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Abstract— Team Coordination on Graphs with Risky Edges
(TCGRE) is a recently emerged problem, in which a robot
team collectively reduces graph traversal cost through support
from one robot to another when the latter traverses a risky
edge. Resembling the traditional Multi-Agent Path Finding
(MAPF) problem, both classical and learning-based methods
have been proposed to solve TCGRE, however, they lacked either
computational efficiency or optimality assurance. In this paper,
we reformulate TCGRE as a constrained optimization problem
and perform a rigorous mathematical analysis. Our theoret-
ical analysis shows the NP-hardness of TCGRE by reduction
from the Maximum 3D Matching problem and that efficient
decomposition is a key to tackle this combinatorial optimization
problem. Furthermore, we design three classes of algorithms to
solve TCGRE, i.e., Joint State Graph (JSG) based, coordination
based, and receding-horizon sub-team based solutions. Each of
these proposed algorithms enjoys different provable optimality
and efficiency characteristics that are demonstrated in our
extensive experiments.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) is a trending problem
in robotics [1]-[6], as it lies in the core of many robotic
applications, e.g., drone swarm control [2], autonomous
delivery [7], and public transportation scheduling [1]. Adding
the possibility of team coordination [8] between robots
to MAPF makes the problem more difficult. The need for
coordination behaviors on large-scale multi-robot planning
problems may exceed the computational capability of a
centralized planner [9], giving rise to decentralized planning
that distributes the computation into each robot [10]. How-
ever, despite the efficiency, dexterity, and responsiveness, the
distribution itself may induce certain performance degrada-
tion and lead to suboptimal team coordination behaviors.
Therefore, some centralized pre-planning is still crucial for
multi-robot planning, especially for large-scale problems.

Team Coordination on Graphs with Risky Edges
(TCGRE) [11] is such a centralized planning problem in
an environment represented as a graph—multiple robots
travel from their start to goal nodes with possible support
from some nodes to reduce the cost of traversing certain
risky edges, requiring team coordination behaviors to reduce
the total cost of team graph traversal. By converting the
environment graph to a Joint State Graph (JSG), optimal
coordination can be solved using Dijkstra’s search algorithm
on the JSG [11]. However, the conversion to JSG does not
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scale well with large environment graphs and number of
robots. To address the curse of dimensionality, a Critical Joint
State Graph (CJSG) approach has been proposed for large
graphs with a small amount of support with up to two robots,
still assuring solution optimality. Reinforcement Learning
(RL) has been utilized [12] to reduce the time complexity
and scale the solution to a large group of robots and the size
of the graph, but at the cost of sacrificing optimality.

To acquire theoretical insights into this problem, we refor-
mulate TCGRE in a constrained optimization framework and
present a rigorous mathematical analysis of this reformulated
problem. We prove the NP-hardness of TCGRE by reduction
from the Maximum 3D Matching problem. We further show
that such a difficult combinatorial optimization problem
can be effectively addressed by efficient decomposition. In
addition to providing a theoretical explanation for previous
algorithms, we further introduce three distinct classes of
methods to solve the TCGRE problem: (1) Based on the idea
of JSG, we introduce new search algorithms that do not need
to fully construct the JSG in advance and can be guided
by a new admissible heuristic, while guaranteeing optimal
solutions; (2) Inspired by the Conflict-Based Search [13], the
second class of algorithms is based on coordination and we
design a Coordination-Exhaustive Search (CES) algorithm.
CES starts with individual optimal paths and finds the lowest
cost among every possible coordination for every robot to
achieve the optimal solution within polynomial time with
respect to the number of robots, under the assumption that the
coordination between every pair of support node and risky
edge is only necessary for a limited number of times; (3)
Motivated by CES’s assumption, we also propose a class of
receding-horizon sub-team solutions that further decomposes
the order of coordination by only looking at sub-team coor-
dinations in a local region. We design a Receding-Horizon
Optimistic Cooperative A* (RHOC-A*) search, in order to
reduce the time complexity without much performance loss.
Extensive experimental results are presented and discussed
to inform the best ways to solve different TCGRE problems.

II. RELATED WORK

We first review related work on the classical MAPF prob-
lem and common classes of algorithms. We then review
previous approaches to solve the TCGRE problem.

