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Abstract (150 words) 15 

Strains play a pivotal role in determining the phase equilibrium, domain configuration, and 16 

functional properties of low-dimensional ferroelectrics. There is growing interest in the strain 17 

engineering of ferroelectric KxNa1-xNbO3 (KNN) epitaxial thin films, which exhibit excellent 18 

physical properties and promise as eco-friendly alternatives to lead-based ferroelectrics for 19 

microdevice applications. Advances have been made in understanding the phase equilibria and 20 

transitions, domains and domain walls, and their relations to the physical properties of KNN 21 

epitaxial thin films using a combination of experiments and theoretical modeling, particularly 22 

phase-field simulations. Here, we review recent progress in these aspects and showcase the phase-23 

field method for establishing strain phase diagrams, elucidating the domain and domain wall 24 

structures at equilibrium, and predicting the structure–property relationships in ferroelectric KNN 25 

thin films. We also discuss challenges and opportunities to further advance our understanding of 26 

KNN thin films and potentially unlock new functionalities by leveraging phase-field simulations.  27 
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1 Introduction  28 

 Ferroelectric thin films have garnered significant research interest over the past decades 29 

due to their promising technological applications and fundamental scientific importance1,2. These 30 

materials exhibit a unique set of physical properties, such as high dielectric permittivity, large 31 

piezoelectric activity, nonlinear optical susceptibilities, and switchable spontaneous polarization, 32 

making them suitable for various functional devices, including high energy-density capacitors3, 33 

microelectromechanical systems4, integrated photonics5, and non-volatile memories6. Furthermore, 34 

the reduced dimensionality of ferroelectric thin films and their tunable mechanical and electrical 35 

boundary conditions allow for investigations of novel ferroelectric phases and domain structures 36 

with unique physical behaviors distinct from those of their bulk counterparts2.  37 

Strain can be employed to tune the phase stability and thus the functional properties of 38 

ferroelectric thin films7. To fully exploit the potential of ferroelectric thin films, it is essential to 39 

understand the correlations among misfit strains, ferroelectric phases and domains, and their 40 

corresponding macroscopic properties. Significant progress has been made in the strain 41 

engineering of classical ferroelectric perovskite oxides such as PbTiO3 (PTO)8, BaTiO3 (BTO)9, 42 

and BiFeO3 (BFO)10. At room temperature, these bulk crystals exhibit either tetragonal or 43 

rhombohedral ferroelectric phases. New ferroelectric phases can be stabilized by imposing misfit 44 

strains through epitaxial growth, e.g., monoclinic phases in BFO epitaxial thin films10. While 45 

epitaxial strains generally suppress the intrinsic piezoelectric coefficient, the 46 

multiphase/multidomain states stabilized by epitaxial strains may enhance piezoelectric 47 

responses11. However, it is still poorly understood how misfit strains affect the stability of the 48 

orthorhombic ferroelectric phase, another common polymorphic phase of perovskite oxides, and 49 

the corresponding physical properties. 50 



The solid solution between KNbO3 (KNO) and NaNbO3 (NNO), i.e., KxNa1-xNbO3 (KNN), 51 

is an ideal model system for such studies. In bulk KNO, there are structural phases isostructural to 52 

those of BTO, transitioning from cubic (Pm3m) to tetragonal (P4mm), orthorhombic (Amm2), and 53 

rhombohedral (R3c) phases as the temperature decreases from 800K to 100 K 12,13(Figure 1a). The 54 

same transition sequence is maintained in KNN solid solutions with up to 50% NNO (i.e., 55 

K0.5Na0.5NbO3) 
14,15(Figure 1b). The other endmember, NNO, exhibits a more complex series of 56 

phase transitions due to the involvement of the oxygen octahedral tilts 16. As it cools from the high-57 

temperature cubic phase, bulk NNO undergoes six non-ferroelectric phases until reaching a 58 

rhombohedral ferroelectric phase below 173K. At room temperature, NNO exhibits an 59 

antiferroelectric orthorhombic phase (Pbcm) that can transition to a metastable orthorhombic 60 

ferroelectric phase (Pmc21 or P21ma) under a moderate electric field17(Figure 1c). Consequently, 61 

the temperature-composition phase diagram of KNN is rather complex 18,19 (Figure 1d), offering a 62 

rich landscape to explore the interplay among the ferroelectric, antiferroelectric, and 63 

antiferrodistortive orderings20. KNN-based crystals and ceramics are emerging as promising lead-64 

free alternatives to lead-containing ferroelectric materials like Pb(Zr1-xTix)O3(PZT), attracting 65 

attention due to increasing concerns about ecological sustainability21,22. In fact, high dielectric 66 

tunability23, giant piezoelectric strains 24,25, highly sensitive and potential selective surface acoustic 67 

wave detection 26, and exceptional high elasto-optical coefficients 27 have been reported in strain-68 

engineered KNN thin films, making the study of their structures and properties of both scientific 69 

interest and technological relevance.  70 

Several comprehensive review articles have documented progress in developing KNN-71 

based ceramics 22, single crystals 28, and thin films 29–31 from experimental perspectives. However, 72 

recent advances in the use of theoretical tools32–35, particularly phase-field modeling36, to the KNN 73 



ferroelectric thin films have provided profound insights into the phase equilibria and transitions, 74 

domain and domain wall structures, and their correlation to macroscopic material properties37–39. 75 

