

1 **A brief review on strain engineering of ferroelectric $K_xNa_{1-x}NbO_3$ epitaxial thin films:**
2 **insights from phase-field simulations**

3 Bo Wang^{1,*}, Mengjun Zhou², Tiannan Yang³, Long-Qing Chen^{4,*}

4 ¹ *Materials Science Division, Lawrence Livermore National Laboratory, California 94550, USA*

5 ² *State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center*
6 *of Smart Materials and Devices, School of Materials Science and Engineering, Wuhan University*
7 *of Technology, No.122 Luoshi Road, Wuhan 430070, P. R. China*

8 ³ *Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong*
9 *University, Shanghai 200240, China*

10 ⁴ *Materials Research Institute and Department of Materials Science and Engineering, The*
11 *Pennsylvania State University, University Park, Pennsylvania 16802, USA*

12 *corresponding author: wang111@llnl.gov (B.W.), lqc3@psu.edu (L.Q.C.)

13

14 **Keywords:** domains and domain walls, ferroelectric phases, material properties, phase-field model

15 **Abstract (150 words)**

16 Strains play a pivotal role in determining the phase equilibrium, domain configuration, and
17 functional properties of low-dimensional ferroelectrics. There is growing interest in the strain
18 engineering of ferroelectric $K_xNa_{1-x}NbO_3$ (KNN) epitaxial thin films, which exhibit excellent
19 physical properties and promise as eco-friendly alternatives to lead-based ferroelectrics for
20 microdevice applications. Advances have been made in understanding the phase equilibria and
21 transitions, domains and domain walls, and their relations to the physical properties of KNN
22 epitaxial thin films using a combination of experiments and theoretical modeling, particularly
23 phase-field simulations. Here, we review recent progress in these aspects and showcase the phase-
24 field method for establishing strain phase diagrams, elucidating the domain and domain wall
25 structures at equilibrium, and predicting the structure–property relationships in ferroelectric KNN
26 thin films. We also discuss challenges and opportunities to further advance our understanding of
27 KNN thin films and potentially unlock new functionalities by leveraging phase-field simulations.

28 **1 Introduction**

29 Ferroelectric thin films have garnered significant research interest over the past decades
30 due to their promising technological applications and fundamental scientific importance^{1,2}. These
31 materials exhibit a unique set of physical properties, such as high dielectric permittivity, large
32 piezoelectric activity, nonlinear optical susceptibilities, and switchable spontaneous polarization,
33 making them suitable for various functional devices, including high energy-density capacitors³,
34 microelectromechanical systems⁴, integrated photonics⁵, and non-volatile memories⁶. Furthermore,
35 the reduced dimensionality of ferroelectric thin films and their tunable mechanical and electrical
36 boundary conditions allow for investigations of novel ferroelectric phases and domain structures
37 with unique physical behaviors distinct from those of their bulk counterparts².

38 Strain can be employed to tune the phase stability and thus the functional properties of
39 ferroelectric thin films⁷. To fully exploit the potential of ferroelectric thin films, it is essential to
40 understand the correlations among misfit strains, ferroelectric phases and domains, and their
41 corresponding macroscopic properties. Significant progress has been made in the strain
42 engineering of classical ferroelectric perovskite oxides such as PbTiO_3 (PTO)⁸, BaTiO_3 (BTO)⁹,
43 and BiFeO_3 (BFO)¹⁰. At room temperature, these bulk crystals exhibit either tetragonal or
44 rhombohedral ferroelectric phases. New ferroelectric phases can be stabilized by imposing misfit
45 strains through epitaxial growth, e.g., monoclinic phases in BFO epitaxial thin films¹⁰. While
46 epitaxial strains generally suppress the intrinsic piezoelectric coefficient, the
47 multiphase/multidomain states stabilized by epitaxial strains may enhance piezoelectric
48 responses¹¹. However, it is still poorly understood how misfit strains affect the stability of the
49 orthorhombic ferroelectric phase, another common polymorphic phase of perovskite oxides, and
50 the corresponding physical properties.

51 The solid solution between KNbO_3 (KNO) and NaNbO_3 (NNO), i.e., $\text{K}_x\text{Na}_{1-x}\text{NbO}_3$ (KNN),
52 is an ideal model system for such studies. In bulk KNO, there are structural phases isostructural to
53 those of BTO, transitioning from cubic ($Pm3m$) to tetragonal ($P4mm$), orthorhombic ($Amm2$), and
54 rhombohedral ($R3c$) phases as the temperature decreases from 800K to 100 K ^{12,13}(Figure 1a). The
55 same transition sequence is maintained in KNN solid solutions with up to 50% NNO (i.e.,
56 $\text{K}_{0.5}\text{Na}_{0.5}\text{NbO}_3$) ^{14,15}(Figure 1b). The other endmember, NNO, exhibits a more complex series of
57 phase transitions due to the involvement of the oxygen octahedral tilts ¹⁶. As it cools from the high-
58 temperature cubic phase, bulk NNO undergoes six non-ferroelectric phases until reaching a
59 rhombohedral ferroelectric phase below 173K. At room temperature, NNO exhibits an
60 antiferroelectric orthorhombic phase ($Pbcm$) that can transition to a metastable orthorhombic
61 ferroelectric phase ($Pmc2_1$ or $P2_1ma$) under a moderate electric field¹⁷(Figure 1c). Consequently,
62 the temperature-composition phase diagram of KNN is rather complex ^{18,19} (Figure 1d), offering a
63 rich landscape to explore the interplay among the ferroelectric, antiferroelectric, and
64 antiferrodistortive orderings²⁰. KNN-based crystals and ceramics are emerging as promising lead-
65 free alternatives to lead-containing ferroelectric materials like $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ (PZT), attracting
66 attention due to increasing concerns about ecological sustainability^{21,22}. In fact, high dielectric
67 tunability²³, giant piezoelectric strains ^{24,25}, highly sensitive and potential selective surface acoustic
68 wave detection ²⁶, and exceptional high elasto-optical coefficients ²⁷ have been reported in strain-
69 engineered KNN thin films, making the study of their structures and properties of both scientific
70 interest and technological relevance.

71 Several comprehensive review articles have documented progress in developing KNN-
72 based ceramics ²², single crystals ²⁸, and thin films ²⁹⁻³¹ from experimental perspectives. However,
73 recent advances in the use of theoretical tools³²⁻³⁵, particularly phase-field modeling³⁶, to the KNN

74 ferroelectric thin films have provided profound insights into the phase equilibria and transitions,
75 domain and domain wall structures, and their correlation to macroscopic material properties³⁷⁻³⁹.
76 This brief review presents the state-of-the-art by summarizing the experimental and theoretical
77 understandings of ferroelectric phase transitions, domain and superdomain structures at
78 equilibrium, and the corresponding functional properties in KNN epitaxial thin films. In the
79 following sections, we first summarize the experimental findings related to the phase symmetries
80 and domain morphologies of KNN epitaxial thin films. We then outline a general framework for
81 establishing phase-field models for ferroelectric materials. Subsequently, we review the progress
82 made in the theoretical modeling of KNN thin films, including the development of thermodynamic
83 models of KNN, construction of strain phase diagrams, and determination of the equilibrium
84 structures of domains, domain walls, and superdomain structures. Finally, we discuss the
85 challenges and opportunities to exploit the phase-field approach to advance our understanding of
86 KNN-based ferroelectric materials and their applications.

87 **2 Experimental studies of ferroelectric KNN epitaxial thin films**

88 In this section, we summarize the state-of-the-art experimental results on the
89 characterization of ferroelectric phases, equilibrium domain morphology, and domain wall
90 configurations in KNN thin films with various compositions grown on different substrate materials.
91 We discuss a unified picture of the strain effect on the phase equilibria of K-rich KNN and NNO
92 epitaxial thin films and highlight three typical domain patterns of ferroelectric KNN thin films.

93 Before describing the technical details, we provide two preliminary notes. First, significant
94 efforts have been made to epitaxially grow KNN films using pulsed laser deposition⁴⁰⁻⁴³,
95 hydrothermal methods⁴⁴, RF magnetron sputtering⁴⁵⁻⁴⁷, chemical solution deposition⁴⁸, metal-

96 organic vapor-phase epitaxy³⁰, sol-gel methods⁴⁹, among others²⁹. However, we focus only on
97 studies reporting ferroelectric phases that differ from bulk states and on characterizing domain
98 structures influenced by misfit strains imposed by the substrate materials. Second, various
99 notations have been used to represent ferroelectric phases in perovskite oxide thin films in the
100 literature, which often leads to confusion. Here, we adopt a notation based on the crystal system
101 of *the conventional unit cell* (e.g., monoclinic, orthorhombic) and the spontaneous polarization
102 direction within *the pseudocubic unit cell* of the perovskite structure (e.g., a_1 , a_2 , c). Examples
103 include the orthorhombic c -phase with $\mathbf{P} = (0, 0, P_3)$, monoclinic a_1c -phase with $\mathbf{P} = (P_1, 0, P_3)$
104 and a_2c -phase with $\mathbf{P} = (0, P_2, P_3)$, and monoclinic a_1a_2 -phase with $\mathbf{P} = (P_1, P_2, 0)$. We refer to
105 both a_1c - and a_2c -phases as M_C -phase. The M_A - and M_B -phases with $\mathbf{P} = (P_1, P_2, P_3)$ are
106 distinguished by the relative amplitude of the polarization components, i.e., $P_1 = P_2 < P_3$ for M_A
107 and $P_1 = P_2 < P_3$ for M_B . A detailed discussion on the notation of ferroelectric phases is given by
108 Janolin⁵⁰.

109 **2.1 Ferroelectric phases**

110 Table 1 summarizes several new ferroelectric phases absent in bulk states reported in
111 epitaxial KNN thin films, including the monoclinic M_A -, M_B -, a_1a_2 -, and M_C -phases, as well as
112 orthorhombic c , a_1 , and a_2 phases. These phases develop under various film compositions, growth
113 conditions, and substrate types and can be broadly categorized into four types based on misfit
114 strain states (Table 2).

115 For K-rich KNN thin films ($x > 0.5$), highly biaxial compressive strains induce the
116 monodomain orthorhombic c -phase, which is observed in fully strained $Ka_{0.7}Na_{0.3}NbO_3$ films on
117 the $DyScO_3$ (DSO) substrate^{51,52}. Moderate biaxial compressive misfit strains provided by rare-
118 earth scandates like $SmScO_3$ (SSO), $GdScO_3$ (GSO), and $TbScO_3$ (TSO), favor the monoclinic

119 Mc-phase^{51,53}. Upon heating, the Mc-phase transforms into the orthorhombic *c*-phase⁵¹ or
120 monoclinic M_A-phase^{49,54}, depending on the film composition and substrate materials. When both
121 tensile and compressive strains are applied orthogonally in-plane, the *a*₁*a*₂/M_C-phase is formed, as
122 observed in K_{0.9}Na_{0.1}NbO₃ films on NdScO₃ substrates^{55,56}. Subsequent heating of the *a*₁*a*₂/M_C-
123 phase results in the orthorhombic *a*₁/*a*₂-phase with exclusively in-plane polarization⁵⁷.

124 For NNO, the lattice constants of its pseudocubic unit cell are smaller than those of KNbO₃
125 by nearly 0.1 Å³⁰. Consequently, the lattice mismatch between NNO films and ReScO₃ (Re = Dy,
126 Gd, Tb) substrates induces biaxial tensile strains, resulting in the monoclinic *a*₁*a*₂-phase with in-
127 plane polarization^{58,59}. Upon partial relaxation of such tensile strains, as observed in thicker films,
128 the monoclinic *a*₁*a*₂-phase transitions into other monoclinic M_A- or M_B-phases with out-of-plane
129 polarization⁶⁰. Highly compressively strained NNO films on NdGaO₃ substrates exhibit an
130 orthorhombic *c*-phase with only out-of-plane polarization^{59,61}. Despite the distinct origins of
131 ferroelectricity in bulk phases, similarities in strain-induced ferroelectric phases and phase
132 transitions between KNN and NNO epitaxial thin films have been noted⁶².

133 **2.2 Ferroelectric domains and superdomains**

134 The equilibrium domain structures of these ferroelectric phases in as-grown KNN and
135 NNO films can be categorized into three types based on their two-dimensional morphology, which
136 can be viewed from an out-of-plane perspective: monodomains, stripe-like domains, and
137 herringbone-like domains.

