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ABSTRACT
Information theory can be used to describe the gain of evolutionary
fitness that an organism obtains from sensing, processing, and
acting on environmental information. This paper considers the
fitness value of subjective information, i.e., the context-dependent
value of different kinds of information. A simplified model is given
in which the organism requires two essential nutrients, and can
prioritize sensing for one or the other. It is shown that a subjective
strategy, in which the organism prioritizes a less abundant nutrient
for sensing, leads to higher fitness than a balanced strategy, inwhich
total information is maximized and the meaning of the acquired
information is disregarded. Using this model, the fitness advantage
of subjective information admits an analytical solution, and it is
shown that subjective information is more advantageous when the
organism’s knowledge of the environment is less precise.

CCS CONCEPTS
•Mathematics of computing→ Information theory; • Com-
puting methodologies → Modeling and simulation; • Hardware
→ Biology-related information processing.

KEYWORDS
Fitness-optimal strategies, Chemotaxis, Biological information pro-
cessing

ACM Reference Format:
Tyler S. Barker, Peter J. Thomas, Alexander S. Moffett, Andrew W. Eckford,
and Massimiliano Pierobon. 2024. Fitness Value of Subjective Information
for Living Organisms. In International Conference on Nanoscale Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NanoCom ’24, October 28–30, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1171-8/24/10
https://doi.org/10.1145/3686015.3689352

and Communication (NanoCom ’24), October 28–30, 2024, Milan, Italy. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3686015.3689352

1 INTRODUCTION
Organisms must navigate uncertain environments, which contain
rewards and dangers. In response to this uncertainty, they gather
information about their environments and respond with strategic
behavior. For example, in the presence of changing patterns of odors,
mice are known to extract information about their environment
and change their behavior [1]. Information and uncertainty are
connected with the organism’s evolutionary fitness: the mouse in
the example might smell food, allowing it to thrive and reproduce,
or it might smell a predator, allowing it to avoid capture and survive.

The connection between evolutionary fitness, information pro-
cessing, and behavior has long been of interest. One description of
evolutionary fitness, known as Malthusian fitness, holds that an or-
ganism’s fitness is given by the logarithm of its rate of growth [22].
This form of fitness has an information-theoretic interpretation:
the log growth rate of wealth (e.g., of investments) can be related to
mutual information [6, 14]. An explicit connection between fitness
and information-theoretic quantities has been studied in both the
information-theoretic and biological literature [8, 15, 17], and its
importance was recognized by Berger, who noted that evolution
should guide the choice of a distortion function in a rate-distortion
problem [7, Sec. 6.4]. The connection with behavior has also been
investigated: the information-fitness relationship has been inves-
tigated considering two parts of a cell’s overall strategy, sensing
and processing, both abstractly [11, 16] and in specific examples
such as navigating uncertain chemical gradients [20]. Elucidating
the relation between fitness and information processing may also
be important for bioengineering and synthetic biology [18].

To date, most work in this area uses classical information theory,
in which meaning is disregarded and all bits have the same subjec-
tive value; however, for an organism, sensory information can have
significantly different value in terms of survival. This observation
can be formalized: previous work has shown that information-
optimal strategies (i.e., maximizing information without regard to
semantics) are not fitness-optimal [2, 5]. Meanwhile, recent devel-
opments in information theory also recognize that the semantics of
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information can be used to more efficiently accomplish a specific
task: for example, much like an animal’s sensory system, the sensors
on a self-driving car gather an enormous amount of information,
only a small fraction of which is relevant to safe operation [13].
Addressing subjective value is thus an important new direction for
understanding the fitness value of information.

Building on earlier results [3], the main contribution of this
paper is a simplified model for studying the effect of subjective
information in biological information processing, and an analytical
solution for the subjective information in the model. The newmodel
enables the analytical solution, going beyond previous work. We
show that subjective information provides a fitness advantage over
a strictly information-maximizing approach. We also show that
there are diminishing returns with the total number of receptors,
i.e., the advantage of semantic information is higher when the
organism’s knowledge of the environment becomes less precise.

