2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

Distributed Conjugate Gradient Method via Conjugate Direction
Tracking

Ola Shorinwa® and Mac Schwager?

Abstract— We present a distributed conjugate gradient
method for distributed optimization problems, where each agent
computes an optimal solution of the problem locally without any
central computation or coordination, while communicating with
its immediate, one-hop neighbors over a communication network.
Each agent updates its local problem variable using an estimate
of the average conjugate direction across the network, computed
via a dynamic consensus approach. Our algorithm enables the
agents to use uncoordinated step-sizes. We prove convergence of
the local variable of each agent to the optimal solution of the
aggregate optimization problem, without requiring decreasing
step-sizes. In addition, we demonstrate the efficacy of our
algorithm in distributed state estimation problems, and its
robust counterparts, where we show its performance compared
to existing distributed first-order optimization methods.

I. INTRODUCTION

A variety of problems in many disciplines can be formu-
lated as distributed optimization problems, where a group
of agents seek to compute the optimal estimate, action, or
control that minimizes (or maximizes) a specified objective
function. Examples of such problems include distributed target
tracking [1], [2], pose/state/signal estimation in sensor/robotic
networks [3]; machine learning and statistical modeling [4];
process control [5]; and multi-agent planning and control
[6], [7]. In these problems, the data is collected and stored
locally by each agent, with the additional constraint that no
individual agent has access to all the problem data across
the network. In many situations, the limited availability of
communication and data storage resources, in addition to
privacy regulations, preclude the aggregation of the problem
data at a central location or node, effectively rendering
centralized optimization methods infeasible.

Distributed optimization enables each agent to compute
an optimal solution via local computation procedures while
communicating with its neighbors over a communication
network. In essence, via distributed optimization, each agent
collaborates with its neighbors to compute an optimal solution
without access to the aggregate problem data. Some dis-
tributed optimization methods require a central coordinator for
execution or coordination of some of the update procedures.
These methods are often used in machine learning for parallel
processing on a cluster of computing nodes, especially in
problems involving large datasets. In contrast, in this work,

*This work was supported in part by NSF NRI awards 1830402 and
1925030 and ONR grant N00014-18-1-2830.

10la Shorinwa is with the Department of Mechanical Engineering,
Stanford University, CA, USA shorinwa@stanford.edu.

we focus on fully-distributed algorithms that do not require
a central node for coordination or computation.

We derive a distributed conjugate gradient algorithm,
termed DC-Grad, for distributed optimization problems. In
our algorithm, each agent utilizes first-order information (i.e.,
gradients) of its local objective function to compute its local
conjugate directions for updating its local estimate of the
solution of the optimization problem at each iteration and
communicates with its one-hop neighbor over a point-to-
point communication network. Each agent does not share
its local problem data, including its objective function and
gradients, with other agents, preserving the privacy of the
agents. For simplicity of exposition, we limit our analysis
to distributed optimization problems with smooth, convex
objective functions. We prove convergence of the local
problem variables of all agents to the optimal solution of the
aggregate optimization problem.

We examine the performance of our distributed algorithm
in comparison to notable existing distributed optimization
methods in distributed state estimation and robust-state-
estimation problems. In both problems, we show that our
algorithm converges with the least communication overhead
in densely-connected communication networks, with some
additional computation overhead in comparison to the best-
competing distributed algorithm DIGing-ATC. On sparsely-
connected graphs, our algorithm performs similarly to other
first-order distributed optimization methods.

II. RELATED WORK

Distributed optimization methods have received significant
attention, with many such methods developed from their
centralized counterparts. Distributed first-order methods lever-
age the local gradients (i.e., first-order information) of each
agent to iteratively improve the each agent’s local estimate
of the optimal solution of the optimization problem, bearing
similarities with other centralized first-order methods such
as the centralized gradient descent. Distributed incremental
(sub)gradient methods require a central node that receives the
local gradient information from each agent and performs
the associated update step [8]. As such, these methods
require a hub-spoke communication model — where all the
agents are connected to the central node (hub) — or a ring
communication model (a cyclic network), which is quite
restrictive.

Distributed (sub)gradient methods circumvent this limita-
tion, enabling distributed optimization over arbitrary network

2Mac Schwager is with the Department of Aeronautics
and Astronautics Engineering, Stanford University, CA, USA topologies. At each iteration, each agent exchanges its local
schwager@stanford.edu. iterates and other auxiliary variables (such as estimates of
979-8-3503-8265-5/$31.00 ©2024 AACC 2066

Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 27,2025 at 04:56:48 UTC from IEEE Xplore. Restrictions apply.

the average gradient of the joint (global) objective function)
with other neighboring agents. In distributed (sub)gradient
methods, each agent recursively updates its local estimate
using its local (sub)gradient and mixes its estimates with the
estimates of its neighbors via a convex combination, where
the mixing step is achieved via average consensus [9] or the
push-sum technique [10]. Generally, distributed (sub)gradient
methods require a diminishing step-size for convergence to
the optimal solution in convex problems [11], which typically
slows down convergence. With a constant step-size, these
methods converge to a neighborhood of the optimal solution.