This brief review presents the state-of-the-art by summarizing the experimental and theoretical 76 

understandings of ferroelectric phase transitions, domain and superdomain structures at 77 

equilibrium, and the corresponding functional properties in KNN epitaxial thin films. In the 78 

following sections, we first summarize the experimental findings related to the phase symmetries 79 

and domain morphologies of KNN epitaxial thin films. We then outline a general framework for 80 

establishing phase-field models for ferroelectric materials. Subsequently, we review the progress 81 

made in the theoretical modeling of KNN thin films, including the development of thermodynamic 82 

models of KNN, construction of strain phase diagrams, and determination of the equilibrium 83 

structures of domains, domain walls, and superdomain structures. Finally, we discuss the 84 

challenges and opportunities to exploit the phase-field approach to advance our understanding of 85 

KNN-based ferroelectric materials and their applications. 86 

2 Experimental studies of ferroelectric KNN epitaxial thin films 87 

In this section, we summarize the state-of-the-art experimental results on the 88 

characterization of ferroelectric phases, equilibrium domain morphology, and domain wall 89 

configurations in KNN thin films with various compositions grown on different substrate materials. 90 

We discuss a unified picture of the strain effect on the phase equilibria of K-rich KNN and NNO 91 

epitaxial thin films and highlight three typical domain patterns of ferroelectric KNN thin films.  92 

Before describing the technical details, we provide two preliminary notes. First, significant 93 

efforts have been made to epitaxially grow KNN films using pulsed laser deposition40–43, 94 

hydrothermal methods44, RF magnetron sputtering45–47, chemical solution deposition48, metal-95 



organic vapor-phase epitaxy30, sol-gel methods49, among others29. However, we focus only on 96 

studies reporting ferroelectric phases that differ from bulk states and on characterizing domain 97 

structures influenced by misfit strains imposed by the substrate materials. Second, various 98 

notations have been used to represent ferroelectric phases in perovskite oxide thin films in the 99 

literature, which often leads to confusion. Here, we adopt a notation based on the crystal system 100 

of the conventional unit cell (e.g., monoclinic, orthorhombic) and the spontaneous polarization 101 

direction within the pseudocubic unit cell of the perovskite structure (e.g., a1, a2, c). Examples 102 

include the orthorhombic c-phase with P = (0, 0, P3), monoclinic a1c-phase with P = (P1, 0, P3) 103 

and a2c-phase with P = (0, P2, P3), and monoclinic a1a2-phase with P = (P1, P2, 0). We refer to 104 

both a1c- and a2c-phases as MC-phase. The MA- and MB-phases with P = (P1, P2, P3) are 105 

distinguished by the relative amplitude of the polarization components, i.e., P1 = P2 < P3 for MA 106 

and P1 = P2 < P3 for MB. A detailed discussion on the notation of ferroelectric phases is given by 107 

Janolin50.  108 

2.1 Ferroelectric phases  109 

Table 1 summarizes several new ferroelectric phases absent in bulk states reported in 110 

epitaxial KNN thin films, including the monoclinic MA-, MB-, a1a2-, and MC-phases, as well as 111 

orthorhombic c, a1, and a2 phases. These phases develop under various film compositions, growth 112 

conditions, and substrate types and can be broadly categorized into four types based on misfit 113 

strain states (Table 2).  114 

For K-rich KNN thin films (x > 0.5), highly biaxial compressive strains induce the 115 

monodomain orthorhombic c-phase, which is observed in fully strained Ka0.7Na0.3NbO3 films on 116 

the DyScO3 (DSO) substrate51,52. Moderate biaxial compressive misfit strains provided by rare-117 

earth scandates like SmScO3 (SSO), GdScO3 (GSO), and TbScO3 (TSO), favor the monoclinic 118 



MC-phase51,53. Upon heating, the MC-phase transforms into the orthorhombic c-phase51 or 119 

monoclinic MA-phase 49,54, depending on the film composition and substrate materials. When both 120 

tensile and compressive strains are applied orthogonally in-plane, the a1a2/MC-phase is formed, as 121 

observed in Ka0.9Na0.1NbO3 films on NdScO3 substrates55,56. Subsequent heating of the a1a2/MC-122 

phase results in the orthorhombic a1/a2-phase with exclusively in-plane polarization57.  123 

For NNO, the lattice constants of its pseudocubic unit cell are smaller than those of KNbO3 124 

by nearly 0.1 Å 30. Consequently, the lattice mismatch between NNO films and ReScO3 (Re = Dy, 125 

Gd, Tb) substrates induces biaxial tensile strains, resulting in the monoclinic a1a2-phase with in-126 

plane polarization58,59. Upon partial relaxation of such tensile strains, as observed in thicker films, 127 

the monoclinic a1a2-phase transitions into other monoclinic MA- or MB-phases with out-of-plane 128 

polarization60. Highly compressively strained NNO films on NdGaO3 substrates exhibit an 129 

orthorhombic c-phase with only out-of-plane polarization59,61. Despite the distinct origins of 130 

ferroelectricity in bulk phases, similarities in strain-induced ferroelectric phases and phase 131 

transitions between KNN and NNO epitaxial thin films have been noted62.  132 

2.2 Ferroelectric domains and superdomains  133 

The equilibrium domain structures of these ferroelectric phases in as-grown KNN and 134 

