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CrossMark
Abstract
This work introduces a theoretical formulation and develops numerical meth-
ods for finite element implementation of the formulation so as to extend the
concurrent atomistic-continuum (CAC) method for modeling and simulation
of finite-temperature materials processes. With significantly reduced degrees
of freedom, the CAC simulations are shown to reproduce the results of atom-
ically resolved molecular dynamics simulations for phonon density of states,
velocity distributions, equilibrium temperature field of the underlying atom-
istic model, and also the density, type, and structure of dislocations formed
during the kinetic processes of heteroepitaxy. This work also demonstrates the
need of a mesoscale tool for simulations of heteroepitaxy, as well as the unique
advantage of the CAC method in simulation of the defect formation processes
during heteroepitaxy.

Keywords: multiscale method, CAC, temperature, dislocations, epitaxy

1. Introduction

The microstructures of most technologically important materials involve multiple morpholo-
gical length scales. These multiscale microstructures give rise to complex materials behaviors
that are significantly different from those of perfect single crystals. As an example, polycrystal-
line ceramics typically consists of grains with size ranging from a few to hundreds of microns
and grain boundaries (GBs) with thicknesses from a few angstroms to a few nanometers, as
shown in figure 1 [1]. It is well known that polycrystalline materials are generally stronger and
tougher than single crystals. GBs are responsible for the increased strength and toughness,
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Figure 1. A reflection microscope photograph of YAG ceramics showing the micron-
sized grains and nanometer-thick grain boundaries [1]. Reprinted from [1], Copyright
(2002), with permission from Elsevier.

as they impede the motion of dislocations and cracks. To reproduce the physical processes
underlying the improved strength and toughness, a simulation tool that explicitly resolves the
multiple morphological scales is necessary.

Classical continuum theories have served as the major tool for the description and under-
standing of macroscopic material behavior [2]. However, classical theories cannot model
multiscale microstructures without extensive experimental efforts or atomistic simulations to
provide interfacial and microstructural properties. Atomically resolved methods, on the other
hand, have difficulty in going beyond the nanoscale and hence are not tractable for the simula-
tion of materials or structures with multiple morphological length scales. However, there is no
need to model and simulate all ordered single crystal regions—such as a perfect single crystal
grain in a polycrystalline material—with atomic resolution, as the distribution of the unit cells
of a perfect crystal and the lattice displacements are continuous [3]. This has motivated the
development of multiscale methods, with the aim to enable predictive simulation of materials
and structures that have multiscale microstructures [4, 5].

There are two types of multiscale methods: sequential and concurrent. Sequential multiscale
methods derive or fit parameters for a coarse-scale model from an underlying finer-scale model,
such as from an electronic structure-based method to an atomistic model, or from an atom-
istic method to a continuum model. Concurrent multiscale methods, by contrast, concurrently
couple two or more theoretical or materials descriptions in one model. Such methods may
reduce degrees of freedom by only resolving disordered or critical regions such as the GBs
or interphase boundaries with atomic resolution, while using a coarse-scale description for
regions that exhibit continuous material behaviors. Most of early concurrent methods intuit-
ively used the technique of domain decomposition that divides a material system into different
domains, such as atomic and continuum regions [6—11], and describe the different domains
using different theories and materials descriptions [12—16]. There are three-level concurrent
multiscale methods.

(1) Static or quasi-static methods that solve time-independent or inertia-free problems. Most
existing multiscale methods that are formulated based on force equilibrium and energy
minimization belong to this category [17].

(2) Dynamic methods that simulate time-dependent processes underlying critical mechan-
ical phenomena, the development of which was identified as a significant challenge in
simulation-based engineering science by the computational science community [18, 19].
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(3) Coupled thermo-mechanical methods that simulate dynamically coupled mechanical and
thermal processes. There have been a few attempts to develop concurrent multiscale meth-
ods, in which the atomically resolved regions are governed by Newton’s second law and
the continuum or coarse-grained regions are governed by Fourier law of heat conduction
[7, 8]. Success of such methods, however, has been limited.