Distributed gradient-tracking methods eliminate the need
for diminishing step-sizes [12]-[16] by enabling each agent
to utilize an estimate of the average gradient of the objective
function in updating its local estimate of the optimal solution.
Distributed gradient-tracking methods provide faster conver-
gence guarantees with constant step-sizes. The alternating
direction method of multipliers (ADMM) has also been ap-
plied to distributed optimization problems [17], [18]. However,
the update procedures in ADMM-based algorithms generally
incur greater computational complexity, often requiring higher-
order information of the local objective functions.

The conjugate gradient (CG) method was originally de-
veloped for computing the solution of a linear system of
equations (i.e., Ax = b), where the matrix A € R™*" is
square, symmetric, and positive-definite [19], [20]. More
generally, the method applies to strongly-convex quadratic
programming problems, where the conjugate gradient method
is guaranteed to compute the optimal solution in at most n
iterations, in the absence of roundoff errors. The conjugate
gradient method has been extended to nonlinear optimization
problems (which includes non-quadratic problems) [21],
[22]. In general, the conjugate gradient method provides
faster convergence compared to gradient descent methods
[23]. Variants of the conjugate gradient method for parallel
execution on multiple computing nodes (processors) have
been developed [24]-[27]. These methods decompose the data
matrix associated with the linear system of equations into
individual components assigned to each processor, enabling
parallelization of the matrix-vector operations arising in
the conjugate gradient method, which constitute the major
computational bottleneck in the CG method. However, these
methods are only amenable to problems with hub-spoke
communication models or all-to-all communication models.
Some other distributed CG methods eliminate the need for a
hub-spoke communication model [28], but, however, require
a ring communication model, which does not support parallel
execution of the update procedures, ultimately degrading
the computational speed of the algorithm. The distributed
variant [29] allows for more general communication networks.
Nonetheless, these CG methods are limited to solving a
linear system of equations and do not consider a more
general optimization problem. Few distributed CG methods
for nonlinear optimization problems exist. The work in [30]
derives a distributed CG method for online optimization
problems where mixing of information is achieved using the
average consensus scheme. Like distributed (sub)gradient

methods, this algorithm requires a diminishing step-size
for convergence to the optimal solution, converging to a
neighborhood of the optimal solution if a constant step-size
is used.

In this paper, we derive a distributed conjugate gradient
method for a more general class of optimization problems,
including problems with nonlinear objective functions, and
prove convergence of the algorithm to the optimal solution
in convex problems with Lipschitz-continuous gradients.
Moreover, we note that, in our algorithm, each agent can use
uncoordinated constant step-sizes.

III. NOTATION AND PRELIMINARIES

In this paper, we denote the gradient of a function f by
V[and g, interchangeably. We denote the all-ones vector
as 1,, € R™. We represent the inner-product of two matrices
A€R™™ and B € R™ ™ as (A, B) = trace (ATB). We
denote the standard scalar-vector product, matrix-vector
product, and matrix-matrix product (composition) as A - B,
depending on the mathematical context. For a given matrix
A € R™ ™, we denote its spectral norm as p(A) = [|Al],.
Further, we denote its Frobenius norm by ||Al| . Likewise,
we define the mean of a matrix B € RV*", computed across
its rows, as B = +1y1[,B € RV*" where each row of B
is the same. In addition, we define the consensus violation
between the matrix B € RV*" and its mean B € RV*"
as B = B — B. We denote the domain of a function f as
dom(f), the non-negative orthant as R, and the strictly-
positive orthant as R ;.

We introduce the following definitions that will be relevant
to our discussion.

Definition 1 (Conjugacy). Two vectors a,b € R™ are con-
jugate with respect to a symmetric positive-definite matrix
C 6 Rnxn l'f:.

a'Cb = (a,Cb) = (Ca,b) = 0. (1)

Definition 2 (Convex Function). A function f:R™ — R is
convex if for all x,y € dom(f) and all ¢ € [0,1]:

fllx+(1=Qy) <Cf(x)+ (1 —=0)f(y),)
and the domain of f, dom (f) C R™, is convex.

Definition 3 (Smoothness). A function f:R"™ — R is
L-smooth if it is continuously differentiable over its domain
and its gradients are L-Lipschitz continuous, i.e.:

IVi(@) =V fWlly < Lllz—ylly, Yo,y € dom(f), (3)

where L € R, is the Lipschitz constant.

Definition 4 (Coercive Function). A function f : R™ — R™
is coercive if f(x) — oo as x — oo, for all x € dom (f).

We represent the agents as nodes in an undi-
rected, connected communication graph G = (V, £), where
V ={1,...,N} denotes the set of vertices, representing the
agents, and £ C V x V represents the set of edges. An edge
(i,7) exists in £ if agents ¢ and j share a communication
link. Moreover, we denote the set of neighbors of agent

2067

Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 27,2025 at 04:56:48 UTC from IEEE Xplore. Restrictions apply.

as N;. We associate a mixing matrix W € R¥*Y with the
underlying communication graph. A mixing matrix W is
compatible with G if w;; =0, Vj ¢ N; U{i}, Vi € V. We
denote the degree of agent i as deg(i) = |N;|, representing
the number of neighbors of agent ¢, and the adjacency matrix
associated with G as A € RV*N where A;; = 1if and only
if j € MV;, Vi € V. In addition, we denote the graph Laplacian
of G as L = diag(deg(1),...,deg(N)) — A. In this work,
we make the following assumption on the mixing matrix.

