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Abstract (150 words)

Strains play a pivotal role in determining the phase equilibrium, domain configuration, and
functional properties of low-dimensional ferroelectrics. There is growing interest in the strain
engineering of ferroelectric K,Nai.xNbO3 (KNN) epitaxial thin films, which exhibit excellent
physical properties and promise as eco-friendly alternatives to lead-based ferroelectrics for
microdevice applications. Advances have been made in understanding the phase equilibria and
transitions, domains and domain walls, and their relations to the physical properties of KNN
epitaxial thin films using a combination of experiments and theoretical modeling, particularly
phase-field simulations. Here, we review recent progress in these aspects and showcase the phase-
field method for establishing strain phase diagrams, elucidating the domain and domain wall
structures at equilibrium, and predicting the structure—property relationships in ferroelectric KNN
thin films. We also discuss challenges and opportunities to further advance our understanding of

KNN thin films and potentially unlock new functionalities by leveraging phase-field simulations.
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1 Introduction

Ferroelectric thin films have garnered significant research interest over the past decades
due to their promising technological applications and fundamental scientific importance'->. These
materials exhibit a unique set of physical properties, such as high dielectric permittivity, large
piezoelectric activity, nonlinear optical susceptibilities, and switchable spontaneous polarization,
making them suitable for various functional devices, including high energy-density capacitors,
microelectromechanical systems?, integrated photonics®, and non-volatile memories®. Furthermore,
the reduced dimensionality of ferroelectric thin films and their tunable mechanical and electrical
boundary conditions allow for investigations of novel ferroelectric phases and domain structures

with unique physical behaviors distinct from those of their bulk counterparts.

Strain can be employed to tune the phase stability and thus the functional properties of
ferroelectric thin films’. To fully exploit the potential of ferroelectric thin films, it is essential to
understand the correlations among misfit strains, ferroelectric phases and domains, and their
corresponding macroscopic properties. Significant progress has been made in the strain
engineering of classical ferroelectric perovskite oxides such as PbTiO; (PTO)®, BaTiOs (BTO)’,
and BiFeO; (BFO)!". At room temperature, these bulk crystals exhibit either tetragonal or
rhombohedral ferroelectric phases. New ferroelectric phases can be stabilized by imposing misfit
strains through epitaxial growth, e.g., monoclinic phases in BFO epitaxial thin films'®. While
epitaxial  strains generally suppress the intrinsic piezoelectric coefficient, the
multiphase/multidomain states stabilized by epitaxial strains may enhance piezoelectric
responses'!. However, it is still poorly understood how misfit strains affect the stability of the
orthorhombic ferroelectric phase, another common polymorphic phase of perovskite oxides, and

the corresponding physical properties.
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The solid solution between KNbO3 (KNO) and NaNbO3 (NNO), i.e., KyNai.NbO3 (KNN),
is an ideal model system for such studies. In bulk KNO, there are structural phases isostructural to
those of BTO, transitioning from cubic (Pm3m) to tetragonal (P4mm), orthorhombic (4mm?2), and
rhombohedral (R3c) phases as the temperature decreases from 800K to 100 K '>!3(Figure 1a). The
same transition sequence is maintained in KNN solid solutions with up to 50% NNO (i.e.,
Ko.sNag sNbO;3) *!15(Figure 1b). The other endmember, NNO, exhibits a more complex series of
phase transitions due to the involvement of the oxygen octahedral tilts '°. As it cools from the high-
temperature cubic phase, bulk NNO undergoes six non-ferroelectric phases until reaching a
rhombohedral ferroelectric phase below 173K. At room temperature, NNO exhibits an
antiferroelectric orthorhombic phase (Pbcm) that can transition to a metastable orthorhombic
ferroelectric phase (Pmc21 or P21ma) under a moderate electric field'’(Figure 1c). Consequently,
the temperature-composition phase diagram of KNN is rather complex '*!? (Figure 1d), offering a
rich landscape to explore the interplay among the ferroelectric, antiferroelectric, and
antiferrodistortive orderings?’. KNN-based crystals and ceramics are emerging as promising lead-
free alternatives to lead-containing ferroelectric materials like Pb(ZriTix)O3(PZT), attracting
attention due to increasing concerns about ecological sustainability?!*?. In fact, high dielectric
tunability®, giant piezoelectric strains 2#?°, highly sensitive and potential selective surface acoustic
wave detection 2°, and exceptional high elasto-optical coefficients 2’ have been reported in strain-
engineered KNN thin films, making the study of their structures and properties of both scientific

interest and technological relevance.

