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Phylogenetic Placement of Aligned Genomes and
Metagenomes with Non-tree-like Evolutionary
Histories

Md Alamin and Kevin J. Liu

Abstract—Phylogenetic placement is the computational task
that places a query taxon into a reference phylogeny using
computational analysis of biomolecular sequence data or other
evolutionary characters. A chief advantage of phylogenetic place-
ment over de novo phylogenetic reconstruction is greatly reduced
computational requirements, and the former has been applied
in many different topics in phylogenetics. One of the more
recent applications has been enabled by rapid advances in
biomolecular sequencing technology: classification of genomes,
metagenomes, and metagenome-assembled genomes (MAGS) in
large-scale datasets produced by next-generation sequencing. A
number of methods have been developed for this purpose, and
all share the common simplifying assumption that a phylogenetic
tree suffices for modeling the evolutionary history of all genomes
and/or metagenomes under study. Another parallel development
in today’s post-genomic era is a greater understanding of the
prevalence and importance of non-tree-like evolution in the Tree
of Life — the evolutionary history of all life on Earth — which in
fact may not be a tree at all. More general graph representations
such as phylogenetic networks have therefore been proposed, and
a new generation of phylogenetic network reconstruction methods
are under active development. But the simplifying assumption
made by phylogenetic tree placement methods is fundamentally
at odds with the non-tree-like evolutionary histories of many
microbes and other organisms. The consequences of this conflict
are poorly understood.

In this study, we conduct a comprehensive performance study
to directly assess the impact of non-tree-like evolution on phylo-
genetic tree placement of genomes and metagenomes. Our study
includes in silico simulation experiments as well as empirical data
analyses. We find that the topological accuracy of phylogenetic
tree placement degrades quickly as genomic sequence evolution
becomes increasingly non-tree-like. We then introduce a new
statistical method for phylogenetic network placement of genomes
and metagenomes, which we refer to as NetPlacer version 0.
Initial experiments with NetPlacer provide a proof-of-concept,
but also point to the need for greater computational scalability.
We conclude with thoughts on algorithmic techniques to enable
fast and accurate phylogenetic network placement.
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I. INTRODUCTION

Phylogenetic placement is the problem which seeks to
place a new taxon into an existing or reference phylogeny,
typically via computational analysis of biomolecular sequence
data. This problem has been traditionally studied in the
context of phylogenetics and systematics, including large-
scale phylogenetic reconstruction [42], dynamically updated
phylogenies [35, 17], and biodiversity research [6]. Thanks
to rapid advances in next generation sequencing technology,
computational phylogenetics has seen many major advances,
and new applications of phylogenetic placement have emerged.
In particular, phylogenetic placement methods are increasingly
used in genomic and metagenomic studies.

One particularly important task in genomics and metage-
nomics is to classify organisms that are present in a sequenced
sample. Classical approaches like BLAST-based sequence
analysis [1, 43] are widely used for taxonomic classification
of next-generation sequencing (NGS) read data and assembled
biomolecular sequences and related computational tasks [41].

Matsen et al. [26] were early proponents of phylogeny-
aware alternatives. As they noted, phylogenetic analyses of
metagenomic data offer several key advantages that can com-
plement taxonomic classification. First, phylogenetic place-
ment explicitly accounts for phylogenetic relatedness, which
can be a confounding factor in downstream analyses if not
properly accounted for [11, 9]. Furthermore, fine grained
evolutionary relationships can add substantial insight into
originating processes that underlie present day snapshots of
microbial genetics. One of the first methods in this class was
pplacer [26]. Other methods have been since developed to
address the phylogenetic placement problem, such as EPA-ng
[5], SEPP [28], TIPP [31], APPLES [3], and APPLES-2 [4].
All of these methods focus purely on phylogenetic tree place-
ment. This requires a critical assumption: that phylogenetic
relationships in a sample or study are purely tree-like.

But it is well understood that horizontal gene transfer (HGT)
has played an important role in prokaryotic genome evolution
throughout the Tree of Life [33]. Furthermore, the importance
of reticulate evolution in other microbes and macroscopic
organisms has gained greater appreciation in recent years
[25]. The prevalence of non-tree-like evolution in metage-
nomic samples is fundamentally at odds with the simplifying
assumption inherent to phylogenetic tree placement. The con-
sequences are not well understood, and solutions are not at
hand. These gaps are partly due to the lack of quantitative
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experiments to assess the impacts of model violation on state-
of-the-art phylogenetic placement algorithms, as well as the
lack of alternative methods that relax the simplifying assump-
tion of tree-like evolution of genomes and metagenomes.

In this study, we directly address both gaps. (1) We conduct
a comprehensive performance study to quantify the impact
of non-tree-like evolution on phylogenetic tree placement
of genomes and metagenomes. (2) We introduce NetPlacer
version 0, a new statistical method for phylogenetic network
placement of genomes and metagenomes. To avoid ambiguity,
we refer to traditional phylogenetic placement — where the
reference phylogeny is restricted to be a tree — as “tree
placement”, and more general phylogenetic placement where
the reference phylogeny is a phylogenetic network as “network
placement”. Our study focuses on phylogenetic placement
using aligned biomolecular sequences, and sets the stage for
generalization to other applications of phylogenetic placement.

II. METHODS
A. Preliminaries

We begin with relevant background and definitions. A
phylogenetic tree T = (V, E) is a connected acyclic graph
where, for every pair of vertices v,w € V, there is a unique
path between v and w; furthermore, leaf nodes (or leaves) in
the tree are uniquely labeled by a set of taxa =, as described
below. Phylogenetic trees can be of two types: rooted and
unrooted. In a rooted tree, there is a unique root node r € V'
indicating the most recent common ancestor of all taxa in
the tree, and the edge set E consists of directed edges. The
root r has in-degree 0 and out-degree 2 or greater, internal
nodes have in-degree 1 and out-degree 2 or greater, and leaf
nodes (or leaves) have in-degree 1 and out-degree 0; each leaf
node is uniquely labeled by a taxon in the set of taxa =. A
rooted tree is binary if the root and all internal nodes have out-
degree exactly 2. In an unrooted tree, the edge set E' consists
of undirected edges and every node is either a leaf node if it
has degree 1 or an internal node if it has degree 3 or greater;
an unrooted tree is binary if all internal nodes have degree
exactly 3. Edges e € F may also have edge lengths ¢(e).

Phylogenetic placement is the computational problem that
places a query taxon into a backbone phylogeny using com-
putational analysis of biomolecular sequence data and other
character data. In the context of phylogenetic tree placement,
the problem is defined as follows. The problem input consists
of a backbone tree T" on a set of reference taxa S where the
number of reference taxa is n = |S|, a query taxon ¢, and a
multiple sequence alignment for S U {q}. The problem output
is a placement tree P, that is obtained by attaching a leaf edge
representing ¢ to an existing edge in 7" such that a phylogenetic
criterion is optimized.

A range of methods have been developed to address the
phylogenetic placement problem. One class of phylogenetic
placement methods utilizes maximum likelihood estimation
(MLE). Prominent examples include pplacer [26] and EPA-ng
[5]. These methods place a query taxon’s leaf edge into the
backbone tree such that model likelihood is maximized, where
common models include finite-sites substitution models such

as the General Time Reversible (GTR) model [34] and nested
models. Another class of phylogenetic placement methods are
distance based. APPLES [3] is a representative method in
this class. APPLES chooses a placement for a query taxon
based on computational analysis of a pairwise distance matrix
computed on biomolecular sequence data for the reference
taxa and query taxon. The distance calculations used for
computing the pairwise distance matrix can either be estimated
from a multiple sequence alignment or using an alignment-
free method. As mentioned above, a simplifying assumption
common to existing phylogenetic placement methods is that
evolutionary history is strictly tree-like.

In the presence of reticulate evolutionary processes such as
horizontal gene transfer (HGT), hybridization and introgres-
sion, and genetic recombination, the evolutionary relationships
among a set of taxa requires a more complex phylogeny
such as a graph-based representation known as a phylogenetic
network.

A phylogenetic network topology consists of a rooted
directed acyclic graph ¢ = (V, E). The vertices V consist
of the the following four classes of vertices. The root r
has indeg(r) = 0. Leaf nodes (or leaves) are Vi where
Vv € Vi, indeg(v) = 1 and outdeg(v) = 0. The tree nodes
are Vr where Vv € Vr indeg(v) = 1 and outdeg(v) > 2.
The reticulate nodes are Vy where Yv € Vy indeg(v) =
2 and outdeg(v) = 1. A phylogenetic network topology can
be called a phylogenetic tree topology if Vy = {}. A
phylogenetic network x is a 3-tuple (¢, \,7), where the
network topology v is accompanied by edge lengths A and
inheritance probabilities «. The latter two typically serve as
continuous parameters in an evolutionary model such as the
multi-species network coalescent (MSNC) model [27, 44].

B. Simulation experiments

Genomic dataset simulations: Random model networks
with n taxa were sampled using the procedure described in
[15], which we briefly recap here. First, a random tree was
sampled under a random birth-death process using r8s [36]
version 1.81. Branch lengths of the tree were then re-scaled
to obtain height h = 5.0. To obtain a model network, ¢
reticulation(s) were added to the model phylogeny using the
following procedure: for each reticulation, a time tj; was
randomly selected such that 0.01 <, < %. Two populations
were then selected randomly at time t,7, and a reticulation
edge with random orientation between the two populations
was added to connect the corresponding pair of tree edges. An
outgroup was added to the resulting network at time 15.0. Our
simulation conditions included datasets with n € {50,100}
and ¢ € {0,5,10}.

