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Abstract— We improve reliable, long-horizon, goal-directed
navigation in partially-mapped environments by using non-
locally available information to predict the goodness of
temporally-extended actions that enter unseen space. Making
predictions about where to navigate in general requires non-
local information: any observations the robot has seen so far
may provide information about the goodness of a particular
direction of travel. Building on recent work in learning-
augmented model-based planning under uncertainty, we present
an approach that can both rely on non-local information to
make predictions (via a graph neural network) and is reliable
by design: it will always reach its goal, even when learning does
not provide accurate predictions. We conduct experiments in
three simulated environments in which non-local information is
needed to perform well. In our large scale university building
environment, generated from real-world floorplans to the scale,
we demonstrate a 9.3% reduction in cost-to-go compared to
a non-learned baseline and a 14.9% reduction compared to a
learning-informed planner that can only use local information
to inform its predictions.

I. INTRODUCTION

We focus on the task of goal-directed navigation in a
partially-mapped environment, in which a robot is expected
to reach an unseen goal in minimum expected time. Often
modeled as a Partially Observable Markov Decision Process
(POMDP) [1], long-horizon navigation under uncertainty is
computationally demanding, and so many strategies turn
to learning to make predictions about unseen space and
thereby inform good behavior. To perform well, a robot must
understand how parts of the environment the robot cannot
currently see (i.e., non-locally available information) inform
where it should go next, a challenging problem for many
existing planning strategies that rely on learning.

Consider the simple scenario from our J-Intersection envi-
ronment shown in Fig. 1: information at the center of the map
(the color of that region) informs whether the robot should
travel left or right; optimal behavior involves following the
hallway whose color matches that of the center of the map.
As this color is not visible from the intersection, a robot
must remember what the space looked like around the corner
to perform well and learn how that information relates to
its decision. More generally, many real-world environments
require such understanding, a particularly challenging task
for building-scale environments. In this work, we aim to
allow a robot to retain non-local knowledge and learn to
use it to make predictions that inform where it should travel
next.

R. Arnob and G. Stein are with the Department of Computer Science,
George Mason University, USA, {rarnob, gjstein}@gmu.edu

Fig. 1. Overview: non-local information is often essential for good
navigation in a partial map. Our LSP-GNN approach uses a graph neural
network to make predictions about unseen space via both local and non-local
information and integrates these into the Learning over Subgoals model-
based planning abstraction [5], [6] to improve reliable navigation.

Recently, learning-driven approaches—including many
model-free approaches trained via deep reinforcement learn-
ing [2], [3]—have demonstrated the capacity to perform well
in this domain. However, in the absence of an explicit map
for the robot to use to keep track of where it has yet to
go, many such approaches are unreliable, lacking guarantees
that they will reach the goal [4]. Moreover, these approaches
struggle to reason far enough into the future to understand
the impact of their actions and thus perform poorly and can
be brittle and unreliable for long-horizon planning.

The recent Learning over Subgoals planning approach
(LSP) [5] introduces a high-level abstraction for planning in a
partial map that allows for both state-of-the-art performance
and reliability-by-design. In LSP, actions correspond to ex-
ploration of a particular region of unseen space. Learning
(via a fully-connected neural network) is used to estimate
the goodness of exploratory actions, including the likelihood
an exploration will reveal the unseen goal. These predictions
inform model-based planning and are thus used to compute
expected cost. LSP overcomes two problems: (1) its state and
action abstraction allows for learning-informed reasoning far
into the future and (2) it is guaranteed to reach the goal if
there exists a viable path. However, LSP is limited: its ability
to make predictions about unseen space only makes use of
locally observable information, limiting its performance.

In this paper, we extend the Learning over Subgoals Plan-
ner (LSP-Local), replacing its learning backend with a Graph
Neural Network (LSP-GNN), affording reliable learning-
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informed planning capable of using both local and non-local
information to make predictions about unseen space and
thus improve performance in complex navigation scenarios
in building-scale environments. Using a graph representation
of the partial map—constructed via a map skeleton [7] so as
to preserve topological structure—we demonstrate that our
GNN allows for accurate predictions of unseen space using
non-local information. Additionally, we demonstrate that our
LSP-GNN planner improves performance over the original
LSP-Local planner while retaining guarantees on reliability:
i.e., the robot always reaches the goal. We show the effective-
ness of our approach in our simulated J-Intersection, Parallel
Hallway, and University Building environments, in the latter
yielding improvements of 9.3% and 14.9% (respectively)
over non-learned and learned baselines.

