisms operate prior to significant resource investment (sensu47–97 

49; Fig 2) and can enable hosts to preferentially associate with symbionts that confer greater 98 

benefit. Partner choice implies that i) host preference enhances plant fitness relative to random 99 

nodulation, and ii) filtering among strains occurs in advance of nodule organogenesis. Empirical 100 

research supports partner choice, in that some legumes can form more nodules with beneficial 101 

strains than with non-fixing ones50, and that strain occupancy under mixed inoculations is 102 

correlated with the benefit of strains in single inoculation51,52. However, it is difficult to 103 

disentangle host effects from those of inter-strain competition among rhizobia, as nodule 104 

occupancy patterns are a joint phenotype that depends on the plant and rhizobia genotypes and 105 

their interactions53.  106 

Several approaches establish the capacity of legumes to distinguish among rhizobia strains 107 

that vary in quality. Split-root experiments eliminate direct interactions between strains to show 108 

that some hosts can initiate more nodules with a fixing strain than a non-fixing one54. Labeling 109 

rhizobia with fluorescence proteins or differentiating them genetically in planta, reveals that 110 

rhizobia strains that result in more plant biomass with single-strain inoculation also occupy more 111 

nodules in mixed inoculation, consistent with plant selection of more-beneficial strains55,56. 112 

Furthermore, stronger partner choice can lead to greater fitness benefit when a legume is 113 

presented with rhizobia that differ in quality55. Studies of wild legumes and co-evolved rhizobia 114 
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reveal additional examples consistent with partner choice (reviewed in47) -- yet mechanisms by 115 

which plants detect and respond to rhizobia quality in advance of N2 fixation are not well-116 

understood.  117 

 In experiments that expose legumes to N2 fixing rhizobia and isogenic non-fixing 118 

mutants, the strains show little difference in nodulation28,57. Thus, partner choice depends upon 119 

reliable linkage between rhizobia alleles that encode signals to legumes in advance of N2 fixation 120 

and those that impact benefit to the legume47. Alleles that encode determinants of compatibility, 121 

such as nod genes and Type-III secretion systems, often reside in the same mobile elements as 122 

nitrogen fixation genes16,58–60. Host discrimination might maintain linkage among such alleles if 123 

strains with compatible signals that confer high benefit have higher relative fitness than strains 124 

that confer lower benefit39,47,50,61,62. However, evidence for such genetic linkage is lacking. In 125 

fact, loci impacting symbiotic quality reside in genomic regions that are hotspots for gene gain, 126 

loss, and recombination16,17,63,64. This means that elucidating the genetics of partner choice 127 

remains challenging. One clear pattern is that hosts bear at least two mechanisms to 128 

preferentially initiate nodules with superior strains, as described below.  129 

 130 

Fundamental Compatibility. Like a match between a lock and key, a legume genotype's 131 

fundamental compatibility with a rhizobia genotype is determined by responsiveness to 132 

molecular signals produced by the rhizobia, including Nod factors, surface polysaccharides, and 133 

Type-III effectors (Box 1). Fundamental compatibility contributes to partner choice if compatible 134 

strains provide greater benefit than incompatible strains. For example, hosts possessing the Rj4 135 

allele common in soybean are incompatible with many less-beneficial, chlorosis-inducing 136 

Bradyrhizobium strains due to gene-for-gene resistance triggered by the effectors these strains 137 
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secrete65–67. Near-isogenic lines of soybeans bearing the alternate allele, rj4, are compatible with 138 

these inferior strains, and display reduced fitness relative to Rj4-bearing soybeans when 139 

inoculated with these strains65,66. Thus, the Rj4 allele modifies soybean's fundamental 140 

compatibility in a pattern consistent with partner choice where such ineffective strains are 141 

common.  142 

Variation in legume responsiveness to rhizobia Nod factors is another driver of fundamental 143 

compatibility24,68–70. Legumes bear receptors (lysine motif receptor-like kinases; LysM-RLKs) 144 

that determine which nod factors trigger legume cell calcium oscillations to initiate nodulation70–145 