Despite numerous theoretical or numerical methods for concurrent multiscale materials
modeling and simulation have been proposed and published over the past decades, few of early
concurrent multiscale methods were able to go beyond the nanoscopic length and time scale
of the atomistic methods to simulate a system or a process of materials with microstructures at
the mesoscale (100 nm to 100 pms). There were two common problems that have faced early
multiscale methods:

(1) Ghost forces, a numerical artifact that is manifested as an unphysical force at or near the
numerical interfaces due to the difference in governing equations for the same material.
Ghost forces are present in almost all domain decomposition-based multiscale methods.
The existence of ghost forces indicates a fundamental limitation of the methods for quan-
tifying the properties of physical interfaces that link disparate length scales in materials
with multiscale microstructures.

(2) Spurious wave reflections, manifested as reflected elastic waves by the numerical inter-
faces, due to different phonon/wave representations of the material by different theor-
ies. The spurious wave reflections unphysically increase the kinetic energy of fine-scale
regions, leading to temperature rise and subsequently non-physical melting of the fine-
scale regions, rendering most of domain decomposition-based multiscale methods power-
less in dynamic simulations.

Both problems are caused by the difference in governing equations in early multiscale meth-
ods. In addition to different governing equations, another fundamental inconsistency is the
difference in the definitions of basic physical quantities by different theoretical descriptions.
For example, stress and heat flux in continuum theories are defined as a surface density [2,
20-24]; they are surface fluxes across real or imaginary surfaces [22]. By contrast, in most
atomistic formulations and simulations, stress and heat flux are defined as a volume density
[25-27]. Also, temperature in molecular kinetic theory and atomistic simulations is defined
as a derived quantity in terms of the velocities of particles [28—30], whereas in continuum
theories it is one of the basic quantities upon which all other quantities are defined [31, 32].
For coupled thermal mechanical problems, molecular simulations only solve the conservation
equation of linear momentum, whereas continuum mechanics-based simulations must simul-
taneously solve both the conservation equations of linear momentum and energy. Moreover,
a heat flux-temperature relationship must be prescribed in order for the energy equation to be
solved for local temperature. The difference in temperature definition between molecular and
continuum theories thus constitutes a fundamental challenge to the development of concur-
rent atomistic-continuum (CAC) methods for dynamically coupled thermal and mechanical
problems.

The objective of this paper is to develop a Level-3 multiscale method that extends the CAC
method to mesoscale simulation of coupled thermal mechanical problems. Following the intro-
duction, section 2 reviews the theoretical formulation; section 3 develops a novel numerical
method to implement the formulation and derives material parameters involved in the numer-
ical implementation; section 4 demonstrates the efficacy of the numerical implementation,
including comparisons of fully atomistic and CAC simulation results of phonon density of
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states (PDOSs), velocity distribution, and the distributions of kinetic energy (and hence tem-
perature) and potential energy for various material systems; CAC simulation results of het-
eroepitaxial growth of PbTe on a PbSe (111) substrate, as well as the size effect of the substrate
on dislocation density, are also presented in section 4. This paper concludes with a summary
and discussions in section 5.

2. A review of CAC formulation and numerical implementation

The CAC methodology consists of a mathematical formulation and a modified finite element
(FE) method to implement the formulation. The formulation extends Irving-Kirkwood’s stat-
istical mechanical theory for ensemble-averaged single-component single-phase hydrodynam-
ical systems [33] to a CAC description that is valid for polyatomic crystalline materials at
multiple length and time scales. It unifies not only atomistic and continuum representations of
conservation laws but also the definitions of stress and heat flux [34-36]. The CAC formula-
tion has been recently extended by redefining temperature as a derive quantity, thus unifying
temperature definition in atomistic and continuum descriptions [37]. There are currently three
published codes of the CAC methodology [38—40], and the codes have been tested through
one-to-one comparisons with molecular dynamics (MD) simulations for multiscale problems,
including crack initiation and branching [41, 42]; phase transitions [43]; dislocation nucleation
and pattern formation [44—48], phonon-dislocation [49-51] and phonon-interface interactions
[52, 53], etc.

The CAC formulation can also be viewed as a reformulation of continuum mechanics bot-
tom up from the atomistics, which enables continuum mechanics to exactly represent the clas-
sical atomistic model, thereby expanding the scope, approach, and applicability of continuum
mechanics, and naturally leading to a CAC methodology.