II. RELATED WORKS

Planning under Uncertainty POMDPs [1], [8], [9], [10]
have been used to represent navigation and exploration tasks
under uncertainty, yet direct solution of the model implicit in
the POMDP is often computationally infeasible. To mitigate
this limitation, many approaches to planning rely on learning
to inform behavior [4], [11], [12], yet only plan a few time
steps into the future and so are not well-suited to long-
horizon planning problems. Some reinforcement learning ap-
proaches that deal with partially observed environments [13],
[14], [15], [16], [17], [18] are also limited to fairly small-
scale environments. The MERLIN agent [2] uses a differ-
entiable neural computer to recall information over much
longer time horizons than is typically possible for end-to-
end-trained model-free deep reinforcement learning systems.
However, the reinforcement learning approaches [2], [19],
[20] can be difficult to train and lacks plan completeness,
making it somewhat brittle in practice. Our proposed work
improves long-horizon planning under uncertainty learning
the relational properties from the non-local observation of
the environment with the guarantee of completeness.

Graph Neural Networks and Planning Battaglia et
al. [21] present a survey of GNN approaches, demonstrating
how GNNs can be used for relational reasoning and exhibit
combinatorial generalization, opening numerous opportuni-
ties for learning over structured and relational data. Zhou
et al. [22] show how GNNs have been used in the field of
modeling physics systems, learning molecular fingerprints,
predicting protein interface, classifying diseases, and many
others. GNNs are fast to evaluate on sparse graphs and have
shown capacity to generalize effectively in multiple domains
[21], [23], [24]. Moreover, GNNs have recently been used
to accelerate task and motion planning [25], [26] and to
inform other problems of interest to robotics: joint map-
ping and navigation [27], object search in previously-seen
environments [28], and modeling physical interaction [29].
In particular, Chen et al. [30] propose a framework that
uses GNN in conjunction with deep reinforcement learning
to address the problem of autonomous exploration under
localization uncertainty for a mobile robot with 3D range
sensing.

Fig. 2. Our robot’s actions correspond to boundaries between free and
unseen space. The robot can leave observed space through either boundary:
via subgoal s1 or s2. Upon selecting action a2, the robot reaches the goal
with probability PS and incurs an expected cost RS , or is turned back
(probability 1→ PS ), accumulates cost RE and selects another action.

III. PROBLEM FORMULATION

Our robot is tasked to reach an unseen goal in a partially-
mapped environment in minimum expected cost (distance).
The synthetic robot is equipped with a semantically-aware
planar laser scanner, which it can use to both localize and
update its partial semantic-occupancy-grid map of its local
surroundings, limited by range and obstacle occlusion. As the
robot navigates the partially-mapped environment, it updates
its belief state bt to include newly-revealed space and its
semantic class.

Formally, we represent this problem as a Partially Ob-
servable Markov Decision Process [1], [8] (POMDP). The
expected cost Q under this model can be written via a belief
space variant of the Bellman equation [31]:

Q(bt, at) =
∑

bt+1

P (bt+1|bt, at)
[
R(bt+1, bt, at)

+ min
at+1→A(bt+1)

Q(bt+1, at+1)
]
,

(1)

where R(bt+1, bt, at) is the cost of reaching belief state
bt+1 from bt by taking action at and P (bt+1|bt, at) is the
transition probability.

IV. PRELIMINARIES: MODEL-BASED PLANNING UNDER
UNCERTAINTY VIA LEARNING OVER SUBGOALS

As Eq. (1) cannot be solved directly, our robot instead
relies on the recent Learning over Subgoals Planning (LSP)
approach [5] to determine the robot’s behavior. LSP intro-
duces a model-based planning abstraction that alleviates the
computational requirements of POMDP planning, affording
both reliability and good performance informed by predic-
tions about unseen space from learning.