73 and can interact with rhizobia surface polysaccharides, which differ in their efficacy for 146 

promoting early infection23,74,75. Furthermore, legume immune responses can terminate nodule 147 

formation. Compatible rhizobia must possess mechanisms to evade legume immune responses76. 148 

For example, during nodule formation rhizobia can present surface exopolysaccharides to evade 149 

bacteriocidal actions by the plant immune system, and can secrete effectors23,77–80, such as 150 

Nodulation outer proteins (Nops), to dampen legume defenses24,74,81,82.  151 

Nodule-specific cysteine-rich (NCR) peptides allow some legumes to discriminate amongst 152 

rhizobia in a strain-specific manner24. By inundating rhizobia with a suite of defensin-like 153 

antimicrobial NCR peptides83,84, some legumes force rhizobia to differentiate into swollen, non-154 

reproductive, but nitrogen-fixing bacteroids. Swollen (perhaps nonreproductive) bacteroids are 155 

found in many nodules with indeterminate growth but also in some determinate nodules, 156 

including Arachis spp85. For incompatible rhizobia, NCR peptides’ antimicrobial properties 157 

terminate symbiosis46, while for compatible rhizobia they are essential to preserve bacteroid 158 

viability86. Rhizobia can resist host NCR peptides by cleaving them using host-range restriction 159 

peptidases84,87,88, membrane transport proteins89 and extracellular polysaccharides82. However, 160 
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high specificity in strain recognition would not enable discrimination against mutants that retain 161 

the same molecular attributes but fix less nitrogen.  162 

Legume taxa vary from specific to generalist in the rhizobia that they nodulate, with a 163 

tradeoff between generalism and the benefit gained from symbionts40. Consistent with a tradeoff, 164 

symbiotically promiscuous legumes, like the common bean Phaseolus vulgaris, allow extremely 165 

diverse bacteria to gain access to nodules, and can be dominated by strains that are not effective 166 

for fixing nitrogen90. Loss of specificity could be a byproduct of domestication, as the capacity to 167 

select beneficial rhizobia can vary markedly with breeding practices and could be tied to the 168 

relaxation of plant defenses91,92. New work in Lotus spp. has uncovered a quantitative trait locus 169 

that encodes promiscuity, opening the door to research to better understand its evolution and the 170 

mechanistic bases of generalism93. 171 

Few molecular mechanisms that restrict fundamental compatibility have been shown to 172 

confer an advantage to the host by excluding inferior symbionts. This could be tested using loss 173 

and gain of function experiments on hosts. While a host may be fundamentally compatible with a 174 

broad swath of symbionts, the ability to preferentially initiate nodulation with superior strains 175 

amongst diverse compatible options is a distinct trait, which we discuss next.  176 

 177 

Realized Nodulation Compatibility. Legumes can preferentially initiate nodules with some 178 

fundamentally compatible rhizobia strains over others, which delineates a legume's realized 179 

nodulation. This contributes to partner choice if legumes selectively nodulate with superior 180 

compatible strains, as occurs in several wild systems. Surprisingly little is known about how 181 

legumes select strains to nodulate from among compatible partners23. From compatible strains in 182 

the rhizosphere, hosts can preferentially nodulate with rhizobia bearing specific early symbiont 183 
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recognition signaling pathways. For example, a host can preferentially nodulate with strains that 184 

express particular nod factor variants, even if other nod factor variants are compatible94. Pea 185 

plants exposed to mixed communities of compatible Rhizobium leguminosarum, tend to 186 

preferentially nodulate with strains bearing characteristic nodulation alleles, plasmid-encoded 187 

transporters, proteins involved in the biosynthesis of cofactors, and proteins related to 188 

metabolism95. In addition, rhizobia tRNA-derived small RNAs can silence target host genes to 189 

promote nodulation success in a specific, localized manner96. 190 

Overall, partner choice is susceptible to exploitation because rhizobia can rapidly evolve to 191 

be less beneficial yet express the same signals as more beneficial strains. Consistent with this 192 

susceptibility, legumes are typically unable to select superior partners when faced with novel or 193 