Several comprehensive review articles have documented progress in developing KNN-
based ceramics %2, single crystals %%, and thin films 2! from experimental perspectives. However,

recent advances in the use of theoretical tools*?*°, particularly phase-field modeling®®, to the KNN
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ferroelectric thin films have provided profound insights into the phase equilibria and transitions,
domain and domain wall structures, and their correlation to macroscopic material properties®’°.
This brief review presents the state-of-the-art by summarizing the experimental and theoretical
understandings of ferroelectric phase transitions, domain and superdomain structures at
equilibrium, and the corresponding functional properties in KNN epitaxial thin films. In the
following sections, we first summarize the experimental findings related to the phase symmetries
and domain morphologies of KNN epitaxial thin films. We then outline a general framework for
establishing phase-field models for ferroelectric materials. Subsequently, we review the progress
made in the theoretical modeling of KNN thin films, including the development of thermodynamic
models of KNN, construction of strain phase diagrams, and determination of the equilibrium
structures of domains, domain walls, and superdomain structures. Finally, we discuss the

challenges and opportunities to exploit the phase-field approach to advance our understanding of

KNN-based ferroelectric materials and their applications.

2 Experimental studies of ferroelectric KNN epitaxial thin films

In this section, we summarize the state-of-the-art experimental results on the
characterization of ferroelectric phases, equilibrium domain morphology, and domain wall
configurations in KNN thin films with various compositions grown on different substrate materials.
We discuss a unified picture of the strain effect on the phase equilibria of K-rich KNN and NNO

epitaxial thin films and highlight three typical domain patterns of ferroelectric KNN thin films.

Before describing the technical details, we provide two preliminary notes. First, significant

efforts have been made to epitaxially grow KNN films using pulsed laser deposition*®,

4547

hydrothermal methods*!, RF magnetron sputtering***’, chemical solution deposition*®, metal-
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organic vapor-phase epitaxy>’, sol-gel methods*, among others*’. However, we focus only on
studies reporting ferroelectric phases that differ from bulk states and on characterizing domain
structures influenced by misfit strains imposed by the substrate materials. Second, various
notations have been used to represent ferroelectric phases in perovskite oxide thin films in the
literature, which often leads to confusion. Here, we adopt a notation based on the crystal system
of the conventional unit cell (e.g., monoclinic, orthorhombic) and the spontaneous polarization
direction within the pseudocubic unit cell of the perovskite structure (e.g., ai, a2, ¢). Examples
include the orthorhombic c-phase with P = (0, 0, P3), monoclinic aic-phase with P = (P1, 0, P3)
and a>c-phase with P = (0, P», P3), and monoclinic aia2-phase with P = (P1, P>, 0). We refer to
both aic- and axc-phases as Mc-phase. The Ma- and Mg-phases with P = (P1, P2, P3) are
distinguished by the relative amplitude of the polarization components, i.e., P1 = P> < P3 for Ma
and P = P> < P3 for Mp. A detailed discussion on the notation of ferroelectric phases is given by

Janolin’.

2.1 Ferroelectric phases

Table 1 summarizes several new ferroelectric phases absent in bulk states reported in
epitaxial KNN thin films, including the monoclinic Ma-, Mg-, a1a2-, and Mc-phases, as well as
orthorhombic ¢, a1, and a2 phases. These phases develop under various film compositions, growth
conditions, and substrate types and can be broadly categorized into four types based on misfit

strain states (Table 2).

For K-rich KNN thin films (x > 0.5), highly biaxial compressive strains induce the
monodomain orthorhombic c-phase, which is observed in fully strained Kao.7Nao3NbO3 films on
the DyScO; (DSO) substrate®’32. Moderate biaxial compressive misfit strains provided by rare-

earth scandates like SmScO3 (SSO), GdScO3 (GSO), and TbScO; (TSO), favor the monoclinic
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5133 Upon heating, the Mc-phase transforms into the orthorhombic c-phase’’ or

Mc-phase
monoclinic Ma-phase %, depending on the film composition and substrate materials. When both
tensile and compressive strains are applied orthogonally in-plane, the a1a2/Mc-phase is formed, as

observed in KaooNao 1NbOs films on NdScOs substrates®-®. Subsequent heating of the a1a2/Mc-

phase results in the orthorhombic ai/a>-phase with exclusively in-plane polarization®’.

For NNO, the lattice constants of its pseudocubic unit cell are smaller than those of KNbO3
by nearly 0.1 A 3°. Consequently, the lattice mismatch between NNO films and ReScOs (Re = Dy,
Gd, Tb) substrates induces biaxial tensile strains, resulting in the monoclinic aiaz-phase with in-
plane polarization®®>?. Upon partial relaxation of such tensile strains, as observed in thicker films,
the monoclinic aiax-phase transitions into other monoclinic Ma- or M-phases with out-of-plane
polarization®. Highly compressively strained NNO films on NdGaO; substrates exhibit an
orthorhombic c-phase with only out-of-plane polarization®*®!. Despite the distinct origins of
ferroelectricity in bulk phases, similarities in strain-induced ferroelectric phases and phase

transitions between KNN and NNO epitaxial thin films have been noted®”.