The remainder of this paper is organized as follows. In Sec. 2,
we define the abstract model and express analytical solutions for
its fitness and subjective information. In Sec. 3, we discuss relevant
numerical results. Finally, we conclude the paper in Sec. 4.

2 ABSTRACT MODEL
In this paper, we define a simple abstract model of a biological
organism that includes the essential elements for the subsequent
derivations. This organism is thought to be unicellular, capable of
sensing environmental concentrations of essential nutrients, and
directing its movements accordingly, i.e., chemotaxis. From this
model, we can derive two main quantities, namely, the reward and
the information metrics.

2.1 Assumptions
The abstract model, as illustrated in Fig. 1, is based on the following
simplifying assumptions:
• The unicellular organism is located in a 1D environment.
• The environment contains concentrations of two essential nutri-
ents, ‘A’ and ‘B’ molecules, at each location.

• The organism has internal stores of ‘A’ and ‘B’ molecules, respec-
tively, which correspond to the internal state of the organism.

• The organism’s goal is to maximize the lower value of its ‘A’ and
‘B’ stores.

• At each time step, the organism senses the ‘A’ and ‘B’ molecule
concentrations at its current location through ‘A’ and ‘B’ type
receptors. It may then direct its movement to an adjacent location
according to the sensed concentration and its internal state. The
organism then increases its ‘A’ and ‘B’ stores proportional to
their respective concentrations at this next location.

• The concentration is sensed through a ligand-receptor binding
process, which is modeled as a binomial distribution that re-
turns the numbers of bound receptors of type ‘A’ and ‘B’ given
the ‘A’ and ‘B’ concentrations and the total number of ‘A’ and
‘B’ receptors, respectively. For simplicity, we assume that the
receptor-ligand interaction process is sampled from equilibrium
[12, 19].

• The numbers of receptors of type ‘A’ and ‘B’ may be set at each
time step (e.g., via an activator-inhibitor or nutrient-sensitive
signaling cascade [9, 10, 23]), and cannot exceed a total sum

Env.\Loc. 𝑙 = 0 𝑙 = 1 𝑙 = 2
𝑒 = 1 (3, 1) (2, 2) (1, 3)
𝑒 = 2 (3, 3) (2, 1) (1, 2)
𝑒 = 3 (3, 2) (2, 3) (1, 1)

Table 1: Concentrations of nutrients (𝐶𝐴 (𝑙, 𝑒),𝐶𝐵 (𝑙, 𝑒)), at dif-
ferent combinations of environment 𝑒 ∈ {1, 2, 3} and location
𝑙 ∈ {0, 1, 2}.

of ‘A’ and ‘B’ receptors. These receptor numbers determine the
precision of the organism in sensing the ‘A’ and ‘B’ molecule
concentrations.

• The organism is also subject to a stress defined as a penalty on
the internal stores for each time step, which is a constant cost
for living and an additional cost for each receptor regardless of
its type.

2.2 Implementation
In the following, as shown in Fig. 1, we describe an implementation
of the model that allows for tractable analytical solutions:
• The environment is finite and periodic (moving right when at
the rightmost location would result in the leftmost location)
(cf. Tab. 1)

• The environment consists of three possible locations in total for
the organism.

• At the start of each time step, the environment and location of
the organism are chosen uniformly and at random.

• The ‘A’ and ‘B’ molecule concentrations are distributed periodi-
cally across these three locations according to the descending (for
‘A’) and ascending (for ‘B’) values 3,2,1 and a cyclic permutation
of the values 1,2,3, respectively.

• The relative distribution of the ‘A’ and ‘B’ molecule concentra-
tions at each time step is chosen at random. This results into
three possible different environments shown in Fig. 1.