Different from classical continuum mechanics, the CAC formulation employs a two-level
structural description, as shown in figure 2 [37], similar to that in Micromorphic theory [54—
61]. By decomposing the position of an atom, ry,,, into the position of the lattice cell, r, and the
internal position of the atom relative to the lattice, Ary,, the local density of linear momentum
(per unit cell volume) due to the ath atom can be expressed as

1 +Ar 1 N, N,
PaVa = Kt / dtv///d3r;mavm5(rrka) = ;mavkagv(r*rm)
t v = =

N Ny

:szﬁkagV(x+y_rk_Arka)7 )

k=1¢=1

where N, is the number of lattice cells in the system; ¢ is the delta distribution, or the Dirac
delta defined by the sifting property [62], and r = x + y, with x denoting the position of the
unit cell and y the internal position relative to x.

Multiplying both side of equation (1) by §(y — Ary, )and then integrating over the volume
of ath atom, V,,, we obtain a different form of the local density of linear momentum:

a

NN,
PaVa = szg Vie Oy (X — 1) Sva (v — Arya ) (2

k=1¢=1
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Figure 2. (a) Two-level structural description of crystal (replotted based on [3]), (b)
field description of the position vector of a unit cell, x, and the internal position
of atom « relative to the unit cell, y, (c) the corresponding positions in the phase
space. Reproduced from [37], with permission from the Royal Society of Chemistry.

where N, is the number of atoms within a lattice cell, V and V,, are the volume of the unit cell
and of atom « within the unit cell, respectively, and the box functions are defined as

t+At
_ 1 1 [lifx—r,eV
dy(x—ry) = A / Oy (x —ri (7)) dr, wheredy (x —ry) = v {O,lifxx jl;k ¢V 3)
t
1 t+At
vy = Arie) = - [ dva v~ Arie (7)) dr. wheredv (y — Arie)
t
1 ify-ArgeVioré=a )
10 ify—ArmggVior #Fa’

The time derivative of the linear momentum density defined in equation (2) can be obtained,
using the theory of distributions [63, 64], as [33]

9(pava) _ l# 1 #
AR, (to — paVav -n)dS+ v (Ta— PaValvy -n)dS,. (5)

ov OVq

It is noticed that equation (5) is expressed in terms of two surface fluxes, ¢, and T, where
t,, is a momentum flux across the enclosing surface of a unit cell (the homogenous part of
stress) and T, is the momentum flux across the enclosing surface of an atom within the unit
cell (the inhomogeneous part of stress), with each further consisting a potential part due to the
interaction forces between atoms and a kinetic part due to the motion of atoms. For explanation
purposes, in equation (6), we present the obtained formula for the stress vector on a surface
element at point x with normal 7 in a monatomic crystal. For detailed discussions of stress and
heat flux polyatomic crystals, please see [36, 65-69],

0Py [ - -~
t(x,n)= Z a—rk/@’; (p —x)dep —kavkvk(SA (x—ry)
i) X

=S Fu [ Bip —x)de ~ S A v ), ©)
k

k<t f
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where @, is the potential energy of atom k; Fy, is the interaction force between atom k and
atom /, and &/ denotes an averaged Dirac delta over a surface element A and time step Az. The
first term in equation (6) represents the potential part of stress due to interaction forces across
a surface element A that has area A and normal n, with

At
Fk[/gﬁ (p —x)dp = i dT%///Fkld(x +x' —p)dp -nd*x’
Lu 0 A Ly
1 if ryintersects A and n - Ly; > 0 in At
= % —1if ryintersects A andn - Ly < 0in At . @)
0 otherwise

The second term represents the kinetic part of stress as a flow of momentum due to the
thermal motion of atoms, with

At
- 1 1
mki)'kikﬂ (x — rk) = E /dTX //mkﬁké (x — rk) ;k -ndrdS
0 A

1 if ryintersects A in Arandn-v, >0
—1 if ryintersects A in Arand n-v, <0 ®)

0 if rydoes not intersect A

o mpVy
- AAt

Alternatively, the distributional derivative of the linear momentum density can be derived
from equation (1) [37] as

N
. ini 1 ~ ~ T in
PaVe =" (r,t) — T/‘#‘Zmavkavkaé (r4r' —r) -nd*r' 2™ (. 0) +f7 (r,1) 9)
gy k=1

where Vi, = vio — v, is the difference between the particle velocity and the velocity field and
£ (r,1) is related to thermal fluctuations or the kinetic part of stress.