NNO films can be categorized into three types based on their two-dimensional morphology, which 135 

can be viewed from an out-of-plane perspective: monodomains, stripe-like domains, and 136 

herringbone-like domains.  137 

In monodomains, uniform out-of-plane polarization with minimal in-plane variations has 138 

been reported in the orthorhombic c-phase of NNO thin films58 and KNN thin films51, as well as 139 

in other ultrathin films below the critical thickness for domain formation 52.  140 



Stripe-like domains exhibit highly regular laminar patterns in both monoclinic and 141 

orthorhombic ferroelectric phases at various temperatures30,53,57,62. The patterns can be classified 142 

into one-dimensional and two-dimensional structures. The one-dimensional stripe-like patterns 143 

parallel to [010]pc emerge in a1a2-, MA-, and MB-phases of NNO58,60. The two-dimensional stripe-144 

like domain patterns parallel to [010]pc and [100]pc have been found in MA-phase of NNO on GSO 145 

substrates58, while another two-dimensional pattern parallel to [110]pc and [1-10]pc is shown in the 146 

monoclinic MC-phase of KNN films49,49,53,63 and the orthorhombic a1/a2-phases of KNN 57 and 147 

NNO films62. Notably, the stripe-like domains of the MC-phase show superdomain structures 148 

consisting of four energy-equivalent bundles of a1c and a2c domains52,53.  149 

Herringbone-like domain patterns are reported exclusively in the a1a2/MC-phase of KNN 150 

55,56,64. They differ from the stripe-like domains in three ways. First, domain walls in the 151 

herringbone patterns do not follow any low-index directions but vary with film compositions and 152 

thickness64. Second, the herringbone pattern is hierarchical, where polydomains of a1a2- and MC-153 

phases self-assemble into superdomain structures with regular, well-defined boundaries55,56. In 154 

contrast, the superdomain boundary of the stripe-like domain patterns are irregular52. Third, the 155 

lattice constant differences between variants of the a1a2- and MC-phases under anisotropic misfit 156 

strains mean that the interfaces between these domains are heterophase boundaries rather than 157 

conventional twin domain walls. The mechanical compatibility condition may not hold for the 158 

heterophase boundary65,66. Besides, the herringbone-like domains can transform into stripe-like 159 

domains of the high-temperature orthorhombic a1/a2-phase upon heating57,67.  160 

Two-dimensional piezoresponse force microscopy (PFM) images of these domain 161 

structures in KNN epitaxial thin films, along with their corresponding three-dimensional models 162 



obtained through phase-field simulations, are highlighted in Figure 2a – c for the MC-phase53, 163 

a1a2/MC-phase at room temperature56, and a1a2/MC-phase at elevated temperatures57, respectively.  164 

2.3 Ferroelectric domain walls  165 

There have been few studies on the domain walls of KNN thin films. The domain walls of 166 

a1a2-phase of NNO resemble the 90° domain walls of the orthorhombic phase (Amm2) of bulk 167 

KNO and are determined to be parallel to (100)pc of the film30. Domain walls of MC- and a1a2/MC-168 

phases resemble the 60° domain walls of the orthorhombic phase of bulk KNO modified by biaxial 169 

misfit strains. Mechanically compatible charge-neutral 60° domain walls of the orthorhombic 170 

phase are known as S-walls, the plane of which varies with local spontaneous strains 66. Likewise, 171 

the domain walls of the monoclinic MC-phase also show this attribute. Advanced diffraction 172 

techniques have been employed to determine the domain wall orientation of the a1a2/MC-phase 173 

KNN and have revealed large variations of the domain wall plane with regard to film thickness 174 

and compositions64. The domain walls of the stripe-like domains of the MC phase also differ from 175 

those of the (011)pc planes. In addition, charged domain walls have been identified in the MC-phase 176 

of KNN films on DSO substrates deposited using the sol-gel method63.  177 

3 Phase-field methods to model ferroelectric materials  178 

The phase-field method stands as a robust tool for investigating phase equilibria and 179 

transitions, microstructural features such as domains and domain walls, and the intricate 180 

microstructure-property relationship in ferroelectric materials and heterostructures36. Here, we 181 

provide an overview of the establishment of a phase-field model for ferroelectric materials.  182 

A typical phase-field model for ferroelectrics comprises three essential components: order 183 

parameter(s), a thermodynamic model, and a kinetic model. For proper ferroelectrics, the 184 



spontaneous polarization vector P = (P1, P2, P3) often serves as the primary order parameter. It 185 

distinguishes between paraelectric and ferroelectric phases as well  as various domain variants of 186 

ferroelectric phases. For example, the six domain variants of the tetragonal ferroelectric phase and 187 

cubic paraelectric phase can be represented by (±P1, 0, 0), (0, ±P2, 0), (0, 0, ±P3), and (0, 0, 0), 188 

respectively. For improper/incipient ferroelectric materials, such as SrTiO3 (STO), multiple 189 

coupled soft modes are required to drive phase transitions68, necessitating additional sets of 190 

structural order parameters, e.g., a pseudovector order parameter Q = (Q1, Q2, Q3), to represent the 191 