A. MAPF and Classes of Algorithms

MAPF is a specific type of multi-agent planning problem
with a key constraint that no agents can collide with one
another [14]. A feasible solution to the problem is a joint
plan that allows all agents to reach their goals from their
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starts. Two common objectives are makespan and total cost.
Classical MAPF problems may include additional assump-
tions, such as no vertex conflict, no edge conflict, no cycle
conflict, and no swapping conflict [15], [16].

Algorithms to solve MAPF include A*-based search
with exponential space and time compelexity [15], [17];
conflict-based search [13] by decomposing into many con-
strained single-agent problems; reduction-based approaches
to SAT [18], [19], ILP [20], ASP [21], or CSP [22], [23];
rule-based algorithms based on Kornhauser’s algorithm [24],
Push-and-Rotate [25], or BIBOX [26]; and suboptimal solu-
tions [27], [28] that sacrifice optimality for efficiency.

MAPF is NP-hard [29], and no optimal solutions can be
found in polynomial time. The time complexity of all above
optimal algorithms [13], [15], [17]-[23] is exponential to the
number of agents. Similarly, we prove in this paper that our
TCGRE problem that utilizes, instead of avoiding, interactions
between agents in the form of support is also NP-hard.

B. Team Coordination on Graphs with Risky Edges (TCGRE)

TCGRE [11] is a recently proposed problem, in which a
team of robots traverses a graph from their starts to goals
and supports each other while traversing certain risky (high-
cost) edges to reduce overall cost. Instead of focusing on
collision-free paths in the traditional MAPF, the TCGRE prob-
lem pursues team coordination. To solve TCGRE, Limbu et
al. [11] have proposed JSG and CJSG, both of which construct
a single-agent joint-state graph. After the construction, the
original team coordination problem can be solved using
Dijkstra’s algorithm to solve a shortest path problem with
optimality guarantee. The CISG construction deals with the
team coordination problem more efficiently, although it can
only solve problems with two agents. To scale up TCGRE,
RL [11] has been utilized to handle many nodes and robots,
but at the cost of optimality.

In this work, we reformulate the TCGRE in a constrained
optimization framework and conduct a mathematical analysis
of this problem. We prove its NP-hardness and point out the
necessity of efficient decomposition to effectively solve this
problem. We further present three classes of algorithms to
solve TCGRE from different perspectives.

III. PROBLEM FORMULATION

Assuming a team of N homogeneous robots traverses an
undirected graph G = (V,E), where V is the set of nodes the
robots can traverse to and [E is the set of edges connecting
the nodes, i.e., E C V x V. The team of robots traverses
in the graph from their start nodes Vo C V to goal nodes
V, C V via edges in E. Each edge e;; = (V;,V;) € E is
associated with a cost ¢;;, depending on its length, condition,
traffic, obstacles, etc. Specially, some edges with high costs
are difficult to traverse through, denoted as risky edges
E’ C E, but with the support from a teammate from a
supporting node, their costs can be significantly reduced to
Cij. In this problem, we only consider such coordination
behaviors between two robots. In one coordination behavior,
one receiving robot receives support while traversing a risky

edge, and another supporting robot offers support from some
(nearby) location, called support node. Note that each risky
edge e;; € E’ corresponds to certain support node(s) S.,; C

V (Se,; = 0if e;; ¢ E'). Additionally, the coordination
also induces some cost for the supporter, denoted by ¢’. A
central planner needs to schedule the paths of all agents and
coordination on their ways.

A. Action & Cost Model

Without coordination, at each time step ¢, a robot n can
choose to stay where it is, or move to its neighbor (V;
is the neighbor of Vj if e;; € E). Its movement can be
denoted by M! = (l;,lfﬁl) € E, where IL,IIT1 € V
indicate its current and next location and I:*! is a neighbor
of I!. Specially, the robot stays at its current location if
It =t with zero cost, i.e., ¢;; = 0, Vi. The movement set
can thus be denoted by M = {M}|Vn,Vt}. Moreover, the
movement decision M can be rewritten as an 0/1 variable
Mt, where Mi* = 1 represents edge ¢;; is selected by
robot n at time ¢, and O otherwise. A robot can only move
once at each time step to a neighbor node or not at all,

Le., Z\m]e/\fﬁ Mt =1& Zveugj\/lt Mt = 0, where

Nie = {(l;,lﬁl)W(lﬁL,lﬁlﬂ) € E}. The movement set can
thus be denoted by M = {M}'|Vi, j,¥n,Vt}.