genetically manipulated rhizobia genotypes47,57,97,98. Even in natural communities, legumes 194 

nodulate with non-beneficial strains. In fact, some rhizobia evolve mixtures of Nod factors that 195 

allow them to colonize diverse legumes in which they fix little to no nitrogen99,100 and others 196 

secrete no Nod factors, but hitchhike into nodules with strains that do14,101. Moreover, successful 197 

nodulation can be affected by competitive interactions among rhizobia in the rhizosphere, 198 

modulated by antibiotic102 and antibiotic resistance traits103. To qualify as host-imposed partner 199 

choice, these interactions would need to be driven by a host's ability to generate rhizoplane 200 

conditions that favor more beneficial rhizobia104,105, which remains unknown. Therefore, it is 201 

imperative that legumes detect and respond to rhizobia quality once nitrogen fixation has 202 

commenced, as discussed next.  203 

 204 

SANCTIONS AND OTHER MECHANISMS OF POST-INFECTION CONTROL  205 



10 
 

Post-infection control mechanisms enable legumes to preferentially allocate resources to rhizobia 206 

in nodules, based on net benefit provided to the host (Fig 3). Within post-infection control, hosts 207 

may (i) exert sanctions or policing that lead to an accelerated and targeted senescence of nodules 208 

or cells within nodules, and/or (ii) impose ‘scaled rewards’ to preferentially allocate resources to 209 

higher-quality symbionts, which could cause nodules or cells containing more-beneficial 210 

rhizobia being larger or better provisioned)98,100,106,107. While providing more or fewer resources 211 

are two sides of the same coin108 (i.e., an increase in resources to one nodule is likely linked to a 212 

decrease in other nodules on the same plant), our framework highlights that hosts may also have 213 

the potential to actively harm (e.g., attack) rhizobia108,109.   214 

 215 

Compartmentalization. Legume physical structures that spatially separate symbionts, namely 216 

nodules and plant cells within them, facilitate host discrimination among rhizobia during 217 

symbiosis110 and reduce direct conflict among symbionts colonizing a single host111. Legume 218 

control mechanisms should satisfy three criteria: (i) allowing hosts to distinguish among 219 

compartments with more- vs less-beneficial rhizobia, (ii) enable the host to direct resources to 220 

more beneficial rhizobia, ideally, even within coinfected nodules, to increase its fitness return on 221 

resource investment, and (iii) minimize tissue damage to the host caused by sanctions on 222 

rhizobia in those infected cells.  223 

 Nodules represent compartments for hosts to enact control mechanisms, containing 224 

populations of rhizobia that the host can regulate independently. Nodule-level controls would be 225 

most effective when nodules contain a single rhizobia strain112. If multiple strains share a nodule, 226 

this could impair a host’s ability to preferentially allocate resources to individual strains. 227 

However, cases where ~20% of nodules are co-infected are common in the field113–115 and the 228 
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laboratory28,52,57,116–121, with some nodules containing up to six different strains25. One solution to 229 

this problem is if hosts can enact control at a finer spatial level. Recent work suggests that some 230 

legumes can discriminate, at least against completely ineffective rhizobia, even when as much as 231 

50% of the host’s nodules are coinfected with a mixture of effective and ineffective 232 

strains25,50,116,122. How is this achieved? In the next section we discuss possible control 233 

mechanisms.  234 

 235 

Host control over resource supply. Preferential allocation of resources, such as carbon or 236 

oxygen, to individual nodules could be a mechanism by which hosts scale rewards to rhizobia 237 

performance. Such scaled rewards operate in other symbioses, such as those between plants and 238 

arbuscular mycorrhizal fungi123,124. LError! Bookmark not defined.egumes can control nodule 239 

permeability to oxygen,125,26,126 allowing hosts to scale rewards. Symbiotic rhizobia depend on 240 

precise levels of O2 for aerobic respiration127, requiring sufficient O2 flux for ATP production but 241 

low enough levels to prevent damage to nitrogenase128–130. Nodule-level manipulations of 242 

rhizobia defection allows researchers to evaluate legume responses131. For example, when 243 

rhizobia were prevented from fixing N2 using an Ar:O2 atmosphere, soybean decreased the 244 

oxygen permeability of nodules, and oxygen-limited rhizobia  decreased reproduction. However, 245 

these manipulations imperfectly mimic nodules with low N2 fixation because nitrogenase still 246 

consumes resources in the N2-free atmosphere, producing hydrogen gas rather than ammonia. 247 