138 In monodomains, uniform out-of-plane polarization with minimal in-plane variations has
139 been reported in the orthorhombic *c*-phase of NNO thin films⁵⁸ and KNN thin films⁵¹, as well as
140 in other ultrathin films below the critical thickness for domain formation⁵².

141 Stripe-like domains exhibit highly regular laminar patterns in both monoclinic and
142 orthorhombic ferroelectric phases at various temperatures^{30,53,57,62}. The patterns can be classified
143 into one-dimensional and two-dimensional structures. The one-dimensional stripe-like patterns
144 parallel to [010]_{pc} emerge in a_1a_2 -, M_A-, and M_B-phases of NNO^{58,60}. The two-dimensional stripe-
145 like domain patterns parallel to [010]_{pc} and [100]_{pc} have been found in M_A-phase of NNO on GSO
146 substrates⁵⁸, while another two-dimensional pattern parallel to [110]_{pc} and [1-10]_{pc} is shown in the
147 monoclinic M_C-phase of KNN films^{49,49,53,63} and the orthorhombic a_1/a_2 -phases of KNN⁵⁷ and
148 NNO films⁶². Notably, the stripe-like domains of the M_C-phase show superdomain structures
149 consisting of four energy-equivalent bundles of a_{1c} and a_{2c} domains^{52,53}.

150 Herringbone-like domain patterns are reported exclusively in the a_1a_2 /M_C-phase of KNN
151^{55,56,64}. They differ from the stripe-like domains in three ways. First, domain walls in the
152 herringbone patterns do not follow any low-index directions but vary with film compositions and
153 thickness⁶⁴. Second, the herringbone pattern is hierarchical, where polydomains of a_1a_2 - and M_C-
154 phases self-assemble into superdomain structures with regular, well-defined boundaries^{55,56}. In
155 contrast, the superdomain boundary of the stripe-like domain patterns are irregular⁵². Third, the
156 lattice constant differences between variants of the a_1a_2 - and M_C-phases under anisotropic misfit
157 strains mean that the interfaces between these domains are heterophase boundaries rather than
158 conventional twin domain walls. The mechanical compatibility condition may not hold for the
159 heterophase boundary^{65,66}. Besides, the herringbone-like domains can transform into stripe-like
160 domains of the high-temperature orthorhombic a_1/a_2 -phase upon heating^{57,67}.

161 Two-dimensional piezoresponse force microscopy (PFM) images of these domain
162 structures in KNN epitaxial thin films, along with their corresponding three-dimensional models

163 obtained through phase-field simulations, are highlighted in Figure 2a – c for the M_C -phase⁵³,
164 a_1a_2/M_C -phase at room temperature⁵⁶, and a_1a_2/M_C -phase at elevated temperatures⁵⁷, respectively.

165 **2.3 Ferroelectric domain walls**

166 There have been few studies on the domain walls of KNN thin films. The domain walls of
167 a_1a_2 -phase of NNO resemble the 90° domain walls of the orthorhombic phase (*Amm2*) of bulk
168 KNO and are determined to be parallel to (100)_{pc} of the film³⁰. Domain walls of M_C - and a_1a_2/M_C -
169 phases resemble the 60° domain walls of the orthorhombic phase of bulk KNO modified by biaxial
170 misfit strains. Mechanically compatible charge-neutral 60° domain walls of the orthorhombic
171 phase are known as *S*-walls, the plane of which varies with local spontaneous strains⁶⁶. Likewise,
172 the domain walls of the monoclinic M_C -phase also show this attribute. Advanced diffraction
173 techniques have been employed to determine the domain wall orientation of the a_1a_2/M_C -phase
174 KNN and have revealed large variations of the domain wall plane with regard to film thickness
175 and compositions⁶⁴. The domain walls of the stripe-like domains of the M_C phase also differ from
176 those of the (011)_{pc} planes. In addition, charged domain walls have been identified in the M_C -phase
177 of KNN films on DSO substrates deposited using the sol-gel method⁶³.

178 **3 Phase-field methods to model ferroelectric materials**

179 The phase-field method stands as a robust tool for investigating phase equilibria and
180 transitions, microstructural features such as domains and domain walls, and the intricate
181 microstructure-property relationship in ferroelectric materials and heterostructures³⁶. Here, we
182 provide an overview of the establishment of a phase-field model for ferroelectric materials.

183 A typical phase-field model for ferroelectrics comprises three essential components: order
184 parameter(s), a thermodynamic model, and a kinetic model. For proper ferroelectrics, the

185 spontaneous polarization vector $\mathbf{P} = (P_1, P_2, P_3)$ often serves as the primary order parameter. It
186 distinguishes between paraelectric and ferroelectric phases as well as various domain variants of
187 ferroelectric phases. For example, the six domain variants of the tetragonal ferroelectric phase and
188 cubic paraelectric phase can be represented by $(\pm P_1, 0, 0)$, $(0, \pm P_2, 0)$, $(0, 0, \pm P_3)$, and $(0, 0, 0)$,
189 respectively. For improper/incipient ferroelectric materials, such as SrTiO₃ (STO), multiple
190 coupled soft modes are required to drive phase transitions⁶⁸, necessitating additional sets of
191 structural order parameters, e.g., a pseudovector order parameter $\mathbf{Q} = (Q_1, Q_2, Q_3)$, to represent the
192 antiferrodistortive phase transition characterized by the oxygen octahedral tilt. To account for
193 antiferroelectric transitions such as those in NNO, another order parameter for the antipolar
194 ordering is required⁶⁹.

195 The thermodynamic free energy of an inhomogeneous ferroelectric can be formulated as a
196 functional of the order parameters. The widely adopted Landau-Ginzburg-Devonshire (LGD)
197 model employs a high-order polynomial of the order parameters to describe the bulk chemical
198 contribution. The polynomial form adheres to the symmetry requirements derived from group-
199 subgroup analyses⁷⁰. The coefficients of the polynomial, which depend on the temperature and
200 chemical composition, can be determined by fitting experimental data or by first-principles
201 calculations. The short-range interactions of the order parameters are often approximated as a
202 quadratic term of the spatial gradient of the order parameters, with material-dependent coefficients
203 related to the domain wall energy. In addition, coupling effects between the order parameters and
204 mechanical stress/strain can be incorporated as nonlinear effects, such as electrostriction, along
205 with nonlocal effects, such as flexoelectricity⁷¹.

206 Completing the phase-field model requires a kinetic description that governs the time
207 evolution of the order parameters driven by the thermodynamic forces. Relaxational kinetics, such

208 as the time-dependent Ginzburg-Landau equation, are often assumed to efficiently attain
209 equilibrium states. The mobility coefficient is typically assumed constant for simplicity, whereas
210 generalized nonlinear kinetic models with mobility dependent on driving forces have also been
211 proposed⁷². Alternative dynamical models, such as the Klein-Gordon type equation, are adopted
212 to capture ultrafast polarization dynamics induced by strong external stimuli⁷³. These dynamical
213 models are supplemented by elastodynamic and electrodynamic equations^{74,75}, as the assumptions
214 of mechanical and electrical equilibria do not hold.

215 Choosing appropriate boundary conditions for the time-dependent equations of the order
216 parameters and associated equilibrium equations is crucial. Three-dimensional boundaries are
217 standard for bulk ferroelectric crystals⁷⁶, while finite-size systems like epitaxial thin films require
218 tailored boundary conditions at the film surface and film-substrate interface^{77,78}. Additionally,
219 numerical methods for space discretization and time integration significantly influence the
220 efficiency of solving the phase-field equations. Detailed discussions on these methods can be found
221 in specialized review articles and literature^{36,79,80}.

222 **4 Theoretical studies on ferroelectric KNN epitaxial thin films**

223 This section reviews recent theoretical advancements in understanding ferroelectric phases
224 and transitions, domain and domain wall structures, and their influence on the macroscopic
225 properties of KNN thin films. We focus on the development of thermodynamic models,
226 construction of strain phase diagrams, and analyses of domain and superdomain structures using
227 phase-field simulations.

228 **4.1 Thermodynamic Model of KNN**

229 A robust thermodynamic model forms the basis for phase-field modeling of ferroelectric
230 materials like KNN. Liang *et al.*⁸¹ developed an eighth-order LGD model for KNO, parameterized
231 against experimental data for phase transition temperatures, dielectric permittivity, and
232 piezoelectric coefficients⁸². This model was extended³² to the K-rich side of KNN with $x = 0.5 \sim$
233 1.0. Using the thermodynamic model of KNN, various structural and thermodynamic properties
234 can be calculated for KNN bulk crystals and thin films based on the monodomain assumption⁸³,
235 including phase transition temperatures³³, spontaneous polarization and strains^{32,84}, electrocaloric
236 coefficients^{34,85}, dielectric constants⁸⁵, and piezoelectric coefficients^{33,35,84}.

237 In contrast, a thermodynamic model for the Na-rich side of KNN remains elusive. The gap
238 is likely due to the involvement of oxygen octahedral tilts for the NNO-rich side of the phase
239 diagram (c.f. Figure 1d). Recent efforts by Hadaeghi *et al.* introduced a first-principles-based
240 LGD-type model capable of describing ferroelectric-to-antiferroelectric phase transitions in Na-
241 rich KNN using three coupled order parameters⁸⁶. Nevertheless, the coupling coefficients of the
242 order parameters to strains have not yet been determined, which limits its application to strained
243 NNO thin films⁸⁷. The coupling between the order parameters and the electric field is also critical
244 in modeling the electric-field-induced antiferroelectric-to-ferroelectric transition in NNO⁸⁸.

245 **4.2 Constructing strain phase diagrams**

246 Strain phase diagrams are essential for predicting phase equilibria and selecting substrate
247 materials for the desired properties of ferroelectric thin films. The temperature–strain phase
248 diagram is adequate for describing the phase equilibria of thin films subjected to biaxial isotropic
249 misfit strains, while for films subjected to biaxial anisotropic strains, the misfit strain–misfit strain
250 diagram at room temperature is necessary. Various theoretical approaches have been employed,

251 including first-principles calculations^{87,89}, thermodynamic calculations^{33,84,85,90,91}, and phase-field
252 simulations^{37,38}, to establish the strain phase diagrams of KNN.

253 The first-principles calculation-based method is predictive but generally limited to
254 monodomain states. Dieguez *et al.*⁸⁹ calculated the *ab initio* phase diagram in terms of uniaxial
255 stress and biaxial isotropic strain for KNO and NNO. It is predicted that the ferroelectric phase
256 evolves from the *c*-phase to *r*-phase (corresponding to M_A or M_B-phase in our notation) and to *aa*-
257 phase (corresponding to *a*₁*a*₂-phase in our notation) when the strain varies from compressive to
258 tensile⁸⁹. This trend has been verified in experiments for NNO thin films⁵⁹. Very recently, other
259 ground states of NNO under strains have been revealed by first-principles calculation⁸⁷. In addition,
260 atomistic simulation-based approaches have been utilized to construct the strain phase diagrams
261 for other ferroelectric materials^{92,93}, while their employment for KNN thin films requires the
262 development of well-parametrized effective Hamiltonian functionals or interatomic potentials for
263 the system.

264 The thermodynamic calculations are usually based on *a priori* assumption on the domain
265 states^{83,94}. The monodomain strain phase diagrams of KNO^{30,90} and KNN thin films^{33,84,85,91} have
266 been established using the thermodynamic models of bulk KNN^{32,81}, as shown in Figure 3a,b. The
267 sequence of phase evolution by varying the strain from compressive to tensile is identical to the
268 prediction of first-principles calculations at *T* = 0 K. The monodomain phase diagram agrees well
269 with experiments predicting the orthorhombic *c*-phase of KNN⁷⁰ on DSO⁵¹ and the M_A-phase
270 KNN on STO at high temperature⁴⁹. The strain phase diagrams can also be established using the
271 thermodynamic theory for polydomains⁹⁵, yet its application to the KNN systems has not been
272 reported.