When a coordination behavior is available—when robot n
is going to traverse a risky edge, another robot m happens to
be at one of the support nodes of the risky edge or vice versa,
ie, M} €E and I}, € Sy, or M}, € E and I, € Sppe —
the robot pair needs to decide whether to provide/receive
support Denote the coordination decision of agent n at time
t as st . It is clear that agent n’s coordination decision is
dependent on its movement decision, so the cost is twofold:
(1) When agent n has no coordination opportunity (the above
coordination behavior is not available for any other robot
m), ie., Vm, I}, ¢ Sppe and I}, ¢ Sy , its cost CY, is only
decided by its movement, i.e., C}, = ¢;;, where M}, n 1
(2) When coordination is possible for agent n, i.e., Elm it

St or If, € Spye , the cost Cf, can be represented as
Cij7 lf S;&Lm = 07
t_ )

C/, lfsfwn:_ :

where snm = 1 means agent n decides to receive support
from m, sm,, = —1 indicates agent n decides to offer support
to m, and s, = 0 stands for no coordination between the
robot pair n and m at ¢. Specially, no coordination happens
for one single robot, i.e., sﬁm = 0,Vn, Vt, or when n and m
cannot support each other, i.e., s, = 0if I}, ¢ Sy and
I, & Spre . Ym. The coordination decision set can be written
as § = {s!,,|Vn, m, Vt}. In addition, a coordination decision
is made for a pair, so s!,,,, +s',,. = 0 for every pair of robots.
Furthermore, the robots can wait now (no movement) for
future coordination, but there is no point for all robots to
stay still at the same time, i.e., 3y, > viz; M} # 0.

B. Problem Definition

Given the node set V, the edge set [E, support nodes
for each edge S.,;, cost of each edge without and with
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Fig. 1: Reduction from Maximum 3D Matching (Middle) to TCGRE (Left and Right) and Inspiration for CES.

coordination c¢;;, ¢;;, N robots with their starts V and goals
Vg, optimize the movement and coordination decisions M
and S, in order to minimize the total cost for each agent
to traverse from its start to its goal within a time limit 7.
Formally, the problem can be represented as

T-1 N
. t
rAnA%Z > cl. 2)
t=0 n=1
s.t. Z |st | <1,
vme{l,2,...,N}
Vn e {1,2,...N},vt € {0,1,....,T — 1}. 3)
S:znw mn G{ 1 O 1} snm+8mn _0’
Vn,m € {17 .,N},Vte {071,..., —1}. @)
129 =Vy(n),Vn € {1,2,...,N}. (5)
¥ =v,(n),vn € {1,2,... N}. (6)
Z Mzt — 17 Z Mnt
Vei €N Vei; €Nt
Vn € {1,2,... N} Vit € {0 1,..,T — 1}. @)
> M A
Vn Vi#£j
Vit € {0, 1,..,T — 1}. )

Eqgn. (2) suggests the goal of the problem is to minimize
the total cost of all agents across all time steps with two
decision variables, movement set M and coordination set
S. Eqn. (3) indicates that, at each time step, each robot can
participate in at most one coordination behavior. Eqn. (4)
regulates that, at each time step, one coordination behavior
only occurs between one robot pair. Eqn. (5) and Eqn. (6)
set the start and the goal for each robot. Eqn. (7) guarantees
that, at each time step, a robot can only move to a neighbor
node or stay still. Eqn. (8) assures no unnecessary stagnation.

IV. MATHEMATICAL ANALYSIS

In this section, we prove our TCGRE problem reduces from
the Maximum 3D Matching problem, an NP-hard problem.
Then, we start a rigorous analysis on the mathematical prob-
lem, which suggests decomposition is a promising solution
to this combinatorial optimization problem.