Furthermore, it is not clear whether reduced O2 influx was directly responsible for decreased 248 

rhizobia reproduction132.  249 

Nodules containing more effective nitrogen-fixing rhizobia receive greater carbon allocation 250 

by the legume. Regulation of carbon access to the nodule apoplastic space or to symbiotic cell 251 
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could control rhizobia and nodule growth. Legumes provide dicarboxylates, primarily succinate 252 

and malate, as energy and electron source donors for N2 fixation by rhizobia. Sucrose is brought 253 

via phloem to the infected nodule cell and metabolized into malate by glycolysis pathways 254 

(PEPC-MDH). Malate is used as a carbon skeleton to transport N out of the symbiotic cell and as 255 

reductant power by rhizobia to fix N2. A recent review of nodule metabolism reveals a central 256 

role of malate133. However, there are few data on host control of apoplastic carbon metabolism 257 

and its connection with endosymbiotic rhizobia fitness. Within nodules containing effective 258 

nitrogen-fixing rhizobia, rhizobia proliferate rapidly, whereas nodules with less-beneficial 259 

rhizobia tend to stay smaller, and the rhizobia within them divide slowly97,98,114,116,132,134,135. For 260 

example, rhizobia that store more polyhydroxybutyrate (PHB) during symbiosis can survive 261 

longer in the soil between hosts136, but a more-beneficial PHB(-) Rhizobium etli knockout 262 

provided bean plants with more nitrogen, presumably because PHB accumulation competes with 263 

N fixation29. The PHB(-) strain produced roughly two-fold larger nodules than the less-264 

beneficial, wild-type strain, consistent with host sanctions against the latter137.  265 

While nodule-level sanctions could help optimize net legume benefits at the level of whole 266 

nodules, it is unlikely that ineffective rhizobia in nodules with mixed infections could be targeted 267 

by withholding O2 or carbon133,138. While it is possible that the peribacteroid membrane could 268 

limit carbon influx to particular bacteroids within a nodule139,140, legume control of nodule 269 

permeability to gases occurs at the nodule-level and carbon is metabolized via vascular bundles 270 

that supply whole nodules. Therefore, control over oxygen flux is unlikely to serve as a 271 

mechanism of post-infection control within a co-infected nodule (criterion (ii)). 272 

Host mediation of hormones, antimicrobials and amino acids. Phytohormone 273 

concentration is higher in nodules compared to other portions of roots141,142 and may play a role 274 
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in the regulation of nodule metabolism. For example, together with CLE genes, cytokinines are 275 

important in the regulation of nodule numbers143. Plant hormones change in concentration 276 

throughout nodule developmental stages144, and hormone transport and concentration in nodules 277 

is spatially controlled in the different cell types145. It is conceivable that spatial control of 278 

hormones by hosts could provide a mechanism by which a host could discriminate between 279 

beneficial and ineffective rhizobia in mixed nodules, though we lack research that addresses this 280 

possibility.  281 

Some legumes secrete antimicrobial peptides that trigger terminal differentiation of 282 

bacteroids, which become incapable of reproduction146–148 and can increase their N-per-C 283 

efficiency149. This does not appear to reduce the resource usage and reproduction of less 284 

effective strains as undifferentiated rhizobia clonemates persist in these nodules and are not 285 

subject to antimicrobial control149 (violating criterion II). Pea and alfalfa, both of which host 286 

nonreproductive bacteroids135 exert whole-nodule sanctions. Although sanctions against less-287 

beneficial nonreproductive bacteroids in mixed nodules could conserve plant resources, they 288 

would not selectively harm the corresponding reproductive rhizobia106.   289 

Selective Nodule senescence. Nodule senescence is the natural process by which nodules 290 