For each model network, ms [19] was used to conduct
simulations under the multi-species coalescent and isolation-
with migration (MSC+IM) model. A reticulation at time ¢,
was modeled using a unidirectional migration event from time
tyr — 0.01 to tps 4+ 0.01 with migration rate 5.0. A total of
100 local coalescent histories and associated coalescent trees
were sampled from each MSC+IM simulation.

Coalescent trees with branch lengths in coalescent units
were converted into gene trees with branch lengths in expected
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numbers of substitutions using equation 3.1 in [14] and
scaled mutation rate § € {0.02,0.06,0.2}. Gene tree branch
lengths were then deviated away from ultrametricity using the
approach of Nakhleh et al. [30] with deviation factor ¢ = 2.0.

DNA sequence evolution on each gene tree was simulated
under a finite-sites model of substitutions, insertions, and dele-
tions using INDELible version 1.03 [12]. Substitutions were
simulated under the General Time-Reversible (GTR) model
[34]. GTR model parameter values were based on the study
of [24], where base frequency parameters (7r, 7o, TA, TG)
were set to (0.3115,0.1913,0.3004, 0.1967), respectively, and
substitution rate parameters (rrc,TTA, "TG,TCA, TCG,TAG)
were set to (1.2620,0.1401,0.2878,0.3577,0.3083,1.0), re-
spectively. Insertions and deletions were simulated according
to a power law distribution with insertion/deletion rate 0.004,
distribution parameter setting ¢ = 1.2, and maximum inser-
tion/deletion length of 50 bp. The sequence length for the most
recent common ancestor (MRCA) at the root of each gene tree
was set to 300 bp.

The final step of the genomic data simulation procedure
was to concatenate sequences across all loci in a simulation,
resulting in concatenated unaligned sequence length of around
30 kb for each simulated dataset. True multiple sequence
alignments (MSAs) on all loci were similarly concatenated
to obtain the concatenated true MSA.

Metagenomic dataset simulations: Metagenomic datasets
were simulated by coupling genomic dataset simulations with
an additional metagenomic data simulation procedure. The lat-
ter used CAMISIM [13] with default settings. The CAMISIM
pipeline incorporates the following stage to simulate NGS
short read data from simulated multi-locus sequences for query
taxa: the ART read simulator version 2.3.6 [18] was used to
generate Illumina 2 x 150 bp paired-end reads from individual
genomes with a HiSeq 2500 error profile which has been
trained on the MBARC-26 training dataset [37]. The reads
were generated with 10X coverage.

Simulation study experiments involving additional exper-
imental factors: Our simulation study also assessed phylo-
genetic placement performance in the context of three ad-
ditional experimental factors. The model conditions in these
additional experiments included 50 taxa and scaled mutation
rate § = 0.02. The first experimental factor was evolutionary
divergence in terms of species phylogeny height, where model
species networks had height » € {1,10} (as compared
to a height of 5 used elsewhere in our simulation study
experiments). The second experimental factor concerned the
topological arrangement of reticulations in the model species
phylogeny. Following the terminology of Hejase et al. [16], the
simulation conditions used elsewhere in our study had non-
deep reticulations (where a non-deep reticulation is simulated
by adding a reticulation edge to connect two leaf edges in a
model phylogeny). The additional experiments included deep
reticulations (i.e., reticulations other than non-deep reticula-
tions) as well as a mixture of deep and non-deep reticulations.
The third experimental factor was the amount of data used for
phylogenomic analysis — at locus level (i.e., the number of
loci) as well as site level (i.e., per-locus sequence length).
The former involved simulations with 50 or 200 loci (as

TABLE . Simulation study: model parameter values and
summary statistics for 50-taxon model conditions with varying
numbers of reticulations and mutation rates. Each model
condition utilized a model species network with height 5 and
mixed reticulations, 100 loci, and per-locus sequence length
of 300 bp. The scaled mutation rate (“Mutation rate””) was
set to 0.02, 0.06, or 0.2. The number of reticulations (“Num
retic”) was set to 0, 5, or 10. Average sequence length of
the true alignment (“True MSA length”), average normalized
Hamming distance (“ANHD”) across all pairs of aligned
sequences in the true MSA, and “Gappiness” which is the
proportion of the MSA consisting of indels are reported as
an average across all experimental replicates in each model
condition (n = 10).

True
Num  Mutation Num MSA
taxa rate retic length ANHD  Gappiness
50 0.02 0 31158.6  0.0848 0.0365
50 0.02 5 31113.7  0.0844 0.0352
50 0.02 10 31113.6  0.0846 0.0356
50 0.06 0 33612.8  0.2181 0.1070
50 0.06 5 33685.6  0.2175 0.1085
50 0.06 10 33476.8  0.2168 0.1042
50 0.2 0 421573 0.4707 0.2867
50 0.2 5 42064.1  0.4693 0.2865
50 0.2 10 415248  0.4695 0.2786

TABLE 1I: Simulation study: model parameter values and
summary statistics for 100-taxon model conditions with vary-
ing numbers of reticulations and mutation rates. Table layout
and description are otherwise identical to Table I.

True
Num  Mutation Num MSA
taxa rate retic length ANHD  Gappiness
100 0.02 0 32030.3  0.0918 0.0641
100 0.02 5 31938.0  0.0912 0.0599
100 0.02 10 32022.7  0.0916 0.0632
100 0.06 0 35872.1  0.2322 0.1623
100 0.06 5 35987.1  0.2320 0.1648
100 0.06 10 35892.0 0.2316 0.1641
100 0.2 0 493219  0.4872 0.3919
100 0.2 5 497457  0.4890 0.3956
100 0.2 10 49507.5  0.4896 0.3936

compared to simulations with 100 loci in the rest of our
simulation study), and the latter involved simulations with
MRCA sequence length of 1 kb per locus (as compared to
300 bp elsewhere in our simulation study).

Experimental replication and summary statistics: For
each model condition, the simulation procedure was repeated
to obtain 10 replicate datasets. Results are reported across all
replicate datasets in each model condition. Tables I through
VI list model parameter values and summary statistics for the
model conditions in the simulation study.

Phylogenetic tree placement methods: The performance
of phylogenetic tree placement was evaluated using a leave-
one-out approach. For the genomic datasets, the experimental
procedure consisted of the following steps. (1) Unaligned
sequences S for the set of taxa = were aligned using MAFFT
[21] version 7.305 with default settings, resulting in an esti-
mated MSA A. (2) Using the MSA A as input, RAXML [38]
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TABLE III: Simulation study: model parameter values and
summary statistics for 50-taxon model conditions with varying
model network heights. The simulations utilized a scaled
mutation rate of 0.02, mixed reticulations, 100 loci, and per-
locus sequence length of 300 bp. The height of the model
species network in coalescent units (“Model net height”) was
set to 1, 5, or 10. Table layout and description are otherwise
identical to Table I.

Model True
Num net Num MSA
taxa  height  retic length ANHD  Gappiness
50 1 0 30334.9  0.02869 0.0107
50 1 5 30359.8  0.02911 0.0116
50 1 10 304169  0.02885 0.0138
50 5 0 31158.6  0.0848 0.0365
50 5 5 31113.7  0.0844 0.0352
50 5 10 31113.6  0.0846 0.0356
50 10 0 32224.0  0.15493 0.0678
50 10 5 32130.8  0.15455 0.0665
50 10 10 321354  0.15525 0.0674

TABLE 1V: Simulation study: model parameter values and
summary statistics for 50-taxon model conditions with varying
reticulation types. Each model condition utilized a model
species network with height 5, a scaled mutation rate of
0.02, 100 loci, and per-locus sequence length of 300 bp. The
topological arrangement of simulated reticulations was either
non-deep or deep (‘“Retic type”). Table layout and description
are otherwise identical to Table III.

True
Num Num Retic MSA
taxa retic type length ANHD  Gappiness
50 0 Non-deep  31123.5  0.08856 0.0367
50 5 Non-deep  31190.9  0.08867 0.0377
50 10 Non-deep  31201.1  0.08813 0.0382
50 0 Deep 31319.8  0.08850 0.0418
50 5 Deep 310924  0.08914 0.0356
50 10 Deep 31172.4  0.08823 0.0371

TABLE V: Simulation study: model parameter values and
summary statistics for 50-taxon model conditions with varying
number of loci. Each model condition utilized a model species
network with height 5 and mixed reticulations, a scaled
mutation rate of 0.02, and per-locus sequence length of 300
bp. The number of loci (“Num loci”’) was either 50 or 200.
Table layout and description are otherwise identical to Table
1.

True
Num Num Num MSA
taxa retic loci length ANHD  Gappiness
50 0 50 15633.3  0.08886 0.0402
50 5 50 15553.0  0.08944 0.0363
50 10 50 15553.0  0.08846 0.0374
50 0 200 62424.4  0.08853 0.0385
50 5 200 62498.9  0.08866 0.0396
50 10 200 62447.3  0.08856 0.0388

TABLE VI: Simulation study: model parameter values and
summary statistics for 50-taxon model conditions with varying
per-locus sequence length. Each model condition utilized a
model species network with height 5 and mixed reticulations, a
scaled mutation rate of 0.02, and 100 loci. Per-locus sequence
length (“Per locus seq len (bp)”) was set to either 300 or
1000 bp. Table layout and description are otherwise identical
to Table III.

