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Abstract—We present a novel approach to learning-
augmented, long-horizon navigation under uncertainty in large-
scale environments in which considering the robot dynamics is
essential for informing good behavior. Our approach tightly
integrates sampling-based motion planning, which computes
dynamically feasible routes to the goal through different un-
explored boundaries, and a high-level planner that leverages
predictions about unseen space to select a route that best
makes progress toward the unseen goal. Owing to its ability
to understand the impacts of the robot’s dynamics on how
it should attempt to reach the goal, our approach achieves
both higher reliability and improved navigation performance
compared to competitive learning-informed and non-learned
baselines in simulated office-building-like environments.

I. INTRODUCTION

We consider the navigation problem for a robot with
dynamics operating in unknown environments, where the
objective is to reach an unseen point goal while avoiding
collisions and reducing the overall travel distance. As the
robot moves, it uses its sensor to detect nearby obstacles and
available free space, updating its partial map of the environ-
ment and replanning when necessary. Effective navigation in
such scenarios requires considering differential constraints
imposed by the robot dynamics, which limit the velocity,
acceleration, turning radius, and motion directions posing
significant challenges.

Sampling-based motion planning is well-suited for navi-
gation tasks. However, such planners are designed under the
assumption that the environment is fully known [1], [2], [3],
[4]. To adapt them to work in an unknown environment, a
common strategy is to assume that all the unseen space is
unoccupied, plan a trajectory to the goal, and then re-plan
when obstacles are observed [5], [6], [7]. However, as it
does not consider what lies in unseen space, a robot planning
under this optimistic assumption will often encounter tight
spaces, corners, or dead-ends that increase overall navigation
time or get the robot unrecoverably stuck.

To plan effectively in unknown environments, the robot
must infer what lies in the unseen space so that it may
determine which routes will be most likely to reach the
unseen goal. This objective falls under the umbrella of
navigation under uncertainty—often modeled as a Partially
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Based on the experiences in similar environments, our planner
estimates the goodness of action that enter unseen space.

Ps: Predicted

likelihood the

| robot reaches
the goal

@ < Robot position

1N
\ a1 w &‘

G
o
28
,QE Holonomic: Ps =0.95 Holonomic: Ps =0.99 Holonomic: Ps =1.00
k] s Car: Ps =0.30 Car: Ps=0.95 Car: Ps =0.99
o Snake: Ps = 0.04 Snake: Ps = 0.45 Snake: Ps = 0.99
ﬂ‘: hd ] N2
" — ——
%ﬂ%‘; ‘PVV_L l Dl_-::::l D,_h
58 | =
75 [
Holonomic Snake gets Car more likely  Snake often Car reaches Snake reaches
reaches the goal stuck to reach the goal gets stuck the goal the goal
Fig. 1. Our planner uses dynamics-aware predictions about unseen

space to avoid poor routes to the goal. Learning provides vehicle-specific
predictions about the goodness of actions entering unseen space and so can
reach the unseen goal more quickly and reliably than competitive baselines.

Observable Markov Decision Process (POMDP) [8], [9]—
yet planning using this model is computationally intensive,
as determining the best route in general requires envisioning
all possible configurations of unseen space and imposes an
intractable challenge.

To overcome the difficulties associated with dynamics-
aware planning in a partial map, learning can be used [10],
[11] to predict which routes entering unseen space are less
likely to encounter unexpected resistance or get the robot
stuck. By estimating the likelihood that the robot will be
able to reach its goal via one region of unseen space or
another, a high-level planner could guide the robot to select
a dynamically-feasible trajectory expected to reduce cost and
best ensure that the robot reaches its target.