For LSP planning, actions available to the robot cor-
respond to navigation to subgoals—each associated with
a boundary between free and unknown space—and then
exploration beyond in an effort to reach the unseen goal.
Consistent with this action abstraction, planning under the
LSP model is done over an abstract belief state: a tuple bt =
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Fig. 3. Low cost navigation in our J-Intersection environment requires
non-local information. When the goal is either on left or right from the
intersection, we need the non-local information from the start position to
decide correctly at the intersection. Choosing always left or right or even
choosing one color over another will not reliably succeed.

{mt, qt}, where mt is the current map of the environment,
and qt is the robot pose. Each high-level action at →
A({mt, qt}) has a binary outcome: with probability PS(at),
the robot succeeds in reaching the goal or (with the inverse
probability 1↑PS(at)) fails to reach the goal. Upon selecting
an action at, the robot must first move through known space
to the boundary, accumulating a cost D(mt, qt, at). If the
robot succeeds in reaching the goal, it accumulates a success
cost RS(at), the expected cost for the robot to reach the goal,
and no further navigation is necessary. Otherwise, the robot
accumulates an exploration cost RE(at), the expected cost
of exploring the region beyond the subgoal of interest and
needing to turn back, and must subsequently choose another
action at+1 → At+1 ↓ A({mt, q(at)}) \ {at}.

Under this LSP planning model, the expected cost of
taking an action at from belief state bt = {mt, qt} is

Q({mt, qt}, at → A) = D(mt, qt, at) + PS(at)RS(at)

+ (1↑ PS(at))

[
RE(at) + min

at+1

Q({mt, q(at)}, at+1)

]

(2)

While the known-space distance D(mt, qt, at) can be cal-
culated directly from the observed map using A↑ or RRT↑,
the subgoal properties PS(at), RS(at), and RE(at) for each
subgoal are estimated via learning from information collected
during navigation.1

In the LSP approach [5] and in other LSP-derived plan-
ners so far [32], [6], learning has relied only on local
information—e.g., semantic information, images, or local
structure. However, locally-accessible information alone can-
not inform effective predictions about unseen space in gen-
eral; information revealed elsewhere in the environment may
determine where a robot should navigate next. As such,
the learned models upon which existing LSP approaches
rely perform poorly in even simple environments where
non-locally available information is required. We show one
example of this limitation in Sec. V and discuss how we use
Graph Neural Networks to overcome it in Sec. VI.

V. MOTIVATING EXAMPLE: A MEMORY TEST FOR
NAVIGATION

Fig. 3 shows an example scenario motivating the necessity
of using non-locally observable information to make good

1The terms PS , RS , and RE are implicitly functions of the belief, but
shown here only as functions of the chosen action for notational simplicity.

predictions about the environment while trying to reach the
goal under uncertainty. Our J-Intersection environment has
either a red or blue square region inside of it and around
the corner occluded from that square region far away at the
intersection that colored region leads to the goal (bottom).

Maps in this environment are structured so that the color
of the hallway the robot should follow matches the color of
the center region of the map. We randomize the color of the
center map region and mirror the environment randomly so
that no systematic policy (e.g., follow the blue hallway or
turn left at the fork) will efficiently reach the goal.

Since the LSP approach is limited to making predictions
for the subgoal using only locally observable information, it
cannot to learn the (simple) defining structural characteristic
of the environment: if the inside square region is red then the
path to the goal is red and if the inside square is blue then
blue is the path to the goal. Instead, we will augment the LSP
approach to rely on a graph neural network [21] to estimate
the subgoal properties, allowing it to use both local and non-
local information to make predictions about the goodness of
actions that enter unseen space and thus perform well across
a variety of complex environments.

VI. APPROACH: MAKING PREDICTIONS ABOUT UNSEEN
SPACE USING NON-LOCAL INFORMATION

We aim to improve navigation under uncertainty by es-
timating task-relevant properties of unseen space via non-
locally observable information. Consistent with our discus-
sion in Sec. IV for modelling uncertainty via POMDP, our
robot relies on the LSP model-based planning abstraction
of Stein et al. [5] for high-level navigation through partially-
revealed environments, for which learning is used to estimate
the subgoal properties (PS , RS , and RE) used to determine
expected cost via Eq. (2).