2.2 Ferroelectric domains and superdomains

The equilibrium domain structures of these ferroelectric phases in as-grown KNN and
NNO films can be categorized into three types based on their two-dimensional morphology, which
can be viewed from an out-of-plane perspective: monodomains, stripe-like domains, and

herringbone-like domains.

In monodomains, uniform out-of-plane polarization with minimal in-plane variations has
been reported in the orthorhombic c-phase of NNO thin films®® and KNN thin films®!, as well as

in other ultrathin films below the critical thickness for domain formation >2.
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Stripe-like domains exhibit highly regular laminar patterns in both monoclinic and
orthorhombic ferroelectric phases at various temperatures>*>3-72 The patterns can be classified
into one-dimensional and two-dimensional structures. The one-dimensional stripe-like patterns
parallel to [010]pc emerge in aiaz-, Ma-, and Mg-phases of NNO*%’, The two-dimensional stripe-
like domain patterns parallel to [010]pc and [100],c have been found in Ma-phase of NNO on GSO
substrates ®, while another two-dimensional pattern parallel to [110]pc and [1-10],c is shown in the
monoclinic Mc-phase of KNN films****3:3 and the orthorhombic ai/a2-phases of KNN 7 and
NNO films®. Notably, the stripe-like domains of the Mc-phase show superdomain structures

consisting of four energy-equivalent bundles of aic and a>c domains>>>2,

Herringbone-like domain patterns are reported exclusively in the aja/Mc-phase of KNN
535664 They differ from the stripe-like domains in three ways. First, domain walls in the
herringbone patterns do not follow any low-index directions but vary with film compositions and
thickness®. Second, the herringbone pattern is hierarchical, where polydomains of aia2- and Mc-
phases self-assemble into superdomain structures with regular, well-defined boundaries®>*°. In
contrast, the superdomain boundary of the stripe-like domain patterns are irregular®>. Third, the
lattice constant differences between variants of the aia2- and Mc-phases under anisotropic misfit
strains mean that the interfaces between these domains are heterophase boundaries rather than
conventional twin domain walls. The mechanical compatibility condition may not hold for the
heterophase boundary®>. Besides, the herringbone-like domains can transform into stripe-like

domains of the high-temperature orthorhombic a1/a2-phase upon heating®”-’.

Two-dimensional piezoresponse force microscopy (PFM) images of these domain

structures in KNN epitaxial thin films, along with their corresponding three-dimensional models
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obtained through phase-field simulations, are highlighted in Figure 2a — ¢ for the Mc-phase™,

aiax/Mc-phase at room temperature®®, and a1a2/Mc-phase at elevated temperatures®’, respectively.

2.3 Ferroelectric domain walls

There have been few studies on the domain walls of KNN thin films. The domain walls of
aiaz-phase of NNO resemble the 90° domain walls of the orthorhombic phase (4mm?2) of bulk
KNO and are determined to be parallel to (100),c of the film**. Domain walls of Mc- and aia>/Mc-
phases resemble the 60° domain walls of the orthorhombic phase of bulk KNO modified by biaxial
misfit strains. Mechanically compatible charge-neutral 60° domain walls of the orthorhombic
phase are known as S-walls, the plane of which varies with local spontaneous strains *°. Likewise,
the domain walls of the monoclinic Mc-phase also show this attribute. Advanced diffraction
techniques have been employed to determine the domain wall orientation of the ajaz/Mc-phase
KNN and have revealed large variations of the domain wall plane with regard to film thickness
and compositions®. The domain walls of the stripe-like domains of the Mc phase also differ from
those of the (011),c planes. In addition, charged domain walls have been identified in the Mc-phase

of KNN films on DSO substrates deposited using the sol-gel method®’.

3 Phase-field methods to model ferroelectric materials

The phase-field method stands as a robust tool for investigating phase equilibria and
transitions, microstructural features such as domains and domain walls, and the intricate
microstructure-property relationship in ferroelectric materials and heterostructures®. Here, we

provide an overview of the establishment of a phase-field model for ferroelectric materials.

A typical phase-field model for ferroelectrics comprises three essential components: order

parameter(s), a thermodynamic model, and a kinetic model. For proper ferroelectrics, the
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spontaneous polarization vector P = (P1, P2, P3) often serves as the primary order parameter. It
distinguishes between paraelectric and ferroelectric phases as well as various domain variants of
ferroelectric phases. For example, the six domain variants of the tetragonal ferroelectric phase and
cubic paraelectric phase can be represented by (£P1, 0, 0), (0, £P>, 0), (0, 0, £P3), and (0, 0, 0),
respectively. For improper/incipient ferroelectric materials, such as SrTiO; (STO), multiple
coupled soft modes are required to drive phase transitions®®, necessitating additional sets of
structural order parameters, e.g., a pseudovector order parameter Q = (Q1, Q2, 03), to represent the
antiferrodistortive phase transition characterized by the oxygen octahedral tilt. To account for
antiferroelectric transitions such as those in NNO, another order parameter for the antipolar

ordering is required®.