Assumption 1. The mixing matrix W associated with the
communication graph G satisfies:

1) (Double-Stochasticity) W1 =1 andTlTW =1,
2) (Spectral Property) A = p(W — 1”%) <1

Part 2 of Assumption 1 specifies that the matrix

1n1] .
M =W — =57~ has a spectral norm less than one. This
assumption is necessary and sufficient for consensus, i.e.,
. 1y1T
lim Wk — 22N 4)
k—o0

We note that Assumption 1 is not restrictive, in undirected
communication networks. We provide common choices for
the mixing matrix W:

1) Metropolis-Hastings Weights:

1 . .o
max{deg(¢),deg(j)}+e’ if (Zvj) € 57
wi; =40 if (¢,7) ¢ € and i # j,
l_zrevwir if i =j,

where € € R, denotes a small positive constant, e.g.,
e=11[9]
2) Laplacian-based Weights:

wor L
L

where L denotes the Laplacian matrix of G, and
7 € R denotes a scaling parameter with 7 > %)\max(L).
One can choose 7 = max;cy{deg(i)} + ¢, if computing
Amax (L) is infeasible, where € € R, represents a small
positive constant [31].

IV. PROBLEM FORMULATION AND THE CENTRALIZED
CONJUGATE GRADIENT METHOD

We consider the distributed optimization problem:

zeRr N 4

N
minimize — E fi(x), ©)
=1

over N agents, where f; : R™ — R denotes the local objective
function of agent ¢ and z € R denotes the optimization
variable. The objective function of the optimization problem
(5) consists of a sum of N local components, making it

separable, with each component associated with an agent.

We assume that agent ¢ only knows its local objective function
fi and has no knowledge of the objective function of other
agents.

We begin with a description of the centralized nonlinear
conjugate gradient method, before deriving our method in

Section V. The nonlinear conjugate gradient method (a gen-
eralization of the conjugate gradient method to optimization
problems beyond quadratic programs) represents an iterative
first-order optimization algorithm that utilizes the gradient of
the objective function to generate iterates from the recurrence:

=z®) L o). s(k), (6)

where z(*) € R® denotes the estimate at iteration ¥,
ak) € R, denotes the step-size at iteration k, and s*) € R
denotes the conjugate direction at iteration k. In the nonlin-
ear conjugate direction method, the conjugate direction is
initialized as the negative gradient of the objective function at
the initial estimate, with s(9 = — g(O). Further, the conjugate
directions are generated from the recurrence:

(kD)

s(F+1) — _g(k+1) + ﬁ(k) . s(k), @)

at iteration k, where 5(*) € R denotes the conjugate gradient
update parameter. Different schemes have been developed
for updating the conjugate update parameter, such as the
Hestenes-Stiefel Scheme [19], Fletcher-Reeves Scheme [32],
and Polak-Ribiere Scheme [33], [34].

We note that the update schemes are equivalent when
f is a strongly-convex quadratic function. Moreover, when
f is strongly-convex and quadratic, the search directions
{5(®)}y, are conjugate. As a result, the iterate z(¥) converges
to the optimal solution in at most n iterations. For non-
quadratic problems, the search directions lose conjugacy, and
convergence may occur after more than n iterations. In many
practical problems, the value of the update parameter [is
selected via a hybrid scheme, obtained from a combination
of the fundamental update schemes, which include the
aforementioned ones. Simple hybrid schemes are also used,

k
e.g., fF) = max{O,BE,é}.
V. DISTRIBUTED CONJUGATE GRADIENT METHOD

In this section, we derive a distributed optimization
algorithm based on the nonlinear conjugate method for (5).
We assign a local copy of x to each agent, representing its
local estimate of the solution of the optimization problem,
with each agent computing its conjugate directions locally.
Agent ¢ maintains the variables: x; € R", s; € R", along with
a; € Ry, and ; € R. In addition, we denote the gradient of

Before proceeding with the derivation, we introduce the
following notation:

[— 2] — — 5] —
€= .) s = .)
— oy — SN ——
[— (Vfi(n1)T —
g(x) = : :
l— (Vin(zn)T —

o = diag(ay,...,ay), and 8 = diag(fy, ..., Sn), where
the variables are obtained by stacking the local variables of
each agent, with x € RV*" s € RV*" g(x) € RV*" and

2068
Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 27,2025 at 04:56:48 UTC from IEEE Xplore. Restrictions apply.

o € RY. To simplify notation, we denote g(x*)) by g*. In
addition, we note that all agents achieve consensus when all
the rows of x are the same. Moreover, optimality is achieved
when 1}, g(z) = 0], i.e., the first-order optimality condition
is satisfied. Further, we define the aggregate objective function
considering the local variables of each agent as:

1 N
= NZfl(mi) (8)
i=1

To obtain a distributed variant of the centralized conjugate
gradient method, one could utilize the average consensus
technique to eliminate the need for centralized procedures,
yielding the distributed algorithm:

2B — ae®) L ok . s(k),)
st = _gk+1) 4 gk) . g(k) (10)
which simplifies to:
(kH) = Wy, (k) 4 Z Wi " 4 a(k) (-k)7 (1)
JEN;
S§k+1) _ _g§k+1) I 57@ .Sgk)’ (12)

when expressed with respect to agent i, with initialization
29 e R, —V£i(z!™), and o/” € R,

