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Phylogenetic Placement of Aligned Genomes and

Metagenomes with Non-tree-like Evolutionary

Histories
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Abstract—Phylogenetic placement is the computational task
that places a query taxon into a reference phylogeny using
computational analysis of biomolecular sequence data or other
evolutionary characters. A chief advantage of phylogenetic place-
ment over de novo phylogenetic reconstruction is greatly reduced
computational requirements, and the former has been applied
in many different topics in phylogenetics. One of the more
recent applications has been enabled by rapid advances in
biomolecular sequencing technology: classification of genomes,
metagenomes, and metagenome-assembled genomes (MAGs) in
large-scale datasets produced by next-generation sequencing. A
number of methods have been developed for this purpose, and
all share the common simplifying assumption that a phylogenetic
tree suffices for modeling the evolutionary history of all genomes
and/or metagenomes under study. Another parallel development
in today’s post-genomic era is a greater understanding of the
prevalence and importance of non-tree-like evolution in the Tree
of Life – the evolutionary history of all life on Earth – which in
fact may not be a tree at all. More general graph representations
such as phylogenetic networks have therefore been proposed, and
a new generation of phylogenetic network reconstruction methods
are under active development. But the simplifying assumption
made by phylogenetic tree placement methods is fundamentally
at odds with the non-tree-like evolutionary histories of many
microbes and other organisms. The consequences of this conflict
are poorly understood.

In this study, we conduct a comprehensive performance study
to directly assess the impact of non-tree-like evolution on phylo-
genetic tree placement of genomes and metagenomes. Our study
includes in silico simulation experiments as well as empirical data
analyses. We find that the topological accuracy of phylogenetic
tree placement degrades quickly as genomic sequence evolution
becomes increasingly non-tree-like. We then introduce a new
statistical method for phylogenetic network placement of genomes
and metagenomes, which we refer to as NetPlacer version 0.
Initial experiments with NetPlacer provide a proof-of-concept,
but also point to the need for greater computational scalability.
We conclude with thoughts on algorithmic techniques to enable
fast and accurate phylogenetic network placement.
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horizontal gene transfer, reticulate evolution, simulation study,
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I. INTRODUCTION

Phylogenetic placement is the problem which seeks to

place a new taxon into an existing or reference phylogeny,

typically via computational analysis of biomolecular sequence

data. This problem has been traditionally studied in the

context of phylogenetics and systematics, including large-

scale phylogenetic reconstruction [42], dynamically updated

phylogenies [35, 17], and biodiversity research [6]. Thanks

to rapid advances in next generation sequencing technology,

computational phylogenetics has seen many major advances,

and new applications of phylogenetic placement have emerged.

In particular, phylogenetic placement methods are increasingly

used in genomic and metagenomic studies.

One particularly important task in genomics and metage-

nomics is to classify organisms that are present in a sequenced

sample. Classical approaches like BLAST-based sequence

analysis [1, 43] are widely used for taxonomic classification

of next-generation sequencing (NGS) read data and assembled

biomolecular sequences and related computational tasks [41].

Matsen et al. [26] were early proponents of phylogeny-

aware alternatives. As they noted, phylogenetic analyses of

metagenomic data offer several key advantages that can com-

plement taxonomic classification. First, phylogenetic place-

ment explicitly accounts for phylogenetic relatedness, which

can be a confounding factor in downstream analyses if not

properly accounted for [11, 9]. Furthermore, fine grained

evolutionary relationships can add substantial insight into

originating processes that underlie present day snapshots of

microbial genetics. One of the first methods in this class was

pplacer [26]. Other methods have been since developed to

address the phylogenetic placement problem, such as EPA-ng

[5], SEPP [28], TIPP [31], APPLES [3], and APPLES-2 [4].

All of these methods focus purely on phylogenetic tree place-

ment. This requires a critical assumption: that phylogenetic

relationships in a sample or study are purely tree-like.

But it is well understood that horizontal gene transfer (HGT)

has played an important role in prokaryotic genome evolution

throughout the Tree of Life [33]. Furthermore, the importance

of reticulate evolution in other microbes and macroscopic

organisms has gained greater appreciation in recent years

[25]. The prevalence of non-tree-like evolution in metage-

nomic samples is fundamentally at odds with the simplifying

assumption inherent to phylogenetic tree placement. The con-

sequences are not well understood, and solutions are not at

hand. These gaps are partly due to the lack of quantitative
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experiments to assess the impacts of model violation on state-

of-the-art phylogenetic placement algorithms, as well as the

lack of alternative methods that relax the simplifying assump-

tion of tree-like evolution of genomes and metagenomes.

In this study, we directly address both gaps. (1) We conduct

a comprehensive performance study to quantify the impact

of non-tree-like evolution on phylogenetic tree placement

of genomes and metagenomes. (2) We introduce NetPlacer

version 0, a new statistical method for phylogenetic network

placement of genomes and metagenomes. To avoid ambiguity,

we refer to traditional phylogenetic placement – where the

reference phylogeny is restricted to be a tree – as “tree

placement”, and more general phylogenetic placement where

the reference phylogeny is a phylogenetic network as “network

placement”. Our study focuses on phylogenetic placement

using aligned biomolecular sequences, and sets the stage for

generalization to other applications of phylogenetic placement.

II. METHODS

A. Preliminaries

We begin with relevant background and definitions. A

phylogenetic tree T = (V,E) is a connected acyclic graph

where, for every pair of vertices v, w ∈ V , there is a unique

path between v and w; furthermore, leaf nodes (or leaves) in

the tree are uniquely labeled by a set of taxa Ξ, as described

below. Phylogenetic trees can be of two types: rooted and

unrooted. In a rooted tree, there is a unique root node r ∈ V

indicating the most recent common ancestor of all taxa in

the tree, and the edge set E consists of directed edges. The

root r has in-degree 0 and out-degree 2 or greater, internal

nodes have in-degree 1 and out-degree 2 or greater, and leaf

nodes (or leaves) have in-degree 1 and out-degree 0; each leaf

node is uniquely labeled by a taxon in the set of taxa Ξ. A

rooted tree is binary if the root and all internal nodes have out-

degree exactly 2. In an unrooted tree, the edge set E consists

of undirected edges and every node is either a leaf node if it

has degree 1 or an internal node if it has degree 3 or greater;

an unrooted tree is binary if all internal nodes have degree

exactly 3. Edges e ∈ E may also have edge lengths ℓ(e).
Phylogenetic placement is the computational problem that

places a query taxon into a backbone phylogeny using com-

putational analysis of biomolecular sequence data and other

character data. In the context of phylogenetic tree placement,

the problem is defined as follows. The problem input consists

of a backbone tree T on a set of reference taxa S where the

number of reference taxa is n = |S|, a query taxon q, and a

multiple sequence alignment for S ∪{q}. The problem output

is a placement tree Pq that is obtained by attaching a leaf edge

representing q to an existing edge in T such that a phylogenetic

criterion is optimized.