break down150. Rhizobia should benefit from a delay in senescence as they can proliferate more 291 

within the nodule151, whereas legume hosts would benefit from senescing nodules when costs of 292 

rhizobia outweigh benefits. Legumes display two types of nodule senescence. Developmental 293 

senescence entails nodule maturation and release of symbionts into the soil, often during fruit set, 294 

when legumes shift carbon resources towards seeds and away from nodules. In contrast, induced 295 

senescence is triggered if legumes experience stress, such as deficiencies of light152, water153, or 296 

failure of bacterial recognition by the plant154. Morphological changes associated with the two 297 
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types of nodule senescence differ. In the latter, changes progress faster and the contents of the 298 

symbiosome are degraded without evidence for legume nutrient remobilization155. Several 299 

morphological features of senescence are observed in ineffective nodules. 300 

One of the first morphological changes during senescence is breakdown of the symbiosome 301 

membrane156, which releases bacteroids to the plant cytosol and exposes the rhizobia to the 302 

hostile host cell environment157. In zones of senescence within indeterminate nodules, proteins 303 

involved in the formation of vacuoles accumulate, and symbiosomes transform into vacuole-like 304 

units157,158. Thus, vacuolar fusion machinery may be necessary for controlling symbiosome lysis. 305 

A potentially critical step in nodule senescence is the neutralization of the peribacteroid space 306 

that surrounds the symbiosome, an otherwise acidic environment which facilitates import of host 307 

resources159. For instance, non-fixing rhizobia often fail to induce full peribacteroid space 308 

acidification, potentially allowing the host to halt symbiosome development159. Senescence is 309 

associated with induced expression of cysteine proteases, which mediate senescence160. In 310 

Astragalussinicus, downregulated expression of nodule-specific cysteine protease Asnodf32, 311 

delays nodule senescence and extends N2 fixation161. Moreover, the ratio of reactive oxygen 312 

species to scavenging enzymes increases during nodule senescence156,160,162.  313 

In experimental work, individual nodules that house ineffective rhizobia are selectively 314 

senesced. Within Acmispon and Lotus nodules coinfected with beneficial and ineffective strains, 315 

selective senescence was only associated with individual nodule cells housing ineffective 316 

rhizobia107. Thus, selective senescence is a promising avenue for investigating host control as it 317 

fulfills all three criteria described above. 318 

 319 
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Immunity. Plants respond to pathogens via inducing reactive oxygen species, altering gene 320 

expression, remodeling the plant cell wall, and producing antimicrobial compounds such as 321 

phytoalexins163. A common response is a rapid, localized programmed cell death that occurs 322 

where harmful microbes have invaded, known as a hypersensitive response. Many of these 323 

responses also occur during rhizobia infection164,165, however, the role of immunity in legume 324 

sanctions is unresolved. Levels of responsive early gene expression are substantially lower in 325 

response to nod factors than to the elicitors of defense, suggesting a muted induction166. The 326 

early generation of reactive oxygen species is necessary for rhizobial infection and their 327 

increased production leads to increases in nitrogen fixation and a delay in senescence167. 328 

Development in established nodules is not affected by elicitation of immunity164, though the 329 

repression of immunity could be reversed as nodules begin to senesce168. Lastly, processes 330 

similar to a hypersensitive response occur in legume-rhizobia interactions, but in a genotype-331 

specific manner, independent of nitrogen fixing status169. Immune responses based on strain 332 

identity, rather than symbiotic performance, have the same challenge as partner choice, in that 333 

less-beneficial mutants could retain the identity signals of their more-beneficial ancestors. 334 

Moreover, it is unclear how a host immune response could differentially affect strains within the 335 

same nodule, violating criterion (ii). 336 

Overall, post-infection control mechanisms are imperfect. Despite the opportunity for post-337 

infection control to divert host resources away from less beneficial rhizobia, a legume that forms 338 

nodules with both a less-beneficial and a more-beneficial strain can have lower fitness than a 339 

legume that nodulates exclusively with the more-beneficial strain51,170,56, though this cost is not 340 

ubiquitous171. In extreme cases, hosts have no control over parasitic rhizobia: the 341 