Per-locus True
Num Num seq MSA
taxa retic len (bp) length ANHD  Gappiness
50 0 300 31158.6 0.0848 0.0365
50 5 300 31113.7 0.0844 0.0352
50 10 300 31113.6 0.0846 0.0356
50 0 1000 104060.2  0.08893 0.0391
50 5 1000 103912.0  0.08861 0.0371
50 10 1000 103855.6  0.08858 0.0372

version 8.2.12 was used to perform MLE under the GTR+I"
substitution model and reconstruct the reference tree Trgg. The
tree Trgr Was outgroup rooted to facilitate topological compar-
isons against ground truth (described below); the outgroup was
then discarded and otherwise not utilized in our experiments.
(3) Each taxon £ € = was chosen as the query taxon ¢ in turn.
The aligned sequence a, representing ¢ was removed from A
to obtain the reference MSA Aggr. The leaf edge for the query
taxon ¢ was contracted in the reference tree Trgg, and branch
lengths of the resulting tree were re-estimated using FastME
[23] analysis of the reference MSA Aggr; we refer to this tree
as the backbone tree T'. (4) Using the query sequence a,, the
reference MSA Aggr, and backbone tree 1" as input, APPLES
[3] version 2.0.5 with default settings was used to place the
query taxon ¢ into the backbone tree 7, resulting in the
placement tree P,. (Also see Supplementary Online Materials
for additional experiments using an alternative optimization-
based tree placement method.) (5) Steps 3 and 4 were repeated
for all other taxa as query.

The experimental procedure for metagenomic datasets re-
quired several changes compared to the genomic experiment
procedure. (1-3) The first three steps of the metagenomic ex-
periment procedure were identical to the genomic experiment
procedure’s first three steps. (4) The query sequence a, for
the query taxon ¢ was used to to simulate the metagenomic
NGS data (see “Metagenomic dataset simulations” above). (5)
We then used metaSpades [32] version 3.13.0 with default
settings to assemble NGS reads into contigs. The assembled
contigs served as the sequence s, for query taxon ¢. The
contigs in s, were aligned to the reference MSA Aggr using
MAFFT version 7.305 with an “-addfragments” option. (6)
Phylogenetic placement of the query taxon ¢ into the backbone
tree 7' was performed in an identical manner as step 4 in
the genomic experiment procedure. (7) The leave-one-out
procedure was repeated for all other taxa in turn.

C. Empirical dataset analyses

Dataset from study of Treangen and Rocha [40]: We
utilized genomic sequence data from the study of Treangen
and Rocha [40], which examined the contribution of HGT
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TABLE VII: Summary statistics for empirical datasets. Ge-
nomic sequence data were obtained from Treangen and Rocha
[40]’s study of HGT in eight groups of prokaryotes. Each
dataset consisted of 8 taxa from one of two genera — ei-
ther Neisseria or Helicobacter — where the latter exhibited
relatively higher genomic contributions of HGT compared to
the former (“Contribution of HGT”), based on the findings
of Treangen and Rocha [40]. Average unaligned genome se-
quence length in kb (“Avg genome length”), and the reference
MSA’s length in kb (“Reference MSA length”) and average
normalized Hamming distance (“ANHD”) are also listed.

Contribution Avg Reference
of genome MSA
Clade HGT (%) length (kb) length (kb) ANHD
Neisseria 89 2201.7 80.1 0.159
Helicobacter 97 1621.8 71.7 0.216

to protein family expansion in eight groups of prokaryotes.
We focused on two genera of bacteria — Neisseria and Heli-
cobacter — where Treangen and Rocha [40]’s reported relative
genomic contributions of HGT — 89% versus 97%, respectively
(cf. Figure 2 in [40]) — enables differential placement exper-
iments. Table VII lists summary statistics for the empirical
datasets.

As with the simulation study, the empirical study’s experi-
mental procedure consisted of multiple steps. (1) Open reading
frames (ORFs) were predicted using Prodigal version 2.6.3
[20]. (2) USEARCH version 11.0.667 [10] was then used to
align ORFs in each genome against 400 reference genes which
were curated and used in PhyloPhlAn [2]. (3) A subset of 50
orthologous genes were randomly selected as the basis for the
multi-locus dataset. Unaligned gene sequences for each locus
were aligned using MAFFT version 7.305 with the “—auto”
setting, and MSAs were concatenated across loci to obtain
the reference alignment. (4) Using the reference alignment as
input, RAXML was used to perform phylogenetic MLE under
the GTR+I" model and obtain a reference tree. The reference
tree was then midpoint rooted. (5) Similar to the simulation
experiments, a leave-one-out approach was used to perform
phylogenetic placement of each taxon in turn: the query taxon
was pruned from the reference tree to obtain a backbone tree,
and APPLES version 2.0.5 with default settings was used to
perform phylogenetic placement of the query taxon into the
backbone tree.

Augmented Neisseria datasets: We also augmented the
Neisseria dataset with synthetic reticulation events and per-
formed leave-one-out comparative analysis of two datasets.
The original or “control” dataset corresponded to the empirical
Neisseria dataset (see steps 1 through 3 above). The control
dataset was then augmented with simulated reticulation events
to obtain the “augmented” dataset. Data augmentation utilized
the following procedure. Beginning with the control dataset,
a reference tree was obtained using step 4 above. Then, 10
random reticulations were added to the reference tree using
the same approach as in the simulation study, resulting in
a species network model. We used ms to simulate local
coalescent histories and gene trees for 10 loci under the

species network model. INDELible was then used to simulate
gene sequence evolution along each gene tree, resulting in
a set of gene sequences and true MSAs for each gene.
The species phylogeny and gene tree simulations utilized
the same procedures as in the simulation study. Finally, the
simulated multi-locus unaligned sequences were appended to
the empirical multi-locus unaligned sequences, and similarly
for the aligned sequence data. The resulting dataset is referred
to as the augmented dataset.

A companion pair of metagenomic datasets — control and
augmented — was also used to perform leave-one-out compar-
ative analysis. Each metagenomic dataset was obtained using
the corresponding genomic dataset (i.e., a control metage-
nomic dataset was obtained using the control genomic dataset,
and similarly for augmented datasets). Metagenomic NGS data
simulation for a query taxon, metagenome assembly, and query
taxon placement procedures followed steps 4 through 7 in the
simulation study’s metagenomic data experiments.

D. Performance assessments

Topological error assessments: Topological comparisons
of phylogenetic trees were based on the Robinson-Foulds dis-
tance. For two phylogenetic trees T, and T} with respective bi-
partition sets B(T,) and B(T}), the Robinson-Foulds distance
§(T,,Tp) is the size of the symmetric difference |B(T,) —
B(Ty)| + |B(Tp) — B(Ty)|. The normalized Robinson-Foulds
(nRF) distance is obtained by dividing absolute Robinson-
Foulds distance divided by its maximum, which is 2(n — 3).

Topological comparisons of phylogenetic networks utilized
Nakhleh [29]’s distance for comparing a pair of phylogenetic
network topologies. For a pair of phylogenetic network topolo-
gies 1, and ), the distance calculation corresponds to the
number of rooted sub-networks that appear in v, but not v,
or vice versa. We used PhyloNet [39] to calculate topological
distances between phylogenetic networks.

To assess the topological accuracy of phylogenetic place-
ment in our study, we adapted the tree-based placement error
calculations used by [3] and [4]. We refer to the adapted
calculation as network delta error (NDE). Let A denote the
model network and N/ is the model network with query taxon
q deleted (i.e., with ¢’s leaf edge contracted). Following the
above notation, the phylogenetic placement problem under
study concerns the placement of a query taxon ¢ into a
backbone tree T, resulting in placement tree F,;. The absolute
NDE is defined as A(N, P,) — A(N,, T'). Relative topological
error was assessed using normalized NDE, where the above
absolute NDE calculation is normalized by a baseline NDE
that reflects a null hypothesis where the noise-to-signal ratio
is saturated. The baseline NDE was empirically estimated by
repeating the absolute NDE calculation’s placement procedure
for a query taxon g, but replacing ¢’s original sequence with
a sequence of the same length that was chosen uniformly at
random (UAR).

Normalized NDE was also used to assess topological ac-
curacy of our new network placement method, where the
backbone tree T' and placement tree P, were replaced with
a backbone network and placement network.
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Phylogenetic placement support: In the empirical study,
we conducted phylogenetic bootstrap analyses to assess repro-
ducibility of phylogenetic placement (i.e., estimated placement
of a query taxon ¢ into a backbone tree 7' using an input MSA
A, resulting in a placement tree F,). The standard bootstrap
method was used to resample 100 bootstrap replicates from
the MSA A. Then, to obtain a bootstrap tree on each boot-
strap replicate, RAXML version 8.2.12 was used to perform
maximum likelihood estimation under the GTR+I" substitution
model. The resulting set of bootstrap trees § were then used
to calculate phylogenetic support for the placement tree P,,
where the support for an edge e in P, is the proportion of
bootstrap trees 3 that display e; support for the placement of
q is based on the support for the edges incident on ¢’s leaf
edge.