A range of methods have been developed to address the

phylogenetic placement problem. One class of phylogenetic

placement methods utilizes maximum likelihood estimation

(MLE). Prominent examples include pplacer [26] and EPA-ng

[5]. These methods place a query taxon’s leaf edge into the

backbone tree such that model likelihood is maximized, where

common models include finite-sites substitution models such

as the General Time Reversible (GTR) model [34] and nested

models. Another class of phylogenetic placement methods are

distance based. APPLES [3] is a representative method in

this class. APPLES chooses a placement for a query taxon

based on computational analysis of a pairwise distance matrix

computed on biomolecular sequence data for the reference

taxa and query taxon. The distance calculations used for

computing the pairwise distance matrix can either be estimated

from a multiple sequence alignment or using an alignment-

free method. As mentioned above, a simplifying assumption

common to existing phylogenetic placement methods is that

evolutionary history is strictly tree-like.

In the presence of reticulate evolutionary processes such as

horizontal gene transfer (HGT), hybridization and introgres-

sion, and genetic recombination, the evolutionary relationships

among a set of taxa requires a more complex phylogeny

such as a graph-based representation known as a phylogenetic

network.

A phylogenetic network topology consists of a rooted

directed acyclic graph ψ = (V,E). The vertices V consist

of the the following four classes of vertices. The root r

has indeg(r) = 0. Leaf nodes (or leaves) are VL where

∀v ∈ VL indeg(v) = 1 and outdeg(v) = 0. The tree nodes

are VT where ∀v ∈ VT indeg(v) = 1 and outdeg(v) ≥ 2.

The reticulate nodes are VN where ∀v ∈ VN indeg(v) =
2 and outdeg(v) = 1. A phylogenetic network topology can

be called a phylogenetic tree topology if VN = {}. A

phylogenetic network χ is a 3-tuple (ψ, λ, γ), where the

network topology ψ is accompanied by edge lengths λ and

inheritance probabilities γ. The latter two typically serve as

continuous parameters in an evolutionary model such as the

multi-species network coalescent (MSNC) model [27, 44].

B. Simulation experiments

Genomic dataset simulations: Random model networks

with n taxa were sampled using the procedure described in

[15], which we briefly recap here. First, a random tree was

sampled under a random birth-death process using r8s [36]

version 1.81. Branch lengths of the tree were then re-scaled

to obtain height h = 5.0. To obtain a model network, φ

reticulation(s) were added to the model phylogeny using the

following procedure: for each reticulation, a time tM was

randomly selected such that 0.01 ≤ tM ≤ h
4

. Two populations

were then selected randomly at time tM , and a reticulation

edge with random orientation between the two populations

was added to connect the corresponding pair of tree edges. An

outgroup was added to the resulting network at time 15.0. Our

simulation conditions included datasets with n ∈ {50, 100}
and φ ∈ {0, 5, 10}.

For each model network, ms [19] was used to conduct

simulations under the multi-species coalescent and isolation-

with migration (MSC+IM) model. A reticulation at time tM
was modeled using a unidirectional migration event from time

tM − 0.01 to tM + 0.01 with migration rate 5.0. A total of

100 local coalescent histories and associated coalescent trees

were sampled from each MSC+IM simulation.

Coalescent trees with branch lengths in coalescent units

were converted into gene trees with branch lengths in expected
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numbers of substitutions using equation 3.1 in [14] and

scaled mutation rate θ ∈ {0.02, 0.06, 0.2}. Gene tree branch

lengths were then deviated away from ultrametricity using the

approach of Nakhleh et al. [30] with deviation factor c = 2.0.

DNA sequence evolution on each gene tree was simulated

under a finite-sites model of substitutions, insertions, and dele-

tions using INDELible version 1.03 [12]. Substitutions were

simulated under the General Time-Reversible (GTR) model

[34]. GTR model parameter values were based on the study

of [24], where base frequency parameters (πT , πC , πA, πG)
were set to (0.3115, 0.1913, 0.3004, 0.1967), respectively, and

substitution rate parameters (rTC , rTA, rTG, rCA, rCG, rAG)
were set to (1.2620, 0.1401, 0.2878, 0.3577, 0.3083, 1.0), re-

spectively. Insertions and deletions were simulated according

to a power law distribution with insertion/deletion rate 0.004,

distribution parameter setting a = 1.2, and maximum inser-

tion/deletion length of 50 bp. The sequence length for the most

recent common ancestor (MRCA) at the root of each gene tree

was set to 300 bp.

The final step of the genomic data simulation procedure

was to concatenate sequences across all loci in a simulation,

resulting in concatenated unaligned sequence length of around

30 kb for each simulated dataset. True multiple sequence

alignments (MSAs) on all loci were similarly concatenated

to obtain the concatenated true MSA.

Metagenomic dataset simulations: Metagenomic datasets

were simulated by coupling genomic dataset simulations with

an additional metagenomic data simulation procedure. The lat-

ter used CAMISIM [13] with default settings. The CAMISIM

pipeline incorporates the following stage to simulate NGS

short read data from simulated multi-locus sequences for query

taxa: the ART read simulator version 2.3.6 [18] was used to

generate Illumina 2 × 150 bp paired-end reads from individual

genomes with a HiSeq 2500 error profile which has been

trained on the MBARC-26 training dataset [37]. The reads

were generated with 10X coverage.

Simulation study experiments involving additional exper-

imental factors: Our simulation study also assessed phylo-

genetic placement performance in the context of three ad-

ditional experimental factors. The model conditions in these

additional experiments included 50 taxa and scaled mutation

rate θ = 0.02. The first experimental factor was evolutionary

divergence in terms of species phylogeny height, where model

species networks had height h ∈ {1, 10} (as compared

to a height of 5 used elsewhere in our simulation study

experiments). The second experimental factor concerned the

topological arrangement of reticulations in the model species

phylogeny. Following the terminology of Hejase et al. [16], the

simulation conditions used elsewhere in our study had non-

deep reticulations (where a non-deep reticulation is simulated

by adding a reticulation edge to connect two leaf edges in a

model phylogeny). The additional experiments included deep

reticulations (i.e., reticulations other than non-deep reticula-

tions) as well as a mixture of deep and non-deep reticulations.

The third experimental factor was the amount of data used for

phylogenomic analysis – at locus level (i.e., the number of

loci) as well as site level (i.e., per-locus sequence length).

The former involved simulations with 50 or 200 loci (as

TABLE I: Simulation study: model parameter values and

summary statistics for 50-taxon model conditions with varying

numbers of reticulations and mutation rates. Each model

condition utilized a model species network with height 5 and

mixed reticulations, 100 loci, and per-locus sequence length

of 300 bp. The scaled mutation rate (“Mutation rate”) was

set to 0.02, 0.06, or 0.2. The number of reticulations (“Num

retic”) was set to 0, 5, or 10. Average sequence length of

the true alignment (“True MSA length”), average normalized

Hamming distance (“ANHD”) across all pairs of aligned

sequences in the true MSA, and “Gappiness” which is the

proportion of the MSA consisting of indels are reported as

an average across all experimental replicates in each model

condition (n = 10).

True

Num Mutation Num MSA

taxa rate retic length ANHD Gappiness

50 0.02 0 31158.6 0.0848 0.0365
50 0.02 5 31113.7 0.0844 0.0352
50 0.02 10 31113.6 0.0846 0.0356
50 0.06 0 33612.8 0.2181 0.1070
50 0.06 5 33685.6 0.2175 0.1085
50 0.06 10 33476.8 0.2168 0.1042
50 0.2 0 42157.3 0.4707 0.2867
50 0.2 5 42064.1 0.4693 0.2865
50 0.2 10 41524.8 0.4695 0.2786

TABLE II: Simulation study: model parameter values and

summary statistics for 100-taxon model conditions with vary-

ing numbers of reticulations and mutation rates. Table layout

and description are otherwise identical to Table I.