• The binomial model of the ligand-receptor binding is expressed
as the probability of 𝑛𝑚 receptors being bound as follows:

𝑃Bi (𝑛𝑚 ;𝑁𝑚, 𝑙, 𝑒) =(
𝑁𝑚

𝑛𝑚

)
𝑝C (𝑙, 𝑒)𝑛𝑚 (1 − 𝑝C (𝑙, 𝑒))𝑁𝑚−𝑛𝑚 ,

(1)

where 𝑁𝑚 and 𝑛𝑚 are the total number of receptors and the
number of bound receptors, respectively, of type𝑚 ∈ {𝐴, 𝐵}. In
the following, we will invariably denote 𝑛𝐴 and 𝑛𝐵 with 𝑎 and
𝑏, respectively. Here 𝑝C is the probability, as a function of 𝑙 and
𝑒 , that a single receptor is bound in the same time step (whose
duration is assumed to be long enough so that the process is in
equilibrium [21]), defined as

𝑝C (𝑙, 𝑒) =
𝐶𝑚 (𝑙, 𝑒)

𝐶𝑚 (𝑙, 𝑒) + 𝐾𝑑
, (2)

where 𝐶𝑚 (𝑙, 𝑒) is the concentration of molecules of type𝑚 ∈
{𝐴, 𝐵} at the current location 𝑙 in environment 𝑒 , and 𝐾𝑑 is the
dissociation constant of the binding process.

• The movement of the organism can be either one location to the
left or to the right of the current location. The organism may also
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Figure 1: (a) The periodic environmental ‘A’ and ‘B’ concentrations at each location where information about one distribution
gives no information about the other. (b) The organism senses its surrounding concentration profile based on a binding process
and moves based on its internal state and knowledge of the binomial distributions given the environment. The organism can
then increase its store of ‘A’ and ‘B’ type molecules and choose to reallocate its receptors based on Δ.

not move. The periodicity of the environment ensures that any
movement is feasible from/to any location.

• The organism stress is implemented as a penalty as follows:

𝑆𝑁tot = 𝑠1 + 𝑠2𝑁tot , (3)

where 𝑠1 is a constant penalty term, related to the basal energy
consumption of the organism, 𝑠2 corresponds to the cost for
the organisms to use a receptor, and 𝑁tot is the total number of
receptors of any type, which is a specific value for each organism.

• The organism’s goal, while following a strategy, is to maximize
its growth. In general, cells divide and split resources equally
between daughter cells. In our model, the organism must attempt
to equalize its internal resources to maximize the survival of
these daughter organisms. The incremental reward (objective
function) is given as

𝑅(𝑡) = min[𝐴int (𝑡), 𝐵int (𝑡)] −min[𝐴int (𝑡 − 1), 𝐵int (𝑡 − 1)] , (4)

where 𝐴int (𝑡) and 𝐵int (𝑡) are the values of the internal stores of
‘A’ and ‘B’, respectively, at time step 𝑡 .

• At each time step, the organism combines the probabilities com-
puted via (1) with the a priori knowledge of the possible food
distributions to move into the location that maximizes 𝑅(𝑡) (4)
for a given strategy.

2.3 Analytical Solution
In this paper, the analytical solution to the model described in
Sec. 2.1 and 2.2 corresponds to the expression of the expected (as-
ymptotic) incremental reward 𝑅strategy that the organism would
obtain throughout its life, as follows

𝑅strategy = lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝑅(𝑡)

=EΔ [𝑅(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ))] − 𝑆𝑁tot

(5)

where the expected reward per internal state𝑅(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) is
the expected reward at the end of any time step (after the organism
may have moved), Δ is a possible internal state of the organism at
the beginning of the time step, defined as the difference between
the two values of the internal stores, i.e., Δ = 𝐴int − 𝐵int, and

𝑁𝐴 (Δ), 𝑁𝐵 (Δ) are two functions that map Δ to a specific number of
receptors of type ‘A’ and ‘B’, respectively, according to the organism
strategy, as

𝑁𝑚 : {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
strategy
−−−−−−−→ N (6)

where𝑚 is equal to ‘A’ or ‘B’. Equation (5) holds given the ergodic
property of the internal state process.