Note that temperature is a statistically averaged quantity related to kinetic energy and that
the kinetic energy density due to a-species can be decomposed into two parts: one due to the
velocity field and one due to difference between particle velocity and the velocity field, i.e.

<§:;ma(vm)25v(r—rka)> - %,oa(va)2 + < /// kzli’:;ma(ﬁka)25v(r—rka)>

k=1
3

= (ka1 (r,0)) + (koo (r,1)) = EkBT(r,t), (10)

where k,; is the density of the kinetic energy due to velocity field, which can be described by
the motion of FEs, and k,, is the density of the kinetic energy of phonons that are cut off by
the FE linear shape functions.

The ensemble averaged equation (9) can then be expressed in terms of temperature as

(paba) = (™) + () = (/™) = BVT. an
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Equation (11) is a statistically averaged linear momentum equation. It is expressed in
terms of temperature field and hence represents Newton’s second law only in statistical sense,
asz(r, t) is a fluctuating function of time at finite temperature. In a previous work, we showed
that this fluctuating force cannot be simply expressed as a Markov random force, but a com-
bination of a random force and a frictional or damping force. Consequently, the instantan-
eous form of equation (11), i.e. equation (9), can be expressed, in the form of the generalized
Langevin equation [70, 71], as

t

pabe =f™ (1) — B | VT (1) + /’y(t—T)va(r,T)dT , (12)

—T,

where 7(f) is a time-correlated Gaussian random process and ~y a dissipative memory kernel
and is related to 1(?), i.e.

2
M) =0, (ni(t)n; (1)) =6;;C(t—7),and C(t—7) = 0\2/% exp <_ (t2_072') ) 7 (13)

t— —C t— 14
11=7) = 7Cl=7), (14)
where o is the standard deviation of the Gaussian distribution, 2 g is the strength of 7(¢), and
T is the longest period of the vibration mode that is cut off by FE shape functions.

3. Numerical implementation

It is noticed from equation (12) that the fluctuating force 7(¢) enters the linear momentum
equation when there are short-wavelength phonons being cut off by FE shape functions. Thus,
it can be generated using the trigonometric representation of Gaussian processes in terms of
the frequencies of the missing phonons, i.e.,

Ne
ZA sinw (k) £+ By cosw ( ZA sin (Wt + ¢m),  (15)

where N_ is the total number of omitted phonons in each element; w(k,,) is the frequency of the
omitted phonons with wavevector k,,, which can be determined from the phonon dispersion
relations. A,, is the amplitude of the fluctuation force associated with phonon mode m, ¢,, is
the phase and can be random. Assuming the mass density is constant within each element, we
can obtain the velocity response to the fluctuation force as

N,
c Am
pvi = —Zw—cos (Wit + P m) - (16)

m=1_"

At thermal equilibrium, each degree of freedom has the same averaged kinetic energy dens-
ity kgT/2V, where V = m/p is the volume of the primitive unit cell at point x. We thus obtain
the amplitude A,, as

A, = Wi 2kaT'
Vv N

A7)



Modelling Simul. Mater. Sci. Eng. 32 (2024) 085015 J Sun et al

Approximating the displacement field of «th atom in an element V. as u,(x) =
®,, (x) Uy, where ®,, (x) is the shape functions, the weak form of equation (12) is then
expressed as

t
///pa¢§@ndV Uy + ///pa®5¢ndV/7(t—T)Una(T)dT
Ve Ve t

—T.

:///@Jg‘th—///@E (BT —n(1))aV. (18)
Ve V.

Equation (18) is a general FE equation. The integrals can be numerically evaluated using
Gaussian quadrature. Note that the temperature gradient is zero for systems at thermal equi-
librium and a constant for steady-state systems. Thus, SVT — n(t) does not vary in space,
i.e. is only a function of time, within a FE, if the conventional tri-linear shape functions are
employed for the FEs. Thus, no numerical integration is needed for the last integral.