True

Num Mutation Num MSA

taxa rate retic length ANHD Gappiness

100 0.02 0 32030.3 0.0918 0.0641
100 0.02 5 31938.0 0.0912 0.0599
100 0.02 10 32022.7 0.0916 0.0632
100 0.06 0 35872.1 0.2322 0.1623
100 0.06 5 35987.1 0.2320 0.1648
100 0.06 10 35892.0 0.2316 0.1641
100 0.2 0 49321.9 0.4872 0.3919
100 0.2 5 49745.7 0.4890 0.3956
100 0.2 10 49507.5 0.4896 0.3936

compared to simulations with 100 loci in the rest of our

simulation study), and the latter involved simulations with

MRCA sequence length of 1 kb per locus (as compared to

300 bp elsewhere in our simulation study).

Experimental replication and summary statistics: For

each model condition, the simulation procedure was repeated

to obtain 10 replicate datasets. Results are reported across all

replicate datasets in each model condition. Tables I through

VI list model parameter values and summary statistics for the

model conditions in the simulation study.

Phylogenetic tree placement methods: The performance

of phylogenetic tree placement was evaluated using a leave-

one-out approach. For the genomic datasets, the experimental

procedure consisted of the following steps. (1) Unaligned

sequences S for the set of taxa Ξ were aligned using MAFFT

[21] version 7.305 with default settings, resulting in an esti-

mated MSA A. (2) Using the MSA A as input, RAxML [38]
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TABLE III: Simulation study: model parameter values and

summary statistics for 50-taxon model conditions with varying

model network heights. The simulations utilized a scaled

mutation rate of 0.02, mixed reticulations, 100 loci, and per-

locus sequence length of 300 bp. The height of the model

species network in coalescent units (“Model net height”) was

set to 1, 5, or 10. Table layout and description are otherwise

identical to Table I.

Model True

Num net Num MSA

taxa height retic length ANHD Gappiness

50 1 0 30334.9 0.02869 0.0107
50 1 5 30359.8 0.02911 0.0116
50 1 10 30416.9 0.02885 0.0138
50 5 0 31158.6 0.0848 0.0365
50 5 5 31113.7 0.0844 0.0352
50 5 10 31113.6 0.0846 0.0356
50 10 0 32224.0 0.15493 0.0678
50 10 5 32130.8 0.15455 0.0665
50 10 10 32135.4 0.15525 0.0674

TABLE IV: Simulation study: model parameter values and

summary statistics for 50-taxon model conditions with varying

reticulation types. Each model condition utilized a model

species network with height 5, a scaled mutation rate of

0.02, 100 loci, and per-locus sequence length of 300 bp. The

topological arrangement of simulated reticulations was either

non-deep or deep (“Retic type”). Table layout and description

are otherwise identical to Table III.

True

Num Num Retic MSA

taxa retic type length ANHD Gappiness

50 0 Non-deep 31123.5 0.08856 0.0367
50 5 Non-deep 31190.9 0.08867 0.0377
50 10 Non-deep 31201.1 0.08813 0.0382
50 0 Deep 31319.8 0.08850 0.0418
50 5 Deep 31092.4 0.08914 0.0356
50 10 Deep 31172.4 0.08823 0.0371

TABLE V: Simulation study: model parameter values and

summary statistics for 50-taxon model conditions with varying

number of loci. Each model condition utilized a model species

network with height 5 and mixed reticulations, a scaled

mutation rate of 0.02, and per-locus sequence length of 300
bp. The number of loci (“Num loci”) was either 50 or 200.

Table layout and description are otherwise identical to Table

III.

True

Num Num Num MSA

taxa retic loci length ANHD Gappiness

50 0 50 15633.3 0.08886 0.0402
50 5 50 15553.0 0.08944 0.0363
50 10 50 15553.0 0.08846 0.0374
50 0 200 62424.4 0.08853 0.0385
50 5 200 62498.9 0.08866 0.0396
50 10 200 62447.3 0.08856 0.0388

TABLE VI: Simulation study: model parameter values and

summary statistics for 50-taxon model conditions with varying

per-locus sequence length. Each model condition utilized a

model species network with height 5 and mixed reticulations, a

scaled mutation rate of 0.02, and 100 loci. Per-locus sequence

length (“Per locus seq len (bp)”) was set to either 300 or

1000 bp. Table layout and description are otherwise identical

to Table III.

Per-locus True

Num Num seq MSA

taxa retic len (bp) length ANHD Gappiness

50 0 300 31158.6 0.0848 0.0365
50 5 300 31113.7 0.0844 0.0352
50 10 300 31113.6 0.0846 0.0356
50 0 1000 104060.2 0.08893 0.0391
50 5 1000 103912.0 0.08861 0.0371
50 10 1000 103855.6 0.08858 0.0372

version 8.2.12 was used to perform MLE under the GTR+Γ
substitution model and reconstruct the reference tree TREF. The

tree TREF was outgroup rooted to facilitate topological compar-

isons against ground truth (described below); the outgroup was

then discarded and otherwise not utilized in our experiments.

(3) Each taxon ξ ∈ Ξ was chosen as the query taxon q in turn.

The aligned sequence aq representing q was removed from A

to obtain the reference MSA AREF. The leaf edge for the query

taxon q was contracted in the reference tree TREF, and branch

lengths of the resulting tree were re-estimated using FastME

[23] analysis of the reference MSA AREF; we refer to this tree

as the backbone tree T . (4) Using the query sequence aq , the

reference MSA AREF, and backbone tree T as input, APPLES

[3] version 2.0.5 with default settings was used to place the

query taxon q into the backbone tree T , resulting in the

placement tree Pq . (Also see Supplementary Online Materials

for additional experiments using an alternative optimization-

based tree placement method.) (5) Steps 3 and 4 were repeated

for all other taxa as query.

The experimental procedure for metagenomic datasets re-

quired several changes compared to the genomic experiment

procedure. (1-3) The first three steps of the metagenomic ex-

periment procedure were identical to the genomic experiment

procedure’s first three steps. (4) The query sequence aq for

the query taxon q was used to to simulate the metagenomic

NGS data (see “Metagenomic dataset simulations” above). (5)

We then used metaSpades [32] version 3.13.0 with default

settings to assemble NGS reads into contigs. The assembled

contigs served as the sequence sq for query taxon q. The

contigs in sq were aligned to the reference MSA AREF using

MAFFT version 7.305 with an “-addfragments” option. (6)

Phylogenetic placement of the query taxon q into the backbone

tree T was performed in an identical manner as step 4 in

the genomic experiment procedure. (7) The leave-one-out

procedure was repeated for all other taxa in turn.