We will use a Graph Neural Network (GNN) to overcome
the limitations of making predictions using only local in-
formation (as discussed in Sec. V) and thus improve both
predictive power and planning performance. A graph-based
representation of the environment captures both topological
structure and also allows information to be retained and
communicated over long distances [33], [34]. A GNN is a
deep-learning approach that allows predictions over graph
data; to plan, we require estimates of the properties (PS ,
RS , and RE) for each subgoal node and so our graph neural
network will output estimates of these properties for each.
In the following sections, we detail how we convert the
environment into a graph representation (Sec. VI-A), how
training data is generated (Sec. VI-C), and the network and
training parameters (Sec. VI-B).

A. Computing a High-level Graph Representation
While the occupancy grid of the observed region can be

used as a graph representation of the environment, it has too
many nodes for learning to be practical. Instead, we want to
generate a simplified (few-node) graph of the environment
that preserves high-level topological structure, so that nodes
exist at (i) intersections, (ii) dead-ends, and (iii) subgoals.
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Fig. 4. Graph representations of the environment for our graph neural
net are computed from the partial map. We use an image skeleton [7] to
generate a graph from the partial occupancy grid. See Sec. VI-A for details.

Graph Generation: We create this graph via a process
shown in Fig. 4. We first generate a skeleton [7], [35] over
a modified version of the map in which unknown space is
marked as free yet where frontiers are masked as obstacles
except for a single point near their center. We eliminate the
skeleton outside known space and add nodes at all intersec-
tions and skeleton endpoints and finally use the skeleton to
define the edges between them. We additionally add nodes
corresponding to each subgoal and connect each new node
to its nearest structural neighbor in the graph generated from
the skeletonization process. Finally, we add a goal node at
the location of the goal that has an edge connection to every
other node; this global node [21] allows for the propagation
of information across the entire environment.

Neural Network Input Features: Structure alone is often
insufficient to inform good predictions of unseen space. As
such, we seek to not only compute a topometric graph of the
environment, but also associate semantic information with
each node. Each graph node is given a local observation—
a node feature—from which the subgoal properties (PS ,
RS , and RE in Eq. (2)) will be estimated via the graph
neural network. Node features are 6-element vectors: (i) a
3-element one-hot semantic class (or color) at the location
of the node, (ii) the number of neighbors of that node,
(iii) a binary indicator of whether or not the node is a
subgoal, and (iv) a binary indictor of whether the node is
the goal node. We additionally include a single edge feature,
associated with each edge in the graph: the geodesic distance
between the nodes it connects. Owing to the presence of a
goal node connected to every other node, the edge features
provides each node its distance to the goal. To ensure a fair
comparison with the LSP-Local planner, our learned baseline
that does not consider edge information, the node features for
LSP-Local are augmented to include the geodesic distance to
the goal. Conditioned upon, correctly building the map the
input is enough to ensure safety during navigation. Safety
during navigation with the aforementioned inputs is ensured
conditioned upon correctly building the maps.

B. Graph Neural Network Structure and Training
We use the PyTorch [36] neural network framework

and Torch Geometric [37] to define and train our graph
neural network. The neural network begins with 3 locally-
fully-connected layers, which are fully-connected layers that
processes the features for each node in isolation, without

considering the edges or passing information to neighbors;
all three have hidden layer dimension of 8. Next, the network
has 4 GATv2Conv [38] layers, each with hidden layer
dimension of 8. Finally, a locally-fully-connected layer takes
in the 8-dimensional node features as input and produces
a three dimensional output: a logit corresponding to PS

and the two cost terms RS and RE . For the LSP-Local
learned-baseline planner, we replace the GATv2Conv graph
neural network layers with locally-fully-connected layers,
eliminating sharing of information between nodes and thus
its ability to use non-locally-available information to make
predictions about unseen space.