antiferrodistortive phase transition characterized by the oxygen octahedral tilt. To account for 192 

antiferroelectric transitions such as those in NNO, another order parameter for the antipolar 193 

ordering is required69.  194 

The thermodynamic free energy of an inhomogeneous ferroelectric can be formulated as a 195 

functional of the order parameters. The widely adopted Landau-Ginzburg-Devonshire (LGD) 196 

model employs a high-order polynomial of the order parameters to describe the bulk chemical 197 

contribution. The polynomial form adheres to the symmetry requirements derived from group-198 

subgroup analyses70. The coefficients of the polynomial, which depend on the temperature and 199 

chemical composition, can be determined by fitting experimental data or by first-principles 200 

calculations. The short-range interactions of the order parameters are often approximated as a 201 

quadratic term of the spatial gradient of the order parameters, with material-dependent coefficients 202 

related to the domain wall energy. In addition, coupling effects between the order parameters and 203 

mechanical stress/strain can be incorporated as nonlinear effects, such as electrostriction, along 204 

with nonlocal effects, such as flexoelectricity71. 205 

Completing the phase-field model requires a kinetic description that governs the time 206 

evolution of the order parameters driven by the thermodynamic forces. Relaxational kinetics, such 207 



as the time-dependent Ginzburg-Landau equation, are often assumed to efficiently attain 208 

equilibrium states. The mobility coefficient is typically assumed constant for simplicity, whereas 209 

generalized nonlinear kinetic models with mobility dependent on driving forces have also been 210 

proposed 72. Alternative dynamical models, such as the Klein-Gordon type equation, are adopted 211 

to capture ultrafast polarization dynamics induced by strong external stimuli73. These dynamical 212 

models are supplemented by elastodynamic and electrodynamic equations74,75, as the assumptions 213 

of mechanical and electrical equilibria do not hold. 214 

Choosing appropriate boundary conditions for the time-dependent equations of the order 215 

parameters and associated equilibrium equations is crucial. Three-dimensional boundaries are 216 

standard for bulk ferroelectric crystals76, while finite-size systems like epitaxial thin films require 217 

tailored boundary conditions at the film surface and film-substrate interface77,78. Additionally, 218 

numerical methods for space discretization and time integration significantly influence the 219 

efficiency of solving the phase-field equations. Detailed discussions on these methods can be found 220 

in specialized review articles and literature 36,79,80. 221 

4 Theoretical studies on ferroelectric KNN epitaxial thin films 222 

This section reviews recent theoretical advancements in understanding ferroelectric phases 223 

and transitions, domain and domain wall structures, and their influence on the macroscopic 224 

properties of KNN thin films. We focus on the development of thermodynamic models, 225 

construction of strain phase diagrams, and analyses of domain and superdomain structures using 226 

phase-field simulations. 227 



4.1 Thermodynamic Model of KNN  228 

A robust thermodynamic model forms the basis for phase-field modeling of ferroelectric 229 

materials like KNN. Liang et al. 81 developed an eighth-order LGD model for KNO, parameterized 230 

against experimental data for phase transition temperatures, dielectric permittivity, and 231 

piezoelectric coefficients82. This model was extended32 to the K-rich side of KNN with x = 0.5 ~ 232 

1.0. Using the thermodynamic model of KNN, various structural and thermodynamic properties 233 

can be calculated for KNN bulk crystals and thin films based on the monodomain assumption83, 234 

including phase transition temperatures33, spontaneous polarization and strains32,84, electrocaloric 235 

coefficients34,85, dielectric constants85, and piezoelectric coefficients 33,35,84.  236 

In contrast, a thermodynamic model for the Na-rich side of KNN remains elusive. The gap 237 

is likely due to the involvement of oxygen octahedral tilts for the NNO-rich side of the phase 238 

diagram (c.f. Figure 1d). Recent efforts by Hadaeghi et al. introduced a first-principles-based 239 

LGD-type model capable of describing ferroelectric-to-antiferroelectric phase transitions in Na-240 

rich KNN using three coupled order parameters86. Nevertheless, the coupling coefficients of the 241 

order parameters to strains have not yet been determined, which limits its application to strained 242 

NNO thin films87. The coupling between the order parameters and the electric field is also critical 243 

in modeling the electric-field-induced antiferroelectric-to-ferroelectric transition in NNO88.  244 

4.2 Constructing strain phase diagrams  245 

 Strain phase diagrams are essential for predicting phase equilibria and selecting substrate 246 

materials for the desired properties of ferroelectric thin films. The temperature–strain phase 247 

diagram is adequate for describing the phase equilibria of thin films subjected to biaxial isotropic 248 

misfit strains, while for films subjected to biaxial anisotropic strains, the misfit strain–misfit strain 249 

diagram at room temperature is necessary. Various theoretical approaches have been employed, 250 



including first-principles calculations87,89, thermodynamic calculations33,84,85,90,91, and phase-field 251 

simulations37,38, to establish the strain phase diagrams of KNN.  252 

The first-principles calculation-based method is predictive but generally limited to 253 

monodomain states. Dieguez et al. 89 calculated the ab initio phase diagram in terms of uniaxial 254 

stress and biaxial isotropic strain for KNO and NNO. It is predicted that the ferroelectric phase 255 