To summarize, the numerical implementation involves the following variables:

1. B is a constant parameter to be determined by the resolution of a measurement. For a
system discretized by 8-node hexahedral elements and each element contains 7; unit cells,
the ratio of the DOFs of the FEs and that of a corresponding atomically resolved model is
8/n;. The equipartition theorem then gives 8 = 3(n; — 8)kg / V.

2. w(ky), is the frequency of the omitted phonons with wavevector k,,, which can be determ-
ined from the frequency—wavevector relations, i.e., phonon dispersion relations.

3. A,,, the amplitude of the fluctuating force associated with phonon mode m, which is related
to temperature.

4. ¢, the phase of each sine function, which can be random.

5. T, is the time interval in the dissipative memory kernel and can be selected to be 27 /w,
where w is the lowest frequency of the missing phonons for a FE. T, can be selected as the
longest period among the N, vibration modes that are cut off by the FE shape functions,

6. Nc, the total number of omitted phonons in an element, which can also be determined from
phonon dispersion relation. For more discussions of N, please see [72].

4. Numerical examples

4.1. Verifications

In classical mechanics of particles, temperature is defined in terms of particle velocities, or
more precisely, the kinetic energy of particles, using molecular kinetic theory. The quantum
description of temperature, however, is expressed in terms of phonons. A phonon is a collective
excitation or motion of atoms at a specific frequency and polarization. There are more phonons
at high temperatures and fewer phonons at low temperatures. The PDOSs is defined as g(w)
such that the number of phonon modes with angular frequencies between w and w + dw is equal
to g(w) dw [73]. It is the measure of phonon distribution in a material and can be computed as
the power spectrum of the mass-weighted velocity correlation function.

To quantify the accuracy and efficiency of the numerical implementation of the formulation,
we created four CAC models of thermally equilibrated single crystals Fe, Si, PbTe, and PbSe,
respectively, as well as the corresponding all-atom models. We employ the EAM interatomic

8



Modelling Simul. Mater. Sci. Eng. 32 (2024) 085015 J Sun et al

e R e e

]

EEEEEEEE

Figure 3. Schematic of a CAC model that consists of both atoms and finite elements.

Table 1. Details of the computer models.

Material system Fe Si PbSe PbTe

Number of atoms in 512000 442368 307200 307200
the atomically
resolved region

Number of elements 16 000 3456 7200 7200

in the FE region

Number of atoms in 16 896 000 14598 144 7680 000 7680 000
the corresponding all

atom model

potential for Fe [74], the Stillinger—Weber potential for Si [75], and the Buckingham—
Coulombic interatomic potential for PbTe and PbSe [76, 77] to describe the atomic interactions
in each system. The dimension of each model is about 50 nm x 50 nm x 100 nm, in which
the ratio of the volume for the atomically resolved region and that for the FE region is 1:32.
All CAC models are discretized with a uniform mesh and an atomically resolved region, as
shown in figure 3. Other details of the computer models are summarized in table 1, including
the number of atoms, the number of elements, and the equivalent total number of atoms.

In figure 4, we compare the PDOSs computed by CAC with that by MD for the four systems
at 300 K, respectively. It is seen from figure 4 that the PDOS for the four systems computed
by CAC are in excellent agreement with those obtained by MD, indicating that all the phonons
that are present in the atomically resolved MD simulations have been fully captured by the
CAC simulations with a significantly reduced degrees of freedom.

To test how well the CAC FE representation in reproducing the temperature field of the
underlying atomistic model, we have simulated four systems that are thermally equilibrated at
temperature 300 K. In figure 5, we plot the kinetic energy and potential energy distributions
in the Si and PbSe models, respectively. As can be seen from figure 5, the difference in the
kinetic energy density reproduced by MD and that by the CAC FEs is 6.7% and 7.7% for
the two models, respectively. This demonstrates that CAC FEs can reproduce the temperature
field of their underlying atomically resolved models. The results also show that we can use a
small atomic region to serve as a heat bath for finite-temperature CAC simulation, as shown
in figure 3.