A. NP-Hardness

Definition 1. Maximum 3D Matching: X,Y ,Z are 3 finite
sets. T is the subset of X xY x Z, with triples (x,y, z),
where x € X,y € Y,z € Z. M C T is a 3D matching if
Sor any two distinct triples (x1,y1, z1) and (2, Y2, 22) € M,
we have x1 # xa, Y1 # Yo, and z1 # za, each triple has a
weight w(x;,y;, z). Maximum 3D Matching problem is to
find a 3D matching with maximum total weight.

Theorem 1. Maximum 3D Matching reduces to TCGRE.

Proof sketch: Without coordination, we can generate indi-
vidual optimal paths for all robots; the cost is Cy (Fig. 1
left). With coordination, we let some robot pairs take detours
to the support pairs (i.e., one risky edge and one support
node); the new cost is C’, where the first robot in the pair
traverses the risky edge while the second visits and supports
from the support node (Fig. 1 right). Minimizing total cost
is equivalent to maximizing the cost reduction Cy — C”.

Consider X contains all robot pairs; Y is the set of all
support pairs plus an empty set element; Z is a list of time
orders of events (time steps are not necessarily needed, be-
cause robots can stay still and wait, Fig. 1 middle). Consider
the weight w(z;, y;, 2x) as the sum of cost reduction through
coordination for robot pair z; to detour to support pair y;
with time order zj. The weight of a 3D matching M is the
total cost reduction of all robots, Cy — C’. Maximum 3D
Matching is to find the paths for all robot pairs to achieve
maximum total cost reduction from their original without-
coordination costs, which is a specific case of the general
TCGRE problem that only needs to use each robot and support
pair once with a smaller solution space than TCGRE.

Since TCGRE reduces from Maximum 3D Matching, a
classical NP-hard problem [30], TCGRE is also NP-hard. We
cannot find an optimal solution in polynomial time. O

B. Problem Analysis

Because we only care about the total cost of all robots,
and every coordination requires a robot pair, we can reassign
the coordination cost ¢’ from the supporter to the receiver in
addition to the reduced edge cost ¢;;, without changing the
problem. So, the cost with coordination in Eqn. (1) becomes
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Cijs If Spm = 0
Ch=1¢;, if shyp= 1 )
07 lf Sfmn =-1
where ¢é;; = ¢&; + ¢’. Therefore, the original objective
function (Eqn. (2)) can be rewritten as
T-1 N
12 Z Z Z Mnt 1-— S )Cij + s;méij]; (10)
T t=0 n=1Vi#j

s.t. (3),(4),(5),(6),(7),(8).

Notice that because when st = —1, M;}t =0,Vi # j, the
last if condition in Eqn. (9) does not need to be considered in
Eqn. (10). To solve the combinatorial optimization problem,
a typical approach is dynamic programming [31], by de-
coupling the interdependency among the decision variables.
The ideal case is to break down the problem into two sub-
problems: one optimizing the movement decisions M and
the other optimizing the coordination decisions S.

Based on such a motivation, if we can find a way to

eliminate n from MZZ”, Eqgn. (10) can be rewritten as

min i > My m;nzl[u — )

t=0 Vi

Y

t ~
Cij T SpmCij] -

Sub-Problem 2 Sub-Problem 1

The first half of the function contains only the movement
decisions M, while the second half only has the coordina-
tion decisions S. Then, decomposition is possible and the
NP-hard TCGRE problem can be solved with significantly
reduced complexity.

V. SOLUTION ALGORITHMS

Based on the mathematical analysis, we propose three
classes of algorithms to solve TCGRE from different perspec-
tives with different optimality and efficiency characteristics.
We first propose a class of JSG-based solutions that utilizes
the decomposition of the original problem and provides
optimal solutions to the two sub-problems (Eqn. 11). Second,
to reduce the time complexity, we focus on coordination
(i.e., S) and propose a class of coordination-based solutions
that decomposes the problem differently. To be specific, we
introduce Coordination-Exhaustive Search (CES), which can
achieve optimal solutions under a reasonable assumption that
each coordination behavior (i.e., support pair composed of
support node and risky edge) is only needed for a limited
number of times in the optimal solution. Finally, when the
same support may need to be repeated many times and the
global optimality does not need to be guaranteed, a class of
algorithms that focuses only on local sub-team coordination
behaviors are introduced, for which we develop Receding-
Horizon Optimistic Cooperative A* (RHOC-A*).