One can show that the above distributed algorithm does
not converge to the optimal solution with a non-diminishing
step-size. Here, we provide a simple proof by contradiction
showing that the optimal solution z* is not a fixed point
of the distributed algorithm (9): Assume that =* is a fixed
point of the algorithm. With this assumption, the first-two
terms on the right-hand side of (11) simplify to z*. Further,
the conjugate update parameter ngfl) simplifies to zero,
where we define the ratio % to be zero if the Fletcher-Reeves
Scheme is utilized. However, in general, the local conjugate
direction of agent ¢, denoted by sgk), may not be zero, since
the critical point of the joint objective function % Zfil fi
may not coincide with the critical point of f;, i.e., V f;(z*)
may not be zero. Consequently, the last term in (9) is not
zero, in general and as a result, agent ¢’s iterate x; (k+1)
deviates from x*, showing that z* is not a fixed point of the
distributed algorithm given by (11). This property mirrors
that of distributed (sub)gradient methods where a diminishing
step-size is required for convergence.

Further, we note that the last term in (11) is zero if agent
1 utilizes the average conjugate direction in place of its local
conjugate direction. With this modified update procedure, the
optimal solution x* represents a fixed point of the resulting,
albeit non-distributed, algorithm. To address this challenge, we
assign an auxiliary variable z to each agent, representing an
estimate of the average conjugate direction, which is updated
locally using dynamic average consensus [35], yielding the
Distributed Conjugate Gradient Method (DC-Grad), given
by:

which is initialized with 2! € R", s = —vf,(z{"),
zfo) = s§°>, and ago) € R4, Vi € V. Using dynamic average
consensus theory, we can show that the agents reach consensus
with 2{°°) = () = (> ¢j € V. The resulting distributed
conjugate gradient method enables each agent to compute
the optimal solution of the optimization problem using
uncoordinated, non-diminishing step-sizes.

Considering the update procedures in terms of each agent,
at each iteration k, agent ¢ performs the following updates:

(k+1)

dY = 3wy (o a2 (16)
JEN;U{i}
S§k+1) _g§k+1) +ﬁ_(k) _ s(_k), a7
zi(kﬂ) Z Wy ((k) 4 S(kH) sgk)) , (18)
JEN;U{i}
where agent ¢ communicates:
uf® = 2F ol P, (19)
o{F) = M) g (k) (20)

with its neighbors. We summarize the distributed conjugate
gradient algorithm in Algorithm 1.

Algorithm 1: Distributed Conjugate Gradient Method
(DC-Grad)
Inltlallzatlon
e A O
al” e R+, v@ eV,
d0 in parallel Vi € V
xz(.kH) < Procedure (16)

and

55’““) < Procedure (17)

zi(k'H) < Procedure (18)

k+—k+1
while not converged or stopping criterion is not met;

We present some assumptions that will be relevant in
analyzing the convergence properties of our algorithm.

Assumption 2. The local objective function of each agent, f;,
is closed, proper, and convex. Moreover, f; is L;-Lipschitz-
smooth, with Lipschitz-continuous gradients.

Remark 1. From Assumption 2, we note that the aggregate
objective function f is closed, convex, proper, and Lipschitz-
continuous with:

IVF@) =VEWl, < Llz=yl,, Y2,y € R,

where L = max;cp{L;}.

21

Assumption 3. The local objective function of each agent
fi is coercive.

Assumption 4. The optimization problem (5) has a non-
empty feasible set, and further, an optimal solution x* exists

(k+1) _ (k) (k) . (k)
x W™ + o z%), (13) for the optimization problem.
st = _gk+1) 4 gk) . g(k) (14)
(k1)) (k1) *) The aforementioned assumptions are standard in conver-
z =W(z" +s —s), (15) gence analysis of distributed optimization algorithms.
2069

Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 27,2025 at 04:56:48 UTC from IEEE Xplore. Restrictions apply.

VI. CONVERGENCE ANALYSIS

We analyze the convergence properties of our distributed
algorithm. Before proceeding with the analysis, we consider
the following sequence:

D) —) 4 g 0, (22)
kD) — gkt | gk . 5(R) (23)
kD) — 5k 4 gk+1) _ gk (24)

derived from the mean of the local iterates of each agent,
where we have utilized the assumption that W is column-
stochastic. From (24) , we note that z®) = 5% vk, given
that z(® = 500,

Theorem 1 (Agreement). Given the recurrence (13), (14), and

(k) (k) (k)

(15), the local iterates of agent 1, (xl) converge

to the mean, Vi € V), i.e., each agent reaches agreement with
all other agents, for sufficiently large k. In particular:

o 0], -o.
2 2
(25)

lim
k—o0

lim
k—o0

lim Hw“)H —0,
k—o0 2
Further, the local iterates of each agent converge to a limit
point, as k — oo, with:

lim (26)

‘a(k) : z<k>H — lim
k— oo 2

Hﬂ(k) : s(k)H —0.
k—o0 2

Moreover, the norm of the mean of the agents’ local iterates
tracking the average conjugate direction converges to zero,
with the norm of the average gradient evaluated at the local
iterate of each agent also converging to zero, for sufficiently

large k. Specifically, the following holds:

im 5], =0, sim [, =0, sim 5], =o.
k—o0 2 k—o0 2 k—o0 2
(27)
Proof. We refer readers to [36] for the proof. O

Further, we note that HVf(gc("o))H2 = 0 [36]. Hence, the
limit point of the distributed algorithm represents a critical
point of the optimization problem (5).