To guide the robot via predictions from learning, we take
inspiration from the Learning over Subgoals Planning (LSP)
abstraction [12], in which the robot uses learning to select
among a set of frontiers—each a boundary between free and
unknown space—through which the robot can travel in an
effort to reach the unseen point goal. Informed by predictions
from learning, the high-level LSP planner encourages the
robot to navigate through frontiers that are more likely to
connect to the unseen goal. However, LSP is concerned
merely with the structure of unseen space and so planning
does not consider (i) how the robot dynamics impact traversal
through known space or (ii) how predictions regarding the
goodness of actions entering unseen space strongly depend
on the robot’s dynamics. Instead, performing well requires an
approach to long-horizon planning under uncertainty that in-
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corporates vehicle dynamics and so guides the robot towards
routes through unseen space well-suited to its embodiment.

In this paper, we present a hierarchical planner that uses (i)
sampling-based motion planning to plan trajectories through
each frontier into the unseen space to the goal, and (ii) a
high-level planner that leverages dynamics-aware learning-
generated predictions about travel through unseen space
to select the trajectory that will allow the robot to best
make progress towards its goal. To compute the trajectory
through the frontiers, we use the sampling-based motion
planner introduced by Khanal et al. [5]. Meanwhile, the high-
level planner, inspired by LSP [12], predicts dynamics-aware
estimates of frontiers (e.g., the likelihood that the robot can
reach the unseen goal) and uses those predictions to seek out
routes well suited for the robot’s constraints.

In experiments in simulated office-inspired environments,
we demonstrate high reliability and reduced average cost
compared to a non-learned baseline approach; we also
demonstrate the poor reliability of a learned baseline that
plans without considering robot dynamics, emphasizing the
importance of our approach for good performance.

II. RELATED WORK

a) Sampling-based Motion Planning: Sampling-based
motion planning is commonly used for robots with dynamics
because of its computational efficiency [13], [14]. These
planners generate vast motion trees whose branches corre-
spond to collision-free and dynamically-feasible trajectories.
RRT [1], [15] and its variants [16], [17] rely on nearest
neighbors to guide the expansion. Other methods exploit cell
decompositions [18] or introduce a discrete layer to guide
the motion-tree expansion [19], [20], [21]. Machine learning
has also been used to better guide the expansion [22],
[23], [24], [25], [26], [27], [28], [29]. These approaches
are typically designed for fully-known environments and
exhibit slower replanning in unknown environments. Khanal
et al. [5] leverages adaptive grid subdivisions and prior
solutions to guide the motion-tree expansion to significantly
reduce the replanning time when navigating in an unknown
environment. However, the planner does not infer what lies
beyond unseen space. Consequently, it may explore areas that
do not lead to the goal, potentially increasing the overall cost
or even becoming trapped in narrow spaces.

b) Planning under Uncertainty and Learning for Plan-
ning: Planning under uncertainty, often modeled as POM-
PDP [30], [8], [31] is incredibly difficult in practice and
so learning is often used to help inform good behavior
in such domains. Learning has been applied in navigation
under uncertainty settings where vehicle dynamics strongly
determine behavior, yet most such approaches [32], [10],
[33], [34] reason only a few time steps into the future and
are thus not well suited to long-horizon navigation domains.
There additionally exist model-free planning approaches,
often trained via deep reinforcement learning, capable of
handling vehicle dynamics. Such approaches have shown
impressive successes for planning under uncertainty [35],
[36], [371, [38], [39], though have onerous data requirements

S

Fig. 2. The snake-like robot model (with second-order dynamics) used in
our experiments. Image re-used from Khanal et al. [5]

and can be brittle in large scale environments [40]. The LSP
abstraction of Stein et al. [12] proposes a high-level model-
based planning abstraction for long-horizon planning under
uncertainty, though it does not consider vehicle dynamics,
limiting performance for dynamically-constrained robots.