C. Empirical dataset analyses

Dataset from study of Treangen and Rocha [40]: We

utilized genomic sequence data from the study of Treangen

and Rocha [40], which examined the contribution of HGT
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TABLE VII: Summary statistics for empirical datasets. Ge-

nomic sequence data were obtained from Treangen and Rocha

[40]’s study of HGT in eight groups of prokaryotes. Each

dataset consisted of 8 taxa from one of two genera – ei-

ther Neisseria or Helicobacter – where the latter exhibited

relatively higher genomic contributions of HGT compared to

the former (“Contribution of HGT”), based on the findings

of Treangen and Rocha [40]. Average unaligned genome se-

quence length in kb (“Avg genome length”), and the reference

MSA’s length in kb (“Reference MSA length”) and average

normalized Hamming distance (“ANHD”) are also listed.

Contribution Avg Reference

of genome MSA

Clade HGT (%) length (kb) length (kb) ANHD

Neisseria 89 2201.7 80.1 0.159
Helicobacter 97 1621.8 77.7 0.216

to protein family expansion in eight groups of prokaryotes.

We focused on two genera of bacteria – Neisseria and Heli-

cobacter – where Treangen and Rocha [40]’s reported relative

genomic contributions of HGT – 89% versus 97%, respectively

(cf. Figure 2 in [40]) – enables differential placement exper-

iments. Table VII lists summary statistics for the empirical

datasets.

As with the simulation study, the empirical study’s experi-

mental procedure consisted of multiple steps. (1) Open reading

frames (ORFs) were predicted using Prodigal version 2.6.3

[20]. (2) USEARCH version 11.0.667 [10] was then used to

align ORFs in each genome against 400 reference genes which

were curated and used in PhyloPhlAn [2]. (3) A subset of 50

orthologous genes were randomly selected as the basis for the

multi-locus dataset. Unaligned gene sequences for each locus

were aligned using MAFFT version 7.305 with the “–auto”

setting, and MSAs were concatenated across loci to obtain

the reference alignment. (4) Using the reference alignment as

input, RAxML was used to perform phylogenetic MLE under

the GTR+Γ model and obtain a reference tree. The reference

tree was then midpoint rooted. (5) Similar to the simulation

experiments, a leave-one-out approach was used to perform

phylogenetic placement of each taxon in turn: the query taxon

was pruned from the reference tree to obtain a backbone tree,

and APPLES version 2.0.5 with default settings was used to

perform phylogenetic placement of the query taxon into the

backbone tree.

Augmented Neisseria datasets: We also augmented the

Neisseria dataset with synthetic reticulation events and per-

formed leave-one-out comparative analysis of two datasets.

The original or “control” dataset corresponded to the empirical

Neisseria dataset (see steps 1 through 3 above). The control

dataset was then augmented with simulated reticulation events

to obtain the “augmented” dataset. Data augmentation utilized

the following procedure. Beginning with the control dataset,

a reference tree was obtained using step 4 above. Then, 10
random reticulations were added to the reference tree using

the same approach as in the simulation study, resulting in

a species network model. We used ms to simulate local

coalescent histories and gene trees for 10 loci under the

species network model. INDELible was then used to simulate

gene sequence evolution along each gene tree, resulting in

a set of gene sequences and true MSAs for each gene.

The species phylogeny and gene tree simulations utilized

the same procedures as in the simulation study. Finally, the

simulated multi-locus unaligned sequences were appended to

the empirical multi-locus unaligned sequences, and similarly

for the aligned sequence data. The resulting dataset is referred

to as the augmented dataset.

A companion pair of metagenomic datasets – control and

augmented – was also used to perform leave-one-out compar-

ative analysis. Each metagenomic dataset was obtained using

the corresponding genomic dataset (i.e., a control metage-

nomic dataset was obtained using the control genomic dataset,

and similarly for augmented datasets). Metagenomic NGS data

simulation for a query taxon, metagenome assembly, and query

taxon placement procedures followed steps 4 through 7 in the

simulation study’s metagenomic data experiments.

D. Performance assessments

Topological error assessments: Topological comparisons

of phylogenetic trees were based on the Robinson-Foulds dis-

tance. For two phylogenetic trees Ta and Tb with respective bi-

partition sets B(Ta) and B(Tb), the Robinson-Foulds distance

δ(Ta, Tb) is the size of the symmetric difference |B(Ta) −
B(Tb)| + |B(Tb) − B(Ta)|. The normalized Robinson-Foulds

(nRF) distance is obtained by dividing absolute Robinson-

Foulds distance divided by its maximum, which is 2(n− 3).
Topological comparisons of phylogenetic networks utilized

Nakhleh [29]’s distance for comparing a pair of phylogenetic

network topologies. For a pair of phylogenetic network topolo-

gies ψa and ψb, the distance calculation corresponds to the

number of rooted sub-networks that appear in ψa but not ψb
or vice versa. We used PhyloNet [39] to calculate topological

distances between phylogenetic networks.

To assess the topological accuracy of phylogenetic place-

ment in our study, we adapted the tree-based placement error

calculations used by [3] and [4]. We refer to the adapted

calculation as network delta error (NDE). Let N denote the

model network and Nq is the model network with query taxon

q deleted (i.e., with q’s leaf edge contracted). Following the

above notation, the phylogenetic placement problem under

study concerns the placement of a query taxon q into a

backbone tree T , resulting in placement tree Pq . The absolute

NDE is defined as ∆(N , Pq)−∆(Nq, T ). Relative topological

error was assessed using normalized NDE, where the above

absolute NDE calculation is normalized by a baseline NDE

that reflects a null hypothesis where the noise-to-signal ratio

is saturated. The baseline NDE was empirically estimated by

repeating the absolute NDE calculation’s placement procedure

for a query taxon q, but replacing q’s original sequence with

a sequence of the same length that was chosen uniformly at

random (UAR).

Normalized NDE was also used to assess topological ac-

curacy of our new network placement method, where the

backbone tree T and placement tree Pq were replaced with

a backbone network and placement network.

This article has been accepted for publication in IEEE Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBBIO.2024.3519311

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on February 27,2025 at 03:08:52 UTC from IEEE Xplore.  Restrictions apply. 



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, JANUARY 2024 6

Phylogenetic placement support: In the empirical study,

we conducted phylogenetic bootstrap analyses to assess repro-

ducibility of phylogenetic placement (i.e., estimated placement

of a query taxon q into a backbone tree T using an input MSA

A, resulting in a placement tree Pq). The standard bootstrap

method was used to resample 100 bootstrap replicates from

the MSA A. Then, to obtain a bootstrap tree on each boot-

strap replicate, RAxML version 8.2.12 was used to perform

maximum likelihood estimation under the GTR+Γ substitution

model. The resulting set of bootstrap trees β were then used

to calculate phylogenetic support for the placement tree Pq ,

where the support for an edge e in Pq is the proportion of

bootstrap trees β that display e; support for the placement of

q is based on the support for the edges incident on q’s leaf

edge.

E. NetPlacer, a new phylogenetic network placement algo-

rithm

As an alternative to phylogenetic tree placement, we intro-

duce NetPlacer – a new computational framework for phy-

logenetic network placement of genomes and metagenomes.

The current version of NetPlacer is version zero. A high-level

flowchart diagram of NetPlacer is provided in Supplementary

Figure S1.