Theorem 2 (Convergence of the Objective Value). The value
of the objective function f evaluated at the mean of the
local iterates of all agents converges to the optimal objective
value. Moreover, the value of f evaluated at the agents’
local iterates converges to the optimal objective value, for
sufficiently large k. Particularly:

lim f(z™)= lim f@"*)=f* (28)
k— o0 k— o0
Proof. We provide the proof in [36]. O

VII. SIMULATIONS

In this section, we examine the performance of our dis-
tributed conjugate gradient method (DC-Grad) in comparison
to other existing distributed optimization algorithms, namely:
DIGing-ATC [14], C-ADMM [17], AB/Push-Pull [16], and
ABm [13], which utilizes momentum acceleration to achieve
faster convergence. We note that AB/Push-Pull reduces to

DIGing-CTA when the matrices A and B are selected to be
doubly-stochastic [14]. We assess the convergence rate of
our algorithm across a range of communication networks,
with varying degrees of connectivity, described by the con-
nectivity ratio K = NN-T)* We consider a state estimation
problem, formulated as a least-squares optimization problem,
in addition to its robust variant derived with the Huber loss
function. In each problem, we utilize Metropolis-Hastings
weights for the mixing matrix W. Since Metropolis-Hastings
weights yield doubly-stochastic (DS) mixing matrices, we use
the terms ABm and ABm-DS interchangeably. We compute
the convergence error of the local iterate of each agent to
the optimal solution, in terms of* the relative-squared error
(RSE) given by: RSE = %, where x; denotes the
local iterate of agent ¢ and z* denotes the optimal solution,
computed from the aggregate optimization problem. We set
the threshold for convergence at 1e~13.

For a good comparison of the computation and commu-
nication overhead incurred by each method, we selected a
convergence threshold that could be attained by all methods.
In our simulation study, we note that DIGing-ATC and
DC-Grad yield higher-accuracy solutions compared to the
other methods, with A B/Push-Pull yielding solutions with the
least accuracy. We utilize the golden-section search to select
an optimal step-size for our distributed conjugate gradient
method, DIGing-ATC, AB/Push-Pull, and ABm. Likewise,
we select an optimal value for the penalty parameter p in
C-ADMM using golden-section search. Further, we assume
that each scalar component in the agents’ iterates is repre-
sented using the double-precision floating-point representation
format.

A. Distributed State Estimation

In the state estimation problem, we seek to compute an
estimate of a parameter (state) given a set of observations
(measurements). In many situations (e.g., in robotics, process
control, and finance), the observations are collected by a net-
work of sensors, resulting in decentralization of the problem
data, giving rise to the distributed state estimation problem.
Here, we consider the distributed state estimation problem
over a network of N agents, where the agents estimate the
state x € R"™, representing the parameter of interest, such as
the location of a target. Each agent makes noisy observations
of the state, given by the model: y; = C;x + w;, where
y; € R™: denotes the observations of agent i, C; € R"*™
denotes the observation (measurement) matrix, and w; denotes
random noise. We can formulate the state estimation problem
as a least-squares optimization problem, given by:

N
| 2
minimize E |Cix — yil|5 - (29)

i=1

We determine the number of local observations for each
agent randomly by sampling from the uniform distribution
over the closed interval [5,30]. We randomly generate
the problem data: C; and y;, Vi€)V, with N =50 and
n = 10. We examine the convergence rate of the distributed

2070

Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 27,2025 at 04:56:48 UTC from IEEE Xplore. Restrictions apply.

optimization algorithms over randomly-generated connected
communication graphs. We update the conjugate gradient
parameter 3 using a modified Fletcher-Reeves Scheme.

In Table I, we present the mean and standard deviation
of the cumulative computation time per agent, in seconds,
required for convergence by each distributed algorithm, over
20 randomly-generated problems for each communication
network. We utilize a closed-form solution for the primal
update procedure arising in C-ADMM, making it competitive
with other distributed optimization methods in terms of
computation time. From Table I, we note that DIGing-ATC
requires the shortest computation time, closely followed by
DC-Grad, on densely-connected communication graphs, i.e.,
on graphs with x close to one, where we note that DC-Grad
requires an update procedure for 3, increasing its computation
time. However, on more sparsely-connected communication
graphs, C-ADMM requires the shortest computation time.

TABLE I
THE MEAN AND STANDARD DEVIATION OF THE CUMULATIVE
COMPUTATION TIME (IN SECONDS) PER AGENT IN THE DISTRIBUTED
STATE ESTIMATION PROBLEM.