A. 1SG-Based Solutions

JSG-based solutions perform the decomposition into the
two sub-problems by 1) implicitly solving S by calculating
the minimum edge cost for each edge in the JSG; 2) explicitly
solving M by solving a single-robot shortest path problem

with S implicitly encoded. As mentioned in Sec. IV-B, n is
effectively eliminated from M[}t by building the JSG.

1) 1SG Construction: In the action model (Sec. III-A),
we use I € V to represent robot n’s location at time
t. In a joint state graph, however, one state is the set of
all robots’ locations Lt = {l{,1%,...,1%}. The new node
set is L = V¥ and each node L, € L correlates to N
nodes (V;,,Vi,,...,V;, ) in V. By checking the constraints
in Eqgns. (3), (4), (7), and (8), for each pair of joint-states,
we can form the new edge set M C LL2. Specially, Eqn. (8)
assures no self-loops in the JSG. An action is the move from
current state to next state M? = (L*, L**1), which can also
be written as a 0/1 variable, i.e., M;q = HN M{;t, where
e, is any edge in the new edge set, and the movement
decision set becomes M = {M"|Vt}.

2) Sub-Problem 1: After the construction of JSG, the
second half of Eqn. (11) is calculating the minimum edge
cost for each e,;, € M by optimizing S, which is a
0/1 Integer Linear Programming (ILP) problem and can be
solved by classical methods, such as Branch and Bound [32].

3) Sub-Problem 2: After solving sub-problem 1, we have
the cost Cy,, for each edge e,, € M. Sup-problem 2 is to
optimize movement decisions M to minimize the total cost:

T—1

S Y ML,

t=0 Ve, €M
Now it is a single-robot shortest path problem with non-
negative costs and no self-loops, solvable by any shortest
path algorithms. Instead of using Dijkstra’s algorithm on a
fully constructed JSG beforehand [11], we present results
with Uniform Cost Search (UCS) and A* (guided by an
admissible heuristics assuming all future risky edges will be
supported by a teammate) while constructing JSG on the fly,
i.e., interleaving partial solutions of the two sub-problems.

12)

B. Coordination-Based Solutions

Some JSG edge costs are simply the sum of individual edge
costs of all robots, suggesting possible total cost separation
into the costs with and without coordination. Thus, while
minimizing costs without coordination can be simply solved
for individual robots, the second class of algorithms focuses
on coordination. Specifically, we present a Coordination-
Exhaustive Search (CES) algorithm based on a slightly dif-
ferent and interleaving decomposition of Eqn. (10):

Cost without Coordination

T—-1 N

> > X e,

t=0 n=1Ve,;; €E

13)

7lt+1

l
U m= M’f

al 1
Z Z ngt[(lfstm)Cij

t=0 n=1 Ve;;€E or

T—1
+ (1 + sh)Acij],

Cost Reduction due to Coordination
where Ac;; = ¢;; — ¢;;. When sl,,,, = 1 (receiving support)
the second part reduces the cost in the first part by Ac;;;
When st = —1 (providing support), the cost is reduced to

nm
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zero. Inspired by Conflict-Based Search, we can start with
finding the individual shortest path for each robot without
coordination. Then, we find the coordination behaviors (with
some detours) that can cause the maximum cost reduction.

While the first half can be solved individually for each
robot (Fig. 1 left), CES uses an exhaustive search for the
second half. If an optimal solution requires a coordination
behavior between a robot pair, it is equivalent to make the
robot pair detour to the support pair (risky edge and support
node) from their original individual shortest paths, while
other robots remain on their individual shortest paths (Fig. 1
right). This robot pair’s shortest paths are a combination of
two path segments—their shortest paths from their starts to
the support pair, and their shortest paths from the support pair
to their goals. Given certain coordination behaviors, we can
solve the shortest path and minimum total cost of all robots
for each path segment (Fig. 1 right), as shown in Alg. 1.

CES is a coordination-based method through an exhaustive
search. Because one support pair may be assigned to the
same/different robot pair(s) for infinite times, to conduct an
exhaustive search, we assume each support pair can only
occur for a fixed number of times. In our implementation,
we assume a support pair can only happen once, but it can
be easily expanded to a more general case, by repetitively
adding the same support pairs to the coordination set.