The above simulations solve the instantaneous conservation equation of linear momentum
equation (12), which is an approximate form of equation (9) at the atomic scale and satisfies

9
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Figure 4. Comparisons of MD and CAC simulation results of normalized phonon dens-
ity of state (PDOS) for (a) Fe, (b) Si, (c) PbTe, and (d) PbSe. Each finite element in the
CAC models contains 512 primitive unit cells. All the PDOS are computed from the
Fourier transform of the velocity autocorrelation functions at 300 K.

the statistically averaged equation of motion, equation (11). Note that equation (9) and (11)
represent the linear momentum equation at two different time scales, with the former being
derived as a direct consequence of Newton’s equation of motion and holds at atomic length
and time in the sense of distributions, while the latter holds only statistically or at larger time
scales. Thus, there is an alternative approach, method 2, to simulate the computer model in
figure 3 by using equation (11) for the FE region, while equation (9) for the atomically resolved
region. In figure 6, we compare the velocity distribution of the atomic region in the CAC model
with that in an atomically resolved region at 300 K. As can be seen from figure 6, there is
an excellent agreement between the velocity distributions of the atoms in the two different
simulations and both obey the Maxwell-Boltzmann distribution. These numerical examples
further demonstrate the accuracy and efficiency of the formulation and the numerical methods
in simulations of finite-temperature problems.

4.2. Multiscale simulation of molecular beam epitaxy

Heteroepitaxy is a widely used bottom—up method in the manufacture of semiconductor
devices [78]. Regardless of the growth mechanisms, increasing epilayer thickness will
unavoidably lead to misfit dislocation generation and concomitant threading dislocations [79,

10
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Figure 5. (a) Distributions of the kinetic energy density and (b) potential energy density
in the CAC model of Si; distributions of the (c) kinetic energy density and (d) potential
energy density in the CAC model of PbTe. The unit in the color bar is eV nm~>. Dash
lines indicate an interface between the coarse-scale FE region and atomic region.

80]. The structure and density of the dislocations are experimentally found to depend on growth
temperature [79-83] and also the size of the substrate [84, 85]. Predicting the dislocation struc-
ture and density in heteroepitaxial growth thus requires a predictive mesoscale method. The
advantage for CAC for simulation of heteroepitaxial processes is that the meso or macro-scale
substrates can be modeled using coarse-scale FEs, as shown in figure 7, while the growth
process is simulated with atomic resolution.

In order to compare the CAC simulation results of the kinetic processes of molecular beam
epitaxy with that by MD, we constructed a small computer model for simulation of epitaxial
growth of PbTe on a PbSe (111) substrate with dimensions of 50 nm x 50 nm X 10 nm. This
is the size that can be simulated by both MD and CAC. The substrate in the CAC model is
discretized into coarse-scale FEs; only the top surface of the substrate is modeled in terms of
atoms. All the FEs have the rhombohedral shape with each node containing a primitive unit
cell of the PbSe crystal.
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Figure 6. Velocity distribution of Si atoms in the atomic region of the CAC model (blue
circle) and that in the atomically resolved model (red square). The black line represents
the Maxwell-Boltzmann distribution of Si atoms at 300 K.
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Figure 7. Schematic of a CAC model of heteroepitaxial growth, in which the substrate
is modeled with finite elements, with the top layers of the substrate and the epitaxial
process being modeled with atomic resolution.

In figure 8, we compare the CAC and MD simulation results of the atomic position of
the epilayer, as well as the dislocation structure. As can be seen from figures 8(a) and (b), the
CAC simulation results of the dislocation network agree well with those obtained by MD. This
excellent agreement demonstrates that, with significantly reduced DOFs, CAC can reproduce
the kinetic processes of the formation of dislocations in PbTe on PbSe (111) heteroepitaxial
systems in excellent agreement with that by MD.

To demonstrate the effect of the substrate size, we have simulated the epitaxial growth of
PbTe on PbSe (111) substrate with area of 50 x 50 nm, but two different thicknesses (10 nm
and 100 nm, respectively). Figure 9 compares the dislocation density and dislocation networks
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Figure 8. A comparison between (a) CAC and (b) MD simulation results of atomic
position and dislocation networks in an PbTe/PbSe (111) epitaxial structure as a function
of epilayer coverages. The dislocations are visualized using OVITO DXA (Dislocation
Extraction Algorithm) [86].
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Figure 9. (a) Dislocation density per interface area as a function of PbTe layer thickness
during the growth of PbTe on PbSe (111) substrates. PbSe substrates have surface areas
of 50 x 50 nm? and substate thicknesses of 10 nm or 100 nm. Dislocation networks
in the interface resulting from the growth of PbTe on PbSe substrates with (b) 10 nm
thickness and (c) 100 nm thickness.