Bradyrhizobium elkanii strain USDA61 produces many nodules on soybean hosts, but fixes little 342 
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nitrogen172, and rhizobitoxine-producing strains induce chlorosis67. Less-effective strains also 343 

represent an opportunity cost for hosts, but the magnitude of these costs is poorly understood. 344 

Little is known about how legumes sense rhizobia performance. Legumes could assess 345 

rhizobia quality using absolute criteria by comparing nodule performance to a fixed threshold, 346 

below which plants do not allocate resources to a strain. Alternatively, legumes could use 347 

conditional criteria and compare rhizobia performance to that of other strains available to the 348 

legume. Recent research reveals strong support for conditional sanctions: a rhizobium genotype 349 

is sanctioned if it is co-inoculated with a strain that confers more benefit to the host, but not if it 350 

is co-inoculated with a strain that confers less benefit to the host55,98. While the ability to 351 

distinguish between cooperative and uncooperative rhizobia can impose no detectable cost on a 352 

host legume170, it could be that host-control is costly in some environments. Although the 353 

metabolic costs of sensing nodule performance may be negligible, legume fitness could decrease 354 

from shutting down too many nodules or allocating resources to suboptimal nodules. 355 

Interestingly, legumes may differ in their ability to sanction, and this may be linked to breeding 356 

and/or agricultural conditions under domestication91,92,173, genetic bottlenecks during breeding, 357 

or long term fertilization174.  358 

 359 

CONCLUSION AND FUTURE PERSPECTIVE 360 

In conclusion, multiple mechanisms of preferential allocation act as a series of sieves, each 361 

contributing to legume fitness by directing host resources to a narrowing subset of more 362 

beneficial rhizobia55. This understanding is critical to future efforts to breed legumes with 363 

improved host control. For instance, we must understand how different mechanisms of 364 

preferential allocation to rhizobia interact. Are there trade-offs between host control traits that 365 
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could constrain their evolution, or could artificial selection improve multiple host control traits in 366 

parallel? If some host control traits sufficiently prevent legume exposure to inferior rhizobia, 367 

does this relax the selection that maintains other mechanisms of preferential allocation ? Host 368 

control is imperfect, meaning that hosts often reduce, but do not fully eliminate resources 369 

conferred to inferior symbionts97,98. Low costs and imperfect resource allocation could contribute 370 

to the evolution of multiple mechanisms of preferential allocation to rhizobia in legumes, which 371 

could provide promising novel targets for crop improvement. Understanding these mechanisms 372 

will also be important to engineering microbiomes or designing synthetic symbioses, both of 373 

which require the host’s ability to control symbionts that differ in quality. Artificial selection and 374 

engineering efforts that fail to consider host control traits risk producing hosts that are overrun 375 

by less-beneficial symbionts. 376 

 377 
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BOX 1. Typical biology of nodulation 385 
 386 
Nodules are typically initiated when one or a few rhizobia cells enter root cortical cells via a 387 

crack or root hair and are encased by a plant-derived symbiosome membrane, within which they 388 

differentiate into bacteroids and can begin fixing nitrogen. Bacteroids typically reside as spatially 389 

structured groups within infected plant cells117 and reach exceptionally high numbers, with 1-50 390 

bacteroids within each symbiosome, and 103-104 symbiosomes in each infected host cell107. Only 391 

a subset of rhizobia in soil are compatible with any host, determined by host responsiveness to 392 

rhizobia molecular signals, including Nod factors, surface polysaccharides, and Type-III 393 

effectors23,77–80. 394 

Nodule development varies among legume taxa. Determinate nodules, such as in Lotus 395 

japonicus, lack a continuous meristem and are spherical, with a core of infected N2 fixing cells 396 