E. NetPlacer, a new phylogenetic network placement algo-
rithm

As an alternative to phylogenetic tree placement, we intro-
duce NetPlacer — a new computational framework for phy-
logenetic network placement of genomes and metagenomes.
The current version of NetPlacer is version zero. A high-level
flowchart diagram of NetPlacer is provided in Supplementary
Figure S1.

NetPlacer utilizes a summary-based approach, where gene
trees are used as input to “summarize” multi-locus sequence
data. NetPlacer is thus used as part of a multi-stage computa-
tional pipeline, where gene trees are estimated in an upstream
stage and then used as input to downstream phylogenetic
placement. Summary-based placement offers the potential for
improved scalability relative to sequence-based placement,
but requires simplifying assumptions concerning gene tree
estimation accuracy.

NetPlacer performs statistical optimization of placements
under the multi-species network coalescent (MSNC) model
[27, 44]. Whereas the multi-species coalescent (MSC) model
[22, 14] accounts for genetic drift and lineage coalescence
during strictly vertical evolutionary descent, the MSNC model
generalizes the MSC model to also account for horizontal
evolutionary processes in the form of network reticulations.

Under both the MSC and MSNC models, summary-based
phylogenetic MLE requires calculation of model likelihood
for a species phylogeny given a set of gene trees. [8] and
[44] introduced model likelihood calculations under these
respective models, where topological information from the
latter is used as input. The calculation is defined as fol-
lows. Let G = {g1,92,.-.,9%} be the set of input gene
tree topologies for summary-based inference. Following the
definitions in Yu et al. [44], summary-based inference of
a species network maximizes the MSNC model likelihood

L(,\,9|G) = HGP(glw,A,v)~

We begin Witi’llethe definition of the phylogenetic network
placement problem that NetPlacer addresses. The problem
input consists of: a backbone network x = (u,\,7) with
topology v = (V, E) for a set of reference taxa S, a query
taxon ¢, and a set of gene trees G, and locus alignments
A, for taxa S U {¢}. The output is a placement network

P, that is obtained by attaching ¢’s leaf edge to an exist-
ing edge in the backbone topology 1), where the placement
optimizes a phylogenetic criterion. NetPlacer’s phylogenetic
criterion adapts MSNC likelihood maximization to the network
placement problem:

arg max
1’ €{Py:eq attaches to e€ E and results in P}

argmax L(¢', N, 7|G)

X!

1
We now describe the NetPlacer placement algorithm. Pseu-
docode for the NetPlacer MLE algorithm is shown in Al-
gorithm 1. To begin, multi-locus data for reference taxa S
consists of the following: a set of per-locus MSAs A, a set
of estimated gene trees (G, and an estimated species network
that serves as the backbone network x. In our experiments,
a backbone network y was estimated using PhyloNet version
3 with default settings to perform summary-based maximum
MSNC likelihood optimization. The problem input also in-
cludes a de novo assembled metagenome sequence s, for
query taxon. The query taxon’s sequence s, is aligned using
locus MSAs A, resulting in augmented locus MSAs A,; we
used MAFFT version 7.305 with default settings for this
purpose. The augmented locus MSAs are then used to either
perform de novo gene tree estimation or place g into gene
trees G, resulting in augmented gene trees G; our experiments
used FastTree version 2.1.10 to estimate the former. Finally,
maximum likelihood optimization under the MSNC criterion
in equation 1 is used to place q into . PhyloNet’s local opti-
mization heuristics are used to perform the inner optimization
of continuous parameters A’ and +/, which includes the MSNC
model likelihood calculation as described by Yu et al. [44].
Exhaustive search is used to perform the outer optimization

of the network topology '

F. NetPlacer experiments

We conducted additional simulation study experiments
to assess NetPlacer’s performance. We utilized the previ-
ously described metagenomic data simulation procedures (see
“Metagenomic dataset simulations” above) to simulate 8-taxon
datasets with either zero or one reticulation and 50 loci,
where each locus had sequence length of 1 kb. Also, the
placement experimental procedures used elsewhere in our
simulation study (steps 1 through 7 in second paragraph
under “Phylogenetic tree placement methods” above) were
used in our network placement experiments, where the loci
used for phylogenetic placement were restricted to the three
longest contigs in an assembled metagenome. Model condi-
tion parameter settings and summary statistics for simulated
datasets are shown in Table VIII. NetPlacer performance was
assessed based on topological error (using the normalized
NDE calculation described above), computational runtime, and
peak main memory usage.

G. Computing facilities

Experiments in our study were conducted using the High-
Performance Computing Center at Michigan State University
(MSU), which is hosted and maintained by the MSU Institute
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Algorithm 1: Pseudocode for NetPlacer algorithm.

Data: Backbone phylogenetic network x = (¢, A,7),
set of MSAs Aggr and set of gene trees Grgr
for reference taxa, query sequence s,

Result: Placement network P,

A, < EstimateAugmentedMSASs(ARgr, $q)

G, < EstimateAugmentedGeneTrees(GRrer, Aq)

maxLikelihood <lowest value ;

for each directed edge e € ¢ do

¥’ < Add an intermediate node(%) in e and attach
q as a leaf node to create the edge (i,q) ;

N AL LW, N, +'|Gy) « CalGTProb(v', Gy) 3
/* calculated using expression 1
and PhyloNet’s CalGTProb
implementation */

X (WXL

curtL < L(¥', N, ~'|Gg) 3

if currL > maxLikelihood then

Xp X
maxL < currL ;
end

end
return X, ;

for Cyber-Enabled Research. All experiments were conducted
on the amd-20 cluster which is comprised of compute nodes
with 2.595 GHz AMD EPYC 7H12 processors and 0.5, 1, or
2 TB RAM per compute node.

III. RESULTS
A. Simulation study

The impact of non-tree-like evolution on phylogenetic tree
placement, as modulated by sequence data type, number of
taxa, and mutation rate: Figure 1 and Supplementary Table
S6 show the impact of reticulations on the topological error
of tree placement using genomes. We first consider the 50-
taxon simulations with the lowest mutation rate h = 0.02.
For the simulation condition with O reticulations, evolution is
strictly tree-like. It is precisely on the O-reticulation simulation
conditions that we observed the highest placement accuracies
throughout our study. Consistent with the simulation studies of
Balaban et al. [3] and Balaban et al. [4], normalized delta error
averaged 6.5%, which is far from saturation. As the number
of reticulations increases from 0 to 5, normalized topological
error increased by multiple factors — over half an order of
magnitude, on average. Then, as the number of reticulations
doubled again from 5 to 10, normalized delta error topped 50%
on average. On 50-taxon simulation conditions with higher
mutation rates, a similar pattern was observed. Increasing
evolutionary divergence was associated with relatively small
increases in observed topological error, compared to the effect
of increasing numbers of reticulations.

A companion set of experiments involved tree placement of
metagenomes (Figure 1 and Supplementary Table S6). On the
50-taxon simulation condition with the lowest mutation rate
h = 0.02 and 0 reticulations, normalized topological error of
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Fig. 1: Simulation study: phylogenetic tree placement error
in the 50-taxon simulation experiments with varying numbers
of reticulations and mutation rates. Results are reported for
genomic and metagenomic data simulations with either 0, 5,
or 10 reticulations and a scaled mutation rate of either 0.02,
0.06, or 0.2. APPLES was used to perform phylogenetic tree
placement. Phylogenetic placement error was assessed using
normalized delta error (NDE). Average and standard error bars
are shown for each model condition (n = 10).

metagenome placements increased dramatically compared to
genome placements — amounting to an increase of around an
order of magnitude, on average. As the evolutionary simula-
tions became more non-tree-like — moving from 0 to 5 to 10
reticulations — we consistently observed concomitant increases
in normalized topological error of metagenome placements,
which mirrored the experimental findings for genome place-
ments. At the high end of 10 reticulations, normalized delta er-
ror became as large as 70% to 75%, which begins to approach
error saturation. As in the genome placement experiments,
increasing mutation rates — to 0.06 and 0.2 — had a relatively
smaller effect on metagenome placement error, compared to
the effect of increasing reticulations.

Figure 2 and Supplementary Table S7 show results for
tree placement error outcomes on the 100-taxon simulation
conditions. Overall, normalized topological error outcomes on
100-taxon simulation conditions were qualitatively similar to
50-taxon conditions. Across different data types (genomic vs.
metagenomic) and mutation rates, we observed the smallest
placement error on O-reticulation conditions, and increasing
reticulations consistently resulted in increased placement error.
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TABLE VIII: Model conditions and summary statistics for the NetPlacer experiments in the simulation study. Each model
condition included 10 experimental replicates. True gene tree incongruence was assessed using nRF distance, and the average
incongruence is reported across a model condition (n = 10). For each model condition, gene tree estimation error was assessed
using average nRF distance between an estimated gene tree and true gene tree, and the average error is reported across a model

condition (n = 10).