273 The strain phase equilibrium theory^{96,97} provides an alternative way to construct the strain
274 phase diagram based on thermodynamics without assuming *a priori* multiphase/multidomain
275 states. Using this method, Wang *et al.* obtained the polydomain strain phase diagrams of KNN
276 subject to biaxially misfit strains⁹⁸, as shown in Figure 3d. Compared with the monodomain strain
277 phase diagrams, the polydomain strain diagram reveals phase coexistence between the a_{1c} , a_{2c} ,
278 and a_{1a2} -phases at low-strain states of KNN, which is consistent with the observation of M_C - and
279 a_{1a2}/M_C -phases^{53,56}. The application of the strain phase equilibrium theory to the temperature-
280 strain phase diagrams of KNN has also shown similarities to the diagram constructed using the
281 phase-field approach⁹⁹.

282 Phase-field simulations complement the above approaches by providing detailed phase
283 diagrams under varying strains and temperatures, offering additional insights into the domain
284 structures. The obtained temperature-strain³⁷ and strain-strain phase diagrams³⁸ of KNN are
285 shown in Figure 3e,f. Though computationally intensive, the diagrams obtained by phase-field
286 simulations can accurately reproduce experimental observations and predict potential new domain
287 structures not yet reported, thus providing a deeper understanding of phase transitions and
288 microstructure evolution in KNN thin films.

289 **4.3 Domains, domain walls, and superdomains at equilibrium**

290 Strained KNN thin films can develop multiple ferroelastic domain variants to relieve the
291 mechanical energy. Phase-field simulations are instrumental in modeling these complex systems
292 and considering inhomogeneous stress distributions, electrical boundary conditions, and domain
293 wall energies. Wang and Zhou *et al.*^{37,38} utilized phase-field simulations to predict three-
294 dimensional domain structures in KNN thin films under various strains and temperatures, revealing
295 stripe-like and herringbone-like domain patterns of monoclinic KNN thin films akin to

296 experimental observations. It is further predicted that the herringbone-like domains of
297 $K_{0.9}Na_{0.1}NbO_3$ thin films can transform into stripe-like domains of the orthorhombic a_1/a_2 -phase,
298 which is verified by experiments^{57,67} (Figure 2c – f). Notably, the three-dimensional model of the
299 domains is essential for acquiring the correct picture of the equilibrium domain arrangement of
300 KNN thin films. For conventional domain structures of (001)-oriented tetragonal or rhombohedral
301 thin films, the domain wall planes are parallel to the low-index planes, e.g., $(110)_{pc}$ or $(101)_{pc}$. In
302 contrast, the domain wall plane of monoclinic KNN thin films is inclined with respect to both the
303 in-plane and out-of-plane directions of the film.

304 To gain insights into the unconventional domain walls of the monoclinic KNN films, Wang
305 *et al.* performed phase-field simulations using preset regular polydomains of the M_C - and a_1a_2/M_C -
306 phases to obtain the domain wall planes at equilibrium⁹⁸ (Figure 4a,b). It is found that the domain
307 walls in both cases are tilted with respect to the horizontal and vertical directions of the film, as
308 shown in Figure 4a,b. The tilt angles depend on the value of the electrostrictive coefficients,
309 especially the shear component Q_{44} . Measuring Q_{44} of KNN from bulk crystals is challenging; thus,
310 different values were assumed in the literature^{33,34,37}. A theoretical approach combining the strain
311 phase equilibrium theory and microelasticity analysis was used to extract plausible Q_{44} and
312 reproduce the domain wall tilt angles as a function of compositions, consistent with experiments
313⁹⁸ (Figure 4c,d). These findings suggest that the phase-field simulation is useful for predicting the
314 domain structures and accurately identifying the domain wall orientations for low-symmetry
315 ferroelectrics⁶⁵.

316 Superdomain structures featured by hierarchical assemblies of domain variants with
317 periodicities at different length scales¹⁰⁰ have been identified in KNN thin films. These structures,
318 observed in the M_C - and a_1a_2/M_C -phases, pose challenges in understanding their structural

319 relationship to their composing domain variants and the local features at the junctions, i.e., the
320 superdomain wall. To answer these questions, Zhou *et al.*³⁸ performed systematic phase-field
321 simulations to identify the low-energy superdomain structures. The two most stable superdomain
322 structures of the M_C - and a_1a_2/M_C -phases are shown in Figure 5. It is found that the superdomain
323 walls of the M_C -phase contain disrupted polarization vectors in the cross-section, resulting in a
324 three-time larger superdomain wall width than that of the a_1a_2/M_C -phase. The different local
325 polarization structures of the superdomain walls may also explain why the superdomain walls of
326 the a_1a_2/M_C -phase are straight and regular⁵⁵ while those of the M_C -phase are zigzag and disordered^{51,52}.
327 Additionally, the superdomain structures may exhibit unique functional properties. As
328 suggested by phase-field simulations³⁹, the superdomain walls show enhanced local piezoelectric
329 responses. For example, by controlling the periodicity of superdomains, the effective piezoelectric
330 coefficient of a_1a_2/M_C -phase KNN films can be improved by 20% and the dielectric permittivity
331 by 40%, as shown in Figure 6.

332 In addition, we point out a few unaddressed questions regarding the domain structures of
333 ferroelectric KNN thin films. First, the formation conditions of some domain morphology
334 observed in experiments have not yet been well understood, such as the checkerboard-like domains
335 in 52 nm $K_{0.9}Na_{0.1}NbO_3$ thin films on NSO⁶⁴ and the stripe-like domains consisting of 180°
336 domain walls in M_A -phase $K_{0.75}Na_{0.25}NbO_3$ on TSO^{101,102}. Second, the formation mechanism of
337 the a_1a_2/M_C superdomains in anisotropically strained KNN thin films is not fully clear. In
338 experiments, only one set of ferroelastic domain variants of the M_C -phase, e.g., a_2c , appear in the
339 superdomains, resulting in biased in-plane polarization along the $[1\bar{1}0]_0$ of the scandate substrate.
340 In the phase-field simulations⁹⁸, however, it requires anisotropic misfit strains as large as $|\varepsilon_{xx} - \varepsilon_{yy}|$
341 $\approx 1.0\%$ to stabilize such domain structures, compared to the experimental misfit strain offered by

342 NSO at around 0.3%³⁰. In other words, the anisotropic misfit strain alone cannot explain the
343 preference of the a_{2c} -phase over the a_1c -phase in forming a_1a_2/M_C superdomains. It is suspected
344 there is self-poling of the in-plane polarization during the film growth associated with the intrinsic
345 structural anisotropy of the (110)_O surface of the scandate substrate, which has also been reported
346 in BFO epitaxial thin films on similar substrates¹⁰³. Further insights need to be gained to address
347 this discrepancy. Third, most of the KNN films reported in experiments so far are grown on
348 substrates without a bottom electrode, while existing phase-field simulations of KNN thin films
349 assume short-circuit boundary conditions at the film surface and the interface between the film
350 and substrates^{37-39,98}. It is important to perform a systematic study to comprehensively evaluate
351 the influence of electrical boundary conditions on the formation of domain and superdomain
352 structures.

353 **5 Perspectives and Summary**

354 **5.1 Ferroelectric NNO thin films**

355 While experimental studies on ferroelectric phases and domains in NNO thin films have
356 been conducted, phase-field simulations have primarily focused on the K-rich side of KNN^{37-39,98}.
357 This disparity arises from lacking a comprehensive thermodynamic model that describes the
358 antiferrodistortive, ferroelectric, and antiferroelectric ordering coupled with stress and electric
359 fields. Recent efforts in modeling other antiferroelectric perovskite oxides¹⁰⁴, such as PbZrO₃
360 (PZO)⁶⁹ and Sm-doped BFO¹⁰⁵, provide a potential roadmap for adapting similar models to NNO.
361 Notably, relaxor-like behaviors observed in NNO¹⁰⁶ and KNN thin films^{107,108} are intriguing yet
362 remain poorly understood, suggesting a need for unified thermodynamic models encompassing the
363 local structural disorders¹⁰⁹⁻¹¹¹.

364 **5.2 Topological polar structures**

365 Emerging research on topological polar structures, such as polar vortices and skyrmions,
366 has captivated the ferroelectric community since their discovery in the heterostructures of
367 perovskite oxides^{112,113}. Exploring whether similar and novel topological polar structures can
368 manifest in KNN-based thin films and heterostructures is an enticing prospect, as implied in the
369 recent discovery of polar topological bubbles in KNN-based ceramics¹¹⁴. The delicate interplay
370 between bulk, mechanical, and electrical energies may facilitate the formation of these structures
371 in KNN-based superlattices with paraelectric materials such as STO and KTaO₃. Moreover,
372 ferroelectric-antiferroelectric superlattices¹⁰⁴ have enabled unprecedented electromechanical
373 responses. As KNN solid solutions can host ferroelectric and antiferroelectric phases by
374 compositional tuning, it is interesting to investigate the feasibility of KNN-based ferroelectric-
375 antiferroelectric superlattices¹⁰⁴. Along this direction, the theoretical prediction of the multi-
376 dimensional phase diagrams of these heterostructures using phase-field simulations^{115,116} would
377 be beneficial for guiding the experimental exploration.

378 **5.3 Domain switching and domain wall dynamics**

379 Despite recent advances in understanding the equilibrium domain structures of KNN thin
380 films, studies on the dynamical behavior of domains and domain walls remain relatively limited,
381 both theoretically¹¹⁷ and experimentally^{25,118}. Recent work has shown the reversible in-plane and
382 out-of-plane polarization switching in M_C-phase KNN thin films with SrRuO₃ bottom electrodes
383 using electric bias via a scanning probe¹¹⁸. Future investigations should focus on systematic studies
384 of their domain switching dynamics using phase-field simulations and experimental validations.
385 Additionally, exploring mechanical switching of domains, as demonstrated in other ferroelectric

386 materials like BTO¹¹⁹, PbZr_{0.2}Ti_{0.8}O₃¹²⁰, and BFO thin films¹²¹, presents an intriguing avenue for
387 investigating bidirectional and multistate switching possibilities in KNN thin films.

388 **6 Summary**

389 We reviewed recent advances in understanding the ferroelectric phase equilibria, phase
390 transitions, and equilibrium domain structures of KNN epitaxial thin films, underscoring the
391 pivotal role of phase-field simulations in gaining deep insights. The simulations have facilitated
392 accurate prediction of strain phase diagrams, reconstruction of complex three-dimensional domain
393 configurations, identification of domain wall orientations, and evaluation of the domain size effects
394 on the piezoelectric coefficients, which have significantly advanced our understanding of
395 ferroelectric KNN thin films. Challenges and opportunities lie ahead in refining thermodynamic
396 models for NNO and Na-rich KNN to explore the antiferroelectric phases and domains, employing
397 phase-field approaches to explore the topological polar textures in KNN-based heterostructures,
398 and theoretically elucidating the dynamic behavior of KNN thin films.

399 To overcome these challenges, we believe that integration between atomistic and
400 mesoscale methods, innovation in phase-field methodology, and proper use of machine learning
401 techniques are of key importance. For example, the parameterization of a phase-field model of
402 ferroelectric materials is often based on empirical fitting of materials properties measured in
403 experiments, which limits its timely applicability to new ferroelectric materials or solid-solutions
404 of known materials^{122,123}. The machine-learning interatomic potential allows for exploring
405 structural dynamics and functional properties at finite temperatures with quantum accuracy and
406 can be utilized to determine phase-field parameters of ferroelectric materials from *ab initio*^{124,125}.
407 The recently developed multiphase-field model for ferroelectrics offers another avenue for

408 studying ferroelectric behavior without resorting to the LGD model¹²⁶. Machine learning surrogate
409 models can be used to accelerate the construction of strain phase diagrams and prediction of
410 ferroelectric behaviors under various operation^{127,128}. We anticipate the successful implementation
411 of these emerging techniques to study KNN-based ferroelectrics in the near future. In addition,
412 joint efforts between theoretical modeling and experimental investigations are indispensable to
413 uncover new physics and unlock new functionalities of KNN-based crystals¹²⁹ and thin films¹³⁰,
414 paving the way for their advanced applications in diverse technological domains.

415 **Acknowledgments**

416 Part of this work was performed under the auspices of the U.S. Department of Energy by
417 Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. L.-Q. C.
418 acknowledges support from the National Science Foundation (NSF) through Grant No. DMR-
419 2133373. M.-J. Z. acknowledges support from the NSF of China (Grant No.52102141).