2.3.1 Expected Reward per Internal State. 𝑅(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) is
computed as the average of the expected reward
𝑟 (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) given a number of bound receptors 𝑎 and
𝑏 of type ‘A’ and ‘B’, respectively, an internal state Δ and the corre-
sponding number of receptors specified by the adopted strategy:

𝑅(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) =
𝑁𝐴 (Δ)∑︁
𝑎=0

𝑁𝐵 (Δ)∑︁
𝑏=0

[
𝑟 (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ))·

· 𝑃 (𝑎;𝑁𝐴 (Δ))𝑃 (𝑏;𝑁𝐵 (Δ))
]
,

(7)

where 𝑃 (𝑘 ;𝑁𝑚) is the distribution of 𝑘 bound receptors when the
cell has 𝑁𝑚 receptors of type ‘m’ over all possible concentrations 𝑐
of ‘m’ molecules, as follows:

𝑃 (𝑘 ;𝑁𝑚) = 1
9

∑︁
𝑙

∑︁
𝑒

𝑃Bi (𝑘 ;𝑁𝑚, 𝑙, 𝑒) , (8)

where 𝑃Bi (.) is as in (1). 𝑟 (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) in (7) is the maxi-
mum expected reward (considering all choices of movement) given
a number of bound receptors 𝑎 and 𝑏, and a number 𝑁𝐴 (Δ), and
𝑁𝐵 (Δ) of receptors of type ‘A’ and ‘B’, respectively, defined as

𝑟 (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) = max
[{
𝑚(-1) (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)),

𝑚(0) (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)),𝑚(+1) (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ))
}]
,

(9)
where𝑚mov (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) is the expected reward given a
choice of movement mov ∈ {(−1), (0), (1)} for left movement, no
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Figure 2: The matrix representing the reward𝑀
𝑅̂
as function

of the starting internal state Δ and location 𝑙 in the environ-
ment 𝑒. The highlighted green cells are for the largest reward
in an environment given a Δ. Highlighted yellow cells show
where there is more than one largest reward. The rewards
remain the same where Δ >= 2 (likewise for Δ <= −2).

movement, and right movement, respectively, expressed as follows:

𝑚mov (𝑎, 𝑏,Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) =∑︁
𝑙∈𝐿

∑︁
𝑒∈𝐸

𝑀
𝑅̂
(Δ, ((𝑙 +mov)%3) + 3(𝑒 − 1))·

𝑃𝐿𝑐,𝐸𝑣 |State,𝑛𝐴 (𝑙, 𝑒 |Δ, 𝑎)𝑃𝐿𝑐,𝐸𝑣 |State,𝑛𝐵
(𝑙, 𝑒 |Δ, 𝑏) ,

(10)

where 𝐿 is the set of all locations, 𝐸 is the set of all environments,
and % is the modulus operator.𝑀

𝑅̂
(Δ, 𝑖) is the reward matrix dis-

played in Fig. 2, which contains the reward for the organism after
movement mov in the environment, as function of the starting
internal state Δ as the matrix row index, and matrix column index 𝑖 ,
computed in (10) from the location 𝑙 in the environment 𝑒 , i.e., the
index 𝑖 spans all possible locations across all possible environments.
The probability 𝑃𝐿𝑐,𝐸𝑣 |state,𝑛𝑚 (𝑙, 𝑒 |Δ, 𝑘) of the organism being at
location 𝑙 and environment 𝑒 given 𝑘 bound𝑚 type receptors with
a surrounding𝑚 type concentration of 𝐶𝑚 (𝑙, 𝑒) is computed as

𝑃𝐿𝑐,𝐸𝑣 |State,𝑛𝑚 (𝑙, 𝑒 |Δ, 𝑘) =
1
9𝑃Bi (𝑘 ;𝑁𝑚 (Δ), 𝑙, 𝑒)

𝑃 (𝑘, 𝑁𝑚 (Δ)) , (11)

where 𝑃Bi (.) and 𝑃 (𝑘, 𝑁𝑚 (Δ)) are expressed in (1) and (8), respec-
tively. The probability in (11) can be interpreted as the organism’s
guess about its own location and environment based on information
on its own internal state and the number bound receptors. More
generally, this ultimately skews the organisms’s view of the world
based on “subjective” nutritional priorities according to the adopted
strategy.