III. PROBLEM FORMULATION

The robot aims to navigate a partially-mapped environ-
ment to reach the goal in minimum expected time, updating
its map via a range- and occlusion-limited planar laser
scanner as it travels. The motions must be collision-free and
dynamically-feasible. Effective performance also requires the
robot to make predictions about the goodness and potential
feasibility of trajectories that enter unseen space, so that it
may avoid likely dead ends or becoming stuck.

a) Robot Model: The robot, denoted as R =
(P,S,U, f), is characterized by its shape P, state space S,
control space U, and dynamics represented as differential
equations f : S x U — S. In the experiments, a snake-like
robot (as depicted in Fig. 2) is employed, modeled as a car
towing N trailers [14]. The snake comprises a head and N
interconnected rectangular links, each having a length L =
1m, a width W = 0.6m, and connected with a hitch distance
H = 0.01m. The robot state s = (x,y,v,1,00,01,...,0n)
encompasses position (z,y), velocity (v with |v| < 2 m/s),
steering angle (3 with |¢)| < 1.5 radians), head orientation
(8p), and orientation (6;) for each individual link. The control
input u = (ug, u,) comprises acceleration (u, with |u,| <
2m/s?) and steering rate (u,, with |u,| < 3 radians/s). The
differential equations f for the dynamics are defined as

& = wvcos(y) cos(vp), ¥ =wvsin(fy) cos(v),
o = vsin(¢))/L, 0 = uq, U = ug,
Vie{l,...,N}:

b; = %(sin(ei,l) — sin(00)) [T} cos(6j-1 — 0;). (1)

b) Computing Dynamically-Feasible Trajectories: The
robot dynamics f determine the new state Sy, € S that
is obtained when a control w € U is applied to a state
s € S. The new state spen is computed by a function
SIMULATE(S, u, f,dt), which numerically integrates f for a
time step dt, i.e.,

Snew ¢— SIMULATE(S, u, f, dt). 2)
Applying a sequence of controls (ug,...,up—1) in suc-
cession gives rise to a dynamically-feasible trajectory ( :

{0,...,¢} = S, where ((0) + s and Vi € {1,...,¢}:

C(i+ 1) < siMULATE(C(%), u4, f, dt). 3)
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¢) Navigation Under Uncertainty: Formally, this prob-
lem can be represented as a POMDP [8], [30]. The expected
cost ) under this model can be written via a belief space b;
variant of the Bellman equation [31]:

Q(by, ar) = Z P(be1|be, ar) [R(bt+1abt;at)
Qbs1,ai41)], 4

min
at41€A(be+1)

bet1 +

where R(bi11,bs,a;) is the cost accumulated by reaching
belief state b;y; from b; by executing primitive action ay,
consisting of a one-second-long dynamically-feasible motion
corresponding to the execution of a control u € U.

IV. PRELIMINARIES

In this section, we present the salient details of the high-
level planner of Stein et al. [12], whose learning-augmented
model-based planning abstraction we build upon to deter-
mine where the robot should enter unseen space in an effort
to reach the unseen goal, and of the low-level sampling-based
trajectory planner from Khanal et al. [5], which we use to
compute motion costs needed to inform high-level navigation
planning and for making progress through known space.

A. Planning in a Partial Map via Learning over Subgoals

Using the POMDP model of Eq. (4) to plan is both
computationally intractable and requires access to a distri-
bution over environments too difficult to obtain in general.
To mitigate these challenges, the LSP approach introduces
an action abstraction such that each high-level action cor-
responds to a subgoal: a point on a frontier (a contiguous
boundary between free and unseen space) through which
the robot can enter unseen space and try to reach the goal.
Thus, a high-level action consists of (1) navigating to a
subgoal and (2) exploring beyond it in an effort to reach the
goal. Under the LSP approach, learning is used to estimate
the properties associated with high-level actions—compact
statistics of unseen space referred to subgoal properties—to
inform high-level, model-based planning.

Under LSP, planning is done over an abstract belief state:
a tuple by = (my, Ay, s¢), where my is the (partial) map
of the environment, A; is the set of unattempted high-level
actions, and s, is the robot state. Upon selecting a high-level
action a; € A; the robot travels a distance D(my, s, ay)
in known space to reach the subgoal. High-level actions
have binary outcomes: with probability Pgs(a;), the robot
succeeds in reaching the goal accumulating success cost
Rg(at), the expected cost of the robot reaching the goal,
with a probability 1 — Ps(ay), the robot fails to reach the
goal and accumulates an exploration cost Rg(a:), the cost
of exploring that region. Fig. 3 shows a schematic of the
LSP action abstraction.