Figure 10. Perspective view of the dislocation network at PbTe/PbSe (111) inter-
face at 6.3 ML PbTe coverage, grown on a PbSe (111) substrate with dimensions of
100 nm x 100 nm X 100 nm, obtained via CAC simulation, visualized using DXA [86]
in OVITO.

for the two different substrate sizes. It is seen from figure 9, a difference in substrate size leads
not only to different dislocation densities but also different dislocation structures and types.

To further demonstrate the CAC method for mesoscale simulation of molecular beam
epitaxy, the growth process of PbTe on a PbSe (111) substrate that has dimensions of
100 nm x 100 nm x 100 nm is simulated with a growth temperature of 650 K, as that in
the PbTe/PbSe epitaxial experiment by Springholz, G. and Wiesauer [87]. In figure 10, we
present a perspective view of the dislocation network formed during the epitaxial growth at
the epilayer thickness of 6.3 monolayers (ML). In figures 11 and 12, we present two zoomed-in
side views of the threading dislocations.
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Figure 11. Zoomed-in side view of the PbTe/PbSe (111) interface at 6.3 ML PbTe cover-
age, obtained by CAC simulation of PbTe/PbSe heteroepitaxy with substrate dimensions
of 100 nm X 100 nm x 100 nm, showing the threading dislocations, visualized using
OVITO DXA [86]. Blue lines represent 1/2 <110> dislocations, green lines represent
1/6 <112> Shockley dislocations and red lines represent other dislocation types.

Figure 12. Zoomed-in side view of the PbTe/PbSe (111) interface at 6.3 ML PbTe cov-
erage, obtained by CAC simulation of PbTe/PbSe heteroepitaxy with substrate dimen-
sions of 100 nm x 100 nm x 100 nm, showing the threading dislocations, visualized
using OVITO DXA [86]. Blue lines represent /2 <110>(001) dislocations. Red lines
represent 1/2 <110>{111} dislocations.

5. Summary

In this work, we have discussed and analyzed the current state of concurrent multiscale meth-
ods. We have then reviewed the theoretical formulation of the CAC method for simulation
of materials processes at finite temperature, developed numerical methods, and derived all
parameters involved in the numerical implementation. By defining temperature as a derived
quantity and rederiving the balance equation of linear momentum, the CAC method has been
shown to reproduce the PDOSs of Si, Fe, PbTe, and PbSe single crystals, in excellent agree-
ment with atomically resolved MD simulation results. Using about 1.56% of the degrees of
freedom of the underlying atomistic models, these FEs have reproduced the spatial distri-
butions of the potential energy density as well as the kinetic energy density, and hence the
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temperature field, of the underlying atomistic models. It is also noticed that there is no appre-
ciable discontinuity at the atomic-FE interface for kinetic and potential energy distributions.
In addition, CAC simulation results of PbTe/PbSe (111) heteroepitaxy are shown to compare
very well with atomically-resolved MD simulation results, including the structure, type, and
density of dislocations formed during heteroepitaxial processes of PbTe growth on PbSe (111).
The applicability and the unique advantage of the CAC method for mesoscale simulation of
epitaxial processes, which are high-temperature highly nonequilibrium processes, to predict
the formation of misfit and threading dislocation networks during heteroepitaxy are clearly
demonstrated. In addition, the effects of substrate size further justify the need to mesoscale
or macroscale simulations in order to study heteroepitaxy and predict dislocation formation
during epitaxial processes.

We would like to note that this work is mainly focused on the FE implementation of the
CAC formulation. The effect of thermal fluctuations by short wavelength phonons in the FE
representation is derived based on the consideration of local thermal equilibrium. Further
theoretical and numerical research will be needed to fully address the length and time scale
challenge in modeling and simulation of multiscale structured materials or highly nonequilib-
rium processes such as thermally activated dislocations [§8—90] and phonon thermal transport
[91, 92].
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