NetPlacer utilizes a summary-based approach, where gene

trees are used as input to “summarize” multi-locus sequence

data. NetPlacer is thus used as part of a multi-stage computa-

tional pipeline, where gene trees are estimated in an upstream

stage and then used as input to downstream phylogenetic

placement. Summary-based placement offers the potential for

improved scalability relative to sequence-based placement,

but requires simplifying assumptions concerning gene tree

estimation accuracy.

NetPlacer performs statistical optimization of placements

under the multi-species network coalescent (MSNC) model

[27, 44]. Whereas the multi-species coalescent (MSC) model

[22, 14] accounts for genetic drift and lineage coalescence

during strictly vertical evolutionary descent, the MSNC model

generalizes the MSC model to also account for horizontal

evolutionary processes in the form of network reticulations.

Under both the MSC and MSNC models, summary-based

phylogenetic MLE requires calculation of model likelihood

for a species phylogeny given a set of gene trees. [8] and

[44] introduced model likelihood calculations under these

respective models, where topological information from the

latter is used as input. The calculation is defined as fol-

lows. Let G = {g1, g2, . . . , gk} be the set of input gene

tree topologies for summary-based inference. Following the

definitions in Yu et al. [44], summary-based inference of

a species network maximizes the MSNC model likelihood

L(ψ, λ, γ|G) =
∏

g∈G

P(g|ψ, λ, γ).

We begin with the definition of the phylogenetic network

placement problem that NetPlacer addresses. The problem

input consists of: a backbone network χ = (ψ, λ, γ) with

topology ψ = (V,E) for a set of reference taxa S, a query

taxon q, and a set of gene trees Gq and locus alignments

Aq for taxa S ∪ {q}. The output is a placement network

Pq that is obtained by attaching q’s leaf edge to an exist-

ing edge in the backbone topology ψ, where the placement

optimizes a phylogenetic criterion. NetPlacer’s phylogenetic

criterion adapts MSNC likelihood maximization to the network

placement problem:

argmax
ψ′∈{Pq :eq attaches to e∈E and results in Pq}

argmax
λ′,γ′

L(ψ′, λ′, γ′|G)

(1)

We now describe the NetPlacer placement algorithm. Pseu-

docode for the NetPlacer MLE algorithm is shown in Al-

gorithm 1. To begin, multi-locus data for reference taxa S

consists of the following: a set of per-locus MSAs A, a set

of estimated gene trees G, and an estimated species network

that serves as the backbone network χ. In our experiments,

a backbone network χ was estimated using PhyloNet version

3 with default settings to perform summary-based maximum

MSNC likelihood optimization. The problem input also in-

cludes a de novo assembled metagenome sequence sq for

query taxon. The query taxon’s sequence sq is aligned using

locus MSAs A, resulting in augmented locus MSAs Aq; we

used MAFFT version 7.305 with default settings for this

purpose. The augmented locus MSAs are then used to either

perform de novo gene tree estimation or place q into gene

trees G, resulting in augmented gene trees Gq; our experiments

used FastTree version 2.1.10 to estimate the former. Finally,

maximum likelihood optimization under the MSNC criterion

in equation 1 is used to place q into χ. PhyloNet’s local opti-

mization heuristics are used to perform the inner optimization

of continuous parameters λ′ and γ′, which includes the MSNC

model likelihood calculation as described by Yu et al. [44].

Exhaustive search is used to perform the outer optimization

of the network topology ψ′.

F. NetPlacer experiments

We conducted additional simulation study experiments

to assess NetPlacer’s performance. We utilized the previ-

ously described metagenomic data simulation procedures (see

“Metagenomic dataset simulations” above) to simulate 8-taxon

datasets with either zero or one reticulation and 50 loci,

where each locus had sequence length of 1 kb. Also, the

placement experimental procedures used elsewhere in our

simulation study (steps 1 through 7 in second paragraph

under “Phylogenetic tree placement methods” above) were

used in our network placement experiments, where the loci

used for phylogenetic placement were restricted to the three

longest contigs in an assembled metagenome. Model condi-

tion parameter settings and summary statistics for simulated

datasets are shown in Table VIII. NetPlacer performance was

assessed based on topological error (using the normalized

NDE calculation described above), computational runtime, and

peak main memory usage.

G. Computing facilities

Experiments in our study were conducted using the High-

Performance Computing Center at Michigan State University

(MSU), which is hosted and maintained by the MSU Institute
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method is referred to as NetPlacer version 0. The version num-

ber reflects a proof-of-concept status. Later versions require

new algorithmic techniques to enhance scalability by multiple

orders of magnitude (and see below for relevant future research

directions).

A brief aside: we caution that it is difficult to make direct

comparisons between tree placement methods and network

placement methods. Differences in model complexity (i.e.,

a tree versus a network with one or more reticulations)

greatly complicate head-to-head evaluation. Similar situations

arise in other phylogenetic contexts (e.g., comparison of non-

binary tree estimates versus binary tree estimates). Another

key difference between these method classes is worth noting

as well. The tree placement methods under study use a

concatenation approach, whereas NetPlacer uses multi-locus

statistical analysis that directly accounts for local gene tree

incongruence and discordance.

V. CONCLUSIONS

In summary, the impact of non-tree-like evolution on tree

placement accuracy of genomes and metagenomes was con-

firmed and quantified using in silico simulations and empirical

data analyses. We also introduced a new phylogenetic network

placement method: NetPlacer version 0. We evaluated Net-

Placer’s performance using simulated benchmarking datasets,

and we found that relaxing the simplifying assumption of

tree-like evolution came at a cost – namely, computational

overhead.

We conclude with some thoughts on future research di-

rections. In our opinion, the foremost need concerns new

network placement method development. NetPlacer version 0

provides an initial proof of concept, but scalability-enhancing

algorithmic techniques are clearly needed. Particularly salient

is one of our past contributions to phylogenetic inference

and learning using large-scale biomolecular sequence datasets:

FastNet, a phylogenetic divide-and-conquer algorithm for fast

and accurate species network reconstruction [16]. Placement of

query taxa into “sub”-networks inferred on subproblems – as

represented by FastNet’s subproblem decomposition graph –

may prove more tractable than placement into the full dataset,

which is larger and more divergent than any individual sub-

problem. Also, phylogenetic network placement using multi-

locus sequence data that integrates over the distribution of all

gene tree placements under a maximum likelihood or other

statistical criterion would provide an alternative to NetPlacer’s

summary-based approach. As above, the primary anticipated

challenge is scalability. One possible solution would be to

adapt Bryant et al. [7]’s dynamic programming calculation to

this task.

VI. DATA AVAILABILITY

The datasets and scripts used in our study are available

under open copyleft licenses at https://gitlab.msu.edu/liulab/

impact-of-non-tree-like-evolution-on-phylogenetic-placement.
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J. Fiedler, T. R. Lesker, P. Belmann, M. Z. DeMaere,

A. E. Darling, et al. CAMISIM: simulating metagenomes

and microbial communities. Microbiome, 7(1):1–12,

2019.

[14] J. Hein, M. Schierup, and C. Wiuf. Gene Genealogies,

Variation and Evolution: a Primer in Coalescent Theory.

Oxford University Press, USA, 2004.

[15] H. A. Hejase and K. J. Liu. A scalability study of

phylogenetic network inference methods using empirical

datasets and simulations involving a single reticulation.

BMC Bioinformatics, 17(1):1–12, 2016.