The terms Ps, Rg, and Rp—too difficult to compute
exactly—are estimated from images collected on board the
robot via learning. Problematically, these subgoal properties
as well as the known-space distance D are computed only for
a holonomic robot and so do not reflect the actual costs and
likelihood of success for a dynamically-constrained vehicle,

Learning over Subgoals Abstraction:
Actions correspond to boundaries between free and unknown space
With probability
as Ps(al) , the robot
succeeds and

Under this abstraction,
the robot selects action@1: E

[ % reaches the goal,
_— as / “m¥el accruing cost Rg(aq)
I ] 1'.."' = ag_ = With probability

o ag 1 — Ps(al),the
e robot fails and

., explores, accruing
cost Rg(a1)

Fig. 3. The Learning over Subgoals Planning approach [12] uses learning
to predict statistics of unseen space associated with temporally extended
actions entering unseen space.

leading to poor performance. We address this key limitation
in this work.

Upon executing a high-level subgoal-action a; and failing
to reach the goal, the robot can select another action, defining
a model-based planning problem for the LSP abstract belief
and action abstraction. After completing a; during planning,
the updated abstract belief state reflects that the robot has
moved to the location of the subgoal s(a;) and that the
set of unattempted high-level actions has updated: b;y1 =
(my, A\{a.}, s(at)). Upon failing to reach goal via action
ay, the robot selects another action a;11 € A¢\{a;} from
the updated set of unattempted subgoal-actions and planning
continues.

The LSP planner selects the action a; € A; that minimizes
overall expected cost computed via a Bellman equation:

Q(bs, ar € A) = D(my, s¢,at) + Ps(ay)Rs(a)+

(1—Ps(at)) |Re(ar) +  min  Q(by41,ai41))

arr1€AN\{as}

(&)

B. Execution and Planning Framework

We build upon the execution and planning framework from
Khanal et al. [5]. The framework consists of two modules:
an execution module (EM) and a planning module (PM).
The execution module progressively executes the planned
trajectory, while the planning module’s role is to generate
trajectories that are both collision-free and dynamically-
feasible based on the partial map. When the robot’s sensor
detects new obstacles, the execution module engages the
planning module to replan, allowing the robot to avoid the
newly detected obstacles effectively.

PM employs discrete search over an adaptive grid subdivi-
sion and leverages previous solutions to guide the sampling-
based expansion of a motion tree from the current state
toward the goal. PM was shown to significantly reduce
the planning time, enhance solution consistency, thereby
minimizing oscillatory behavior, and increase clearance from
the obstacles, which in turn improves overall robustness.

V. METHODOLOGY

We propose a novel planning approach for improved
dynamics-aware, learning-informed long-horizon navigation
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Fig. 4. Overview of the Dynamics-Aware LSP Planning Loop Our
planner tightly integrates high-level planning, which directs the robot
towards the most promising region of unseen space, and low-level motion
planning, which provides costs and trajectories to inform high-level planning
and movement through known space.

in partially mapped environments. Our approach consists
of two integrated modules: a high-level subgoal-selection
planner and a low-level trajectory planner, as shown in Fig. 4.
Critically, though our high-level planner relies upon the LSP
abstraction, Eq. (5), our method instead uses motion costs
D and estimated statistics of unseen space (the subgoal
properties: Ps, Rg, and Rg) that both reflect the underlying
vehicle dynamics, made possible by the low-level trajectory
planner. As such, our planner affords improved behavior in
complex, cluttered environments, in which the goodness of
an action that enters unseen space strongly depends on the
vehicle’s dynamics.

We first discuss how high-level action selection incorpo-
rates vehicle dynamics in Sec V-A. The high-level planner
relies on predictions about the robot’s ability to traverse
unseen space, estimated via a learned model trained via
data that incorporates the robot’s dynamics, as discussed in
Sec. V-B. Finally, Sec. V-C describes how our robot makes
progress towards the goal once a subgoal-action is chosen.