Algorithm k=048 K = 0.80 k=097 k= 1.00
AB/Push-Pull [16] 8.95¢4 4 1.60e 4 9.42e~4 £ 1.44e4 1.03e 3 + 1.59¢ 4 1.06e 3 + 1.43e 4
ABm-DS [13] 5.54e~ % 4 2.23e 5 3.19¢~% 4 3.86e 5 2.85¢ 4 +4.71e 7 2.91e~ 4 4.10e~7
C-ADMM [17] 1.71e=4+1.87e=5 1.34e~% £ 1.20e~ % 1.18¢ % + 6.84e 6 1.17e 4 £ 7.87¢ 6
DIGing-ATC [14] 5.98¢ 4 £ 3.08¢ 0 2.12e 4 £ 1.61e 0 6.79¢~5 £9.10e~¢ 3.87e 5+ 2.75e ¢
DC-Grad (ours) 7.94e~ 4 £ 4.39e 2.85¢ 4 4 2.04e 0 9.10e 5 £ 9.32¢ 6 4.47e~5 £ 2.08¢ 6

Moreover, we provide the mean and standard deviation
of the cumulative size of messages exchanged per agent, in
Megabytes (MB), for each distributed algorithm in Table II.
We note that C-ADMM requires agents to communicate fewer
variables by a factor of 2, compared to AB/Push-Pull, ABm,
DIGing-ATC , and DC-Grad. Table II shows that DC-Grad
incurs the least communication overhead for convergence
on more-densely-connected graphs, closely followed by
DIGing-ATC. This finding reveals that DC-Grad requires
fewer iterations for convergence on these graphs, compared
to the other algorithms. On more-sparsely-connected graphs,
C-ADMM incurs the least communication overhead.

TABLE II
THE MEAN AND STANDARD DEVIATION OF THE CUMULATIVE SIZE OF
MESSAGES EXCHANGED BY EACH AGENT (IN MB) IN THE DISTRIBUTED
STATE-ESTIMATION PROBLEM.

k=048
6.06e~2 £ 1.18e~2

K =0.80
6.52¢72 £ 1.10e2

k=097
6.97e72 £ 1.23e2

k= 1.00
7.20e72 £ 1.13e2

Algorithm

AB/Push-Pull [16]

ABm-DS [13] 3.64e72 4 1.31e™3 2.13¢72 4+ 2213 1.85e~2 £ 3.17e 3 1.90e~2 4 2.78¢ 3
C-ADMM [17] 1.15e=24+9.80e~ % 9.24e 3 £8.17e* 7.98¢ 73 4+ 4.78¢ 4 8.03e73 4 5.00e~4
DIGing-ATC [14] 4.68¢2 £ 1.27e 3 1.69¢ 2 £ 1.11e™3 5.16e 3 £ 2.19¢~4 3.00e3 £ 2.20e 4
DC-Grad (ours) 4.63¢72 £ 1.70e 3 1.70e2 + 1.10e 3 5.16e~3 £2.00e~% 2.58¢~3 4 1.00e—4

b}

In Figure 1, we show the convergence error of the agents
iterates, per iteration, on a fully-connected communication
network. Figure 1 highlights that DC-Grad requires the least
number of iterations for convergence, closely followed by
DIGing-ATC. In addition, ABm and C-ADMM converge at
relatively the same rate. Similarly, we show the convergence
error of the iterates of each agent on a randomly-generated

connected communication graph with x = 0.48 in Figure 2.

We note that C-ADMM converges the fastest in Figure 2. In

addition, we note that the convergence plot of DIGing-ATC
overlays that of DC-Grad, with both algorithms exhibiting a
similar performance.

10°
—— DC-Grad
DIGing-ATC
—— C-ADMM
—— AB/Push-Pull
—— ABm-DS

103 4

10' 4 \

1071t T T
10° 10t 102 103

Number of Iterations

Fig. 1. Convergence error of all agents per iteration in the distributed state
estimation problem on a fully-connected communication graph. DC-Grad
converges the fastest, closely followed by DIGing-ATC.

10°
—— DC-Grad
103 4 DIGing-ATC
—— C-ADMM
N —— AB/Push-Pull
10°1 —— ABm-DS
1071 4
TR
(ES
e
1075 4
10—7 4
10—9 4
10°1* T T
10° 10! 102 103
Number of Iterations
Fig. 2. Convergence error of all agents per iteration in the distributed

state estimation problem on a randomly-generated connected communication
graph with K = 0.48. C-ADMM attains the fastest convergence rate. The
convergence plot of DIGing-ATC overlays that of DC-Grad, with both
algorithms converging at the same rate.

B. Distributed Robust Least-Squares

We consider the robust least-squares formulation of the state
estimation problem, presented in Section VII-A. We replace
the ¢3-loss function in (29) with the Huber loss function,
given by:

1,2

U if |u| < & (¢3-zone),
Shub,e(u) =< 2 lul <& (63)

E(lul — 1¢), otherwise (¢;-zone). 50)

We note the Huber loss function is less sensitive to outliers,
since the penalty function fyup,¢ grows linearly for large val-
ues of u. The corresponding robust least-squares optimization
problem is given by:

N
1
e NZ_l fuww e (Ciw = 3:) Gh

2071
Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 27,2025 at 04:56:48 UTC from IEEE Xplore. Restrictions apply.

We assume each agent has a single observation, i.e.,
m; =1, Vi €V and assess the convergence rate of the
distributed algorithms on randomly-generated connected com-
munication graphs, with N = 50 and n = 10. We randomly
initialize x; such that the x; lies in the ¢;-zone, Vi € V.
Further, we randomly generate the problem data such that the
optimal solution x* lies in the £3-zone. We set the maximum
number of iterations to 3000. We note that a closed-form
solution does not exist for the primal update procedure for
C-ADMM in this problem. Consequently, we do not include
C-ADMM in this study, noting that solving the primal update
procedure with iterative solvers would negatively impact
the computation time of C-ADMM, effectively limiting its
competitiveness. Further, we update the conjugate gradient
parameter /3 using a modified Polak-Ribiere Scheme.