[16] H. A. Hejase, N. VandePol, G. M. Bonito, and K. J. Liu.

FastNet: fast and accurate statistical inference of phy-

logenetic networks using large-scale genomic sequence

data. In Comparative Genomics: 16th International

Conference, RECOMB-CG 2018, Magog-Orford, QC,

Canada, October 9-12, 2018, Proceedings 16, pages

242–259. Springer, 2018.

[17] C. E. Hinchliff, S. A. Smith, J. F. Allman, J. G. Burleigh,

R. Chaudhary, L. M. Coghill, K. A. Crandall, J. Deng,

B. T. Drew, R. Gazis, et al. Synthesis of phylogeny and

taxonomy into a comprehensive tree of life. Proceedings

of the National Academy of Sciences, 112(41):12764–

12769, 2015.

[18] W. Huang, L. Li, J. R. Myers, and G. T. Marth. ART: a

next-generation sequencing read simulator. Bioinformat-

ics, 28(4):593–594, 2012.

[19] R. R. Hudson. ms a program for generating samples

under neutral models. Bioinformatics, 18(2):337–338,

2002.

[20] D. Hyatt, G.-L. Chen, P. F. LoCascio, M. L. Land, F. W.

Larimer, and L. J. Hauser. Prodigal: prokaryotic gene

recognition and translation initiation site identification.

BMC Bioinformatics, 11(1):1–11, 2010.

[21] K. Katoh and D. M. Standley. MAFFT multiple sequence

alignment software version 7: improvements in perfor-

mance and usability. Molecular Biology and Evolution,

30(4):772–780, 2013.

[22] J. F. C. Kingman. The coalescent. Stochastic Processes

and Their Applications, 13(3):235–248, 1982.

[23] V. Lefort, R. Desper, and O. Gascuel. FastME 2.0: a com-

prehensive, accurate, and fast distance-based phylogeny

inference program. Molecular Biology and Evolution, 32

(10):2798–2800, 2015.

[24] K. Liu, T. J. Warnow, M. T. Holder, S. M. Nelesen, J. Yu,

A. P. Stamatakis, and C. R. Linder. SATé-II: very fast and
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S1 Supplementary Methods

Software commands used in the simulation study. Model trees were sampled using r8s [7] version 1.81 with the
following script:

begin r8s;

simulate diversemodel=bdback seed=random_number nreps=10

ntaxa=< 50 or 100 > T=0;

describe tree=0 plot=chrono_description;

end;

Local coalescent histories and gene trees were simulated under a model network using ms [2] with the following
command:

ms <50 or 100> 100 −T −I 100 <n1 n2 . . . nk>
− e j <t> i j −em <tA> i j 5 . 0 −em <tB> i j 0

The “-T” parameter outputs sampled gene trees. The “-I” parameter is followed by the number of structured populations.
The list of integers (n1n2...nk) represents the number of alleles sampled from each population. One allele per population
was sampled in our experiments. The “-ej” parameter specifies a speciation event where all lineages in population i are
moved to population j at time t. The first “-em” parameter specifies the start of a migration event at time tA from
population j to population i with migration rate 5.0; the second “-em” parameter specifies that the end of the migration
event from population j to population i will occur at time tB by setting the migration rate to zero. The above example
command includes a single reticulation event; more reticulations can be added via additional “-em” parameter options.

MSA estimation was performed using MAFFT [4] version 7.305 using the following command:

mafft --auto <sequence file> >

<estimated MSA file>

Table S1: Topological incongruence among true gene trees in simulations. Topological incongruence was measured using
normalized Robinson-Foulds (“nRF”) distance between true gene tree pairs. Average (“Avg”) and standard error (“SE”) are
reported across all experimental replicates in an MSC+IM simulation condition (n = 10).

# of Model # of nRF
taxa network height retic Avg SE

50 1 0 0.86 0.0002

50 1 5 0.87 0.0003

50 1 10 0.89 0.0002

50 5 0 0.47 0.0003

50 5 5 0.53 0.0004

50 5 10 0.59 0.0004

50 10 0 0.28 0.0003

50 10 5 0.36 0.0004

50 10 10 0.43 0.0004

100 5 0 0.52 0.0002

100 5 5 0.56 0.0003

100 5 10 0.60 0.0003

1



Figure S1: A flow chart of simulation study experiments on phylogenetic network placement using (a) genomic and (b)
metagenomic data. Steps 1 and 2 are the same steps followed in the simulation study section to simulate true gene trees.
First, a random model tree was generated using r8s and then reticulations were added to obtain the model network. In
step 3, sequence evolution was simulated using seq-gen, which takes the gene trees as the input and simulates sequence
evolution along each genealogy under Jukes-Cantor substitution model. We simulated 1000 bp per locus. In step 4,
FastTree was used to estimate the gene trees. The estimated gene trees were rooted using the outgroup rooting method
and the outgroup was then discarded. In step 5, PhyloNet [9] was used to infer a network using the rooted estimated
gene trees. We refer to this inferred network as the reference network. In step 6, a leave-one-out methods was performed.
Each query taxon was pruned from the inferred reference network to obtain the backbone network. The procedures for
step 7 differed for (a) genomic and (b) metagenomic data. In step 7 (a), the query taxon was placed in the backbone
network to obtain the placement network. In step 7 (b), Illumina short reads were simulated from the query sequence
using CAMISIM. In step 8, MetaSpades was used to obtain assembled contigs which were then treated as the query. In
step 9, the query was aligned with the reference alignment using MAFFT. In step 10, the locus alignments were used
to estimate the gene trees for the query. In step 11, the query was placed into the backbone network by the network
placement method using the estimated gene trees.
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A query sequence was aligned to a reference MSA using the following command:

mafft --auto --addfragments <query sequence file>

<reference alignment file> > <estimated MSA file>

RAxML [8] version 8.2.12 was used to estimate a phylogenetic tree from an MSA file using the following command:

raxmlHPC -s <MSA file> -n <unique_id> -p <random number>

-m GTRGAMMA

Phylogenetic bootstrap support analysis utilized the following two commands. The first command generates 100 bootstrap
trees, and the second command calculates phylogenetic support values for an annotation tree using the bootstrap trees.

raxmlHPC-PTHREADS-AVX2 -m GTRGAMMA -p <random number>

-b <random number> -# 100 -s <MSA file> -n <unique id>

-T 8

raxmlHPC -m GTRGAMMA -p <random number> -f b

-t <placement tree> -z <bootstrap tree file> -n <unique id>

Software commands used in NetPlacer experiments. PhyloNet [9] version 3 was used to infer a reference network
from an input set of estimated gene trees. The following sample Nexus file was used to configure the PhyloNet analysis:

#NEXUS

BEGIN TREES;

Tree geneTree1 = <gene tree 1 in Newick format>

.

.

Tree geneTree50 = <gene tree 50 in Newick format>

END;

BEGIN PHYLONET;

InferNetwork_ML (geneTree1, geneTree2, . . . . . . , geneTree50)

#num_of_reticulation -pl 8;

END;

Option “-pl” indicates the number of processors used.
The CalGTProb command from the PhyloNet software package was used to calculate model likelihood for a network

topology given a set of gene trees. The following sample Nexus file was used to perform the calculation:

#NEXUS

BEGIN NETWORKS;

Network net = <phylogenetic network topology in extended Newick format>;

END;

BEGIN TREES;

Tree geneTree1 = <gene tree 1 in Newick format>

.