420 **Data Availability Statement**

421 Data sharing is not applicable to this article as no new data were created or analyzed in this
422 study.

423 **Conflict of Interest Statement**

424 On behalf of all authors, the corresponding author states that there is no conflict of interest.

425 **Authors Contributions**

426 B. W. had the idea for the article. B. W. performed the literature search and drafted the
427 manuscript. B. W. and M. Z. prepared for the figures. M. Z., T. Y., and L.-Q. C. critically revised
428 the work. All authors read and approved the final manuscript

429 **Funding**

430 This work was funded by the U.S. Department of Energy by Lawrence Livermore National
431 Laboratory under Contract DE-AC52-07NA27344; the National Science Foundation (NSF)
432 through Grant No. DMR- 2133373; and NSF of China (Grant No.52102141).

433

434 **References**

- 435 1. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H.
436 Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T.
437 Yamada, and S. Streiffer: Ferroelectric thin films: Review of materials, properties, and
438 applications. *Journal of Applied Physics* **100**(5), 051606 (2006).
- 439 2. D. Damjanovic: Ferroelectric, dielectric and piezoelectric properties of ferroelectric
440 thin films and ceramics. *Rep. Prog. Phys.* **61**(9), 1267 (1998).
- 441 3. J. Ryu, M. Peddigari, B. Wang, R. Wang, W.-H. Yoon, J. Jang, H. Lee, K. Song, G.-T.
442 Hwang, and K. Wang: Artificially tailored relaxor ferroelectrics for high energy density
443 capacitors. (2022).
- 444 4. U. K. Bhaskar, N. Banerjee, A. Abdollahi, Z. Wang, D. G. Schlom, G. Rijnders, and G.
445 Catalan: A flexoelectric microelectromechanical system on silicon. *Nature Nanotech*
446 **11**(3), 263 (2016).
- 447 5. B. W. Wessels: Ferroelectric Epitaxial Thin Films for Integrated Optics. *Annu. Rev.*
448 *Mater. Res.* **37**(1), 659 (2007).
- 449 6. J. F. Scott and C. A. P. D. Araujo: Ferroelectric Memories. *Science, New Series*
450 **246**(4936), 1400 (1989).

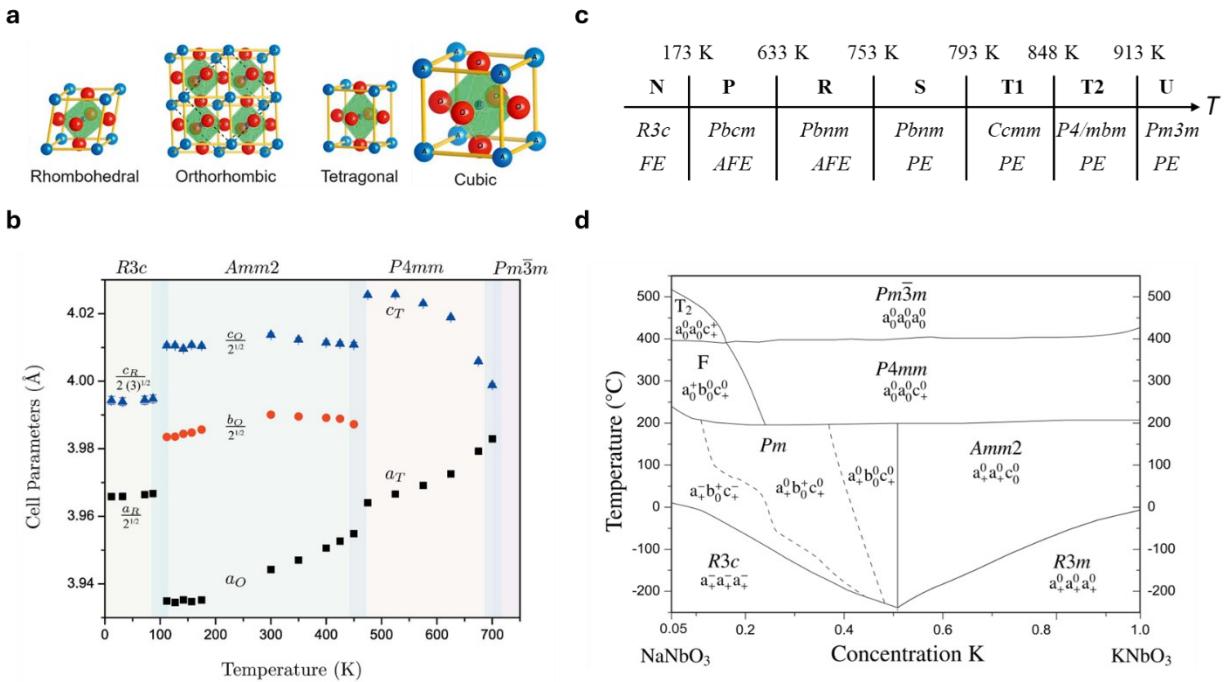
- 451 7. D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh,
452 and R. Uecker: Elastic strain engineering of ferroic oxides. *MRS Bull.* **39**(2), 118 (2014).
- 453 8. V. Nagarajan, C. S. Ganpule, B. Nagaraj, S. Aggarwal, S. P. Alpay, A. L. Roytburd, E. D.
454 Williams, and R. Ramesh: Effect of mechanical constraint on the dielectric and
455 piezoelectric behavior of epitaxial $\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3(90\%)$ – $\text{PbTiO}_3(10\%)$ relaxor thin
456 films. *Applied Physics Letters* **75**(26), 4183 (1999).
- 457 9. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen,
458 X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom: Enhancement of
459 Ferroelectricity in Strained BaTiO_3 Thin Films. *Science* **306**(5698), 1005 (2004).
- 460 10. D. Sando, A. Barthélémy, and M. Bibes: BiFeO_3 epitaxial thin films and devices: past,
461 present and future. *J. Phys.: Condens. Matter* **26**(47), 473201 (2014).
- 462 11. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H.
463 Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V.
464 Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh: A
465 Strain-Driven Morphotropic Phase Boundary in BiFeO_3 . *Science* **326**(5955), 977
466 (2009).
- 467 12. A. W. Hewat: Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions
468 in perovskite potassium niobate: neutron powder profile refinement of the structures.
469 *J. Phys. C: Solid State Phys.* **6**(16), 2559 (1973).
- 470 13. S. L. Skjærvø, K. Høydalsvik, A. B. Blichfeld, M.-A. Einarsrud, and T. Grande: Thermal
471 evolution of the crystal structure and phase transitions of KNbO_3 . *R. Soc. open sci.*
472 **5**(6), 180368 (2018).
- 473 14. N. Ishizawa, J. Wang, T. Sakakura, Y. Inagaki, and K. Kakimoto: Structural evolution of
474 $\text{Na}_0.5\text{K}_0.5\text{NbO}_3$ at high temperatures. *Journal of Solid State Chemistry* **183**(11), 2731
475 (2010).
- 476 15. B. Orayech, A. Faik, G. A. López, O. Fabelo, and J. M. Igartua: Mode-crystallography
477 analysis of the crystal structures and the low- and high-temperature phase transitions
478 in $\text{Na}_{0.5}\text{K}_{0.5}\text{NbO}_3$. *J Appl Crystallogr* **48**(2), 318 (2015).
- 479 16. A. M. Glazer and H. D. Megaw: Studies of the lattice parameters and domains in the
480 phase transitions of NaNbO_3 . *Acta Cryst A* **29**(5), 489 (1973).
- 481 17. R. H. Dungan and R. D. Golding: Metastable Ferroelectric Sodium Niobate. *Journal of*
482 *the American Ceramic Society* **47**(2), 73 (1964).
- 483 18. D. W. Baker, P. A. Thomas, N. Zhang, and A. M. Glazer: A comprehensive study of the
484 phase diagram of $\text{K}_x\text{Na}_1-x\text{NbO}_3$. *Appl. Phys. Lett.* **95**(9), 091903 (2009).
- 485 19. H. Jaffe: Piezoelectric ceramics. *Journal of the American Ceramic Society* **41**(11), 494
486 (1958).
- 487 20. A. N. Morozovska, D. V. Karpinsky, D. O. Alikin, A. Abramov, E. A. Eliseev, M. D.
488 Glinchuk, A. D. Yaremkevich, O. M. Fesenko, T. V. Tsebrienko, A. Pakalniškis, A.
489 Kareiva, M. V. Silibin, V. V. Sidski, S. V. Kalinin, and A. L. Kholkin: A combined
490 theoretical and experimental study of the phase coexistence and morphotropic
491 boundaries in ferroelectric-antiferroelectric-antiferrodistortive multiferroics. *Acta*
492 *Materialia* **213**, 116939 (2021).
- 493 21. J. Rödel and J.-F. Li: Lead-free piezoceramics: Status and perspectives. *MRS Bull.*
494 **43**(8), 576 (2018).

- 495 22. J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao: (K,Na)NbO₃ -Based Lead-Free
496 Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining
497 Challenges. *J. Am. Ceram. Soc.* **96**(12), 3677 (2013).
- 498 23. L. Hao, Y. Yang, Y. Huan, H. Cheng, Y.-Y. Zhao, Y. Wang, J. Yan, W. Ren, and J. Ouyang:
499 Achieving a high dielectric tunability in strain-engineered tetragonal K0.5Na0.5NbO3
500 films. *npj Comput Mater* **7**(1), 62 (2021).
- 501 24. H. Liu, H. Wu, K. P. Ong, T. Yang, P. Yang, P. K. Das, X. Chi, Y. Zhang, C. Diao, W. K. A.
502 Wong, E. P. Chew, Y. F. Chen, C. K. I. Tan, A. Rusydi, M. B. H. Breese, D. J. Singh, L.-Q.
503 Chen, S. J. Pennycook, and K. Yao: Giant piezoelectricity in oxide thin films with
504 nanopillar structure. *Science* **369**(6501), 292 (2020).
- 505 25. X. Yuan, K. Okamoto, M. Kawano, M. Yoshino, T. Nagasaki, Y. Imai, O. Sakata, and T.
506 Yamada: Extraordinarily Large Contribution Ratio of Ferroelastic Domain Switching to
507 Piezoresponse in Monoclinic (K, Na)NbO3 Films. *Advanced Electronic Materials* **10**(1),
508 2300405 (2024).
- 509 26. S. Liang, D. Finck, M. W. Neis, J. Schwarzkopf, D. Mayer, and R. Wördenweber: SAW
510 gas sensor based on extremely thin strain-engineered K0.7Na0.3NbO3 films. *Applied
511 Physics Letters* **119**(11), 112905 (2021).
- 512 27. A. Dejneka and M. Tyunina: Elasto-optic behaviour in epitaxial films of perovskite
513 oxide ferroelectrics. *Advances in Applied Ceramics* **117**(1), 62 (2018).
- 514 28. J. Koruza, H. Liu, M. Höfling, M.-H. Zhang, and P. Veber: (K,Na)NbO3-based
515 piezoelectric single crystals: Growth methods, properties, and applications. *Journal of
516 Materials Research* **35**(8), 990 (2020).
- 517 29. S.-W. Zhang, Z. Zhou, J. Luo, and J.-F. Li: Potassium-Sodium-Niobate-Based Thin
518 Films: Lead Free for Micro-Piezoelectrics. *Annalen der Physik* **531**(7), 1800525 (2019).
- 519 30. J. Schwarzkopf, D. Braun, M. Hanke, R. Uecker, and M. Schmidbauer: Strain
520 Engineering of Ferroelectric Domains in K_xNa_{1-x}NbO₃ Epitaxial Layers. *Front. Mater.*
521 **4**, 26 (2017).
- 522 31. S. R. Burns and M. R. Dolgos: Sizing up (K 1-x Na x)NbO 3 films: a review of synthesis
523 routes, properties & applications. *New Journal of Chemistry* **45**(17), 7408 (2021).
- 524 32. H. Pohlmann, J.-J. Wang, B. Wang, and L.-Q. Chen: A thermodynamic potential and the
525 temperature-composition phase diagram for single-crystalline K_{1-x}Na_xNbO₃ (0 ≤ x ≤
526 0.5). *Appl. Phys. Lett.* **110**(10), 102906 (2017).
- 527 33. M.-J. Zhou, J.-J. Wang, L.-Q. Chen, and C.-W. Nan: Strain, temperature, and electric-
528 field effects on the phase transition and piezoelectric responses of K_{0.5}Na_{0.5}NbO₃
529 thin films. *Journal of Applied Physics* **123**(15), 154106 (2018).
- 530 34. X. Zhao, J.-J. Wang, and L.-Q. Chen: A thermodynamic study of phase transitions and
531 electrocaloric properties of K0.5Na0.5NbO3 single crystals. *Applied Physics Letters*
532 **116**(9), 092902 (2020).
- 533 35. W. Li, C. Chen, G. Xie, and Y. Su: Optimizing K0.5Na0.5NbO3 Single Crystal by
534 Engineering Piezoelectric Anisotropy. *Nanomaterials* **11**(7), 1753 (2021).
- 535 36. L.-Q. Chen: Phase-Field Method of Phase Transitions/Domain Structures in
536 Ferroelectric Thin Films: A Review. *J American Ceramic Society* **91**(6), 1835 (2008).