2.3.2 Expected Reward per Strategy𝑅strategy. If the organism adopts
the Adaptive strategy, it maximizes its reward over all receptor
allocations 𝑁𝐴 (Δ), 𝑁𝐵 (Δ) for each internal state Δ. The expected
reward for the Adaptive type strategy is given as,

𝑅Adaptive =
∑︁
Δ

𝑅(𝑁max
𝐴

(Δ), 𝑁max
𝐵

(Δ))·

Π(Δ, 𝑁max
𝐴 (Δ), 𝑁max

𝐵 (Δ)) − 𝑆𝑁tot ,

(12)

where Π(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) is the stationary probability distribu-
tionfor the internal state Δ, defined in Sec. 2.3.3, and 𝑁max

𝑚 (Δ)
are the allocations of ‘A’ or ‘B’ type receptors that maximize the

expected reward 𝑅(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) per internal state as

(𝑁max
𝐴 (Δ), 𝑁max

𝐵 (Δ)) = argmax [𝑅(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ))]
s.t. 𝑁𝐴 (Δ) + 𝑁𝐵 (Δ) = 𝑁tot ,

(13)

where 𝑁tot is the total number of ‘A’ type plus ‘B’ type receptors.
If the organism adopts the Equivalent strategy, the receptor

allocations are set to a constant and equal value for type ‘A’ and
‘B’, i.e., 𝑁𝐴 (Δ) = 𝑁𝐵 (Δ) = 𝑁tot/2 for all values of the internal state
Δ. The corresponding expected reward 𝑅Equivalent is expressed
similarly to (12) as follows:

𝑅Equivalent =
∑︁
Δ

𝑅

(
Δ,
𝑁tot
2
,
𝑁tot
2

)
Π

(
Δ,
𝑁tot
2
,
𝑁tot
2

)
− 𝑆𝑁tot .

(14)

2.3.3 Stationary Probability Distribution. The organism can pos-
sibly be in one of three locations within one of three environ-
ments for each possible internal state. This combination is defined
as a triple that includes the internal state, the location, and the
environment, i.e., (Δ, 𝑙, 𝑒). The stationary probability distribution
Π(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) can be found for each next state as

Π(Δ, 𝑁𝐴 (Δ), 𝑁𝐵 (Δ)) =
∑︁
𝑙∈𝐿

∑︁
𝑒∈𝐸

𝜋 (Δ, 𝑙, 𝑒) , (15)

where 𝜋 (Δ, 𝑙, 𝑒) is found by solving for the stationary distribution
with a relation described as

𝜋 (Δ, 𝑙, 𝑒) = 𝑃𝛿,𝛿 ′ ((Δ, 𝑙, 𝑒), (Δ′, 𝑙 ′, 𝑒′))𝜋 (Δ, 𝑙, 𝑒) , (16)

where, 𝑃𝛿,𝛿 ′ ((Δ, 𝑙, 𝑒), (Δ′, 𝑙 ′, 𝑒′)) is the square transition probability
matrix from each combination of values of (Δ, 𝑙, 𝑒) to any other new
combination (Δ′, 𝑙 ′, 𝑒′). Since the organism has an equal chance of
being placed into any one location and environment, i.e., 9 different
equiprobable positions, this is defined as

𝑃𝛿,𝛿 ′ ((Δ, 𝑙, 𝑒), (Δ′, 𝑙 ′, 𝑒′)) = 1
9
𝑃Δ (Δ, 𝑙, 𝑒,Δ′) , (17)

where 𝑃Δ (Δ, 𝑙, 𝑒,Δ
′ ) is the transition probability between some

state, environment, and location pair (Δ, 𝑙, 𝑒) to any location and
environment in the next state Δ