We provide the mean computation time per agent, in
seconds, required for convergence of each algorithm, along
with the standard deviation in Table III, over 20 randomly-
generated problems for each communication network. From
Table III, we note that ABm requires the shortest com-
putation time for convergence on more-sparsely-connected
communication graphs. However, on more-densely-connected
communication graphs, DIGing-ATC achieves the shortest
computation time, followed by DC-Grad.

TABLE III
THE MEAN AND STANDARD DEVIATION OF THE CUMULATIVE
COMPUTATION TIME (IN SECONDS) PER AGENT IN THE DISTRIBUTED
ROBUST-STATE-ESTIMATION PROBLEM.

Algorithm K =0.42 k=0.74 x = 0.96 xk = 1.00
AB/Push-Pull [16] 7.55¢73 4 1.89¢3 7.76e73 4 1.99¢3 8.16e73 4 2.04e3 8.63¢73 4 2.02¢3
ABm-DS [13] 8.96e % £ 1.660~* 9.06e~* £ 2.64e™* 9.47¢~* £ 2.960~* 9.69¢ % £ 27504
DIGing-ATC [14] ~ 7.43¢~% £ 6.89e~% 4.46e~%+9.93e™5 1.87e~%4+4.33e”5 1.7le”4+4.51e”5

DC-Grad (ours) 12873 + 1.15e4 7.65¢~4 + 17504 3.05e=4 £ 7.27¢~5 2.85e4 £ 6.69¢ 5

In Table IV, we show the mean and standard deviation
of the cumulative size of messages exchanged by each
agent (in MB), in each distributed algorithm. Generally,
on more-sparsely-connected graphs, ABm converges the
fastest, in terms of the number of iterations, and as a result,
incurs the least communication overhead, closely followed
by DIGing-ATC and DC-Grad. On the other hand, on more-
densely-connected communication graphs, DC-Grad incurs
the least communication overhead.

TABLE IV
THE MEAN AND STANDARD DEVIATION OF THE CUMULATIVE SIZE OF
MESSAGES EXCHANGED BY EACH AGENT (IN MB) IN THE DISTRIBUTED
ROBUST-STATE-ESTIMATION PROBLEM.

K =0.42 Kk =0.74 Kk = 1.00

9.02e7! £ 2.30e™!
1.02¢7" +2.99e~2
6.65e~2 £ 1.48e 2
6.65¢™2 £ 1.55¢ 2

Algorithm = 0.96

AB/Push-Pull [16]
ABm-DS [13]
DIGing-ATC [14]
DC-Grad (ours)

1.01e0 +2.387¢~ !

1.08e™! +3.14e72

2,522 £ 6.70e 3
2.47e~2 £ 5.95¢ 3

9.80e™! £ 248!
1.09¢~" + 3.45¢2
2.81e”2 £ 6.74e 3
2.71e~2 £ 6.69¢ 3

8.86e" ! £ 2.26e !
1.02¢7" +1.85e2
1.14e~! £1.05e~2
1.14e~ ! + 1.06e~2

We show the convergence error of each agent’s iterate x;,
per iteration, on a fully-connected communication network
in Figure 3. We note that DC-Grad converges within the

fewest number of iterations, closely followed by DIGing-ATC.

In addition, AB/Push-Pull requires the greatest number of
iterations for convergence. We note that A B/Push-Pull utilizes

the combine-then-adapt update scheme, which results in
slower convergence, generally [14]. Moreover, the objective
function in (30) is not strongly-convex over its entire domain,
particularly in the ¢;-zone. In addition, gradient-tracking
methods, in general, require (restricted) strong convexity for
linear convergence. As a result, all the algorithms exhibit
sublinear convergence initially, since all the algorithms are
initialized with x; in the ¢;-zone, Vi € V. The algorithms
exhibit linear convergence when the iterates enter the £3-zone,
as depicted in Figure 3. In addition, Figure 4 shows the conver-
gence error of each agent’s iterates on a randomly-generated
communication network with x = 0.42. On these graphs,
ABm requires the least number of iterations for convergence.
We note that the convergence plot for DIGing-ATC overlays
that of DC-Grad, with both algorithms exhibiting relatively
the same performance.

10°
101 -
10—1 4
=|, 1034
x [
I |x
x [T 10754
107" 1 — DC-Grad
DIGing-ATC
107° 4 —— AB/Push-Pull
—— ABm-DS
10712 T T ?
10° 10t 10? 103 104

Number of Iterations

Fig. 3. Convergence error of all agents per iteration in the distributed
robust-state-estimation problem on a fully-connected communication network.
DC-Grad attains the fastest convergence rate, while A B/Push-Pull attains
the slowest convergence rate.

103
101 4
1071 4
= 1073 4
PR)
x [
X
x| 1075
1077
—— DC-Grad
10-9 DIGing-ATC
—— AB/Push-Pull
—— ABm-DS
1071 + T e
10° 10! 102 10° 104

Number of Iterations

Fig. 4. Convergence error of all agents per iteration in the distributed robust-
state-estimation problem on a randomly-generated connected communication
network with k = 0.42. The convergence plot of DIGing-ATC overlays that
of DC-Grad, with both methods converging faster than the other methods
in this trial, although, in general, ABm converges marginally faster on
more-sparsely-connected graphs.