- 537 37. B. Wang, H.-N. Chen, J.-J. Wang, and L.-Q. Chen: Ferroelectric domain structures and
538 temperature-misfit strain phase diagrams of $K_{1-x}Na_xNbO_3$ thin films: A phase-field
539 study. *Appl. Phys. Lett.* **115**(9), 092902 (2019).
- 540 38. M.-J. Zhou, B. Wang, A. Ladera, L. Bogula, H.-X. Liu, L.-Q. Chen, and C.-W. Nan: Phase
541 diagrams, superdomains, and superdomain walls in $KNa1-NbO_3$ epitaxial thin films.
542 *Acta Materialia* **215**, 117038 (2021).
- 543 39. M.-J. Zhou, B. Wang, K. Peng, H.-X. Liu, L.-Q. Chen, and C.-W. Nan: Phase-field
544 simulation of domain size effect on dielectric and piezoelectric responses in
545 $K0.5Na0.5NbO_3$ epitaxial thin films with superdomain structures. *Acta Materialia* **248**,
546 118777 (2023).
- 547 40. I. Fujii, S. Tagata, T. Nakao, N. Koyama, H. Adachi, and T. Wada: Fabrication of
548 $(K,Na)NbO_3$ films on $SrRuO_3/(001)SrTiO_3$ substrates by pulsed laser deposition. *Jpn.*
549 *J. Appl. Phys.* **54**(10S), 10NA13 (2015).
- 550 41. S. Pradhan, M. Rath, A. David, D. Kumar, W. Prellier, and M. S. R. Rao: Thickness-
551 Dependent Domain Relaxation Dynamics Study in Epitaxial $K0.5Na0.5NbO_3$
552 Ferroelectric Thin Films. *ACS Appl. Mater. Interfaces* **13**(30), 36407 (2021).
- 553 42. C. Groppi, F. Maspero, M. Asa, G. Pavese, C. Rinaldi, E. Albisetti, M. Badillo-Avila, and
554 R. Bertacco: Spontaneous pattern of orthogonal ferroelectric domains in epitaxial
555 KNN films. *Journal of Applied Physics* **134**(20), 204102 (2023).
- 556 43. R. Xu, K. J. Crust, V. Harbola, R. Arras, K. Y. Patel, S. Prosandeev, H. Cao, Y.-T. Shao, P.
557 Behera, L. Caretta, W. J. Kim, A. Khandelwal, M. Acharya, M. M. Wang, Y. Liu, E. S.
558 Barnard, A. Raja, L. W. Martin, X. W. Gu, H. Zhou, R. Ramesh, D. A. Muller, L. Bellaiche,
559 and H. Y. Hwang: Size-Induced Ferroelectricity in Antiferroelectric Oxide Membranes.
560 *Advanced Materials* **35**(17), 2210562 (2023).
- 561 44. T. Shiraishi, H. Einishi, S. Yasui, M. Ishikawa, T. Hasegawa, M. Kurosawa, H. Uchida, Y.
562 Sakashita, and H. Funakubo: Growth of Epitaxial 100-Oriented $KNbO_3-NaNbO_3$ Solid
563 Solution Films on $(100)_c SrRuO_3 \parallel (100)SrTiO_3$ by Hydrothermal Method and Their
564 Characterization. *Jpn. J. Appl. Phys.* **50**(9S2), 09ND11 (2011).
- 565 45. K. Suenaga, K. Shibata, K. Watanabe, A. Nomoto, F. Horikiri, and T. Mishima: Effect of
566 Lattice Strain and Improvement of the Piezoelectric Properties of $(K,Na)NbO_3$ Lead-
567 Free Film. *Jpn. J. Appl. Phys.* **49**(9S), 09MA05 (2010).
- 568 46. G. Tan, S. H. Kweon, K. Shibata, T. Yamada, and I. Kanno: In Situ XRD Observation of
569 Crystal Deformation of Piezoelectric $(K,Na)NbO_3$ Thin Films. *ACS Appl. Electron.*
570 *Mater.* **2**(7), 2084 (2020).
- 571 47. K. Tanaka, Y. Kawata, S. H. Kweon, G. Tan, T. Yoshimura, and I. Kanno: Crystal structure
572 and piezoelectric properties of lead-free epitaxial $(K,Na)NbO_3$ thin films grown on Si
573 substrates. *Applied Physics Letters* **121**(17), 172901 (2022).
- 574 48. K.-N. Pham, N. H. Gaukås, M. Morozov, T. Tybell, P. E. Vullum, T. Grande, and M.-A.
575 Einarsrud: Epitaxial $K_{0.5}Na_{0.5}NbO_3$ thin films by aqueous chemical solution
576 deposition. *R. Soc. open sci.* **6**(1), 180989 (2019).
- 577 49. J. Luo, W. Sun, Z. Zhou, H.-Y. Lee, K. Wang, F. Zhu, Y. Bai, Z. J. Wang, and J.-F. Li:
578 Monoclinic $(K,Na)NbO_3$ Ferroelectric Phase in Epitaxial Films. *Advanced Electronic*
579 *Materials* **3**(10), 1700226 (2017).

- 580 50. P.-E. Janolin: Strain on ferroelectric thin films: Example of $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$. *J Mater Sci*
581 **44**(19), 5025 (2009).
- 582 51. L. von Helden, L. Bogula, P.-E. Janolin, M. Hanke, T. Breuer, M. Schmidbauer, S.
583 Ganschow, and J. Schwarzkopf: Huge impact of compressive strain on phase
584 transition temperatures in epitaxial ferroelectric $\text{K}_x\text{Na}_{1-x}\text{NbO}_3$ thin films. *Appl. Phys.*
585 **Lett.** **114**(23), 232905 (2019).
- 586 52. Y. Wang, S. Bin Anooz, G. Niu, M. Schmidbauer, L. Wang, W. Ren, and J. Schwarzkopf:
587 Thickness effect on ferroelectric domain formation in compressively strained $\text{K}_{0.65}$
588 $\text{Na}_{0.35}\text{NbO}_3$ epitaxial films. *Phys. Rev. Materials* **6**(8), 084413 (2022).
- 589 53. L. von Helden, M. Schmidbauer, S. Liang, M. Hanke, R. Wördenweber, and J.
590 Schwarzkopf: Ferroelectric monoclinic phases in strained $\text{K}_{0.70}\text{Na}_{0.30}\text{NbO}_3$ thin films
591 promoting selective surface acoustic wave propagation. *Nanotechnology* **29**(41),
592 415704 (2018).
- 593 54. J. Luo, W. Sun, Z. Zhou, Y. Bai, Z. J. Wang, G. Tian, D. Chen, X. Gao, F. Zhu, and J.-F. Li:
594 Domain Evolution and Piezoelectric Response across Thermotropic Phase Boundary
595 in $(\text{K},\text{Na})\text{NbO}_3$ -Based Epitaxial Thin Films. *ACS Appl. Mater. Interfaces* **9**(15), 13315
596 (2017).
- 597 55. D. Braun, M. Schmidbauer, M. Hanke, and J. Schwarzkopf: Hierarchy and scaling
598 behavior of multi-rank domain patterns in ferroelectric $\text{K}_{0.9}\text{Na}_{0.1}\text{NbO}_3$ strained films.
599 *Nanotechnology* **29**(1), 015701 (2018).
- 600 56. M. Schmidbauer, D. Braun, T. Markurt, M. Hanke, and J. Schwarzkopf: Strain
601 engineering of monoclinic domains in $\text{K}_x\text{Na}_{1-x}\text{NbO}_3$ epitaxial layers: a pathway to
602 enhanced piezoelectric properties. *Nanotechnology* **28**(24), 24LT02 (2017).
- 603 57. M. Schmidbauer, L. Bogula, B. Wang, M. Hanke, L. von Helden, A. Ladera, J.-J. Wang,
604 L.-Q. Chen, and J. Schwarzkopf: Temperature dependence of three-dimensional
605 domain wall arrangement in ferroelectric $\text{K}_{0.9}\text{Na}_{0.1}\text{NbO}_3$ epitaxial thin films. *Journal*
606 *of Applied Physics* **128**(18), 184101 (2020).
- 607 58. J. Schwarzkopf, D. Braun, M. Schmidbauer, A. Duk, and R. Wördenweber: Ferroelectric
608 domain structure of anisotropically strained NaNbO_3 epitaxial thin films. *Journal of*
609 *Applied Physics* **115**(20), 204105 (2014).
- 610 59. J. Schwarzkopf, M. Schmidbauer, T. Remmele, A. Duk, A. Kwasniewski, S. Bin Anooz,
611 A. Devi, and R. Fornari: Strain-induced phase transitions in epitaxial NaNbO_3 thin
612 films grown by metal-organic chemical vapour deposition. *J Appl Crystallogr* **45**(5),
613 1015 (2012).
- 614 60. M. Schmidbauer, J. Sellmann, D. Braun, A. Kwasniewski, A. Duk, and J. Schwarzkopf:
615 Ferroelectric domain structure of NaNbO_3 epitaxial thin films grown on (110) DyScO_3
616 substrates. *physica status solidi (RRL) – Rapid Research Letters* **8**(6), 522 (2014).
- 617 61. T. Schneider, J. Cardoletti, P. Komissinskiy, and L. Alff: Impact of Strain Engineering on
618 Antiferroelectricity in NaNbO_3 Thin Films. *ACS Omega* **8**(26), 23587 (2023).
- 619 62. M. de Oliveira Guimarães, C. Richter, M. Hanke, S. Bin Anooz, Y. Wang, J. Schwarzkopf,
620 and M. Schmidbauer: Ferroelectric phase transitions in tensile-strained NaNbO_3
621 epitaxial films probed by *in situ* x-ray diffraction. *Journal of Applied Physics* **132**(15),
622 154102 (2022).