Model # Taxa Mutation #Reticulations Migration rate Seq lengths ANHD  True gene tree Gene tree
condition rate incongruence estimation error
8.A 8 0.2 0 5.0 50 kb 0.6434 0.20 0.26
8.B 8 0.2 1 5.0 50 kb 0.6435 0.28 0.27
Mutation rate = 0.02 with metagenomic data experiments regarding the impact of
5 1901 non-tree-like evolution on phylogenetic tree placement error.
L(”: 0754 Also echoing the rest of our simulation study, placement error
a2 Dat . . . .
8. aaG , in metagenomic data experiments was consistently elevated
50~ enomic . . . .
E l MetaGenomic when compared to otherwise equivalent genomic data experi-
g 025 ments.
o
= o00- R0 s rto Examined in isolation, each additional experimental factor
el el el . . . .
Number of reticulations had a relatively minor impact on phylogenetic tree placement
Mutation rate = 0.06 compared to the main factor noted above — the degree of
5 1:00- non-tree-like evolution. We found relatively little difference
L(“: 0754 between placement error on simulation conditions with model
3 DataG ' phylogeny height of 10 vs. 5 that are otherwise equivalent
0.50 - enomic . . .
8 l MetaGanomic — amounting to at most a few percentage points in all cases
g 025 (Figure 3b and cf. Figure 1). We attribute the outcome to a
2 000 relatively similar degree of local gene tree incongruence in
Ret0 Reto  RetlO this case. A relatively higher difference in placement errors
Number of reticulations 4 L A
. _ was found when comparing model conditions with model
Mutation rate = 0.2 K K A
1.0 phylogeny height of 1 vs. 5 that are otherwise equivalent
2 (Figure 3a and cf. Figure 1). As expected, reduced species
Ch Data phylogeny height and branch lengths result in more incomplete
o . . . .
7 050 Genormic lineage sorting (ILS) and local gene tree incongruence and
N MetaGenomic . . . . .
S 025- discordance; sequence evolutionary histories are also affected,
S as reduced gene tree branch lengths also result in fewer

0.00-
Ret0 Ret5 Ret10
Number of reticulations

Fig. 2: Simulation study: phylogenetic tree placement error in
the 100-taxon simulation experiments with varying numbers of
reticulations and mutation rates. Figure description and layout
are otherwise identical to Figure 1.

The impact of increasing reticulations tended to be larger than
those observed for mutation rate and dataset size in terms
of number of taxa. Finally, metagenome placement error was
multiple factors larger than genome placement error, and the
relative influence of other experimental factors became more
difficult to discern as metagenome placement error approached
saturation — with maximum normalized delta error of 85% or
SO.

The impact of non-tree-like evolution on phylogenetic tree
placement, as modulated by evolutionary divergence, reticula-
tion type, and amount of sequence data: Across all additional
experimental conditions and factors, we found experimental
outcomes that were consistent with the rest of the simula-
tion study: topological error of phylogenetic tree placement
using genomic data increased as the species phylogeny model
became more non-tree-like. A similar outcome was observed

sequence mutations. Nearly identical placement error was
observed, on average, when comparing simulations with deep,
non-deep, and mixed reticulations that are otherwise equivalent
(Figure 4 and cf. Figure 1). This is to be expected to some
extent, since simulations elsewhere in our performance study
incorporate mixed reticulations that are comprised of both
deep and non-deep reticulations. Varying the number of loci
or per-locus sequence length had a similar effect on observed
placement errors (Figures 5 and 6, respectively). More of either
resulted in improved placement error. The direction of change
is as expected due to the concatenation approach used for
phylogenetic placement; both experimental factors ultimately
serve to increase MSA length, and the statistical distance
corrections used for phylogenetic tree placement rely on a
sufficiently large amount of input sequence data — in theory
and in practice. And the effect was relatively minor in all
cases. As the number of loci in each multi-locus dataset varied
from 50 to 200, placement error improved by at most a few
percentage points; similarly small improvements were seen as
sequence length varied from 300 bp to 1 kb per locus.

Performance evaluation of NetPlacer, a new network
placement method: Topological accuracy assessments of net-
work placement of aligned metagenomes are shown in Fig-
ure 7. For strictly tree-like simulations (i.e., O reticulations),
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Fig. 3: Simulation study: phylogenetic tree placement error in
the 50-taxon experiments with varying model tree height in the
extended simulation study. Results are reported for genomic
and metagenomic data simulations with model network height
of either 1 or 10; the simulations also utilized a scaled mutation
rate of 0.02, mixed reticulations, 100 loci, and per-locus
sequence length of 300 bp. Figure description and layout are
otherwise identical to Figure 1.

TABLE IX: NetPlacer experiment results: runtime and main
memory usage. Each simulation condition included 8 taxa and
either 0 or 1 reticulation. Runtime and peak main memory
utilization for a single query placement are reported as an
average for each model condition (n = 10).

# Reticulations Run time (Minutes)
0 6.17
1 33.31

Memory usage (MB)
658.98
858.53

network placement returned normalized delta error of around
27%, on average. On non-tree-like simulation with a single
reticulation, NetPlacer returned average normalized delta error
of around 45%.

NetPlacer’s computational runtime and main memory usage
are shown in Table IX. On tree-like simulations, NetPlacer’s
runtime amounted to a few minutes per placement on average.
In comparison, NetPlacer’s per-placement runtime increased
from a few minutes to half an hour, on average — an increase
of around half an order of magnitude. Main memory usage
increased by 30% as well, but was under 1 GiB on average —
well within the scope of modern personal computers.
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(a) Model conditions with non-deep reticulations only.
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Fig. 4: Simulation study: phylogenetic tree placement error
in the 50-taxon experiments with varying reticulation types.
Simulated genomic and metagenomic datasets included either
non-deep or deep reticulations; the simulations also utilized a
model species network with height 5, a scaled mutation rate
of 0.02, 100 loci, and per-locus sequence length of 300 bp.
Figure description and layout are otherwise identical to Figure
1.

B. Empirical study of tree placement methods

Our empirical study included reproducibility assessments
using genomic sequence data from the study of Treangen and
Rocha [40]. HGT was the driving factor for 97% of Heli-
cobacter protein family expansions, versus 89% in Neisseria,
indicating a differential role of HGT in genome evolution
within the two clades (cf. Figure 2 in [40]).

One set of experiments used bootstrap resampling to eval-
uate phylogenetic placement support for query taxa in He-
licobacter versus Neisseria. Consistent with Treangen and
Rocha [40]’s relative findings of HGT in Neisseria and He-
licobacter — less for the former versus the latter — we find
that reproducibility of tree placement for Neisseria genomes
exceeds that of Helicobacter genomes — ~ 85% for the former
versus ~ 50% for the latter, as measured using phylogenetic
bootstrap support for query taxon placement (Figure 8). We
note a key distinction with respect to the rest of the study:
the analyses utilized reproducibility assessments, rather than
direct accuracy assessments, and our comparative findings are
based on differential HGT reported by [40] in two clades under
study. The choice is a practical one due to the lack of explicit
ground truth.

Another set of experiments evaluated reproducibility using
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Fig. 5: Simulation study: phylogenetic tree placement error
in the 50-taxon experiments with varying number of loci.
Simulated genomic and metagenomic datasets included either
50 or 200 loci, a model species network with height 5 and
mixed reticulations, a scaled mutation rate of 0.02, and per-
locus sequence length of 300 bp. Figure description and layout
are otherwise identical to Figure 1.

augmented empirical dataset analyses. Two forms of augmen-
tation were used. (1) The first consisted of empirical genomic
dataset augmentation with simulated HGT events, where the
Neisseria-estimated phylogeny was augmented with simulation
of additional reticulations. We will refer to original empirical
dataset as “control” and simulation-augmented dataset as "aug-
mented”. (2) The second consisted of companion metagenomic
datasets, where control or augmented genomic datasets were
used to perform metagenomic data simulations and analy-
sis. The latter followed the procedures used for simulating
metagenomic data in the simulation study. Reproducibility of
the original empirical estimate serves as a “control” baseline.
Atrtificial reticulations are then added using a simulated data
augmentation procedure, resulting in a hybrid dataset. Dataset
augmentation with simulated reticulation events has the ex-
pected effect of reducing tree placement reproducibility. We
saw a reduction of about 10% on genomic data (Figure 9). A
smaller reduction was seen on metagenomic data, as compared
to the genomic data analyses. We attribute the finding to
lower overall reproducibility due to the added complexity of
metagenomic data processing and analysis, where performance
assessment comparisons tend to become more muted as error
approaches the saturation point. The finding is consistent
with the genomic versus metagenomic data comparisons in

RetO Ret5

Number of reticulations

Ret10

(b) Model conditions with 1 kb sequence length.

Fig. 6: Simulation study: phylogenetic tree placement error
in the 50-taxon experiments with varying per-locus sequence
length. Simulated genomic and metagenomic datasets had
either 300 or 1000 bp of sequence length per locus; the
simulations also utilized a model species network with height
5 and mixed reticulations, a scaled mutation rate of 0.02, and
100 loci. Figure description and layout are otherwise identical
to Figure 1.
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Fig. 7: NetPlacer experiment results: phylogenetic placement
error. The NetPlacer method was used to perform phylogenetic
network placement of aligned metagenomes. Phylogenetic
placement error was assessed using normalized delta error.
Each simulation condition included 8 taxa and either O or 1
reticulation. Average and standard error bars are shown for
each model condition (n = 10).

Authorized licensed use limited to: Michigan State University. Downloaded on February 27,2025 at 03:08:52 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCBBIO.2024.3519311

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 0, NO. 0, JANUARY 2024 11

Average Support

75-
50-
N -
0-

Neisseria Helicobacter
Name of the clade

Fig. 8: Empirical study: bootstrap analysis results. Phyloge-
netic bootstrap support was calculated for placement trees in
the empirical study. Each bootstrap analysis utilized 100 boot-
strap replicates. Each clade (i.e., Neisseria and Helicobacter)
has 8 taxa.
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Fig. 9: Hybrid study: bootstrap analysis results. The hybrid
genomic and metagenomic datasets were obtained using aug-
mentation of the empirical study datasets (see Methods section
for details). Phylogenetic bootstrap support was calculated for
placement trees using 100 bootstrap replicates.

simulation study.