The thermodynamic free energy of an inhomogeneous ferroelectric can be formulated as a
functional of the order parameters. The widely adopted Landau-Ginzburg-Devonshire (LGD)
model employs a high-order polynomial of the order parameters to describe the bulk chemical
contribution. The polynomial form adheres to the symmetry requirements derived from group-
subgroup analyses’®. The coefficients of the polynomial, which depend on the temperature and
chemical composition, can be determined by fitting experimental data or by first-principles
calculations. The short-range interactions of the order parameters are often approximated as a
quadratic term of the spatial gradient of the order parameters, with material-dependent coefficients
related to the domain wall energy. In addition, coupling effects between the order parameters and
mechanical stress/strain can be incorporated as nonlinear effects, such as electrostriction, along

with nonlocal effects, such as flexoelectricity’".

Completing the phase-field model requires a kinetic description that governs the time

evolution of the order parameters driven by the thermodynamic forces. Relaxational kinetics, such
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as the time-dependent Ginzburg-Landau equation, are often assumed to efficiently attain
equilibrium states. The mobility coefficient is typically assumed constant for simplicity, whereas
generalized nonlinear kinetic models with mobility dependent on driving forces have also been
proposed 72. Alternative dynamical models, such as the Klein-Gordon type equation, are adopted
to capture ultrafast polarization dynamics induced by strong external stimuli’®. These dynamical

74,75

models are supplemented by elastodynamic and electrodynamic equations’™’”, as the assumptions

of mechanical and electrical equilibria do not hold.

Choosing appropriate boundary conditions for the time-dependent equations of the order
parameters and associated equilibrium equations is crucial. Three-dimensional boundaries are
standard for bulk ferroelectric crystals’®, while finite-size systems like epitaxial thin films require
tailored boundary conditions at the film surface and film-substrate interface’’-’8. Additionally,
numerical methods for space discretization and time integration significantly influence the
efficiency of solving the phase-field equations. Detailed discussions on these methods can be found

in specialized review articles and literature 37,

4 Theoretical studies on ferroelectric KNN epitaxial thin films

This section reviews recent theoretical advancements in understanding ferroelectric phases
and transitions, domain and domain wall structures, and their influence on the macroscopic
properties of KNN thin films. We focus on the development of thermodynamic models,
construction of strain phase diagrams, and analyses of domain and superdomain structures using

phase-field simulations.
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4.1 Thermodynamic Model of KNN

A robust thermodynamic model forms the basis for phase-field modeling of ferroelectric
materials like KNN. Liang et al. ! developed an eighth-order LGD model for KNO, parameterized
against experimental data for phase transition temperatures, dielectric permittivity, and
piezoelectric coefficients®?. This model was extended®? to the K-rich side of KNN with x = 0.5 ~
1.0. Using the thermodynamic model of KNN, various structural and thermodynamic properties
can be calculated for KNN bulk crystals and thin films based on the monodomain assumption®?,

32,84

including phase transition temperatures®?, spontaneous polarization and strains®*>%*, electrocaloric

coefficients®*®>  dielectric constants®, and piezoelectric coefficients 333384,

In contrast, a thermodynamic model for the Na-rich side of KNN remains elusive. The gap
is likely due to the involvement of oxygen octahedral tilts for the NNO-rich side of the phase
diagram (c.f. Figure 1d). Recent efforts by Hadaeghi et al. introduced a first-principles-based
LGD-type model capable of describing ferroelectric-to-antiferroelectric phase transitions in Na-
rich KNN using three coupled order parameters®®. Nevertheless, the coupling coefficients of the
order parameters to strains have not yet been determined, which limits its application to strained
NNO thin films®’. The coupling between the order parameters and the electric field is also critical

in modeling the electric-field-induced antiferroelectric-to-ferroelectric transition in NNO®,

4.2 Constructing strain phase diagrams

Strain phase diagrams are essential for predicting phase equilibria and selecting substrate
materials for the desired properties of ferroelectric thin films. The temperature—strain phase
diagram is adequate for describing the phase equilibria of thin films subjected to biaxial isotropic
misfit strains, while for films subjected to biaxial anisotropic strains, the misfit strain—misfit strain

diagram at room temperature is necessary. Various theoretical approaches have been employed,
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33,84,85,90,91

including first-principles calculations®’*, thermodynamic calculations , and phase-field

simulations®’-*%, to establish the strain phase diagrams of KNN.