The CES algorithm is shown in Alg. 2: In lines 1-2,
using any shortest path algorithm, it generates an individual
optimal path and cost for each robot, with original edge costs
¢ = {¢;j|Ve;; € E} and reduced edge costs ¢ = {¢;;|Ve;; €
E}, called pessimistic/optimistic paths PPy /Ps and total cost
C1/Cy. If C; = (9, which means no coordination is
needed in the optimal solution, then simply return P; and
C1 (lines 3-4). Else, it starts the scheduling process. In
line 5, it generates a coordination set, CS that contains all
coordination behaviors, and SCS that contains all subsets
of CS, to decide which coordination behaviors/support pairs
are needed. In line 6, it generates a set of all robot pairs RP
(order in the pair matters since we need to decide which robot
moves to the support node/risky edge) to determine which
robot pair should be assigned to each support pair. Now,
it looks like a Maximum 3D Matching problem as stated in
Definition 1, except that the matching problem has one more
assumption that one robot pair can be only assigned once
as shown in Fig. 1 middle. For all possible sets of support
pairs (line 8), it generates all possible time orders for this
support pair set using permutation (line 9). Notice that robots
can wait for one another, so the order of each coordination
behavior, not necessarily the exact time step, is sufficient.
Then, it iterates through every possible support pair order
(line 10). There could be N(N — 1) possible robot pairs
assigned to each support pair, so an N-Fold Cartesian Product
is applied to generate all possible sets of support robot pairs
(line 11). Then, it explores every set (line 12), where each
robot pair in SRP is assigned to each support pair in PSCS
with the same index. Thus, in lines 13-18, it adds the risky
edge of each support pair to the individual coordination set
of the first robot of the robot pair, and the support node

of each support pair to the individual coordination set of
the second robot of the robot pair. ICS then contains the
individual coordination set of all robots. With ICS, we use
Alg. 1 to calculate the shortest paths and minimum total
cost of this assignment in line 19, which is one solution.
Last, lines 20-21 record the best solution with minimum
total cost. To sum up, the loop in line 8 decides a subset
of support pairs we need for cost reduction. The loop in line
10 picks an order for all support pairs in the subset. The
loop in line 12 selects a robot pair for each support pair in
the subset. Iterating through the three loops explores every
possible solution under the assumption that each support pair
can be applied for a constant number of times, making CES
optimal.

Algorithm 1: CostCalculation (G,Vq,V,, ICS)

1 P=[0] «N;
2 totalcost = 0;
3 forn=11t N do

4 | if ICS[n] =0 then
5 P,C = ShortestPath(G, Vy[n], V4[n], c);
6 Pln] =P;
7 totalcost = totalcost + C;
8 else
9 for item € ICS[n] do
10 start = Vy[nl;
11 if item is a risky edge then
12 P,C=

Shortest Path(G, start, item[0], c);
13 Pln].extend(P | item);
14 totalcost = totalcost + C + Citem;
15 start = item/[1];
16 else if item is a support node then
17 P,C=

ShortestPath(G, start, item, c);
18 P[n].extend(P);
19 totalcost = totalcost + C
20 start = item;
21 P,C = ShortestPath(G, start, Vy[n|, c);
22 P[n].extend(P);
23 totalcost = totalcost + C

24 return P, totalcost

There are a total of O(2!8!) subsets in SCS . For each sub-
set, there are O(|CS|!) permutations. For every permutation,
there are O(N?) possible robot pairs for each support pair,
O(N?I®5I) assignments in total. Therefore, the number of
possible solutions is O(2/%5I. N2ICSL.|CS|!) = O((2N?)IC81.
|CS|!). For each solution, we run the shortest path algo-
rithm for O(|CS|) times; each run costs O(|Ellog(|V])).
Therefore, the time complexity of CES is O((2N?)/®I .
|CS|!- |E|log(]V])), which is not exponential to the number
of robots N anymore. Note that the above algorithm is
for directed graphs. For an undirected graph, each edge
is equivalently two directed edges in a directed graph, so
after line 10, there should be an additional loop that iterates
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Algorithm 2: CEs (G, V,,V,)

¢]