Loss Function: Our loss function matches the original LSP
approach of Stein et al. [5] adapted for our graph input data.
For each subgoal node, we accumulate error according to
a weighted cross-entropy loss (a classification objective) for
PS and an L1-loss (a regression objective) for RS and RE .
Since only the properties of the subgoal nodes are needed,
we mask the loss for non-subgoal nodes and only consider
the subgoal nodes’ contribution to the loss.

Training Parameters: We train a separate network (with
identical parameters) for each environment. Training pro-
ceeds for 50k steps. The learning rate begins at 10↓3 and
decays by a factor of 0.6 every 10k steps.

C. Generating Training Data
To train our graph neural network, we require training

data collected via offline navigation trials from which we can
learn to estimate the subgoal properties (PS , RS , and RE)
for each subgoal node in the graph. During an offline training
phase, we conduct trials in which the robot navigates from
start to goal and generates labeled data at each time step.
Training data consists of environment graphs G—with input
features consistent with our discussion in Sec. VI-A—and
labels associated with each subgoal node.

To compute the labels for our training data, we use the
underlying known map to determine whether or not a path
to the goal exists through a subgoal. Using this information,
we record a label for each subgoal that corresponds to a
sample of the probability of success PS and from which we
can learn to estimate PS using cross-entropy loss. Labels for
the other subgoal properties are computed similarly: labels
for the success cost RS correspond to the travel distance
through unknown space to reach the goal, for when the goal
can be reached, and the exploration cost RE is a heuristic
cost corresponding to how long it will take a robot to realize
a region is a dead end, approximated as the round-trip travel
time to reach the farthest reachable point in unseen space
beyond the chosen frontier. This data and collection process
mirrors that of LSP [5]; readers are referred to their paper
for additional details.

We repeat the data collection process for each step over
hundreds of trials for each training environment. So as to
generate more diverse data, we switch between the known-
space planner and an optimistic (non-learned) planner to
guide navigation during data generation. The details of each
environment can be found in Sec. VII.
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TABLE I
AVG. COST OVER 100 TRIALS IN THE J-INTERSECTION ENVIRONMENT

Planner Avg. Cost (grid cell units)
Non-Learned Baseline 303.03

LSP-Local (learned baseline) 323.46
LSP-GNN (ours) 204.85

Fully-Known Planner 204.85

Fig. 5. Planned trajectories of the bench-marked planner approaches.
J-intersection environment where the goal is on the right. The left column
shows the optimal trajectory (planned using the underlying known map). The
middle column shows the same trajectory of both the non-learned baseline
and LSP-Local where they make a systematic choice. The right column
shows the trajectory planned by LSP-GNN that is similar to the optimal
one.

VII. EXPERIMENTAL RESULTS

We conduct simulated experiments in three
environments—our J-Intersection (Sec. VII-A), Parallel
Hallway (Sec. VII-B), and University Building (Sec. VII-
C)—in which a robot must navigate to a point goal in
unseen space. For each trial, we evaluate performance of 4
planners:
Non-Learned Baseline Optimistically assumes the unseen

space to be free and plans via grid-based A↑ search.
LSP-Local (learned baseline) Plans via Eq. (2), estimating

subgoal properties via only local features, as in [5].
LSP-GNN (ours) Plans via Eq. (2), yet uses our graph

neural network learning backend to estimate subgoal
properties using both local and non-local features.

Fully-Known Planner The robot uses the fully-known map
to navigate; a lower bound on cost.

For each planner, we compute average navigation cost across
many (at least 100) random maps from each environment.

A. J-Intersection Environment
We first show results in the J-Intersection environment,

described in Sec. V to motivate the importance of non-
local information for good performance for navigation under
uncertainty. In this environment, the robot must choose where
to travel at a fork in the road, yet non-locally observable
information is needed to reliably make the correct choice—
a blue-colored starting region indicates that the goal can
be reached by turning towards the blue hallway at the

Fig. 6. Two sample maps from our procedurally-generated Parallel
Hallway environment. A robot is tasked to navigate from start to goal in
these maps without having access to the underlying map. The left image
shows a sample map where the red rooms connect the hallways and the
right image shows where the blue rooms connect the hallways.

intersection, and the same for the red-colored regions. We
randomly mirror the environment so that the robot cannot
learn a systematic policy that quickly reaches the goal
without understanding.