The first-principles calculation-based method is predictive but generally limited to

monodomain states. Dieguez et al. ¥

calculated the ab initio phase diagram in terms of uniaxial
stress and biaxial isotropic strain for KNO and NNO. It is predicted that the ferroelectric phase
evolves from the c-phase to r-phase (corresponding to Ma or Mg-phase in our notation) and to aa-
phase (corresponding to aja2-phase in our notation) when the strain varies from compressive to
tensile®®. This trend has been verified in experiments for NNO thin films®. Very recently, other
ground states of NNO under strains have been revealed by first-principles calculation®’. In addition,
atomistic simulation-based approaches have been utilized to construct the strain phase diagrams

for other ferroelectric materials °>3

, while their employment for KNN thin films requires the
development of well-parametrized effective Hamiltonian functionals or interatomic potentials for

the system.

The thermodynamic calculations are usually based on a priori assumption on the domain
states 84, The monodomain strain phase diagrams of KNO 3% and KNN thin films **348391 have
been established using the thermodynamic models of bulk KNN32#! | as shown in Figure 3a,b. The
sequence of phase evolution by varying the strain from compressive to tensile is identical to the
prediction of first-principles calculations at 7= 0 K. The monodomain phase diagram agrees well
with experiments predicting the orthorhombic c-phase of KNN’° on DSO°! and the Ma-phase
KNN on STO at high temperature*’. The strain phase diagrams can also be established using the
thermodynamic theory for polydomains®, yet its application to the KNN systems has not been

reported.
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The strain phase equilibrium theory®®"’

provides an alternative way to construct the strain
phase diagram based on thermodynamics without assuming a priori multiphase/multidomain
states. Using this method, Wang et al. obtained the polydomain strain phase diagrams of KNN
subject to biaxially misfit strains’®, as shown in Figure 3d. Compared with the monodomain strain
phase diagrams, the polydomain strain diagram reveals phase coexistence between the aic, axc,
and aiax-phases at low-strain states of KNN, which is consistent with the observation of Mc- and
aia/Mc-phases®*°. The application of the strain phase equilibrium theory to the temperature-

strain phase diagrams of KNN has also shown similaries to the diagram constructed using the

phase-field approach®.

Phase-field simulations complement the above approaches by providing detailed phase
diagrams under varying strains and temperatures, offering additional insights into the domain
structures. The obtained temperature—strain®’ and strain—strain phase diagrams®® of KNN are
shown in Figure 3e,f. Though computationally intensive, the diagrams obtained by phase-field
simulations can accurately reproduce experimental observations and predict potential new domain
structures not yet reported, thus providing a deeper understanding of phase transitions and

microstructure evolution in KNN thin films.

4.3 Domains, domain walls, and superdomains at equilibrium

Strained KNN thin films can develop multiple ferroelastic domain variants to relieve the
mechanical energy. Phase-field simulations are instrumental in modeling these complex systems
and considering inhomogeneous stress distributions, electrical boundary conditions, and domain
wall energies. Wang and Zhou et al. ¥’ utilized phase-field simulations to predict three-
dimensional domain structures in KNN thin films under various strains and temperatures, revealing

stripe-like and herringbone-like domain patterns of monoclinic KNN thin films akin to
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experimental observations. It is further predicted that the herringbone-like domains of
Ko.9Nag.1NbOs3 thin films can transform into stripe-like domains of the orthorhombic ai/a>-phase,
which is verified by experiments >7%7 (Figure 2c — f). Notably, the three-dimensional model of the
domains is essential for acquiring the correct picture of the equilibrium domain arrangement of
KNN thin films. For conventional domain structures of (001)-oriented tetragonal or rhombohedral
thin films, the domain wall planes are parallel to the low-index planes, e.g., (110)pc or (101)pc. In
contrast, the domain wall plane of monoclinic KNN thin films is inclined with respect to both the

in-plane and out-of-plane directions of the film.

To gain insights into the unconventional domain walls of the monoclinic KNN films, Wang
et al. performed phase-field simulations using preset regular polydomains of the Mc- and a1a2/Mc-
phases to obtain the domain wall planes at equilibrium *® (Figure 4a,b). It is found that the domain
walls in both cases are tilted with respect to the horizontal and vertical directions of the film, as
shown in Figure 4a,b. The tilt angles depend on the value of the electrostrictive coefficients,
especially the shear component Q44. Measuring Qa4 of KNN from bulk crystals is challenging; thus,
different values were assumed in the literature®**37. A theoretical approach combining the strain
phase equilibrium theory and microelasticity analysis was used to extract plausible Qs and
reproduce the domain wall tilt angles as a function of compositions, consistent with experiments
%8 (Figure 4c,d). These findings suggest that the phase-field simulation is useful for predicting the
domain structures and accurately identifying the domain wall orientations for low-symmetry

ferroelectrics®.