′
, defined as

𝑃Δ (Δ, 𝑙, 𝑒,Δ′) =𝑃 (−1) (Δ, 𝑙, 𝑒,Δ′)+
𝑃 (0) (Δ, 𝑙, 𝑒,Δ′) + 𝑃 (+1) (Δ, 𝑙, 𝑒,Δ′) ,

(18)

where 𝑃mov (Δ, 𝑙, 𝑒,Δ′) is the probability of moving into the next
internal state Δ′ from internal state Δ and location 𝑙 within en-
vironment 𝑒 because of movement mov ∈ {−1, 0, 1}, defined as

𝑃mov (Δ, 𝑙, 𝑒,Δ′) =
𝑁𝐴 (Δ)∑︁

𝑎

𝑁𝐵 (Δ)∑︁
𝑏

𝑃Bi (𝑎, 𝑁𝐴 (Δ), 𝑙, 𝑒)

𝑃Bi (𝑏, 𝑁𝐵 (Δ), 𝑙, 𝑒)1𝑀 (Δ,(𝑙+mov)%3,𝑒 )=Δ′ ,

(19)

where 𝑀 (Δ, 𝑙, 𝑒) is the matrix defining the state transition from
each (Δ, 𝑙, 𝑒) to a next state Δ′ (Fig. 3), which contains values dif-
ferent from 0 only where there is a valid transition from (Δ, 𝑙, 𝑒)
to Δ′, i.e., the change in the internal storage for A and B after the
organism movement results into a change in the internal state from
Δ to Δ′.
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Figure 3: State transition matrix 𝑀 (Δ, 𝑙, 𝑒) contains the value
of the next internal state Δ′ given the current state Δ, location
𝑙 and the environment 𝑒.

2.4 Information Metrics for Solution
Interpretation

The useful information, 𝐼𝑈 is broadly defined as the expected value
over the internal state of the organism of the mutual information
rate between the organism’s input and the organism’s response
(movement) given its internal state. 𝐼𝑈 is defined in this paper as

𝐼U |strategy= EΔ
[
𝐼

(
𝐶𝑑𝑖𝑠𝑡𝐴 ,𝐶𝑑𝑖𝑠𝑡𝐵 ;mov(Δ, strategy)

)]
, (20)

where 𝐼 is the mutual information of the joint probability distribu-
tion 𝑝 𝑗 (𝐶𝑑𝑖𝑠𝑡𝐴

,𝐶𝑑𝑖𝑠𝑡
𝐵

,mov(Δ, strategy)), where mov(Δ, strategy) is
the random variable representing the movements given the external
concentrations (𝐶𝑑𝑖𝑠𝑡

𝐴
,𝐶𝑑𝑖𝑠𝑡

𝐵
) and some state Δ. The strategy can

either be Adaptive or Equivalent. The subjective information is
defined as:

𝐼subj = 𝐼U |Adaptive −𝐼U |Equivalent . (21)

3 NUMERICAL RESULTS AND DISCUSSION
We present numerical results computed from the analytical solution
of the abstract model detailed in Sec. 2, using the following param-
eter values: a dissociation constant of the binding process 𝐾𝑑 = 2,
a constant penalty term 𝑠1 = 2, a cost per receptor 𝑠2 = 0.001. We
set the largest magnitude of the internal state Δ for calculating the
numerical solution to the stationary distribution to 5, which corre-
sponds to the limit absolute value of the row index of the reward
matrix 𝑀

𝑅̂
in Fig. 2 and the State transition matrix 𝑀 (Δ, 𝑙, 𝑒) in

Fig. 3. This is because the stationary internal state distribution is
light-tailed around the center at Δ = 0 (Fig. 4). The existence of
this distribution confirms its ergotic property in the context for the
numerical solution presented in the paper. The code implemented
to obtain these results is provided in [4].