We conduct 100 trials for each planner in this environment
to evaluate their performance and show the average cost
planning strategy in Table I. Across all trials, our proposed
LSP-GNN planner always correctly decides where to go
at the intersection and achieves near-perfect performance.
By contrast, both the LSP-Local and Non-Learned Baseline
planners lack the knowledge to determine which is the
correct way to go and perform poorly overall, resulting in
poor performance in roughly half of the trials. We highlight
two example trials in Fig. 5. We do not report the prediction
accuracy empirically, because the prediction accuracy does
not reflect the actual gain in performance for our work.

B. The Parallel Hallway Environment

Our Parallel Hallway environment (Fig. 6) consists of par-
allel hallways connected by rooms. We procedurally generate
maps in this environment with three hallways and two room
types: (i) dead-end rooms and (ii) passage rooms that provide
connections between neighboring parallel hallways. Only one
passage room exists between a pair of hallways, and so the
robot must identify this room if it is to travel to another
hallway. Environments are generated such that the dead-end
rooms all have the same color (red or blue) distinct from
the color of the passage rooms, which are thus blue or red,
respectively. We are making the environment such that the
relational information, such as recognizing that if a room
with certain color is explored as a dead-end, then the other
colored room serves as a pass-through room can be learned.
If the colors were entirely random, there would be no way to
make predictions about the unseen space. Both room types
contain obstructions and are otherwise identical, so that it is
not possible to tell whether or not a room will connect to a
parallel hallway without trial-and-error or by utilizing seman-
tic color information from elsewhere in the map. Rooms are
placed far enough apart that the robot cannot determine from
the local observations if a room will lead to the next hallway
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TABLE II
AVG. COST OVER 500 TRIALS IN THE PARALLEL HALLWAY

ENVIRONMENT

Planner Avg. Cost (grid cell units)
Non-Learned Baseline 205.93

LSP-Local (learned baseline) 236.47
LSP-GNN (ours) 141.37

Fully-Known Planner 108.37

Fig. 7. Parallel Hallway Results: average cost over 500 trials decreases
using LSP-GNN. Our learning-informed planner outperforms both the non-
learned baseline (left) and the LSP-Local (right) planners.

or will be a dead end. The start and goal locations are placed
in separate hallways, so as to force the robot to understand its
surroundings to reach the goal quickly. Thus, to navigate well
in this challenging procedurally-generated environment, the
robot must first explore, trying nearby rooms to determine
which color belongs to which room type, and then retain
this information to inform navigation through the rest of the
environment.

We train the simulated robot on data from 2,000 distinct
procedurally generated maps and evaluate in a separate set
of 500 distinct procedurally generated maps. We show the
average performance of each planning strategy in Table II
and include scatterplots of the relative performance of dif-
ferent planners for each trial in Fig. 7. The robot planning
with our LSP-GNN approach is able to utilize non-local local
information to improve its predictions about how best to
reach the goal, achieving a 31.3% improvement in average
cost versus the optimistic Non-Learned Baseline planner
and a 40.2% improvement over the LSP-Local planner. In
addition, our approach is reliable: owing to the LSP planning
abstraction, our robot is able to successfully reach the goal
in all maps.

We highlight one trial in Fig. 8, in which the robot
is tasked to navigate from the top hallway to the bottom
hallway, which contains the goal. After a brief period of
trial-and-error exploration in the first (top) hallway, the
robot discovers the passage to the neighboring hall and uses
the knowledge of the semantic color to quickly locate the
passage to the next hallway and reach the goal. By contrast,
the Non-Learned Baseline optimistically assumes unseen

Fig. 8. Navigation trajectories of the tested planners in one of the
testing maps from the parallel hallway environment. Using non-local
information enables LSP-GNN to perform better than both the learned (LSP-
Local) and non-learned (Dijkstra) baselines.

Fig. 9. Three large-scale training maps from our university floorplan
environment, each generated from a real-world floor plan. The inset in
the center map shows an instance of a graph (as used to define our graph
neural network) for a partial map during a navigation trial. Plot axes are in
units of meters.

space to be free and enters every room in the direction of the
goal. The LSP-Local planner makes predictions using only
local information and, unable to use important navigation-
relevant information, cannot determine how to reach the goal;
its poor predictions result in frequent turning-back behavior
as it seeks alternate routes to the goal, reducing performance.