Superdomain structures featured by hierarchical assemblies of domain variants with
periodicities at different length scales'®’ have been identified in KNN thin films. These structures,

observed in the Mc- and aia2/Mc-phases, pose challenges in understanding their structural
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relationship to their composing domain variants and the local features at the junctions, i.e., the
superdomain wall. To answer these questions, Zhou et al.*® performed systematic phase-field
simulations to identify the low-energy superdomain structures. The two most stable superdomain
structures of the Mc- and a1a2/Mc-phases are shown in Figure 5. It is found that the superdomain
walls of the Mc-phase contain disrupted polarization vectors in the cross-section, resulting in a
three-time larger superdomain wall width than that of the aiax/Mc-phase. The different local
polarization structures of the superdomain walls may also explain why the superdomain walls of
the a1a2/Mc-phase are straight and regular >> while those of the Mc-phase are zigzag and disordered
5152 - Additionally, the superdomain structures may exhibit unique functional properties. As
suggested by phase-field simulations®, the superdomain walls show enhanced local piezoelectric
responses. For example, by controlling the periodicity of superdomains, the effective piezoelectric
coefficient of aja2/Mc-phase KNN films can be improved by 20% and the dielectric permittivity

by 40%, as shown in Figure 6.

In addition, we point out a few unaddressed questions regarding the domain structures of
ferroelectric KNN thin films. First, the formation conditions of some domain morphology
observed in experiments have not yet been well understood, such as the checkerboard-like domains
in 52 nm Ko9Nao (NbOj3 thin films on NSO % and the stripe-like domains consisting of 180°
domain walls in Ma-phase Ko75Nag2sNbO3 on TSO %1192 Second, the formation mechanism of
the a1a2/Mc superdomains in anisotropically strained KNN thin films is not fully clear. In
experiments, only one set of ferroelastic domain variants of the Mc-phase, e.g., azc, appear in the
superdomains, resulting in biased in-plane polarization along the [110]o of the scandate substrate.
In the phase-field simulations®®, however, it requires anisotropic misfit strains as large as |ex — &)

~ 1.0% to stabilize such domain structures, compared to the experimental misfit strain offered by
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NSO at around 0.3% 3°. In other words, the anisotropic misfit strain alone cannot explain the
preference of the a>c-phase over the aic-phase in forming aia2/Mc superdomains. It is suspected
there is self-poling of the in-plane polarization during the film growth associated with the intrinsic
structural anisotropy of the (110)o surface of the scandate substrate, which has also been reported
in BFO epitaxial thin films on similar substrates'®®. Further insights need to be gained to address
this discrepancy. Third, most of the KNN films reported in experiments so far are grown on
substrates without a bottom electrode, while existing phase-field simulations of KNN thin films
assume short-circuit boundary conditions at the film surface and the interface between the film
and substrates®’ 3%, It is important to perform a systematic study to comprehensively evaluate
the influence of electrical boundary conditions on the formation of domain and superdomain

structures.

5 Perspectives and Summary

5.1 Ferroelectric NNO thin films

While experimental studies on ferroelectric phases and domains in NNO thin films have
been conducted, phase-field simulations have primarily focused on the K-rich side of KNN37-3%%,
This disparity arises from lacking a comprehensive thermodynamic model that describes the
antiferrodistortive, ferroelectric, and antiferroelectric ordering coupled with stress and electric
fields. Recent efforts in modeling other antiferroelectric perovskite oxides'®, such as PbZrO;
(PZ0)* and Sm-doped BFO'®, provide a potential roadmap for adapting similar models to NNO.
Notably, relaxor-like behaviors observed in NNO % and KNN thin films '°7-1% are intriguing yet
remain poorly understood, suggesting a need for unified thermodynamic models encompassing the

local structural disorders %111,



364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

5.2 Topological polar structures

Emerging research on topological polar structures, such as polar vortices and skyrmions,
has captivated the ferroelectric community since their discovery in the heterostructures of
perovskite oxides!!>!!3, Exploring whether similar and novel topological polar structures can
manifest in KNN-based thin films and heterostructures is an enticing prospect, as implied in the
recent discovery of polar topological bubbles in KNN-based ceramics''®. The delicate interplay
between bulk, mechanical, and electrical energies may facilitate the formation of these structures
in KNN-based superlattices with paraelectric materials such as STO and KTaOs. Moreover,

ferroelectric-antiferroelectric superlattices!'®*

have enabled unprecedented electromechanical
responses. As KNN solid solutions can host ferroelectric and antiferroelectric phases by
compositional tuning, it is interesting to investigate the feasibility of KNN-based ferroelectric-

104

antiferroelectric superlattices'™*. Along this direction, the theoretical prediction of the multi-

115,116

dimensional phase diagrams of these heterostructures using phase-field simulations would

be beneficial for guiding the experimental exploration.