1V. DISCUSSION

Throughout our performance study, we observed a strong
impact of reticulate evolution on topological accuracy and/or
repeatability of phylogenetic tree placement. The finding was
consistently observed across the model conditions in our simu-
lation study, which spanned a range of dataset sizes (in terms
of number of taxa, number of loci, and per-locus sequence
length), data types (i.e., genomic and metagenomic data),
and phylogenetic complexity (in terms of model phylogeny
height, mutation rate, topological arrangement of reticulations,
and number of reticulations). By far the most important
determinant of phylogenetic tree placement accuracy was the
latter experimental factor — i.e., the number of reticulations —
and all other factors were of secondary importance. Consistent
outcomes were also observed in the empirical study. We
interpret the finding to be primarily due to the violation
of the simplifying assumption of tree-like evolution that is
made by state-of-the-art phylogenetic placement methods. As
the number of reticulations increases, the model violation
grows stronger and so too did topological error of tree-based
placements in our simulation study experiments. The impact of
increasing numbers of reticulations on phylogenetic placement
outstrips that of other factors such as evolutionary divergence

and dataset size. And yet the amount of reticulations in our ex-
periments and analyses is expected to be an underestimate for
most microbial genomic and metagenomic studies. Depending
on the group(s) under study, the gap may amount to multiple
orders of magnitude.

The simulation study experiments yielded a few compar-
isons worth noting. We observed an important difference
between the genome placement and metagenome placement
experiments: increasing reticulations tended to yield smaller
absolute increases in normalized delta error in the latter versus
the former. We attribute this difference to the higher placement
error observed in the latter versus the former. Performance
comparisons at or near error saturation are especially prob-
lematic, where metagenome assembly and processing error
becomes so large as to swamp downstream phylogenetic signal
for phylogenetic placement and other subsequent computa-
tional tasks. Another difference concerned the 50- and 100-
taxon experiments. On comparable pairs of model conditions
that differed only in terms of the number of taxa, the O-
reticulation conditions yielded tree placement errors that were
somewhat higher on the latter compared to the former; how-
ever, the reverse was true on the 5- and 10-reticulation model
conditions. One contributing factor is the slightly elevated
ANHD of the latter versus former, which is as expected
under the simulation models and procedures (i.e., increasing
dataset size in terms of number of taxa also increases the
sum of branch lengths in the model phylogeny). Slightly
greater sequence divergence may increase the noise to signal
ratio in the zero-reticulation simulation experiments. The non-
tree-like simulations (with 5 or 10 reticulations) add extra
complicating factors of model mis-specification and varying
model complexity.

Using 8-taxon simulations with either no reticulations or
a single reticulation, we studied the performance of Net-
Placer, our new method for phylogenetic network placement
of aligned genomes and metagenomes. NetPlacer’s placement
error was somewhat higher for datasets with non-tree-like evo-
lutionary histories, as compared to those with strictly tree-like
histories. While both are far from error saturation, our study’s
other findings suggest that simulations with more reticulations
would see further elevation of NetPlacer’s placement error.
One factor is worth noting: the NetPlacer experiments added
a layer of complexity that is not present in the rest of our
study — estimated gene tree error. This additional factor likely
contributed to more challenging placements. We surmise that
more accurate gene trees may yield more accurate summary-
based phylogenetic placements.

But a bigger concern with network placement is compu-
tational scalability. As with other state-of-the-art statistical
methods for estimating phylogenetic networks from genomic
and multi-locus sequence data, scalability on non-trivially
sized datasets is a major challenge. The experimental outcomes
clearly demonstrate the tradeoff at hand. A more complex
model is a better fit for the data and can bring topological
accuracy improvements, but comes at the significant cost of
greatly increased computational runtime requirements. The
tradeoff motivates the need for scalability enhancements as
part of future research. This is a primary reason why our new
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method is referred to as NetPlacer version 0. The version num-
ber reflects a proof-of-concept status. Later versions require
new algorithmic techniques to enhance scalability by multiple
orders of magnitude (and see below for relevant future research
directions).

A brief aside: we caution that it is difficult to make direct
comparisons between tree placement methods and network
placement methods. Differences in model complexity (i.e.,
a tree versus a network with one or more reticulations)
greatly complicate head-to-head evaluation. Similar situations
arise in other phylogenetic contexts (e.g., comparison of non-
binary tree estimates versus binary tree estimates). Another
key difference between these method classes is worth noting
as well. The tree placement methods under study use a
concatenation approach, whereas NetPlacer uses multi-locus
statistical analysis that directly accounts for local gene tree
incongruence and discordance.

V. CONCLUSIONS

In summary, the impact of non-tree-like evolution on tree
placement accuracy of genomes and metagenomes was con-
firmed and quantified using in silico simulations and empirical
data analyses. We also introduced a new phylogenetic network
placement method: NetPlacer version 0. We evaluated Net-
Placer’s performance using simulated benchmarking datasets,
and we found that relaxing the simplifying assumption of
tree-like evolution came at a cost — namely, computational
overhead.

We conclude with some thoughts on future research di-
rections. In our opinion, the foremost need concerns new
network placement method development. NetPlacer version O
provides an initial proof of concept, but scalability-enhancing
algorithmic techniques are clearly needed. Particularly salient
is one of our past contributions to phylogenetic inference
and learning using large-scale biomolecular sequence datasets:
FastNet, a phylogenetic divide-and-conquer algorithm for fast
and accurate species network reconstruction [16]. Placement of
query taxa into “sub”-networks inferred on subproblems — as
represented by FastNet’s subproblem decomposition graph —
may prove more tractable than placement into the full dataset,
which is larger and more divergent than any individual sub-
problem. Also, phylogenetic network placement using multi-
locus sequence data that integrates over the distribution of all
gene tree placements under a maximum likelihood or other
statistical criterion would provide an alternative to NetPlacer’s
summary-based approach. As above, the primary anticipated
challenge is scalability. One possible solution would be to
adapt Bryant et al. [7]’s dynamic programming calculation to
this task.

VI. DATA AVAILABILITY

The datasets and scripts used in our study are available
under open copyleft licenses at https://gitlab.msu.edu/liulab/

impact-of-non-tree-like-evolution-on-phylogenetic-placement.
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S1 Supplementary Methods

Software commands used in the simulation study. Model trees were sampled using r8s [7] version 1.81 with the
following script:

begin r8s;

simulate diversemodel=bdback seed=random_number nreps=10
ntaxa=< 50 or 100 > T=0;

describe tree=0 plot=chrono_description;

end;

Local coalescent histories and gene trees were simulated under a model network using ms [2] with the following
command:

ms <50 or 100> 100 —T —I 100 <n; ng ... ng>
—ej <t>1 j —em <tg> 1 j 5.0 —em <tp> 1 j O

The “-T” parameter outputs sampled gene trees. The “-I” parameter is followed by the number of structured populations.
The list of integers (nins...ng) represents the number of alleles sampled from each population. One allele per population
was sampled in our experiments. The “-ej” parameter specifies a speciation event where all lineages in population 7 are
moved to population j at time ¢. The first “-em” parameter specifies the start of a migration event at time t4 from
population j to population i with migration rate 5.0; the second “~em” parameter specifies that the end of the migration
event from population j to population i will occur at time tg by setting the migration rate to zero. The above example
command includes a single reticulation event; more reticulations can be added via additional “-em” parameter options.

MSA estimation was performed using MAFFT [4] version 7.305 using the following command:

mafft --auto <sequence file> >
<estimated MSA file>

Table S1: Topological incongruence among true gene trees in simulations. Topological incongruence was measured using
normalized Robinson-Foulds (“nRF”) distance between true gene tree pairs. Average (“Avg”) and standard error (“SE”) are
reported across all experimental replicates in an MSC-+IM simulation condition (n = 10).

# of Model # of nRF

taxa network height retic Avg SE
50 1 0 0.86  0.0002
50 1 5 0.87  0.0003
50 1 10 0.89  0.0002
50 5 0 0.47  0.0003
50 5 5 0.53  0.0004
50 5 10 0.59  0.0004
50 10 0 0.28  0.0003
50 10 5 0.36  0.0004
50 10 10 0.43  0.0004
100 5 0 0.52  0.0002
100 5 5 0.56  0.0003
100 5 10 0.60  0.0003
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Figure S1: A flow chart of simulation study experiments on phylogenetic network placement using (a) genomic and (b)
metagenomic data. Steps 1 and 2 are the same steps followed in the simulation study section to simulate true gene trees.
First, a random model tree was generated using r8s and then reticulations were added to obtain the model network. In
step 3, sequence evolution was simulated using seq-gen, which takes the gene trees as the input and simulates sequence
evolution along each genealogy under Jukes-Cantor substitution model. We simulated 1000 bp per locus. In step 4,
FastTree was used to estimate the gene trees. The estimated gene trees were rooted using the outgroup rooting method
and the outgroup was then discarded. In step 5, PhyloNet [9] was used to infer a network using the rooted estimated
gene trees. We refer to this inferred network as the reference network. In step 6, a leave-one-out methods was performed.
Each query taxon was pruned from the inferred reference network to obtain the backbone network. The procedures for
step 7 differed for (a) genomic and (b) metagenomic data. In step 7 (a), the query taxon was placed in the backbone
network to obtain the placement network. In step 7 (b), Illumina short reads were simulated from the query sequence
using CAMISIM. In step 8, MetaSpades was used to obtain assembled contigs which were then treated as the query. In
step 9, the query was aligned with the reference alignment using MAFFT. In step 10, the locus alignments were used
to estimate the gene trees for the query. In step 11, the query was placed into the backbone network by the network
placement method using the estimated gene trees.