evolves from the c-phase to r-phase (corresponding to MA or MB-phase in our notation) and to aa-256 

phase (corresponding to a1a2-phase in our notation) when the strain varies from compressive to 257 

tensile89. This trend has been verified in experiments for NNO thin films59. Very recently, other 258 

ground states of NNO under strains have been revealed by first-principles calculation87. In addition, 259 

atomistic simulation-based approaches have been utilized to construct the strain phase diagrams 260 

for other ferroelectric materials 92,93, while their employment for KNN thin films requires the 261 

development of well-parametrized effective Hamiltonian functionals or interatomic potentials for 262 

the system.   263 

The thermodynamic calculations are usually based on a priori assumption on the domain 264 

states 83,94. The monodomain strain phase diagrams of KNO 30,90 and KNN thin films 33,84,85,91 have 265 

been established using the thermodynamic models of bulk KNN32,81, as shown in Figure 3a,b. The 266 

sequence of phase evolution by varying the strain from compressive to tensile is identical to the 267 

prediction of first-principles calculations at T = 0 K. The monodomain phase diagram agrees well 268 

with experiments predicting the orthorhombic c-phase of KNN70 on DSO51 and the MA-phase 269 

KNN on STO at high temperature49. The strain phase diagrams can also be established using the 270 

thermodynamic theory for polydomains95, yet its application to the KNN systems has not been 271 

reported.  272 



The strain phase equilibrium theory96,97 provides an alternative way to construct the strain 273 

phase diagram based on thermodynamics without assuming a priori multiphase/multidomain 274 

states. Using this method, Wang et al. obtained the polydomain strain phase diagrams of KNN 275 

subject to biaxially misfit strains98, as shown in Figure 3d. Compared with the monodomain strain 276 

phase diagrams, the polydomain strain diagram reveals phase coexistence between the a1c, a2c, 277 

and a1a2-phases at low-strain states of KNN, which is consistent with the observation of MC- and 278 

a1a2/MC-phases53,56. The application of the strain phase equilibrium theory to the temperature-279 

strain phase diagrams of KNN has also shown similaries to the diagram constructed using the 280 

phase-field approach99.  281 

Phase-field simulations complement the above approaches by providing detailed phase 282 

diagrams under varying strains and temperatures, offering additional insights into the domain 283 

structures. The obtained temperature–strain37 and strain–strain phase diagrams38 of KNN are 284 

shown in Figure 3e,f. Though computationally intensive, the diagrams obtained by phase-field 285 

simulations can accurately reproduce experimental observations and predict potential new domain 286 

structures not yet reported, thus providing a deeper understanding of phase transitions and 287 

microstructure evolution in KNN thin films.  288 

4.3 Domains, domain walls, and superdomains at equilibrium   289 

Strained KNN thin films can develop multiple ferroelastic domain variants to relieve the 290 

mechanical energy. Phase-field simulations are instrumental in modeling these complex systems 291 

and considering inhomogeneous stress distributions, electrical boundary conditions, and domain 292 

wall energies. Wang and Zhou et al. 37,38 utilized phase-field simulations to predict three-293 

dimensional domain structures in KNN thin films under various strains and temperatures, revealing 294 

stripe-like and herringbone-like domain patterns of monoclinic KNN thin films akin to 295 



experimental observations. It is further predicted that the herringbone-like domains of 296 

K0.9Na0.1NbO3 thin films can transform into stripe-like domains of the orthorhombic a1/a2-phase, 297 

which is verified by experiments 57,67 (Figure 2c – f). Notably, the three-dimensional model of the 298 

domains is essential for acquiring the correct picture of the equilibrium domain arrangement of 299 

KNN thin films. For conventional domain structures of (001)-oriented tetragonal or rhombohedral 300 

thin films, the domain wall planes are parallel to the low-index planes, e.g., (110)pc or (101)pc. In 301 

contrast, the domain wall plane of monoclinic KNN thin films is inclined with respect to both the 302 

in-plane and out-of-plane directions of the film.  303 

To gain insights into the unconventional domain walls of the monoclinic KNN films, Wang 304 

et al. performed phase-field simulations using preset regular polydomains of the MC- and a1a2/MC-305 

phases to obtain the domain wall planes at equilibrium 98 (Figure 4a,b). It is found that the domain 306 

walls in both cases are tilted with respect to the horizontal and vertical directions of the film, as 307 

shown in Figure 4a,b. The tilt angles depend on the value of the electrostrictive coefficients, 308 

especially the shear component Q44. Measuring Q44 of KNN from bulk crystals is challenging; thus, 309 

different values were assumed in the literature33,34,37. A theoretical approach combining the strain 310 

phase equilibrium theory and microelasticity analysis was used to extract plausible Q44 and 311 

reproduce the domain wall tilt angles as a function of compositions, consistent with experiments 312 