5.3 Domain switching and domain wall dynamics

Despite recent advances in understanding the equilibrium domain structures of KNN thin
films, studies on the dynamical behavior of domains and domain walls remain relatively limited,
both theoretically!!” and experimentally®>!!®, Recent work has shown the reversible in-plane and
out-of-plane polarization switching in Mc-phase KNN thin films with SrRuO3 bottom electrodes
using electric bias via a scanning probe!!®. Future investigations should focus on systematic studies
of their domain switching dynamics using phase-field simulations and experimental validations.

Additionally, exploring mechanical switching of domains, as demonstrated in other ferroelectric
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materials like BTO'"®, PbZr2Tios03 '?°, and BFO thin films'?!, presents an intriguing avenue for

investigating bidirectional and multistate switching possibilities in KNN thin films.

6 Summary

We reviewed recent advances in understanding the ferroelectric phase equilibria, phase
transitions, and equilibrium domain structures of KNN epitaxial thin films, underscoring the
pivotal role of phase-field simulations in gaining deep insights. The simulations have facilitated
accurate prediction of strain phase diagrams, reconstruction of complex three-dimensional domain
configurations, identification of domain wall orientations, and evaluation of the domain size effects
on the piezoelectric coefficients, which have significantly advanced our understanding of
ferroelectric KNN thin films. Challenges and opportunities lie ahead in refining thermodynamic
models for NNO and Na-rich KNN to explore the antiferroelectric phases and domains, employing
phase-field approaches to explore the topological polar textures in KNN-based heterostructures,

and theoretically elucidating the dynamic behavior of KNN thin films.

To overcome these challenges, we believe that integration between atomistic and
mesoscale methods, innovation in phase-field methodology, and proper use of machine learning
techniques are of key importance. For example, the parameterization of a phase-field model of
ferroelectric materials is often based on empirical fitting of materials properties measured in
experiments, which limits its timely applicability to new ferroelectric materials or solid-solutions

122,123

of known materials . The machine-learning interatomic potential allows for exploring

structural dynamics and functional properties at finite temperatures with quantum accuracy and
124,125

can be utilized to determine phase-field parameters of ferroelectric materials from ab initio

The recently developed multiphase-field model for ferroelectrics offers another avenue for
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studying ferroelectric behavior without resorting to the LGD model'?®. Machine learning surrogate
models can be used to accelerate the construction of strain phase diagrams and prediction of
ferroelectric behaviors under various operation'?”-1?%, We anticipate the successful implementation
of these emerging techniques to study KNN-based ferroelectrics in the near future. In addition,
joint efforts between theoretical modeling and experimental investigations are indispensable to
uncover new physics and unlock new functionalities of KNN-based crystals'?® and thin films'*,

paving the way for their advanced applications in diverse technological domains.
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Figure 1. (a) Crystal structures of typical ferroelectric phases of perovskite oxide ABOs. (b) Phase

transition sequence of Ko.sNao sNbO3 bulk crystals represented by lattice constants and space group.
(c) Phase transition sequence of NaNbOs by space group and polar ordering. PE, FE, and AFE
denote paraelectric, ferroelectric, and antiferroelectric, respectively. (d) Phase diagram of K.Naj.
xNbOs3 for x = 0.05 to 1.0. The Glazer notations are used to consider both the oxygen octahedral
tilt (superscript) and B-site displacements (subscript). (a) is adapted from Ref. 21 with permission.
(b) is adapted from Ref. 15 with permission. (c) is adapted from Ref. 86 with permission. (d) is

adapted from Ref. 18 with permission.
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822  Figure 2. Domain structures of ferroelectric KNN thin films. (a,b,c) Two-dimensional morphology
823  of the ferroelectric domains observed in experiments by piezoresponse force microscopy (PFM)
824  for (a) 35-nm Ko.7Nag3NbOs3 film on TbScOs3 at room temperature, (b) 30-nm Ko.9Nao.1NbO3 film
825  on NdScOs at room temperature, and (c¢) 38-nm Ko.9NaoiNbOs film on NdScOs3 at 250 °C. (d,e,f)
826  The corresponding three-dimensional models of the ferroelectric domains obtained from phase-
827  field simulations. (a,b,c) are obtained with the permission of Dr. Martin Schmidbauer and Dr. Jutta
828  Schwarzkopf. (e,f) are adapted from Ref. 57 with permission. (d) is adapted from Ref. 37 with
829  permission.
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833  Figure 3. Strain phase diagrams of ferroelectric K:Nai.xNbOs. (a,c,e) Temperature — strain phase
834  diagrams and (b,d,f) strain — strain phase diagrams at 7= 300K of (001),c-oriented KNN thin films
835  subjected to biaxial misfit strains. (a,b) are calculated by using the thermodynamic model based
836  on the monodomain assumption. (c,d) are calculated using strain phase equilibrium theory without
837 a priori assumptions on the domain structure. (e,f) are calculated using a series of three-
838  dimensional phase-field simulations without a priori assumption on the domain structure. (a,b) are
839  adapted from Ref. ** with permission. (c) is adapted from Ref. * with permission. (d) is adapted
840 from Ref. 98 with permission. () is adapted from Ref. 37 with permission. (f) is adapted from Ref.
841 38 with permission.
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Figure 4. Three-dimensional models of two types of polydomain structures of monoclinic
ferroelectric KiNaixNbO3 thin films. (a,b) Domain structures and (c,d) domain wall inclination