C. University Building Floorplans
Finally, we evaluate in large-scale maps generated from

real-world floorplans of buildings from the Massachusetts
Institute of Technology, including buildings of over 100 me-
ters in extent along either side; see Fig. 9 for examples. We
generate data from 2,000 trials across 56 training floorplans
and evaluate in 250 trials from 9 held-out test floorplans,
each augmented by procedurally generated clutter to add
furniture-like obstacles to rooms. In addition to occupancy
information, rooms in the map have a distinct semantic class
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TABLE III
AVG. COST OVER 250 TRIALS IN THE UNIVERSITY BUILDING

FLOORPLANS

Planner Avg. Cost (meter)
Non-Learned Baseline 44.98

LSP-Local (learned baseline) 47.93
LSP-GNN (ours) 40.80

Fully-Known Planner 31.77

Fig. 10. University Building Floorplan Results: average cost (meter)
over 250 trials decreases using LSP-GNN. Our learning-informed planner
outperforms both the non-learned baseline (left) and the LSP-Local (right)
planners.

from hallways (and other large or accessible spaces); this
semantic information is provided as input node features to
the neural networks to inform their predictions.

We show the average performance of each planning strat-
egy in Table III and include scatterplots of the relative
performance of different planners for each trial in Fig. 10.
The robot planning with our LSP-GNN approach achieves
improvements in average cost of 9.3% versus the optimistic
Non-Learned Baseline planner and of 14.9% improvement
over the LSP-Local Learned Baseline planner. Unlike the
LSP-Local planner, which does not have enough information
to make good predictions about unseen space, our LSP-GNN
approach can make use of non-local information to inform
its predictions and thus performs well despite the complexity
inherent in these large-scale testing environments.

Fig. 11 shows a typical navigation example in one of
our test environments. In this scenario, the shortest possible
trajectory involves knowing to follow hallways until near to
the goal. Both learned planners generally exhibit hallway-
following behavior—often useful in building-like environ-
ments such as these—and improve upon the non-learned
(optimistic) baseline. However, our LSP-GNN planner, able
to make use of non-local information, can more reliably
determine which is the more productive route and more
quickly reaches the faraway goal. Fig. 12 shows two ad-
ditional examples that highlight the improvements of our
LSP-GNN planner made possible by non-locally-available
information. In Fig. 12A, we highlight an example in which
both learned planners cannot immediately find the correct
path, yet LSP-GNN is able to improve its predictions about
where is most likely to lead to the unseen goal and recover

Fig. 11. Navigation trajectories of all tested planners in one of the
large-scale testing maps from the university building environment. LSP-
GNN performs better than both the learned (LSP-Local) and non-learned
(Dijkstra) baselines deviating very few times from the hallway to reach
faraway goal.

Fig. 12. Two comparison between the navigational trajectories of our
LSP-GNN against LSP-Local. LSP-GNN exhibits the capacity to recover
quickly than LSP-Local when both planner cannot immediately find the
correct path.

more quickly than does LSP-Local. Fig. 12B shows a more
extreme example, in which the LSP-Local planner fails
to quickly turn back to seek a promising alternate route
immediately identified by LSP-GNN.

VIII. CONCLUSION AND FUTURE WORK

We present a reliable model-based planning approach that
uses a graph neural network to estimate the goodness of goal-
directed high-level actions from both local and non-local
information, improving navigation under uncertainty. Our
planning approach takes advantage of non-local information
to make informed decisions about how to more quickly reach
the goal. We rely on a graph neural network (GNN) to make
these predictions. The GNN consumes a graph representation
of the partial map and makes predictions about the goodness
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of potential routes to the goal. We demonstrate improved
performance on two simulated environments in which non-
local information is required to plan well, demonstrating the
efficacy of our approach.

In future work, we envision passing more complex sensory
input to the robot, allowing it to estimate the goodness of
its actions using information collected from image sensors
or semantically-segmented images.
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