A. Dynamics-Aware, High-Level Planning

For high-level planning, we leverage the LSP abstraction
discussed in Sec. IV-A. Planning via Eq. (5) depends on
being able to compute motion costs through known space
D and estimate compact statistics of unseen space that
depend on both the partial map m; and (unique to this
work) the vehicle’s dynamics f: (i) Ps, the likelihood that
the robot can successfully reach the goal via a particular
route through unseen space, (ii) Rg, the expected cost of
success for that robot to reach the goal if the goal can be
reached, and (iii) Ry, the expected cost of exploration for
that robot to reveal the space and turn back. The known
space distances D(f,my, s¢,a;) are computed via the low
level trajectory planner discussed in Sec. V-C, and so travel
distances to each subgoal and between subgoals reflect the
vehicle’s kinodynamic constraints. The subgoal properties,
Ps(f,at), Rs(f,at), and Rg(f,at), also depend on the
robot’s dynamics, though are too difficult to compute directly
and so are estimated via learning, as described in Sec. V-B.

B. Learning: Estimating Dynamics-Aware Statistics of Un-
seen Space

So as to select the subgoal expected to best afford quick
progress towards the goal, we require an estimator that can
predict the dynamics-aware subgoal properties: Ps(f,a;),
Rs(f,a:), and Rg(f,a;). This section details how we
generate the training data needed to inform these predictions
about unseen space and also defines the learned model
(a convolutional neural network) and details our training
procedure.

a) Generating Data to Estimate Dynamics-Aware
Statistics of Unseen Space: Data is generated during an
offline training phase from trials collected onboard each
robot that navigates via a non-learned, optimistic strategy
through previously unseen environments. For all steps of
every trial, whenever the robot reveals more of the map,
new frontiers—boundaries between free and unknown space
that each correspond to a subgoal and associated exploratory
action—give rise to training data. For each newly updated
frontier, we use the underlying “known map” to generate
labeled data for the subgoal properties for the frontier. When
the known map is available, we can determine whether it is
possible to reach the goal via the selected boundary for the
robot of interest and the associated cost of doing so.

Thus, if a dynamically-feasible trajectory can be found
through the subgoal of interest and the frontier to which
it corresponds, the label for the probability of success is
Ps = 1 and the label for Rg is the associated cost of the
part of the trajectory in unseen space. If the goal cannot
be reached, the success probability label is Pg = 0 and
the cost of exploration Rg is the trajectory cost to the
farthest reachable point in unseen space, also computed via
our motion planner. Inputs to the learned model, described in
more detail in the next section, consist primarily of cropped,
top-down views of the partial map centered on the subgoal
of interest and are recorded alongside the labels for the
dynamics-aware subgoal properties.

We collect training data separately for all robots and train a
separate learned model for each. By using the learned model
trained specifically for each robot, we ensure the the predic-
tions about unseen space are tailored to the robot’s dynamics;
in particular this allows robots with stringent kinodynamic
constraints to avoid cluttered or tightly-constrained regions
in which it might otherwise become stuck and prefer routes
more likely to allow it to successfully reach the unseen goal.

b) Estimating the Subgoal Properties Ps, Rs and Rg:
Our estimator is a convolutional neural network, which
consumes a 32 x 32 pixel crop of the occupancy grid centered
around the subgoal of interest, as well as a 32 x 32 x 2 grid
that encodes both (i) the relative distance to the center of the
subgoal and (ii) the relative distance to the goal for every
pixel in the grid. The 32 x 32 x 3 input is passed through
five two-layer convolutional encoder blocks, each followed
by a max-pool operation. The output is flattened and then
passed through an additional three fully-connected layers to
produce a three-element output: the logits for Pg and the
costs Rg and Rp. LeakyReLU activation functions are used

3072

Authorized licensed use limited to: George Mason University. Downloaded on February 27,2025 at 03:46:30 UTC from IEEE Xplore. Restrictions apply.