(NF) surrounded by uninfected host cells. Determinate nodules host homogenous populations of 397 

bacteroids, cease growth after their development is complete, and allow nitrogen fixing rhizobia 398 

to escape back into the soil during nodule senescence, a process initiating from a senescent zone 399 

in the nodule center (S). Indeterminate nodules, such as in Medicago truncatula, grow 400 

throughout the functional association, with a spatial gradation of zones, including 401 

undifferentiated meristem cells (I), cells being invaded by bacteria and those undergoing 402 

symbiotic differentiation into a nitrogen fixing form (II, III), a nitrogen fixation zone (IV), and a 403 

senescent zone (V). In some hosts of each type85, bacteroids terminally differentiate and cannot 404 

escape the nodule177, but nonetheless a subset of undifferentiated rhizobia can be released upon 405 

nodule senescence178. In both nodule types, bacteroids within nodules can fix nitrogen, and 406 

greatly enhance plant fitness in return for host-derived carbon.  407 
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FIGURES 411 

 412 

Figure 1. Legumes detect and respond to rhizobia of varying benefit via two broad classes 413 

of mechanisms. Pre-infection control and partner choice (left) occur if plant production and 414 

detection of molecular signals select for beneficial rhizobia (i.e., purple cells and nodules) and 415 

exclude less beneficial rhizobia (i.e., grey cells and nodules)47–49. Sanctions and other post-416 

infection mechanisms (right) are enabled by compartmentalization of symbionts among nodules 417 

and infected plant cells98,106,107. Here, hosts control rhizobia development and proliferation in 418 

planta, such that nodules and plant cells infected with highly beneficial rhizobia to grow rapidly 419 

and those infected with less beneficial rhizobia grow slowly. Both classes of mechanisms can 420 

help optimize the benefits of symbiosis by favoring more beneficial rhizobia strains and selecting 421 

against those that provide little or no N2 fixation. 422 
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 423 

 424 

Figure 2. Mechanisms of pre-infection control and partner choice. Pre-infection control by 425 

legumes occurs via a multilayer response modulated by back-and-forth molecular 426 

communication between plants and rhizobia. The process is initiated by host secretion of species 427 

specific flavonoids21,22, a response by compatible rhizobia via production of Nod factors, and 428 

detection of Nod factors by plant LysM receptors7. Compatible rhizobia, for instance with 429 

appropriate Nod factors or Type-III effector variants, must evade legume immune responses, via 430 

presenting surface exopolysaccharides (EPS) that minimize host bacteriocidal actions or 431 

secretion of Nodulation outer proteins (Nops) that dampen legume defenses24,74,81,82. Nodule-432 

specific cysteine-rich (NCR) peptides allow some legumes to further discriminate among 433 

rhizobia using antimicrobial NCR peptides, though some rhizobia possess peptidases that can 434 

cleave and inactivate host NCR peptides83,84. 435 
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 436 

 437 

Figure 3. Post-infection control via sanctions and other mechanisms across the 438 

compartmentalized structure of the symbiosis. In indeterminate nodules (left, bottom), 439 

rhizobia (purple) often terminally differentiate into bacteroids in a spatial series (Zones II-V) and 440 

cannot escape the nodule177, but undifferentiated rhizobia (Zone I) can be released upon nodule 441 

senescence178. Within peribacteroid units (shown encased in a dark brown peribacteroid 442 

membrane) are nitrogen fixing bacteroids that are often nonreproductive128 (Zone III). These 443 

hosts appear to exert a form of whole-nodule sanctions. However, in a nodule infected by more 444 

than one strain, it is unknown how sanctions could target less-effective rhizobia because N2 445 

fixing bacteroids in Zone III are separated from reproductive clonemates in Zone I106. For many, 446 

but probably not all, determinate nodules85 (right, bottom), N2 fixing bacteroids in the nitrogen 447 

fixation Zone (NF) can escape back into the soil during nodule senescence by initiating a 448 
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senescent zone at the nodule core (S). In a nodule infected by more than one strain, sanctions can 449 

directly target less-effective rhizobia because N2 fixing bacteroids are reproductive107. Sanctions 450 

likely occur via changes or breakdown of the symbiosome membrane156, which releases 451 

bacteroids to the hostile plant cytosol157. Host immunity and autophagy (i.e., degradation of 452 

intracellular components, top) are both potential functions that could further mediate host 453 

selection against ineffective rhizobia165,168,169,179.  454 

  455 
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