- 623 63. J. Luo, L. Liu, S.-W. Zhang, and J.-F. Li: Ferroelectric Domain Structures in Monoclinic
624 (K_{0.5}Na_{0.5})NbO₃ Epitaxial Thin Films. *physica status solidi (RRL) – Rapid Research*
625 *Letters* **15**(6), 2100127 (2021).
- 626 64. D. Braun, M. Schmidbauer, M. Hanke, A. Kwasniewski, and J. Schwarzkopf: Tunable
627 ferroelectric domain wall alignment in strained monoclinic K_xNa_{1-x}NbO₃ epitaxial
628 films. *Appl. Phys. Lett.* **110**(23), 232903 (2017).
- 629 65. I. Biran and S. Gorfman: Permissible domain walls in monoclinic MAB ferroelectric
630 phases. *Acta Cryst A* **80**(1) (2024).
- 631 66. J. Fousek: Permissible domain walls in ferroelectric species. *Czech J Phys* **21**(9), 955
632 (1971).
- 633 67. L. Bogula, L. Von Helden, C. Richter, M. Hanke, J. Schwarzkopf, and M. Schmidbauer:
634 Ferroelectric phase transitions in multi-domain K_{0.9}Na_{0.1}NbO₃ epitaxial thin films.
635 *Nano Futures* **4**(3), 035005 (2020).
- 636 68. N. A. Pertsev, A. K. Tagantsev, and N. Setter: Phase transitions and strain-induced
637 ferroelectricity in SrTiO₃ epitaxial thin films. *Phys. Rev. B* **61**(2), R825 (2000).
- 638 69. Z. Liu and B.-X. Xu: Insight into perovskite antiferroelectric phases: Landau theory and
639 phase field study. *Scripta Materialia* **186**, 136 (2020).
- 640 70. D. M. Hatch and H. T. Stokes: Complete listing of order parameters for a crystalline
641 phase transition: A solution to the generalized inverse Landau problem. *Phys. Rev. B*
642 **65**(1), 014113 (2001).
- 643 71. B. Wang, Y. Gu, S. Zhang, and L.-Q. Chen: Flexoelectricity in solids: Progress,
644 challenges, and perspectives. *Progress in Materials Science* **106**, 100570 (2019).
- 645 72. L. Guin and D. M. Kochmann: A phase-field model for ferroelectrics with general
646 kinetics, Part I: Model formulation. *Journal of the Mechanics and Physics of Solids*
647 **176**, 105301 (2023).
- 648 73. T. Yang, B. Wang, J.-M. Hu, and L.-Q. Chen: Domain Dynamics under Ultrafast Electric-
649 Field Pulses. *Phys. Rev. Lett.* **124**(10), 107601 (2020).
- 650 74. H. Akamatsu, Y. Yuan, V. A. Stoica, G. Stone, T. Yang, Z. Hong, S. Lei, Y. Zhu, R. C.
651 Haislmaier, J. W. Freeland, L.-Q. Chen, H. Wen, and V. Gopalan: Light-Activated
652 Gigahertz Ferroelectric Domain Dynamics. *Phys. Rev. Lett.* **120**(9), 096101 (2018).
- 653 75. S. Zhuang and J.-M. Hu: Role of polarization-photon coupling in ultrafast terahertz
654 excitation of ferroelectrics. *Phys. Rev. B* **106**(14), L140302 (2022).
- 655 76. H.-L. Hu and L.-Q. Chen: Three-Dimensional Computer Simulation of Ferroelectric
656 Domain Formation. *Journal of the American Ceramic Society* **81**(3), 492 (1998).
- 657 77. Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen: Effect of substrate constraint on the stability
658 and evolution of ferroelectric domain structures in thin films. *Acta Materialia* **50**(2),
659 395 (2002).
- 660 78. Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen: Effect of electrical boundary conditions on
661 ferroelectric domain structures in thin films. *Appl. Phys. Lett.* **81**(3), 427 (2002).
- 662 79. J.-J. Wang, B. Wang, and L.-Q. Chen: Understanding, Predicting, and Designing
663 Ferroelectric Domain Structures and Switching Guided by the Phase-Field Method.
664 *Annu. Rev. Mater. Res.* **49**(1), 127 (2019).

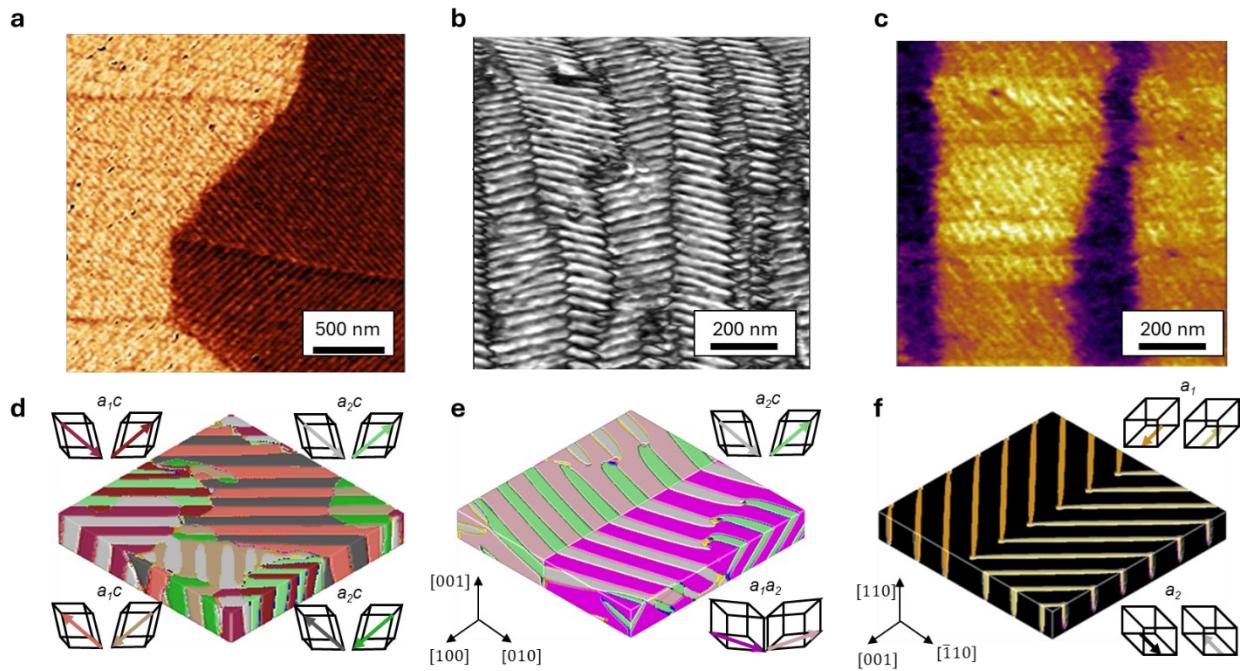

- 665 80. D. Schrade, R. Mueller, B. X. Xu, and D. Gross: Domain evolution in ferroelectric
666 materials: A continuum phase field model and finite element implementation.
667 *Computer Methods in Applied Mechanics and Engineering* **196**(41–44), 4365 (2007).
- 668 81. L. Liang, Y. L. Li, L.-Q. Chen, S. Y. Hu, and G.-H. Lu: A thermodynamic free energy
669 function for potassium niobate. *Appl. Phys. Lett.* **94**(7), 072904 (2009).
- 670 82. L. Liang, Y. L. Li, L.-Q. Chen, S. Y. Hu, and G.-H. Lu: Thermodynamics and ferroelectric
671 properties of KNbO₃. *Journal of Applied Physics* **106**(10), 104118 (2009).
- 672 83. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev: Effect of Mechanical Boundary
673 Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. *Phys. Rev. Lett.*
674 **80**(9), 1988 (1998).
- 675 84. D. Liu, G. Bai, and C. Gao: Phase diagrams classification based on machine learning
676 and phenomenological investigation of physical properties in K₁ – xNaxNbO₃ thin
677 films. *Journal of Applied Physics* **127**(15), 154101 (2020).
- 678 85. Y. Wu, Y. Ou, J. Peng, and C. Lei: Phase Structures, Electromechanical Responses, and
679 Electrocaloric Effects in K0.5Na0.5NbO₃ Epitaxial Film Controlled by Non-Isometric
680 Misfit Strain. *Crystals* **13**(9), 1321 (2023).
- 681 86. N. Hadaeghi, M. Dai, Y. Zhang, R. Xie, H. Nouri, and H. Zhang: Origin of
682 antiferroelectricity in NaNbO₃. *Phys. Rev. Mater.* **8**(1), 015004 (2024).
- 683 87. K. Patel, S. Prosandeev, B. Xu, C. Xu, and L. Bellaiche: Properties of (001) NaNbO₃
684 films under epitaxial strain: A first-principles study. *Phys. Rev. B* **103**(9), 094103 (2021).
- 685 88. K. Kim, W. Hwang, J.-H. Lee, and A. Soon: Explicating the irreversible electric-field-
686 assisted ferroelectric phase transition in the otherwise antiferroelectric sodium
687 niobate for energy storage systems. *J. Mater. Chem. C* **10**(29), 10500 (2022).
- 688 89. O. Diéguez, K. M. Rabe, and D. Vanderbilt: First-principles study of epitaxial strain in
689 perovskites. *Phys. Rev. B* **72**(14), 144101 (2005).
- 690 90. G. Bai and W. Ma: Phenomenological analysis of phase transitions in epitaxial
691 perovskite ferroelectric thin films. *Physica B: Condensed Matter* **405**(7), 1901 (2010).
- 692 91. Q. Li, L. Liu, Y. Ye, J. B. Lv, H. F. Cao, and X. X. Sheng: Phase Structures and
693 Electromechanical Properties of Differently Oriented Epitaxial K_{0.5}Na_{0.5}NbO₃ Thin
694 Films. *Acta Phys. Pol. A* **145**(4), 175 (2024).
- 695 92. B.-K. Lai, I. A. Kornev, L. Bellaiche, and G. J. Salamo: Phase diagrams of epitaxial
696 BaTiO₃ ultrathin films from first principles. *Applied Physics Letters* **86**(13), 132904
697 (2005).
- 698 93. A. Grünebohm, M. Marathe, and C. Ederer: Ab initio phase diagram of BaTiO₃ under
699 epitaxial strain revisited. *Applied Physics Letters* **107**(10), 102901 (2015).
- 700 94. N. A. Pertsev and V. G. Koukhar: Polarization Instability in Polydomain Ferroelectric
701 Epitaxial Thin Films and the Formation of Heterophase Structures. *Phys. Rev. Lett.*
702 **84**(16), 3722 (2000).
- 703 95. S. P. Alpay and A. L. Roytburd: Thermodynamics of polydomain heterostructures. III.
704 Domain stability map. *Journal of Applied Physics* **83**(9), 4714 (1998).
- 705 96. F. Xue, Y. Ji, and L.-Q. Chen: Theory of strain phase separation and strain spinodal:
706 Applications to ferroelastic and ferroelectric systems. *Acta Materialia* **133**, 147 (2017).
- 707 97. B. Wang and L.-Q. Chen: Theory of strain phase equilibria and diagrams. *Acta
708 Materialia* **274**, 120025 (2024).

- 709 98. B. Wang: Strain phase equilibria and phase-field method of ferroelectric polydomain:
710 A case study of monoclinic $K_xNa_{1-x}NbO_3$ films. *Journal of the American Ceramic
711 Society* **in press** (2024).
- 712 99. J. Zorn: Ferroelectric Materials by Design at the Mesoscale: Thermodynamic and
713 Phase-Field Modeling, The Pennsylvania State University, 2022.
- 714 100. P. S. Bednyakov and J. Hlinka: Charged Domain Walls in $BaTiO_3$ Crystals Emerging
715 from Superdomain Boundaries. *Advanced Electronic Materials* **9**(6), 2300005 (2023).
- 716 101. M. Schmidbauer, M. Hanke, A. Kwasniewski, D. Braun, L. Von Helden, C. Feldt, S. J.
717 Leake, and J. Schwarzkopf: Scanning X-ray nanodiffraction from ferroelectric domains
718 in strained $K_{0.75}Na_{0.25}NbO_3$ epitaxial films grown on (110) $TbScO_3$. *J Appl Crystallogr*
719 **50**(2), 519 (2017).
- 720 102. J. Schwarzkopf, D. Braun, M. Hanke, A. Kwasniewski, J. Sellmann, and M.
721 Schmidbauer: Monoclinic MA domains in anisotropically strained ferroelectric
722 $K0.75Na0.25NbO_3$ films on (110) $TbScO_3$ grown by MOCVD. *J Appl Cryst* **49**(2), 375
723 (2016).
- 724 103. C. Beekman, W. Siemons, M. Chi, N. Balke, J. Y. Howe, T. Z. Ward, P. Maksymovych, J.
725 D. Budai, J. Z. Tischler, R. Xu, W. Liu, and H. M. Christen: Ferroelectric Self-Poling,
726 Switching, and Monoclinic Domain Configuration in $BiFeO_3$ Thin Films. *Advanced
727 Functional Materials* **26**(28), 5166 (2016).
- 728 104. Y. Si, T. Zhang, C. Liu, S. Das, B. Xu, R. G. Burkovsky, X.-K. Wei, and Z. Chen:
729 Antiferroelectric oxide thin-films: Fundamentals, properties, and applications.
730 *Progress in Materials Science* **142**, 101231 (2024).
- 731 105. F. Xue, L. Liang, Y. Gu, I. Takeuchi, S. V. Kalinin, and L.-Q. Chen: Composition- and
732 pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped
733 $BiFeO_3$ system. *Appl. Phys. Lett.* **106**(1), 012903 (2015).
- 734 106. B. Cai, J. Schwarzkopf, E. Hollmann, D. Braun, M. Schmidbauer, T. Grellmann, and R.
735 Wördenweber: Electronic characterization of polar nanoregions in relaxor-type
736 ferroelectric $NaNbO_3$ films. *Phys. Rev. B* **93**(22), 224107 (2016).
- 737 107. S. Liang, Y. Dai, L. von Helden, J. Schwarzkopf, and R. Wördenweber: Surface acoustic
738 waves in strain-engineered $K0.7Na0.3NbO_3$ thin films. *Applied Physics Letters* **113**(5),
739 052901 (2018).
- 740 108. S. Liang, D. Pfützenreuter, D. Finck, L. von Helden, J. Schwarzkopf, and R.
741 Wördenweber: Tunable surface acoustic waves on strain-engineered relaxor
742 $K0.7Na0.3NbO_3$ thin films. *Applied Physics Letters* **116**(5), 052902 (2020).
- 743 109. I. Levin, V. Krayzman, G. Cibin, M. G. Tucker, M. Eremenko, K. Chapman, and R. L. Paul:
744 Coupling of emergent octahedral rotations to polarization in $(K,Na)NbO_3$
745 ferroelectrics. *Sci Rep* **7**(1), 15620 (2017).
- 746 110. J. Kong, J. Liu, F. Marlton, M. R. V. Jørgensen, and A. Pramanick: Local structural
747 mechanism for phase transition and ferroelectric polarization in the mixed oxide
748 $K0.5Na0.5NbO_3$. *Phys. Rev. B* **103**(18), 184104 (2021).
- 749 111. Z. Tan, Y. Peng, J. An, Q. Zhang, and J. Zhu: Critical Role of Order–Disorder Behavior in
750 Perovskite Ferroelectric $KNbO_3$. *Inorg. Chem.* **60**(11), 7961 (2021).