.

Tree geneTree50 = <Gene tree 50 in Newick format>

END;

BEGIN PHYLONET;

CalGTProb net (geneTree1, geneTree2, . . . . . . , geneTree50)

-o -pl 8;

END;

The “-o” option was used to estimate network branch lengths and inheritance probabilities.
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Software commands used in the empirical study. Prodigal [3] version 2.6.3 was used to find ORFs in input genomes
using the following command:

prodigal -i <sequence file> -o <output file>

-a <translated proteins file>

USEARCH [1] version 11.0.667 was used to align ORFs against reference genes using the following command:

usearch11.0.667_i86linux32 -ublast <translated proteins file>

-db <data base file of the reference genes>

-evalue 1e-40 -top_hit_only -blast6out <output file>

S2 Supplementary Results

Figure S2 and Figure S3 compare phylogenetic placement error returned by APPLES and pplacer [5]. In general, we found
that APPLES returned better placement error than pplacer in most model conditions.

Tables S2 through S7 show delta error constituents – placement tree error and reference tree error – for different
model conditions. Tables S8 and S9 report type I and type II error for phylogenetic placement experiments on 50-taxon
simulations. The reported errors are based on Nakhleh’s metric [6] for comparing a pair of phylogenetic network topologies,
where the symmetric difference used in the metric is split into two parts (i.e., one part corresponding to network structure
appearing in one network but not the other, and the other part corresponding to vice versa). An increasing number of
reticulations consistently amplified phylogenetic tree placement error, as assessed using any of the different topological
error assessments in our study.

We performed statistical testing to compare placement tree error for the query taxon’s original sequence versus place-
ment of a random sequence for the query taxon (i.e., the “null” baseline used in our simulation experiments’ normalized
error assessments). Table S10 and Table S11 report p-values for genomic and metagenomic data simulations with muta-
tion rate 0.2. The differences in error were statistically significant for all model conditions (α = 0.05). As the number of
reticulations increased, we observed that the p-values increased as well, indicating that phylogenetic tree placement error
was increasing and becoming more difficult to distinguish from a theoretical worst case scenario. We also observed that
p-values for metagenomic data simulations were always larger than those for genomic data simulations with otherwise
equivalent simulation settings.

We also performed additional 50-taxon simulation experiments with more reticulations. Figures S4, S5, and S6 show
results for these experiments. We can see that, as the number of reticulations increased, phylogenetic placement error
increases rapidly and approaches error saturation on simulations with a higher number of reticulations. As in the other
simulation study experiments, phylogenetic placement error on metagenomic datasets are typically greater than those
observed on genomic datasets.

Table S12 includes results for an additional simulation experiment involving the NetPlacer algorithm. The experiment
utilizes a mutation rate of 0.02, which is lower than that used in the simulation experiments reported in the main
manuscript. The resulting placement errors are slightly lower than the latter, which we attribute to lower evolutionary
divergence, and the experiment outcomes generally follow the trends observed in the main manuscript.
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Table S2: Delta error constituents for model conditions with 50 taxa for different model network heights. Delta error has
two constituents: placement tree error (denoted “A” for brevity) and reference tree error (denoted “B” for brevity). Both
A and B are measured using Nakhleh distance. The average and standard error values are shown (n = 10).

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)

height length(bp)

Genomic 1 0.02 0 Mixed 100 300 28.898 0.163 28.192 0.159

Genomic 1 0.02 5 Mixed 100 300 39.672 0.132 38.285 0.142

Genomic 1 0.02 10 Mixed 100 300 49.896 0.211 48.021 0.222

Genomic 5 0.02 0 Mixed 100 300 14.100 0.308 13.85 0.308

Genomic 5 0.02 5 Mixed 100 300 36.174 0.152 35.01 0.169

Genomic 5 0.02 10 Mixed 100 300 52.088 0.111 50.828 0.117

Genomic 10 0.02 0 Mixed 100 300 7.340 0.318 7.122 0.308

Genomic 10 0.02 5 Mixed 100 300 34.476 0.149 33.233 0.169

Genomic 10 0.02 10 Mixed 100 300 46.526 0.146 44.742 0.172

Metagenomic 1 0.02 0 Mixed 100 300 30.465 0.122 28.442 0.124

Metagenomic 1 0.02 5 Mixed 100 300 42.344 0.089 40.241 0.096

Metagenomic 1 0.02 10 Mixed 100 300 52.094 0.096 49.623 0.108

Metagenomic 5 0.02 0 Mixed 100 300 16.388 0.148 13.34 0.14

Metagenomic 5 0.02 5 Mixed 100 300 37.524 0.123 35.6 0.13

Metagenomic 5 0.02 10 Mixed 100 300 52.310 0.069 50.26 0.08

Metagenomic 10 0.02 0 Mixed 100 300 11.597 0.179 8.146 0.171

Metagenomic 10 0.02 5 Mixed 100 300 34.844 0.130 32.515 0.143

Metagenomic 10 0.02 10 Mixed 100 300 47.592 0.075 45.218 0.091

Table S3: Delta error constituents for model conditions with 50 taxa for two types of reticulations. Table layout and
description are otherwise identical to Supplementary Table S2.

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)

height length(bp)

Genomic 5 0.02 0 Non-deep 100 300 15.393 0.305 14.98 0.297

Genomic 5 0.02 5 Non-deep 100 300 35.616 0.143 34.494 0.162

Genomic 5 0.02 10 Non-deep 100 300 48.196 0.263 46.772 0.267

Genomic 5 0.02 0 Deep 100 300 11.558 0.282 11.148 0.279

Genomic 5 0.02 5 Deep 100 300 32.124 0.122 30.527 0.159

Genomic 5 0.02 10 Deep 100 300 45.196 0.134 43.069 0.166

Metagenomic 5 0.02 0 Non-deep 100 300 17.384 0.162 14.594 0.157

Metagenomic 5 0.02 5 Non-deep 100 300 37.572 0.081 35.352 0.092

Metagenomic 5 0.02 10 Non-deep 100 300 48.862 0.135 46.774 0.141

Metagenomic 5 0.02 0 Deep 100 300 16.214 0.193 13.012 0.204

Metagenomic 5 0.02 5 Deep 100 300 33.04 0.109 30.337 0.121

Metagenomic 5 0.02 10 Deep 100 300 45.460 0.092 42.513 0.107

.

Table S4: Delta error constituents for model conditions with 50 taxa for varying number of loci. Table layout and
description are otherwise identical to Supplementary Table S2.