Model Non-learned Holonomic Dynamics-Aware
Vehicle Success Cost Success Cost Success Cost
Holonomic 100% 131.8 100% 120.7 100% 120.7
Car 99% 230.9 59% 131.1 100% 160.8
Snake 95% 234.6 57% 127.4 99% 162.1
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Fig. 5. Results: Two Hallway Experiments We conduct 100 trials in the
Two Hallway environment for each planner {Non-Learned, LSP-Holonomic,
Dynamics-Aware LSP} for each robot model {Holonomic, Car, Snake}.
The results demonstrate that our Dynamics-Aware LSP planner achieves
both low cost and high reliability. See Sec. VI-A for details.

after each neural layer. The loss function consists of a cross-
entropy loss for Pg and Ll-loss (regression) for the two
cost terms. All models are trained for four epochs. During
deployment, the trained model for each robot dynamics
model estimates the dynamics-aware subgoal properties for
each subgoal individually so that they can be used by the
high-level planner to inform planning.

C. Low-level Planning: Progressing Towards the Goal

Once the subgoal is chosen using high-level planner,
we use the low-level trajectory planner [5] to compute a
dynamically feasible trajectory through that subgoal to the
goal. To make sure the trajectory passes through the chosen
subgoal, we mask all the other subgoal (marking them as
obstacles in the map) and then apply our low-level motion
planner through the masked grid.

Once the trajectory is computed, the robot moves one time
step along the trajectory, and updates its partial map using the
sensor information it collects via LIDAR. Whenever the map
is updated, high-level planning is rerun and a new subgoal
may be selected. The planning and navigation process repeats
until the goal is reached or the robot becomes stuck, which
is reported as a failure.

VI. EXPERIMENTAL RESULTS

Our experiments consist of simulated trials in procedural
office-like environments (as shown in Fig. 6 and 8), where
the robot is placed in previously unmapped spaces and

Non-Learned LSP-Holonomic Dynamics-Aware LSP
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Fig. 6. Example Trials: Two Hallway Environment These trials

show the ability of our Dynamics-Aware LSP planner to both improve
performance and achieve high reliability.

expected to quickly and successfully reach an unseen point
goal. For each trial, we deploy three different types of robot:
(1) a holonomic vehicle, which has no dynamic constraints
on its motion (2) a car, as described in Sec. III, and (3) a
snake, modeled as a car pulling 5 trailers as described in
Sec. III.

Our procedural office-like spaces consist of parallel hall-
ways, each surrounded by multiple dead-end “office” rooms
and three different types of passages that connect the
hallways: (1) clutter-filled winding passages, (2) narrow
corridors, and (3) wide corridors. The varied procedurally
generated passages are meant to be more or less amenable
to robots of varied dynamics—e.g., the tight confinement of
the clutter-filled winding passages is most difficult for snake-
like robots, moderately challenging for a car-like robot, and
relatively easy for a holonomic robot. Notably, predictions
about unseen space that do not take the robot embodiment
into consideration are likely to lead dynamically-constrained
vehicles to pursue options at which they are unlikely to
succeed. The start and goal locations for each trial are
randomly sampled from opposite ends of the map so that
the robots must traverse the passages to succeed. We evaluate
following approaches for comparison:

Optimistic Planner (Non-Learned) This planner assumes
all unseen space is unoccupied and uses the motion
planner of Sec. IV-B to navigate, updating the map as
it travels.

LSP-Holonomic (Holonomic Learned Model) This plan-
ner uses learned model trained on holonomic robot
to make predictions about unseen space, a mismatch
with the dynamically-constrained vehicles, yet known-
space distances D rely on the low-level motion planner
and so respect vehicle dynamics. Once a subgoal is
chosen, the motion planner provides a dynamically-
feasible trajectory for the robot to follow that navigates
towards the selected subgoal.