1 Py, Cy = MultipleShortestPath(G, Vo, Vg, c);
2 Py, Cy = MultipleShortestPath(G, Vg, Vg, €);
3 if C7 < C5 then

4 L return Py, Cy;

Generate subsets SCS = {SCS|VSCS C CS} of the
coordination set CS;

6 Generate a set of all robot pairs RP;

7 Pmina szn — Pla Cl;

8 for SCS € SCS do

9

wn

PSCS = AllPermutations(SCS, len(SCS));

10 for PSCS < PSCS do
1 SRP =

CartesianProduct(RP, len(PSCS));
12 for SRP < SRP do
13 ICS = [0] * N;
14 for n =1 ro len(PSCS) do
15 SP =PSCS[n|;
16 RP = SRP|n|;
17 ICS[RP[0]].append(SPI0]);
18 ICS[RP[1]].append(SPI1]);
19 P,C =

CostCalculation(G, Vg, V,, ICS);

20 if C < C,p, then
21 L ]P)m,iny szn — IP7 C;

22 return P,,;.., Crnin.

through all possible directions of selected risky edges, which
won’t change the time complexity class.

C. Receding-Horizon Sub-Team Solutions

TCGRE’s computational complexity arises from two fronts,
the large size of both the graph and the team. Therefore,
the third class of algorithms reduces the complexity from
both fronts by planning with a limited horizon and for
a sub-team of all robots at a time, efficiently facilitating
local coordination while compromising global optimality.
Such sub-team local coordination within the receding horizon
prioritizes actions that yield the best short-term outcomes
and potentially allows dynamic adaptation to changing cir-
cumstances, e.g., updated graph structure from robot percep-
tion. One specific algorithm is Receding-Horizon Optimistic
Cooperative A* (RHOC-A*), which provides a flexible and
efficient solution by assuring optimal robot pair coordination
within the horizon while assuming optimistic cooperation
beyond the horizon (Fig. 2). Alg. 3 presents RHOC-A*. All
robots are initially not at their goals and therefore on duty
(lines 1-2). We compute the heuristic for all nodes assuming
always-available support (line 3). RHOC-A* iterates until all
robots arrive at their goals (lines 4). If there is still at least
one pair of robots on duty (line 5), RHOC-A* sequentially
plans for each robot pair (lines 6-7). The computational
efficiency is enabled by only looking at a small JSG with
only two robots, n and m, within K steps (lines 8-12). Notice
that optimality is assured on this small JSG while the cost-

- Support Pairs
——— Other Edges

Possible K-Step Moves for G
= Possible K-Step Moves for B

G @ It goalg
Receding
Horizon & goalg
... (7

o | (K=1)

£Y & Motk : )
h(L) = MinOptimistcCon(l, g, "0 15) = 6+ 1)

Fig. 2: Receding-Horizon Optimistic Cooperative A*.
to-go on the horizon K is estimated by the always-available
support heuristic. Lines 13-18 address the situation where
only one robot is on duty and has to traverse to its goal
alone.

For N robots, generating all possible pairs of robots can be
done in O(N?) time. RHOC-A*’s time complexity for each
pair’s search of K steps can be approximated as O(b%X),
where b = O(%) is the effective branching factor in the
joint action space. Thus, in K steps, running RHOC-A* for
all pairs results in complexity of O(N 2(%)K ). There will
be no cycles for any robot, due to graph search. As a result,
there will be at most O(|V|) steps for each robot, so we

need to run the K-step A* search for Y1 times for one

K
robot pair. There will be % runs for N robots. Therefore,

the time complexity of the algorithm is O(N?3- %‘ . (%)K).

Algorithm 3: RHOC-A*(G, V,,V,, K)

1 Initialize atGoal,, < False,¥Yn € {1,2,...,N}

2 OnDuty = {n|Vn, atGoal,, = False}

3 Compute optimistic heuristic h(-) for each node in G

4 while [en(OnDuty) # 0 do

5 if len(OnDuty) > 2 then

6 RP = {{n,m}|Vn,m € OnDuty}

7 for each pair {n,m} € RP do

8 Initialize a K-step JSG G,,,, for the pair
{n,m} with start {I! 1% };

n?