In Fig. 5 we show the expected reward 𝑅(Δ, 𝑁𝐴, 500−𝑁𝐴). When
Δ ≠ 0, the expected reward is maximized when the organism
allocates all of its receptors to ‘A’ type if Δ < 0 and ‘B’ type if Δ > 0,
respectively. When Δ = 0, the expected reward is maximized when
the organism allocates its receptors equally between type ‘A’ and
‘B’. This shows that the cell’s expected reward is dependent on how
the organism subjectively acquires information, i.e., by setting the
number of receptors depending on its internal state. This subjective
way of acquiring information, when Δ ≠ 0, shows that the reward
is maximized when the highest possible number of receptors is set
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Figure 4: The probabilitymass function over Δ for the Equiva-
lent and Adaptive strategies for a receptor count of 𝑁tot = 100
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Figure 5: Relationship between the receptor type allocation
𝑁𝐴 and 𝑁𝐵 = 𝑁tot − 𝑁𝐴 and expected reward 𝑅 for 𝑁tot = 500
with no penalty 𝑆 .
to the type of molecule that is most lacking from the organism’s
internal storage.

In Fig. 6we plot the expected reward𝑅strategy against the 𝐼U |strategy
for both the Adaptive and the Equivalent strategies. The colors
indicate the total number 𝑁tot of receptors corresponding to each
data point, displayed on log scale (base 10). The Adaptive strategy
has a higher expected reward than the Equivalent at their maxima,
around 𝑁tot = 100, and the trend is the same for all possible 𝑁tot
values, which is also confirmed later on from Fig. 7. This indicates
the higher fitness of the Adaptive strategy, also correlated in the
plot to a larger amount of useful information, which is what we
defined as subjective information 𝐼subj in (21). This confirms that
for a set value of 𝑁tot, the Adaptive strategy can gather a higher
amount of information that contributes to wiser choices for the
organism’s movement, leading to a higher expected reward.

In Fig. 7 we show the ratio of the difference in the expected
rewards 𝑅𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 − 𝑅𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 with the subjective information
𝐼𝑠𝑢𝑏 𝑗 . This represents the gain in the expected reward per bit of
𝐼𝑠𝑢𝑏 𝑗 . This value appears to be always positive and correlated with
𝐼𝑠𝑢𝑏 𝑗 , and does not depend on the stress penalty 𝑆𝑁tot in (3). The
trend of this gain is monotonically decreasing as the total number
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Figure 6: Expected reward 𝑅 plotted against the useful infor-
mation rate 𝐼𝑈 for the Adaptive and the Equivalent strategies
for different values of total receptors 𝑁tot.
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Figure 7: The ratio of the growth difference 𝑅𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 −
𝑅𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 to 𝐼𝑠𝑢𝑏 𝑗 plotted against the receptor count 𝑁tot.

of receptors 𝑁tot increases, revealing that as the noise in the infor-
mation acquisition increases (𝑁tot decreases), the fitness value of
the subjective information increases.

4 CONCLUSION
In this paper, motivated by previous work where we defined a new
type of information, which we called subjective, and we constructed
a computational simulation model for its study, we obtained ana-
lytical expressions to derive the same type of information through
a novel abstract model. Principles underlying the organization of
subcellular components are important for understanding naturally
occurring organisms as well as for designing synthetic organisms to
accomplish specific purposes. The subjective information is related
to how living organisms can increase their fitness by dynamically
specializing their sensory apparatus to opportunistically gather
information from the environment that is more useful for their
growth/survival. By stemming from the obtained analytical ex-
pressions, we presented numerical results that reveal not only the
emergence of the subjective information, but also its correlation
with the organism’s fitness. Finally, we present the fitness value
(gain) given by the subjective information for varying capabilities
for the organism’s sensing apparatus, where a higher gain in fitness
per useful bit is realized at a higher sensing noise.
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