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)

height length(bp)

Genomic 5 0.02 0 Mixed 50 300 15.382 0.245 15.012 0.242

Genomic 5 0.02 5 Mixed 50 300 34.5 0.135 33.272 0.157

Genomic 5 0.02 10 Mixed 50 300 48.146 0.123 46.224 0.151

Genomic 5 0.02 0 Mixed 200 300 9.886 0.371 9.63 0.363

Genomic 5 0.02 5 Mixed 200 300 33.184 0.226 31.951 0.233

Genomic 5 0.02 10 Mixed 200 300 47.928 0.152 45.96 0.179

Metagenomic 5 0.02 0 Mixed 50 300 18.763 0.156 16.327 0.156

Metagenomic 5 0.02 5 Mixed 50 300 35.467 0.112 33.235 0.120

Metagenomic 5 0.02 10 Mixed 50 300 49.674 0.086 47.197 0.100

Metagenomic 5 0.02 0 Mixed 200 300 12.688 0.200 8.918 0.205

Metagenomic 5 0.02 5 Mixed 200 300 33.424 0.105 30.911 0.105

Metagenomic 5 0.02 10 Mixed 200 300 48.134 0.079 45.48 0.095
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Table S5: Delta error constituents for model conditions with 50 taxa for longer sequence length per locus. Table layout
and description are otherwise identical to Supplementary Table S2.

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)

height length(bp)

Genomic 5 0.02 0 Mixed 100 1000 11.96 0.373 11.534 0.368

Genomic 5 0.02 5 Mixed 100 1000 32.6 0.187 31.248 0.205

Genomic 5 0.02 10 Mixed 100 1000 48.05 0.207 46.077 0.220

Metagenomic 5 0.02 0 Mixed 100 1000 13.174 0.265 11.164 0.261

Metagenomic 5 0.02 5 Mixed 100 1000 33.208 0.205 31.166 0.223

Metagenomic 5 0.02 10 Mixed 100 1000 49.332 0.189 46.971 0.207

Table S6: Delta error constituents for model conditions with 50 taxa for varying mutation rates. Table layout and
description are otherwise identical to Supplementary Table S2.

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)

height length(bp)

Genomic 5 0.02 0 Mixed 100 300 14.100 0.308 13.85 0.308

Genomic 5 0.02 5 Mixed 100 300 36.174 0.152 35.01 0.169

Genomic 5 0.02 10 Mixed 100 300 52.088 0.111 50.828 0.117

Genomic 5 0.06 0 Mixed 100 300 13.962 0.179 13.762 0.189

Genomic 5 0.06 5 Mixed 100 300 35.704 0.179 34.616 0.181

Genomic 5 0.06 10 Mixed 100 300 51.044 0.133 49.682 0.140

Genomic 5 0.2 0 Mixed 100 300 13.206 0.295 12.982 0.295

Genomic 5 0.2 5 Mixed 100 300 36.062 0.190 34.986 0.204

Genomic 5 0.2 10 Mixed 100 300 50.83 0.118 49.38 0.129

Metagenomic 5 0.02 0 Mixed 100 300 16.388 0.148 13.34 0.14

Metagenomic 5 0.02 5 Mixed 100 300 37.524 0.123 35.6 0.13

Metagenomic 5 0.02 10 Mixed 100 300 52.310 0.069 50.26 0.08

Metagenomic 5 0.06 0 Mixed 100 300 15.652 0.167 12.84 0.16

Metagenomic 5 0.06 5 Mixed 100 300 37.037 0.106 34.82 0.12

Metagenomic 5 0.06 10 Mixed 100 300 52.358 0.063 50.35 0.07

Metagenomic 5 0.2 0 Mixed 100 300 15.118 0.153 11.45 0.14

Metagenomic 5 0.2 5 Mixed 100 300 37.38 0.117 35.11 0.12

Metagenomic 5 0.2 10 Mixed 100 300 51.17 0.067 49.08 0.07

Table S7: Delta error constituents for model conditions with 100 taxa. A fixed model network height 5, reticulation type
"Mixed", number of loci 100 and per locus sequence length 300 bp were used. Table layout and description are otherwise
identical to Supplementary Table S2.

Data Mutation #Reticulations Average(A) Standard Average(B) Standard
type rate Error(A) Error(B)

Genomic 0.02 0 28.231 0.255 27.336 0.27

Genomic 0.02 5 54.898 0.175 54.025 0.18

Genomic 0.02 10 75.887 0.177 75.272 0.18

Genomic 0.06 0 26.195 0.23 23.037 0.29

Genomic 0.06 5 53.775 0.22 53.117 0.16

Genomic 0.06 10 74.693 0.15 72.4 0.18

Genomic 0.2 0 23.525 .29 23.037 0.29

Genomic 0.2 5 53.658 0.15 53.117 0.162

Genomic 0.2 10 73.628 0.16 72.4 0.18

Metagenomic 0.02 0 32.038 0.133 28.639 0.13

Metagenomic 0.02 5 55.503 0.12 52.94 0.12

Metagenomic 0.02 10 74.78 0.096 73.007 0.11

Metagenomic 0.06 0 29.15 0.13 28.15 0.14

Metagenomic 0.06 5 55.31 0.11 53.56 0.14

Metagenomic 0.06 10 76.38 0.08 71.805 0.10

Metagenomic 0.2 0 31.30 0.15 28.15 0.14

Metagenomic 0.2 5 56.02 0.13 53.56 0.14

Metagenomic 0.2 10 74.13 0.09 71.81 0.10
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Figure S2: Comparison of APPLES and PPLACER on simulated genomic datasets. Simulated datasets had 50 taxa. The
simulations utilized mutation rates of 0.02, 0.06, and 0.2 and included 0, 5 or 10 reticulations. Phylogenetic placement
error was assessed using delta error. Averages and standard error bars are shown (n = 500).

Table S8: Type I and type II error for simulation experiments on 50-taxon genomic datasets. Average and standard error
are reported (n = 500).

Mutation # Type I error Type II error
rate ret Avg SE Avg SE

0.02 0 14.1 0.31 15.07 0.31

0.02 5 28.2 0.15 44.17 0.15

0.02 10 37.09 0.11 68.07 0.11

0.06 0 13.962 0.18 14.94 0.18

0.06 5 27.73 0.18 43.70 0.18

0.06 10 36.04 0.13 67.02 0.13

0.2 0 13.21 0.29 14.18 0.29

0.2 5 28.09 0.19 44.06 0.19

0.2 10 35.83 0.12 66.81 0.12
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Figure S3: Comparison of APPLES and PPLACER on simulated metagenomic datasets. Averages and standard error
bars are shown (n = 1500). Figure description and layout are otherwise identical to Supplementary Figure S2.

Table S9: Type I and type II error for simulation experiments on 50-taxon metagenomic datasets. Average and standard
error are reported (n = 500).

Mutation # Type I error Type II error
rate ret Avg SE Avg SE

0.02 0 16.72 0.25 17.7 0.25

0.02 5 29.51 0.211 45.49 0.21

0.02 10 37.39 0.12 68.374 0.12

0.06 0 15.71 0.29 16.68 0.29

0.06 5 29.11 0.18 45.09 0.18

0.06 10 37.36 0.10 68.33 0.11

0.2 0 15.27 0.26 16.25 0.26

0.2 5 29.45 0.20 45.43 0.20

0.2 10 36.24 0.12 67.22 0.12

Table S10: Genomic data simulations: p-values for statistical tests of placement tree error. The simulations utilized a
mutation rate of 0.2.

Mutation rate # reticulations Avg Placement Errorquery Avg Placement Errorbaselinequery P-value

0.2 0 13.19 17.52 5.3312E-133

0.2 5 36.06 37.86 2.55177E-81

0.2 10 50.84 51.71 4.9398E-53
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