9 if not atGoal,, ,, then

10 A* on Gy, for K steps using h(-);

11 Update 1%, 1L, atGoal,, ,,, and
OnDuty;

12 Update individual and total costs;

13 else

14 n = OnDuty.pop();

15 Initialize K-step graph G,, with start [f;

16 A* on G, for K steps using h(-);

17 Update I}, atGoal,, and OnDuty;

18 Update individual and total costs;

19 return Paths and costs for all robots.

VI. EXPERIMENT RESULTS

We conduct experiments on a variety of graphs to evaluate
the optimality and efficiency of the three classes of proposed
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Fig. 3: True and Naive Optimality vs. Time with JSG-UCS, JSG-A*, CES, RHOC-A*, and Naive. Each data point denotes the
result for the experiment with # of Robots—# of Nodes. For visibility, cluttered areas are magnified in the dashed boxes.

algorithms. To be specific, we implement UCS and A* for
JSG-based solutions, CES for coordination-based solutions,
and RHOC-A* for receding-horizon sub-team solutions. We
first conduct a set of large-scale, method-agnostic experi-
ments on a variety of randomly generated graphs and then
present focused experiments to study the pros and cons of
specific methods.

A. Large-Scale Method-Agnostic Experiments

To evaluate each method in an objective manner, we gen-
erate a set of graphs with randomly generated support pairs,
including sparse, moderate, and dense connectivities and five
different numbers of nodes (|V| € {10, 15, 20, 25, 30}), three
graphs each type, i.e., a total of 45 distinct graphs. A total
of 900 trials are conducted with five different team sizes
(N € {3,4,5,6,7}) and four methods.

We evaluate the optimality and runtime of all methods
along with a naive approach, in which each robot executes its
individual optimal path without coordination. While the True
Optimality value is defined as the optimal cost divided by
the actual cost, for scenarios where the optimal cost cannot
be found due to excessive computation, we define Naive
Optimality to be the naive cost divided by the actual cost.
If a data point does not exist in Fig. 3, the corresponding
method cannot produce a solution for the robot and node
number. As shown in Fig. 3, the ISG-based solutions achieve
optimal solutions, but require significant runtime even in
small graphs with only a few robots and fail to produce a
solution when the the problem becomes larger; CES has better
runtime but loses some performance because we assume each
support pair can be applied only once; with a fine-tuned K,
surprisingly, RHOC-A* in many cases achieves better results
than CES with less runtime.

Runtime (s)

# of Robots
Fig. 4: CES Planning Time on Graphs with 2 Support Pairs.

# of Nodes

B. Focused Experiments

1) CES’s Insensitivity to Robot and Node Numbers: Fig. 4
showcases that, when there are not many support pairs, CES
works well with different numbers of robots and different
sizes of graphs (polynomial time to both N and |V|).
However, its runtime increases drastically with the number of
support pairs, as shown in our method-agnostic experiments,
which verifies our time complexity analysis (Sec. V-B).

2) RHOC-A*’s Sensitivity to Planning Horizon: Fig. 5
showcases how RHOC-A*’s computation time scales with
different planning horizons. A large horizon K comes closer
to solving the original TCGRE problem with multiple robot
pairs, which significantly increases the solution time. While
the total cost can be reduced with a longer horizon, it is
necessary to strike a balance between horizon and efficiency.

VII. CONCLUSIONS AND DISCUSSIONS
We present a systematic problem formulation and math-
ematical analysis of TCGRE, proving its NP-hardness and
demonstrating that efficient decomposition is key to solving
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. . . 15
this problem. We propose three classes of solutions with a set 1]
of implementations and present their experimental results.

As given by the analysis in Sec. IV-B, all of the pro-  [16]
posed solutions are trying to solve a form of a decom-
posed problem. For example, JSG-based solutions solve a
0/1 ILP problem and a single-agent shortest path problem, [
after constructing a JSG; coordination-based solutions, like
CES, deal with a 3D matching problem embedded with
multiple single-agent shortest path problems. By applying 18]
some approximation methods to the subproblems—for the
former, forming only a few edges instead of all feasible [19]
edges and calculating approximate edge costs; for the lat-
ter, omitting unpromising matchings—we can significantly 5
reduce runtime without sacrificing too much performance.
RHOC-A*, though efficient, does not consider the order of 21]
the robot pair selection, with which its performance could
improve while still maintaining coordination efficiency.
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