angles as functions of composition and the electrostrictive coefficients Q4 for Ko.sNaosNbO3 of
(a,c) the Mc-phase and (b,d) the a1a2/Mc-phase. Adapted from Ref. 98 with permission.
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Figure 5. Formation of superdomains by the combination of two bundles of polydomain in
monoclinic ferroelectric K,NajNbO3 thin films. (a,d) Schematics of the merging of two
polydomain variants into one period of the superdomain structure case for (a) the Mc-phase and
(d) the aiaz/Mc-phase. (b,e) planar view of the morphology of near the superdomain boundary
indicated by dashed line for (b) the Mc-phase and (e) the aiaz/Mc-phase. The direction of the
polarization vectors within each domain variant are indicated by solid arrows. The direction of the
averaged polarization vectors for each polydomain variant are indicated by large hollow arrows.
(c,f) Cross-sectional view of the local polarization vectors within the superdomain boundary for
(c) the Mc-phase and (f) the aia2/Mc-phase. The color bar indicates the magnitude of the local
polarization vectors. Adapted from Ref. 38 with permission.
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872  Table 1. Summary of the ferroelectric phases and domain morphologies of KNN and NNO
873  epitaxial thin films reported in the literature. Abbreviations for substrate materials: SrTiO3(STO),
874  SmScO; (SS0), GdScOs (GSO), NdScO3 (NSO), and TbScOs3 (TSO).

x of K«Na,. . . o Domain Thickness
Phases NbO, Substrates Misfit strains  Temperature (°C) morphology (nm) Ref.
K-rich side
Monoclinic
RT Herringbone 56,55,64
M .
@aMo) 90 - 0.08 NSO Biaxially 20~30
anisotropic
Orthorhombic
250 Stripe//[110]pc 57,67
(@) pe//[110]p
: 101,102
Monoclinic 0.75 TSO RT Stripe//[110]pc 29
Ma 0.5, doped STO 200 ; 200 49
0.54-0.74 SSO, GSO, TSO RT 30+10 51,53
Monoclinic Biaxially .
t 11
Mc compressive Stripe//[110]pe
0.5 DSO RT 32 18
0.5, doped STO RT 200 49,54
0.7 DSO RT
Orthozil)o mbic Monodomain 30+10 51
0.54-0.74 TSO, GSO, SSO 100 ~ 400
NaNbO;
NGO Compressive RT 10 58,59
Orthorhombic
(© Sligh
ghtly
T RT i 1
STO compressive Monodomain 0 58,59
Monoclinic NGO, DSO, TSO
P2 Y Partially rel RT ~ 14
(M or Ms) 0.0 GSO artially relaxed 30 0 58,59
Monoclinic
DSO, TSO, GSO RT Stripe//[100]pc 1.5~27 58-60
(alaz) .
Tensile
O“h(zﬂ;:r)nbw DSO 350 Stripe//[110]pe 42 62
1/d2
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877  Table 2. Comparison of phases in strained KNN and NNO epitaxial thin films on various substrates
878 at room temperature (RT) and high temperature (HT). Abbreviations for substrate materials:
879  SrTiO3(STO), SmScO3 (SSO), GdScO3 (GSO), NdScOs3 (NSO), and TbScOs (TSO).

Films

Highly biaxial
compressive

Moderate biaxial

compressive biaxial tensile

Biaxial anisotropic

KNN (x>
0.5)

Substrates

RT:
orthorhombic ¢

HT: paraelectric

STO, DSO

RT: monoclinic Mc

HT: orthorhombic ¢ or
monoclinic Ma

TSO, GSO, SSO

RT: Monoclinic
arax/Mc

HT: orthorhombic
ailaz

NSO

NNO

Substrates

RT:
orthorhombic ¢

NGO

RT: monoclinic aiaz
RT: monoclinic Ma or
HT: orthorhombic

STO, partially relaxed

NGO, DSO, TSO, DSO, TSO, GSO

880

881

882