98 (Figure 4c,d). These findings suggest that the phase-field simulation is useful for predicting the 313 

domain structures and accurately identifying the domain wall orientations for low-symmetry 314 

ferroelectrics65.   315 

Superdomain structures featured by hierarchical assemblies of domain variants with 316 

periodicities at different length scales100 have been identified in KNN thin films. These structures, 317 

observed in the MC- and a1a2/MC-phases, pose challenges in understanding their structural 318 



relationship to their composing domain variants and the local features at the junctions, i.e., the 319 

superdomain wall. To answer these questions, Zhou et al.38 performed systematic phase-field 320 

simulations to identify the low-energy superdomain structures. The two most stable superdomain 321 

structures of the MC- and a1a2/MC-phases are shown in Figure 5. It is found that the superdomain 322 

walls of the MC-phase contain disrupted polarization vectors in the cross-section, resulting in a 323 

three-time larger superdomain wall width than that of the a1a2/MC-phase. The different local 324 

polarization structures of the superdomain walls may also explain why the superdomain walls of 325 

the a1a2/MC-phase are straight and regular 55 while those of the MC-phase are zigzag and disordered 326 

51,52. Additionally, the superdomain structures may exhibit unique functional properties. As 327 

suggested by phase-field simulations39, the superdomain walls show enhanced local piezoelectric 328 

responses. For example, by controlling the periodicity of superdomains, the effective piezoelectric 329 

coefficient of a1a2/MC-phase KNN films can be improved by 20% and the dielectric permittivity 330 

by 40%, as shown in Figure 6.  331 

In addition, we point out a few unaddressed questions regarding the domain structures of 332 

ferroelectric KNN thin films. First, the formation conditions of some domain morphology 333 

observed in experiments have not yet been well understood, such as the checkerboard-like domains 334 

in 52 nm K0.9Na0.1NbO3 thin films on NSO 64 and the stripe-like domains consisting of 180° 335 

domain walls in MA-phase K0.75Na0.25NbO3 on TSO 101,102. Second, the formation mechanism of 336 

the a1a2/MC superdomains in anisotropically strained KNN thin films is not fully clear. In 337 

experiments, only one set of ferroelastic domain variants of the MC-phase, e.g., a2c, appear in the 338 

superdomains, resulting in biased in-plane polarization along the [11̅0]O of the scandate substrate. 339 

In the phase-field simulations98, however, it requires anisotropic misfit strains as large as |εxx – εyy| 340 

≈ 1.0% to stabilize such domain structures, compared to the experimental misfit strain offered by 341 



NSO at around 0.3% 30. In other words, the anisotropic misfit strain alone cannot explain the 342 

preference of the a2c-phase over the a1c-phase in forming a1a2/MC superdomains. It is suspected 343 

there is self-poling of the in-plane polarization during the film growth associated with the intrinsic 344 

structural anisotropy of the (110)O surface of the scandate substrate, which has also been reported 345 

in BFO epitaxial thin films on similar substrates103. Further insights need to be gained to address 346 

this discrepancy. Third, most of the KNN films reported in experiments so far are grown on 347 

substrates without a bottom electrode, while existing phase-field simulations of KNN thin films 348 

assume short-circuit boundary conditions at the film surface and the interface between the film 349 

and substrates37–39,98. It is important to perform a systematic study to comprehensively evaluate 350 

the influence of electrical boundary conditions on the formation of domain and superdomain 351 

structures.  352 

5 Perspectives and Summary  353 

5.1 Ferroelectric NNO thin films  354 

While experimental studies on ferroelectric phases and domains in NNO thin films have 355 

been conducted, phase-field simulations have primarily focused on the K-rich side of KNN37–39,98. 356 

This disparity arises from lacking a comprehensive thermodynamic model that describes the 357 

antiferrodistortive, ferroelectric, and antiferroelectric ordering coupled with stress and electric 358 

fields. Recent efforts in modeling other antiferroelectric perovskite oxides104, such as PbZrO3 359 

(PZO)69 and Sm-doped BFO105, provide a potential roadmap for adapting similar models to NNO. 360 

Notably, relaxor-like behaviors observed in NNO 106 and KNN thin films 107,108 are intriguing yet 361 

remain poorly understood, suggesting a need for unified thermodynamic models encompassing the 362 

local structural disorders 109–111. 363 



5.2 Topological polar structures  364 

Emerging research on topological polar structures, such as polar vortices and skyrmions, 365 

has captivated the ferroelectric community since their discovery in the heterostructures of 366 

perovskite oxides112,113. Exploring whether similar and novel topological polar structures can 367 

manifest in KNN-based thin films and heterostructures is an enticing prospect, as implied in the 368 

recent discovery of polar topological bubbles in KNN-based ceramics114. The delicate interplay 369 

between bulk, mechanical, and electrical energies may facilitate the formation of these structures 370 

in KNN-based superlattices with paraelectric materials such as STO and KTaO3. Moreover, 371 

ferroelectric-antiferroelectric superlattices104 have enabled unprecedented electromechanical 372 

responses. As KNN solid solutions can host ferroelectric and antiferroelectric phases by 373 

compositional tuning, it is interesting to investigate the feasibility of KNN-based ferroelectric-374 

antiferroelectric superlattices104. Along this direction, the theoretical prediction of the multi-375 

dimensional phase diagrams of these heterostructures using phase-field simulations115,116 would 376 

be beneficial for guiding the experimental exploration.  377 

5.3 Domain switching and domain wall dynamics 378 

Despite recent advances in understanding the equilibrium domain structures of KNN thin 379 

films, studies on the dynamical behavior of domains and domain walls remain relatively limited, 380 

both theoretically117 and experimentally25,118. Recent work has shown the reversible in-plane and 381 

out-of-plane polarization switching in MC-phase KNN thin films with SrRuO3 bottom electrodes 382 

using electric bias via a scanning probe118. Future investigations should focus on systematic studies 383 

of their domain switching dynamics using phase-field simulations and experimental validations. 384 