- 751 112. S. Das, Y. Tang, Z. Hong, M. Gonçalves, M. McCarter, C. Klewe, K. Nguyen, F. Gómez-
752 Ortiz, P. Shafer, and E. Arenholz: Observation of room-temperature polar skyrmions.
753 *Nature* **568**(7752), 368 (2019).
- 754 113. A. K. Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson, C. M. Schlepütz, A. R.
755 Damodaran, P. Shafer, E. Arenholz, L. R. Dedon, D. Chen, A. Vishwanath, A. M. Minor,
756 L. Q. Chen, J. F. Scott, L. W. Martin, and R. Ramesh: Observation of polar vortices in
757 oxide superlattices. *Nature* **530**(7589), 198 (2016).
- 758 114. G. Tian, C. Yang, W. Kuai, Z. Gai, W. Su, J. Du, T. Liu, Y. Zhang, M. Zhao, X. Wang, and L.
759 Zheng: Polar topological bubbles in (K,Na)NbO₃-based single crystals via synergetic
760 phase and defect engineering. *Ceramics International* **50**(17, Part A), 29642 (2024).
- 761 115. Z. Hong, A. R. Damodaran, F. Xue, S.-L. Hsu, J. Britson, A. K. Yadav, C. T. Nelson, J.-J.
762 Wang, J. F. Scott, L. W. Martin, R. Ramesh, and L.-Q. Chen: Stability of Polar Vortex
763 Lattice in Ferroelectric Superlattices. *Nano Lett.* **17**(4), 2246 (2017).
- 764 116. J. Liu, Y. Liu, S. Lan, B. Yang, L. Dou, L. Yang, X. Kong, C.-W. Nan, and Y.-H. Lin: Static
765 structures and dynamic responses of polar topologies in oxide superlattices. *Applied
766 Physics Letters* **121**(21), 212902 (2022).
- 767 117. J. Cao, M. Liu, Z. Liu, H. Hou, and Y. Zhao: Alternating Current Field Effects in
768 Atomically Ferroelectric Ultrathin Films. *Materials* **15**(7), 2506 (2022).
- 769 118. Y. Wang, S. B. Anooz, G. Niu, J. Zhao, M. Schmidbauer, L. Wang, W. Ren, and J.
770 Schwarzkopf: Evolution of domain structure in epitaxial ferroelectric K 0.5 N a 0.5 Nb
771 O 3 films grown by metal-organic vapor-phase epitaxy. *Phys. Rev. Materials* **8**(5),
772 054409 (2024).
- 773 119. H. Lu, C.-W. Bark, D. Esque de los Ojos, J. Alcala, C. B. Eom, G. Catalan, and A.
774 Gruverman: Mechanical Writing of Ferroelectric Polarization. *Science* **336**(6077), 59
775 (2012).
- 776 120. Q. Li, B. Wang, Q. He, P. Yu, L.-Q. Chen, S. V. Kalinin, and J.-F. Li: Ferroelastic
777 Nanodomain-mediated Mechanical Switching of Ferroelectricity in Thick Epitaxial
778 Films. *Nano Lett.* **21**(1), 445 (2021).
- 779 121. S. M. Park, B. Wang, S. Das, S. C. Chae, J.-S. Chung, J.-G. Yoon, L.-Q. Chen, S. M. Yang,
780 and T. W. Noh: Selective control of multiple ferroelectric switching pathways using a
781 trailing flexoelectric field. *Nature Nanotech* **13**(5), 366 (2018).
- 782 122. A. M. Ross and L.-Q. Chen: Thermodynamics and Ferroelectric Properties of Pb_{1-x}Sr_xTiO₃ Solid Solutions. *Acta Materialia* **261**, 119405 (2023).
- 783 123. M. Liu, C. Hu, X. Meng, X. Sun, Y. Zhang, B. Xing, M. Qiu, Y. Dong, S. Jin, and H. Tian:
784 Thermodynamic potential construction and biaxial stress analysis of K0.4Na0.6NbO₃
785 single crystals. *Applied Physics Letters* **125**(11), 112901 (2024).
- 786 124. Y. Hu, J. Yang, and S. Liu: Giant Piezoelectric Effects of Topological Structures in
787 Stretched Ferroelectric Membranes. *Phys. Rev. Lett.* **133**(4), 046802 (2024).
- 788 125. P. Xie, Y. Chen, W. E, and R. Car: (2022).
- 789 126. L. Fan, M. Reder, D. Schneider, M. Hinterstein, and B. Nestler: A phase-field model for
790 ferroelectric materials—Based on the multiphase-field method. *Computational
791 Materials Science* **230**, 112510 (2023).
- 792

- 793 127. J. A. Zorn and L.-Q. Chen: Machine-learning enabled construction of temperature-
794 strain phase diagrams of ferroelectric thin films. *Journal of Materials Research* **38**(6),
795 1644 (2023).
- 796 128. K. Alhada-Lahbabi, D. Deleruyelle, and B. Gautier: Machine Learning Surrogate Model
797 for Acceleration of Ferroelectric Phase-Field Modeling. *ACS Appl. Electron. Mater.*
798 **5**(7), 3894 (2023).
- 799 129. Y. Liu, L. Bian, R. Zhang, J. Fan, D. Huo, B. Shen, H. Huang, X. Shi, D. Wang, and K. Yao:
800 Ultrahigh electromechanical response in (K,Na)NbO₃-based lead-free textured
801 piezoceramics. *Applied Physics Reviews* **11**(3), 031415 (2024).
- 802 130. B. Lin, K. P. Ong, T. Yang, Q. Zeng, H. K. Hui, Z. Ye, C. Sim, Z. Yen, P. Yang, Y. Dou, X. Li,
803 X. Gao, C. K. I. Tan, Z. S. Lim, S. Zeng, T. Luo, J. Xu, X. Tong, P. W. F. Li, M. Ren, K. Zeng,
804 C. Sun, S. Ramakrishna, M. B. H. Breese, C. Boothroyd, C. Lee, D. J. Singh, Y. M. Lam,
805 and H. Liu: Ultrahigh electromechanical response from competing ferroic orders.
806 *Nature* **1** (2024).
- 807
- 808

809 **Figure 1**

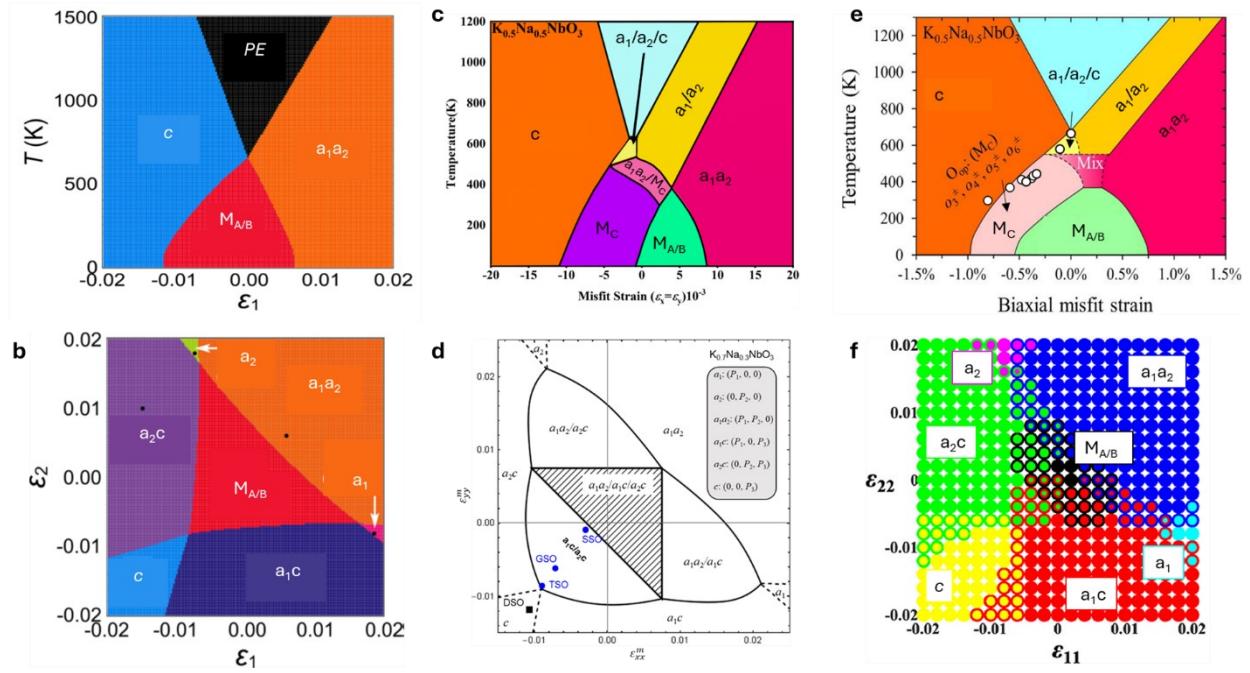


810

811 **Figure 1.** (a) Crystal structures of typical ferroelectric phases of perovskite oxide ABO_3 . (b) Phase
 812 transition sequence of $\text{K}_{0.5}\text{Na}_{0.5}\text{NbO}_3$ bulk crystals represented by lattice constants and space group.
 813 (c) Phase transition sequence of NaNbO_3 by space group and polar ordering. PE, FE, and AFE
 814 denote paraelectric, ferroelectric, and antiferroelectric, respectively. (d) Phase diagram of $\text{K}_x\text{Na}_{1-x}\text{NbO}_3$ for $x = 0.05$ to 1.0. The Glazer notations are used to consider both the oxygen octahedral
 815 tilt (superscript) and B-site displacements (subscript). (a) is adapted from Ref. 21 with permission.
 816 (b) is adapted from Ref. 15 with permission. (c) is adapted from Ref. 86 with permission. (d) is
 817 adapted from Ref. 18 with permission.
 818