A query sequence was aligned to a reference MSA using the following command:

mafft --auto --addfragments <query sequence file>
<reference alignment file> > <estimated MSA file>

RAxML [8] version 8.2.12 was used to estimate a phylogenetic tree from an MSA file using the following command:

raxmlHPC -s <MSA file> -n <unique_id> -p <random number>
-m GTRGAMMA

Phylogenetic bootstrap support analysis utilized the following two commands. The first command generates 100 bootstrap
trees, and the second command calculates phylogenetic support values for an annotation tree using the bootstrap trees.

raxmlHPC-PTHREADS-AVX2 -m GTRGAMMA -p <random number>
-b <random number> -# 100 -s <MSA file> -n <unique id>
-T 8

raxmlHPC -m GTRGAMMA -p <random number> -f b
-t <placement tree> -z <bootstrap tree file> -n <unique id>

Software commands used in NetPlacer experiments. PhyloNet [9] version 3 was used to infer a reference network
from an input set of estimated gene trees. The following sample Nexus file was used to configure the PhyloNet analysis:

#NEXUS
BEGIN TREES;
Tree geneTreel = <gene tree 1 in Newick format>

Tree geneTreeb0 = <gene tree 50 in Newick format>

END;

BEGIN PHYLONET;

InferNetwork_ML (geneTreel, geneTree2, . . . . . . , geneTree50)
#num_of_reticulation -pl 8;

END;

Option “-pl” indicates the number of processors used.
The CalGTProb command from the PhyloNet software package was used to calculate model likelihood for a network
topology given a set of gene trees. The following sample Nexus file was used to perform the calculation:

#NEXUS

BEGIN NETWORKS;

Network net = <phylogenetic network topology in extended Newick format>;
END;

BEGIN TREES;

Tree geneTreel = <gene tree 1 in Newick format>

Tree geneTreeb0 = <Gene tree 50 in Newick format>

END;

BEGIN PHYLONET;

CalGTProb net (geneTreel, geneTree2, . . . . . . , geneTreeb0)
-o -pl 8;

END;

The “-0” option was used to estimate network branch lengths and inheritance probabilities.



Software commands used in the empirical study. Prodigal [3| version 2.6.3 was used to find ORFs in input genomes
using the following command:

prodigal -i <sequence file> -o <output file>
-a <translated proteins file>

USEARCH [1] version 11.0.667 was used to align ORFs against reference genes using the following command:

usearch11.0.667_i861inux32 -ublast <translated proteins file>
-db <data base file of the reference genes>
-evalue 1le-40 -top_hit_only -blast6out <output file>

S2 Supplementary Results

Figure S2 and Figure S3 compare phylogenetic placement error returned by APPLES and pplacer [5]. In general, we found
that APPLES returned better placement error than pplacer in most model conditions.

Tables S2 through S7 show delta error constituents — placement tree error and reference tree error — for different
model conditions. Tables S8 and S9 report type I and type II error for phylogenetic placement experiments on 50-taxon
simulations. The reported errors are based on Nakhleh’s metric [6] for comparing a pair of phylogenetic network topologies,
where the symmetric difference used in the metric is split into two parts (i.e., one part corresponding to network structure
appearing in one network but not the other, and the other part corresponding to vice versa). An increasing number of
reticulations consistently amplified phylogenetic tree placement error, as assessed using any of the different topological
error assessments in our study.

We performed statistical testing to compare placement tree error for the query taxon’s original sequence versus place-
ment of a random sequence for the query taxon (i.e., the “null” baseline used in our simulation experiments’ normalized
error assessments). Table S10 and Table S11 report p-values for genomic and metagenomic data simulations with muta-
tion rate 0.2. The differences in error were statistically significant for all model conditions (a = 0.05). As the number of
reticulations increased, we observed that the p-values increased as well, indicating that phylogenetic tree placement error
was increasing and becoming more difficult to distinguish from a theoretical worst case scenario. We also observed that
p-values for metagenomic data simulations were always larger than those for genomic data simulations with otherwise
equivalent simulation settings.

We also performed additional 50-taxon simulation experiments with more reticulations. Figures S4, S5, and S6 show
results for these experiments. We can see that, as the number of reticulations increased, phylogenetic placement error
increases rapidly and approaches error saturation on simulations with a higher number of reticulations. As in the other
simulation study experiments, phylogenetic placement error on metagenomic datasets are typically greater than those
observed on genomic datasets.

Table S12 includes results for an additional simulation experiment involving the NetPlacer algorithm. The experiment
utilizes a mutation rate of 0.02, which is lower than that used in the simulation experiments reported in the main
manuscript. The resulting placement errors are slightly lower than the latter, which we attribute to lower evolutionary
divergence, and the experiment outcomes generally follow the trends observed in the main manuscript.



Table S2: Delta error constituents for model conditions with 50 taxa for different model network heights. Delta error has
two constituents: placement tree error (denoted “A” for brevity) and reference tree error (denoted “B” for brevity). Both
A and B are measured using Nakhleh distance. The average and standard error values are shown (n = 10).

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)
height length(bp)

Genomic 1 0.02 0 Mixed 100 300 28.898 0.163 28.192 0.159
Genomic 1 0.02 5 Mixed 100 300 39.672 0.132 38.285 0.142
Genomic 1 0.02 10 Mixed 100 300 49.896 0.211 48.021 0.222
Genomic 5 0.02 0 Mixed 100 300 14.100 0.308 13.85 0.308
Genomic 5 0.02 5 Mixed 100 300 36.174 0.152 35.01 0.169
Genomic 5 0.02 10 Mixed 100 300 52.088 0.111 50.828 0.117
Genomic 10 0.02 0 Mixed 100 300 7.340 0.318 7.122 0.308
Genomic 10 0.02 5 Mixed 100 300 34.476 0.149 33.233 0.169
Genomic 10 0.02 10 Mixed 100 300 46.526 0.146 44.742 0.172
Metagenomic 1 0.02 0 Mixed 100 300 30.465 0.122 28.442 0.124
Metagenomic 1 0.02 5 Mixed 100 300 42.344 0.089 40.241 0.096
Metagenomic 1 0.02 10 Mixed 100 300 52.094 0.096 49.623 0.108
Metagenomic 5 0.02 0 Mixed 100 300 16.388 0.148 13.34 0.14
Metagenomic 5 0.02 5 Mixed 100 300 37.524 0.123 35.6 0.13
Metagenomic 5 0.02 10 Mixed 100 300 52.310 0.069 50.26 0.08
Metagenomic 10 0.02 0 Mixed 100 300 11.597 0.179 8.146 0.171
Metagenomic 10 0.02 5 Mixed 100 300 34.844 0.130 32.515 0.143
Metagenomic 10 0.02 10 Mixed 100 300 47.592 0.075 45.218 0.091

Table S3: Delta error constituents for model conditions with 50 taxa for two types of reticulations. Table layout and
description are otherwise identical to Supplementary Table S2.

Data Model Mutation #Retic Retic # of  Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)
height length(bp)
Genomic 5 0.02 0 Non-deep 100 300 15.393 0.305 14.98 0.297
Genomic 5 0.02 5 Non-deep 100 300 35.616 0.143 34.494 0.162
Genomic 5 0.02 10 Non-deep 100 300 48.196 0.263 46.772 0.267
Genomic 5 0.02 0 Deep 100 300 11.558 0.282 11.148 0.279
Genomic 5 0.02 5 Deep 100 300 32.124 0.122 30.527 0.159
Genomic 5 0.02 10 Deep 100 300 45.196 0.134 43.069 0.166
Metagenomic 5 0.02 0 Non-deep 100 300 17.384 0.162 14.594 0.157
Metagenomic 5 0.02 5 Non-deep 100 300 37.572 0.081 35.352 0.092
Metagenomic 5 0.02 10 Non-deep 100 300 48.862 0.135 46.774 0.141
Metagenomic 5 0.02 0 Deep 100 300 16.214 0.193 13.012 0.204
Metagenomic 5 0.02 5 Deep 100 300 33.04 0.109 30.337 0.121
Metagenomic 5 0.02 10 Deep 100 300 45.460 0.092 42.513 0.107

Table S4: Delta error constituents for model conditions with 50 taxa for varying number of loci.
description are otherwise identical to Supplementary Table S2.