Dynamics-Aware LSP Planner (Ours) This planner uses
learned model trained on robot itself to estimate the
properties of unseen space, thus considering the vehicle
dynamics for all aspects of high-level and for low-level
planning.
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Model Non-learned Holonomic Dynamics-Aware
Robot Success Cost Success Cost Success Cost
Holonomic 100% 208.3 100% 199.8 100% 199.8
Car 91% 402.5 37% 225.8 100% 281.4
Snake 90% 389.5 33% 237.2 96% 280.5
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Fig. 7. Results: Three Hallway Experiments We conduct 100 trials

in the Two Hallway environment for each planner and robot model. The
results demonstrate that our Dynamics-Aware LSP planner achieves both
low cost and high reliability. See Sec. VI-B for details.

A. Two Hallway Results

We first evaluate the performance of all planners and
robots in Two-Hallway Environments, in which only two par-
allel hallways exist, connected by passages of various types.
Fig 5 includes results collected for 100 trials for all three
robot types—holonomic, car, and snake—and additionally
show scatter plots for all trials in Fig. 5.

Our results show the effectiveness of our Dynamics-Aware
LSP planner, which achieves both near 100% reliability
and 30.5% and 30.9% lower average cost than the non-
learned baseline for the car and the snake robots, respectively,
owing to its ability to quickly seek out promising routes to
the goal. Moreover, unaware of the vehicle dynamics, the
LSP-Holonomic planner routinely leads the vehicles towards
tightly constrained passages that the snake and car are less
likely to successfully traverse than the holonomic model
upon which it is trained. By contrast, our Dynamics-Aware
LSP planner succeeds 100% and 99% of trials for the car
and snake, respectively—considerably more reliable than the
LSP-Holonmic planner, which succeeds only 59% and 57%
for the car and snake, respectively—as it is trained with the
vehicle dynamics in mind and so has learned to avoid such
regions. This effect can be seen in Fig. 6.

B. Three Hallway Results and Generalization Performance

We additionally demonstrate results in a Three Hallway
office-like environment. Critically, to demonstrate the ability
of our approach to generalize its predictions and scale to

LSP-Holonomic

Non-Learned

Dynamics-Aware LSP
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Fig. 8. Example Trials: Three Hallway Environment These trials show
the ability of our LSP Dynamics planner to both improve performance and
achieve high reliability.

larger environments, we use the same learned model as in
the Two Hallway environment, which has never specifically
seen any Three Hallway maps.

The results in our Three Hallway environments, shown in
both the scatterplots and data table of Fig. 7, are consistent
with those of the Two Hallway maps from the previous sec-
tion, demonstrating that our Dynamics-Aware LSP planner
achieves both higher reliability and improved performance
compared to the non-learned baseline. We also observe sig-
nificantly higher reliability than the LSP-Holonomic learned
baseline, which succeeds in only 37% and 33% of the car
and snake trials, respectively, compared to the 100% and
96% success rates of our Dynamics-Aware LSP planner.
Fig. 8 shows two trials that illustrate the representative
performance of the three planners across trials for each of
the car and snake robots. Moreover, these results highlight
the consistent performance and reliability of our approach
even in environments larger and more complex than those it
has seen during training.

VII. CONCLUSION

We have demonstrated Dynamics-Aware LSP Planner,
a learning-augmented model-based planning approach that
tightly couples the high-level Learning over Subgoals plan-
ning abstraction of Stein et al. [12] and the sample-efficient
low-level motion planner of Khanal et al. [5] to achieve
improved long-horizon navigation in partially mapped en-
vironments. We demonstrate performance in two- and three-
hallway simulated office-inspired environments in which
good behavior requires considering robot dynamics. Our re-
sults show improved reliability and lower expected cost over
competitive baselines and achieves effective generalization to
larger environments than were seen during training. In future
work, we aim to extend our approach to support learning
from rich, high-dimensional sensor information—e.g., vision
or semantic segmentation—and demonstrate performance in
large-scale real world environments on a physical platform.
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