819

820 **Figure 2**

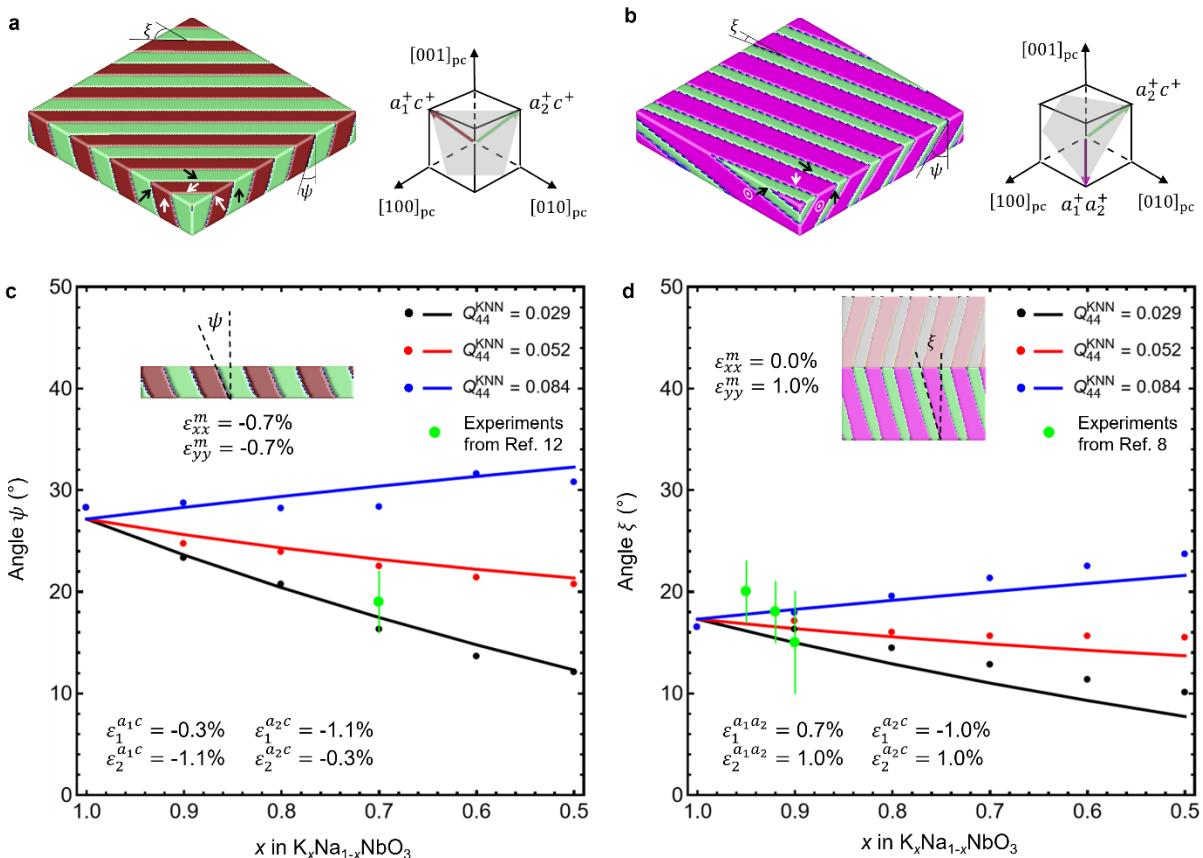


821

822 **Figure 2.** Domain structures of ferroelectric KNN thin films. (a,b,c) Two-dimensional morphology
823 of the ferroelectric domains observed in experiments by piezoresponse force microscopy (PFM)
824 for (a) 35-nm $K_{0.7}Na_{0.3}NbO_3$ film on $TbScO_3$ at room temperature, (b) 30-nm $K_{0.9}Na_{0.1}NbO_3$ film
825 on $NdScO_3$ at room temperature, and (c) 38-nm $K_{0.9}Na_{0.1}NbO_3$ film on $NdScO_3$ at 250 °C. (d,e,f)
826 The corresponding three-dimensional models of the ferroelectric domains obtained from phase-
827 field simulations. (a,b,c) are obtained with the permission of Dr. Martin Schmidbauer and Dr. Jutta
828 Schwarzkopf. (e,f) are adapted from Ref. 57 with permission. (d) is adapted from Ref. 37 with
829 permission.

830

831 **Figure 3**



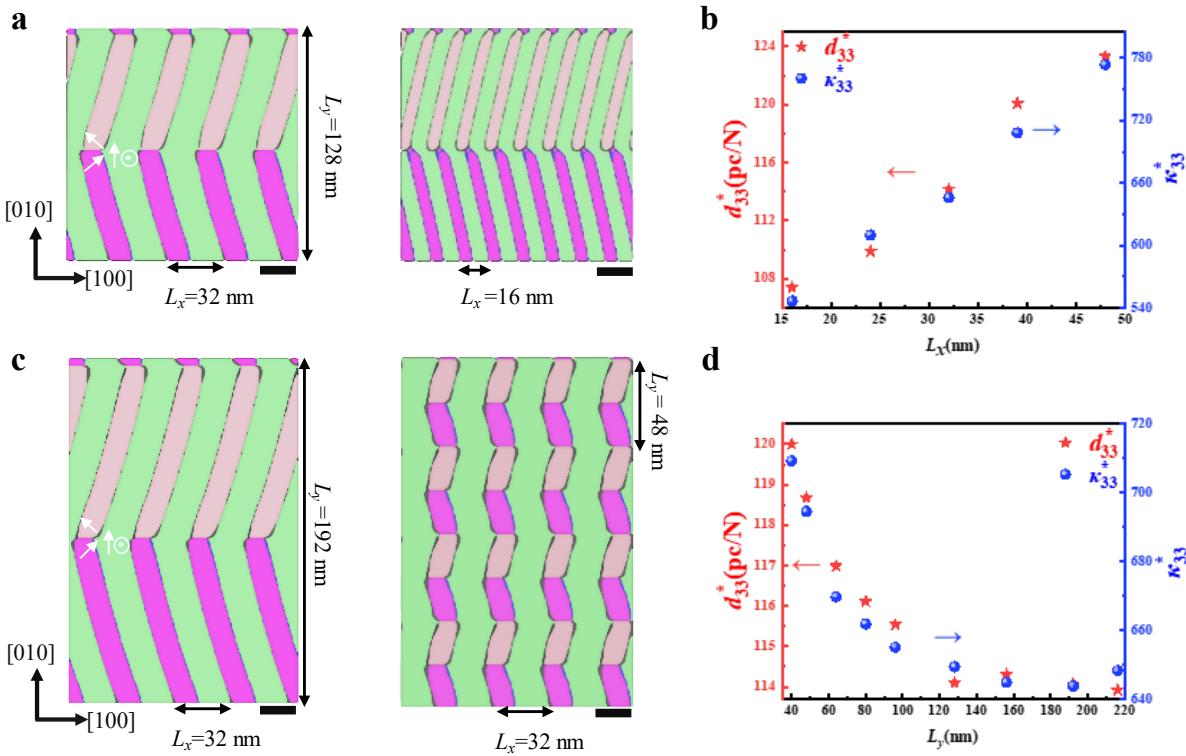
832

833 **Figure 3.** Strain phase diagrams of ferroelectric $K_xNa_{1-x}NbO_3$. (a,c,e) Temperature – strain phase
 834 diagrams and (b,d,f) strain – strain phase diagrams at $T = 300K$ of $(001)_{pc}$ -oriented KNN thin films
 835 subjected to biaxial misfit strains. (a,b) are calculated by using the thermodynamic model based
 836 on the monodomain assumption. (c,d) are calculated using strain phase equilibrium theory without
 837 *a priori* assumptions on the domain structure. (e,f) are calculated using a series of three-
 838 dimensional phase-field simulations without *a priori* assumption on the domain structure. (a,b) are
 839 adapted from Ref. ³³ with permission. (c) is adapted from Ref. ⁹⁹ with permission. (d) is adapted
 840 from Ref. 98 with permission. (e) is adapted from Ref. 37 with permission. (f) is adapted from Ref.
 841 38 with permission.

842

843 **Figure 4**

844


845 **Figure 4.** Three-dimensional models of two types of polydomain structures of monoclinic
 846 ferroelectric $\text{K}_x\text{Na}_{1-x}\text{NbO}_3$ thin films. (a,b) Domain structures and (c,d) domain wall inclination
 847 angles as functions of composition and the electrostrictive coefficients Q_{44} for $\text{K}_{0.5}\text{Na}_{0.5}\text{NbO}_3$ of
 848 (a,c) the Mc-phase and (b,d) the a_1a_2/Mc -phase. Adapted from Ref. 98 with permission.

849

850 **Figure 5**

851
 852 **Figure 5.** Formation of superdomains by the combination of two bundles of polydomain in
 853 monoclinic ferroelectric $K_xNa_{1-x}NbO_3$ thin films. (a,d) Schematics of the merging of two
 854 polydomain variants into one period of the superdomain structure case for (a) the Mc-phase and
 855 (d) the a_1a_2/M_C -phase. (b,e) planar view of the morphology of near the superdomain boundary
 856 indicated by dashed line for (b) the Mc-phase and (e) the a_1a_2/M_C -phase. The direction of the
 857 polarization vectors within each domain variant are indicated by solid arrows. The direction of the
 858 averaged polarization vectors for each polydomain variant are indicated by large hollow arrows.
 859 (c,f) Cross-sectional view of the local polarization vectors within the superdomain boundary for
 860 (c) the Mc-phase and (f) the a_1a_2/M_C -phase. The color bar indicates the magnitude of the local
 861 polarization vectors. Adapted from Ref. 38 with permission.

862

863 **Figure 6**

864

865 **Figure 6.** Size effects of domains and superdomains on the overall dielectric and piezoelectric
 866 properties of ferroelectric KNN thin films in the a_1a_2/M_C -phase. (a,c) Planar view of four domain
 867 structures with varied (a) domain periodicity L_x and (c) superdomain periodicity L_y . (b,d)
 868 Calculated out-of-plane piezoelectric coefficients d_{33}^* and dielectric permittivity κ_{33}^* of different
 869 domain structures as functions of (b) L_x and (d) L_y . Adapted from Ref. 39 with permission.

870

871

872 **Table 1.** Summary of the ferroelectric phases and domain morphologies of KNN and NNO
 873 epitaxial thin films reported in the literature. Abbreviations for substrate materials: SrTiO₃(STO),
 874 SmScO₃ (SSO), GdScO₃ (GSO), NdScO₃ (NSO), and TbScO₃ (TSO).

Phases	x of $K_xNa_{1-x}NbO_3$	Substrates	Misfit strains	Temperature (°C)	Domain morphology	Thickness (nm)	Ref.
K-rich side							
Monoclinic (a ₁ a ₂ /M _C)	0.90 ~ 0.98	NSO	Biaxially anisotropic	RT	Herringbone	20 ~ 30	56,55,64
Orthorhombic (a ₁ /a ₂)				250	Stripe//[110]pc		57,67
Monoclinic	0.75	TSO		RT	Stripe//[110]pc	29	101,102
M _A	0.5, doped	STO		200	-	200	49
0.54 – 0.74 SSO, GSO, TSO				RT		30±10	51,53
Monoclinic M _C			Biaxially compressive		Stripe//[110]pc		
	0.5	DSO		RT		32	118
	0.5, doped	STO		RT		200	49,54
Orthorhombic (c)	0.7	DSO		RT	Monodomain	30±10	51
0.54 – 0.74 TSO, GSO, SSO				100 ~ 400			
NaNbO₃							
Orthorhombic (c)		NGO	Compressive	RT		10	58,59
		STO	Slightly compressive	RT	Monodomain	10	58,59
Monoclinic (M _A or M _B)	0.0	NGO, DSO, TSO, GSO	Partially relaxed	RT		30 ~ 140	58,59
Monoclinic (a ₁ a ₂)		DSO, TSO, GSO		RT	Stripe//[100]pc	1.5 ~ 27	58–60
Orthorhombic (a ₁ /a ₂)		DSO	Tensile	350	Stripe//[110]pc	42	62

876

877 **Table 2.** Comparison of phases in strained KNN and NNO epitaxial thin films on various substrates
 878 at room temperature (RT) and high temperature (HT). Abbreviations for substrate materials:
 879 SrTiO_3 (STO), SmScO_3 (SSO), GdScO_3 (GSO), NdScO_3 (NSO), and TbScO_3 (TSO).

Films	Highly biaxial compressive	Moderate biaxial compressive	Moderate biaxial tensile	Biaxial anisotropic
KNN ($x > 0.5$)	RT: orthorhombic c HT: paraelectric	RT: monoclinic M_C HT: orthorhombic c or monoclinic M_A	-	RT: Monoclinic a_1a_2/M_C HT: orthorhombic a_1/a_2
Substrates	STO, DSO	TSO, GSO, SSO	-	NSO
NNO	RT: orthorhombic c	RT: monoclinic M_A or M_B	RT: monoclinic a_1a_2 HT: orthorhombic a_1/a_2	-
Substrates	NGO	STO, partially relaxed NGO, DSO, TSO, GSO	DSO, TSO, GSO	-

880

881

882