Table layout and

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)
height length(bp)
Genomic 5 0.02 0 Mixed 50 300 15.382 0.245 15.012 0.242
Genomic 5 0.02 5 Mixed 50 300 34.5 0.135 33.272 0.157
Genomic 5 0.02 10 Mixed 50 300 48.146 0.123 46.224 0.151
Genomic 5 0.02 0 Mixed 200 300 9.886 0.371 9.63 0.363
Genomic 5 0.02 5 Mixed 200 300 33.184 0.226 31.951 0.233
Genomic 5 0.02 10 Mixed 200 300 47.928 0.152 45.96 0.179
Metagenomic 5 0.02 0 Mixed 50 300 18.763 0.156 16.327 0.156
Metagenomic 5 0.02 5 Mixed 50 300 35.467 0.112 33.235 0.120
Metagenomic 5 0.02 10 Mixed 50 300 49.674 0.086 47.197 0.100
Metagenomic 5 0.02 0 Mixed 200 300 12.688 0.200 8.918 0.205
Metagenomic 5 0.02 5 Mixed 200 300 33.424 0.105 30.911 0.105
Metagenomic 5 0.02 10 Mixed 200 300 48.134 0.079 45.48 0.095




Table S5: Delta error constituents for model conditions with 50 taxa for longer sequence length per locus. Table layout
and description are otherwise identical to Supplementary Table S2.

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)
height length(bp)
Genomic 5 0.02 0 Mixed 100 1000 11.96 0.373 11.534 0.368
Genomic 5 0.02 5 Mixed 100 1000 32.6 0.187 31.248 0.205
Genomic 5 0.02 10 Mixed 100 1000 48.05 0.207 46.077 0.220
Metagenomic 5 0.02 0 Mixed 100 1000 13.174 0.265 11.164 0.261
Metagenomic 5 0.02 5 Mixed 100 1000 33.208 0.205 31.166 0.223
Metagenomic 5 0.02 10 Mixed 100 1000 49.332 0.189 46.971 0.207

Table S6: Delta error constituents for model conditions with 50 taxa for varying mutation rates.

description are otherwise identical to Supplementary Table S2.

Table layout and

Data Model Mutation #Retic Retic # of Per locus Avg(A) Std Avg(B) Std
type net rate type loci seq Err(A) Err(B)
height length(bp)
Genomic 5 0.02 0 Mixed 100 300 14.100 0.308 13.85 0.308
Genomic 5 0.02 5 Mixed 100 300 36.174 0.152 35.01 0.169
Genomic 5 0.02 10 Mixed 100 300 52.088 0.111 50.828 0.117
Genomic 5 0.06 0 Mixed 100 300 13.962 0.179 13.762 0.189
Genomic 5 0.06 5 Mixed 100 300 35.704 0.179 34.616 0.181
Genomic 5 0.06 10 Mixed 100 300 51.044 0.133 49.682 0.140
Genomic 5 0.2 0 Mixed 100 300 13.206 0.295 12.982 0.295
Genomic 5 0.2 5 Mixed 100 300 36.062 0.190 34.986 0.204
Genomic 5 0.2 10 Mixed 100 300 50.83 0.118 49.38 0.129
Metagenomic 5 0.02 0 Mixed 100 300 16.388 0.148 13.34 0.14
Metagenomic 5 0.02 5 Mixed 100 300 37.524 0.123 35.6 0.13
Metagenomic 5 0.02 10 Mixed 100 300 52.310 0.069 50.26 0.08
Metagenomic 5 0.06 0 Mixed 100 300 15.652 0.167 12.84 0.16
Metagenomic 5 0.06 5 Mixed 100 300 37.037 0.106 34.82 0.12
Metagenomic 5 0.06 10 Mixed 100 300 52.358 0.063 50.35 0.07
Metagenomic 5 0.2 0 Mixed 100 300 15.118 0.153 11.45 0.14
Metagenomic 5 0.2 5 Mixed 100 300 37.38 0.117 35.11 0.12
Metagenomic 5 0.2 10 Mixed 100 300 51.17 0.067 49.08 0.07

Table S7: Delta error constituents for model conditions with 100 taxa. A fixed model network height 5, reticulation type
"Mixed", number of loci 100 and per locus sequence length 300 bp were used. Table layout and description are otherwise
identical to Supplementary Table S2.

Data Mutation #Reticulations Average(A) Standard Average(B) Standard
type rate Error(A) Error(B)
Genomic 0.02 0 28.231 0.255 27.336 0.27
Genomic 0.02 5 54.898 0.175 54.025 0.18
Genomic 0.02 10 75.887 0.177 75.272 0.18
Genomic 0.06 0 26.195 0.23 23.037 0.29
Genomic 0.06 5 53.775 0.22 53.117 0.16
Genomic 0.06 10 74.693 0.15 72.4 0.18
Genomic 0.2 0 23.525 .29 23.037 0.29
Genomic 0.2 5 53.658 0.15 53.117 0.162
Genomic 0.2 10 73.628 0.16 72.4 0.18
Metagenomic 0.02 0 32.038 0.133 28.639 0.13
Metagenomic 0.02 5 55.503 0.12 52.94 0.12
Metagenomic 0.02 10 74.78 0.096 73.007 0.11
Metagenomic 0.06 0 29.15 0.13 28.15 0.14
Metagenomic 0.06 5 55.31 0.11 53.56 0.14
Metagenomic 0.06 10 76.38 0.08 71.805 0.10
Metagenomic 0.2 0 31.30 0.15 28.15 0.14
Metagenomic 0.2 5 56.02 0.13 53.56 0.14
Metagenomic 0.2 10 74.13 0.09 71.81 0.10
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Figure S2: Comparison of APPLES and PPLACER on simulated genomic datasets. Simulated datasets had 50 taxa. The
simulations utilized mutation rates of 0.02, 0.06, and 0.2 and included 0, 5 or 10 reticulations. Phylogenetic placement
error was assessed using delta error. Averages and standard error bars are shown (n = 500).

Table S8: Type I and type II error for simulation experiments on 50-taxon genomic datasets. Average and standard error

are reported (n = 500).

Mutation # Type I error Type II error
rate ret Avg SE Avg SE
0.02 0 14.1 0.31 15.07 | 0.31
0.02 5 28.2 0.15 | 44.17 | 0.15
0.02 10 37.09 0.11 | 68.07 | 0.11
0.06 0 13.962 | 0.18 | 14.94 0.18
0.06 5 27.73 0.18 | 43.70 0.18
0.06 10 36.04 0.13 | 67.02 0.13
0.2 0 13.21 0.29 14.18 0.29
0.2 5 28.09 0.19 | 44.06 0.19
0.2 10 35.83 0.12 | 66.81 0.12




Numer of reticulation = 0

6 -
<]
i,
@ 4" Data
g APPLES
% - PPLACER
o
3
O K 1 1 1]
0.02 0.06 0.2
Mutation Rates
Numer of reticulation = 5
4 -
<}
W3-
S Data
©
8- APPLES
o l PPLACER
L
5 1
3
O L 1 1 1]
0.02 0.06 0.2
Mutation Rates
Numer of reticulation = 10
S 3-
i,
© Data
52
a APPLES
s l PPLACER
®1-
o
3
O L 1
0.02

0.06
Mutation Rates

0.2

Figure S3: Comparison of APPLES and PPLACER on simulated metagenomic datasets. Averages and standard error
bars are shown (n = 1500). Figure description and layout are otherwise identical to Supplementary Figure S2.

Table S9: Type I and type II error for simulation experiments on 50-taxon metagenomic datasets. Average and standard

error are reported (n = 500).

Mutation # Type I error Type II error
rate ret Avg SE Avg SE
0.02 0 16.72 0.25 17.7 0.25
0.02 5 29.51 0.211 45.49 0.21
0.02 10 37.39 0.12 68.374 | 0.12
0.06 0 15.71 0.29 16.68 0.29
0.06 5 29.11 0.18 45.09 0.18
0.06 10 37.36 0.10 68.33 0.11
0.2 0 15.27 0.26 16.25 0.26
0.2 5 29.45 0.20 45.43 0.20
0.2 10 36.24 0.12 67.22 0.12

Table S10: Genomic data simulations: p-values for statistical tests of placement tree error. The simulations utilized a

mutation rate of 0.2.

Mutation rate # reticulations | Awvg Placement Errorguery Avg Placement ETT0Tbhasclinequery P-value
0.2 0 13.19 17.52 5.3312E-133
0.2 5 36.06 37.86 2.55177E-81
0.2 10 50.84 51.71 4.9398E-53




Table S11: Metagenomic data simulations: p-values for statistical tests of placement tree error. The simulations utilized

a mutation rate of 0.2.

Mutation rate # reticulations Avg Placement Errorguery Avg Placement Erroryaselinequery P-value
0.2 0 15.31 16.54 2.93672E-13
0.2 5 37.44 37.97 4.44321E-10
0.2 10 51.2 51.43 0.000646284
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Figure S4: Simulation study: phylogenetic placement error on 50-tazon simulations with mutation rate 0.02 and varying

numbers of reticulations. Results are reported for both genomic and metagenomic data simulations with either 0, 5, 10,
30, 50 or 60 reticulations. Normalized delta errors are reported.
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Figure S5: Simulation study: phylogenetic placement error on 50-tazon simulations with mutation rate 0.06 and varying
numbers of reticulations. Figure layout and description are otherwise identical to Supplementary Figure S4.

Table S12: Additional NetPlacer experiments. The 8-taxon simulated datasets had 50 sampled gene trees per dataset, and
were generated with mutation rate 0.02.

Mutation rate

# reticulations

# loci per gene

Normalized Delta Error

0.02

0

1000

0.1972

0.02

1

1000

0.4238
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Figure S6: Simulation study: phylogenetic placement error on 50-taxon simulations with mutation rate 0.2 and varying
numbers of reticulations. Figure layout and description are otherwise identical to Supplementary Figure S4.
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