Additionally, exploring mechanical switching of domains, as demonstrated in other ferroelectric 385 



materials like BTO119, PbZr0.2Ti0.8O3 
120, and BFO thin films121, presents an intriguing avenue for 386 

investigating bidirectional and multistate switching possibilities in KNN thin films. 387 

6 Summary  388 

We reviewed recent advances in understanding the ferroelectric phase equilibria, phase 389 

transitions, and equilibrium domain structures of KNN epitaxial thin films, underscoring the 390 

pivotal role of phase-field simulations in gaining deep insights. The simulations have facilitated 391 

accurate prediction of strain phase diagrams, reconstruction of complex three-dimensional domain 392 

configurations, identification of domain wall orientations, and evaluation of the domain size effects 393 

on the piezoelectric coefficients, which have significantly advanced our understanding of 394 

ferroelectric KNN thin films. Challenges and opportunities lie ahead in refining thermodynamic 395 

models for NNO and Na-rich KNN to explore the antiferroelectric phases and domains, employing 396 

phase-field approaches to explore the topological polar textures in KNN-based heterostructures, 397 

and theoretically elucidating the dynamic behavior of KNN thin films.  398 

To overcome these challenges, we believe that integration between atomistic and 399 

mesoscale methods, innovation in phase-field methodology, and proper use of machine learning 400 

techniques are of key importance. For example, the parameterization of a phase-field model of 401 

ferroelectric materials is often based on empirical fitting of materials properties measured in 402 

experiments, which limits its timely applicability to new ferroelectric materials or solid-solutions 403 

of known materials122,123. The machine-learning interatomic potential allows for exploring 404 

structural dynamics and functional properties at finite temperatures with quantum accuracy and 405 

can be utilized to determine phase-field parameters of ferroelectric materials from ab initio124,125. 406 

The recently developed multiphase-field model for ferroelectrics offers another avenue for 407 



studying ferroelectric behavior without resorting to the LGD model126. Machine learning surrogate 408 

models can be used to accelerate the construction of strain phase diagrams and prediction of 409 

ferroelectric behaviors under various operation127,128. We anticipate the successful implementation 410 

of these emerging techniques to study KNN-based ferroelectrics in the near future. In addition, 411 

joint efforts between theoretical modeling and experimental investigations are indispensable to 412 

uncover new physics and unlock new functionalities of KNN-based crystals129 and thin films130, 413 

paving the way for their advanced applications in diverse technological domains.  414 
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Figure 1 809 

 810 

Figure 1. (a) Crystal structures of typical ferroelectric phases of perovskite oxide ABO3. (b) Phase 811 
transition sequence of K0.5Na0.5NbO3 bulk crystals represented by lattice constants and space group. 812 
(c) Phase transition sequence of NaNbO3 by space group and polar ordering. PE, FE, and AFE 813 
denote paraelectric, ferroelectric, and antiferroelectric, respectively. (d) Phase diagram of KxNa1-814 
xNbO3 for x = 0.05 to 1.0. The Glazer notations are used to consider both the oxygen octahedral 815 
tilt (superscript) and B-site displacements (subscript). (a) is adapted from Ref. 21 with permission. 816 
(b) is adapted from Ref. 15 with permission. (c) is adapted from Ref. 86 with permission. (d) is 817 
adapted from Ref. 18 with permission. 818 

  819 



Figure 2 820 

 821 

Figure 2. Domain structures of ferroelectric KNN thin films. (a,b,c) Two-dimensional morphology 822 
of the ferroelectric domains observed in experiments by piezoresponse force microscopy (PFM) 823 
for (a) 35-nm K0.7Na0.3NbO3 film on TbScO3 at room temperature, (b) 30-nm K0.9Na0.1NbO3 film 824 
on NdScO3 at room temperature, and (c) 38-nm K0.9Na0.1NbO3 film on NdScO3 at 250 °C. (d,e,f) 825 
The corresponding three-dimensional models of the ferroelectric domains obtained from phase-826 
field simulations. (a,b,c) are obtained with the permission of Dr. Martin Schmidbauer and Dr. Jutta 827 
Schwarzkopf. (e,f) are adapted from Ref. 57 with permission. (d) is adapted from Ref. 37 with 828 
permission.  829 
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Figure 3 831 

 832 

Figure 3. Strain phase diagrams of ferroelectric KxNa1-xNbO3. (a,c,e) Temperature – strain phase 833 
diagrams and (b,d,f) strain – strain phase diagrams at T = 300K of (001)pc-oriented KNN thin films 834 
subjected to biaxial misfit strains. (a,b) are calculated by using the thermodynamic model based 835 
on the monodomain assumption. (c,d) are calculated using strain phase equilibrium theory without 836 
a priori assumptions on the domain structure. (e,f) are calculated using a series of three-837 
dimensional phase-field simulations without a priori assumption on the domain structure. (a,b) are 838 
adapted from Ref. 33 with permission. (c) is adapted from Ref. 99 with permission. (d) is adapted 839 
from Ref. 98 with permission. (e) is adapted from Ref. 37 with permission. (f) is adapted from Ref. 840 
38 with permission. 841 
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Figure 4 843 

 844 

Figure 4. Three-dimensional models of two types of polydomain structures of monoclinic 845 
ferroelectric KxNa1-xNbO3 thin films. (a,b) Domain structures and (c,d) domain wall inclination 846 
angles as functions of composition and the electrostrictive coefficients Q44 for K0.5Na0.5NbO3 of 847 
(a,c) the MC-phase and (b,d) the a1a2/MC-phase. Adapted from Ref. 98 with permission.  848 
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 851 

Figure 5. Formation of superdomains by the combination of two bundles of polydomain in 852 
monoclinic ferroelectric KxNa1-xNbO3  thin films. (a,d) Schematics of the merging of two 853 
polydomain variants into one period of the superdomain structure case for (a) the MC-phase and 854 
(d) the a1a2/MC-phase. (b,e) planar view of the morphology of near the superdomain boundary 855 
indicated by dashed line for (b) the MC-phase and (e) the a1a2/MC-phase. The direction of the 856 
polarization vectors within each domain variant are indicated by solid arrows. The direction of the 857 
averaged polarization vectors for each polydomain variant are indicated by large hollow arrows. 858 
(c,f) Cross-sectional view of the local polarization vectors within the superdomain boundary for 859 
(c) the MC-phase and (f) the a1a2/MC-phase. The color bar indicates the magnitude of the local 860 
polarization vectors. Adapted from Ref. 38 with permission.  861 
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 864 

Figure 6. Size effects of domains and superdomains on the overall dielectric and piezoelectric 865 
properties of ferroelectric KNN thin films in the a1a2/MC-phase. (a,c) Planar view of four domain 866 
structures with varied (a) domain periodicity Lx and (c) superdomain periodicity Ly. (b,d) 867 
Calculated out-of-plane piezoelectric coefficients d33

* and dielectric permittivity κ33
* of different 868 

domain structures as functions of (b) Lx and (d) Ly. Adapted from Ref. 39 with permission.  869 
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Table 1. Summary of the ferroelectric phases and domain morphologies of KNN and NNO 872 
epitaxial thin films reported in the literature. Abbreviations for substrate materials: SrTiO3(STO), 873 
SmScO3 (SSO), GdScO3 (GSO), NdScO3 (NSO), and TbScO3 (TSO). 874 

Phases 
x of KxNa1-

xNbO3 
Substrates Misfit strains Temperature (℃) 

Domain 

morphology 

Thickness  

(nm) 
Ref. 

K-rich side 

Monoclinic 

(a1a2/MC) 
0.90 ~ 0.98 NSO 

Biaxially  

anisotropic 

RT Herringbone 

20 ~ 30 

56,55,64 

Orthorhombic  

(a1/a2) 
250 Stripe//[110]pc 57,67 

Monoclinic 

MA 

0.75 TSO 

Biaxially 

compressive 

RT Stripe//[110]pc 29 101,102 

0.5, doped STO 200 - 200 49 

Monoclinic 

MC 

0.54 – 0.74 SSO, GSO, TSO RT 

Stripe//[110]pc 

30±10 51,53 

0.5 DSO RT 32 118 

0.5, doped STO RT 200 49,54 

Orthorhombic  

(c) 

0.7 DSO RT 

Monodomain 30±10 51 

0.54 – 0.74 TSO, GSO, SSO 100 ~ 400 

NaNbO3 

Orthorhombic  

(c) 

0.0 

NGO Compressive RT 

Monodomain 

10 58,59 

STO 
Slightly 

compressive 
RT 10 58,59 

Monoclinic 

(MA or MB) 

NGO, DSO, TSO, 

GSO 
Partially relaxed RT 30 ~ 140 58,59 

Monoclinic 

(a1a2) 

DSO, TSO, GSO 

Tensile 

RT Stripe//[100]pc 1.5 ~ 27 58–60 

Orthorhombic  

(a1/a2) 
DSO 350 Stripe//[110]pc 42 62 

 875 



 876 

Table 2. Comparison of phases in strained KNN and NNO epitaxial thin films on various substrates 877 
at room temperature (RT) and high temperature (HT). Abbreviations for substrate materials: 878 
SrTiO3(STO), SmScO3 (SSO), GdScO3 (GSO), NdScO3 (NSO), and TbScO3 (TSO).  879 

Films 
Highly biaxial  

compressive 

Moderate biaxial 

compressive 

Moderate  

biaxial tensile 
Biaxial anisotropic 

KNN (x > 

0.5) 

RT: 

orthorhombic c 

HT: paraelectric 

RT: monoclinic MC 

HT: orthorhombic c or 

monoclinic MA 

- 

RT: Monoclinic 

a1a2/MC 

HT: orthorhombic 

a1/a2 

Substrates STO, DSO TSO, GSO, SSO - NSO 

NNO 
RT: 

orthorhombic c 

RT: monoclinic MA or 

MB 

RT: monoclinic a1a2 

HT: orthorhombic 

a1/a2 

- 

Substrates NGO 

STO, partially relaxed  

NGO, DSO, TSO, 

GSO 

DSO, TSO, GSO - 

 880 

 881 

 882 