VIII. CONCLUSION

We introduce DC-Grad, a distributed conjugate gradient
method, where each agent communicates with its immediate

2072
Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 27,2025 at 04:56:48 UTC from IEEE Xplore. Restrictions apply.

neighbors to compute an optimal solution of a distributed
optimization problem. Our algorithm utilizes only first-order
information of the optimization problem, without requiring
second-order information. Through simulations, we show that
our algorithm requires the least communication overhead for
convergence on densely-connected communication graphs, in
general, at the expense of a slightly increased computation
overhead in comparison to the best-competing algorithm. In
addition, on sparsely-connected communication graphs, our
algorithms performs similarly to other first-order distributed
algorithms. Preliminary convergence analysis of our algorithm
suggests that our algorithm converges linearly. In future work,
we seek to characterize the convergence rate of our method.
Further, in our simulation studies, our algorithm exhibits a
notably similar performance with DIGing-ATC. We intend
to examine this similarity in future work.

REFERENCES

[1] S.-S. Park, Y. Min, J.-S. Ha, D.-H. Cho, and H.-L. Choi, “A distributed
admm approach to non-myopic path planning for multi-target tracking,”
IEEE Access, vol. 7, pp. 163589-163 603, 2019.

[2] O. Shorinwa, J. Yu, T. Halsted, A. Koufos, and M. Schwager,
“Distributed multi-target tracking for autonomous vehicle fleets,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2020, pp. 3495-3501.

[3] I. Necoara, V. Nedelcu, and I. Dumitrache, ‘“Parallel and distributed
optimization methods for estimation and control in networks,” Journal
of Process Control, vol. 21, no. 5, pp. 756-766, 2011.

[4] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429-450, 2020.

[5] Y. Wang, S. Wang, and L. Wu, “Distributed optimization approaches
for emerging power systems operation: A review,” Electric Power
Systems Research, vol. 144, pp. 127-135, 2017.

[6] W. Tang and P. Daoutidis, “Distributed nonlinear model predictive
control through accelerated parallel admm,” in 2019 American Control
Conference (ACC). 1EEE, 2019, pp. 1406-1411.

[7] O. Shorinwa and M. Schwager, “Distributed model predictive control

via separable optimization in multi-agent networks,” IEEE Transactions

on Automatic Control, 2023.

A. Nedié, D. P. Bertsekas, and V. S. Borkar, “Distributed asynchronous

incremental subgradient methods,” Studies in Computational Mathe-

matics, vol. 8, no. C, pp. 381-407, 2001.

[9] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus

with least-mean-square deviation,” Journal of parallel and distributed

computing, vol. 67, no. 1, pp. 33-46, 2007.

F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli,

“Weighted gossip: Distributed averaging using non-doubly stochastic

matrices,” in 2010 IEEE International Symposium on Information

Theory. IEEE, 2010, pp. 1753-1757.

K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized

gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.

1835-1854, 2016.

W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order

algorithm for decentralized consensus optimization,” SIAM Journal on

Optimization, vol. 25, no. 2, pp. 944-966, 2015.

R. Xin and U. A. Khan, “Distributed heavy-ball: A generalization

and acceleration of first-order methods with gradient tracking,” IEEE

Transactions on Automatic Control, vol. 65, no. 6, pp. 2627-2633,

2019.

[8

[t}

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

2073

A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM Journal
on Optimization, vol. 27, no. 4, pp. 2597-2633, 2017.

Q. L, X. Liao, H. Li, and T. Huang, “A Nesterov-like gradient tracking
algorithm for distributed optimization over directed networks,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2020.

R. Xin, S. Pu, A. Nedi¢, and U. A. Khan, “A general framework for
decentralized optimization with first-order methods,” Proceedings of
the IEEE, vol. 108, no. 11, pp. 1869-1889, 2020.

G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5262-5276, 2010.

F. Farina, A. Garulli, A. Giannitrapani, and G. Notarstefano, “A dis-
tributed asynchronous method of multipliers for constrained nonconvex
optimization,” Automatica, vol. 103, pp. 243-253, 2019.

M. R. Hestenes, E. Stiefel ef al., “Methods of conjugate gradients for
solving linear systems,” Journal of research of the National Bureau of
Standards, vol. 49, no. 6, pp. 409-436, 1952.

W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient
methods,” Pacific journal of Optimization, vol. 2, no. 1, pp. 35-58,
2006.

Y.-H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with
a strong global convergence property,” SIAM Journal on optimization,
vol. 10, no. 1, pp. 177-182, 1999.

G. Yuan, T. Li, and W. Hu, “A conjugate gradient algorithm for large-
scale nonlinear equations and image restoration problems,” Applied
numerical mathematics, vol. 147, pp. 129-141, 2020.

G. Yuan, Z. Wei, and Y. Yang, “The global convergence of the polak—
ribiere—polyak conjugate gradient algorithm under inexact line search
for nonconvex functions,” Journal of Computational and Applied
Mathematics, vol. 362, pp. 262-275, 2019.

L. Ismail and R. Barua, “Implementation and performance evaluation
of a distributed conjugate gradient method in a cloud computing
environment,” Software: Practice and Experience, vol. 43, no. 3, pp.
281-304, 2013.

P. Lanucara and S. Rovida, “Conjugate-gradient algorithms: An mpi
open-mp implementation on distributed shared memory systems,” in
First European Workshop on OpenMP, 1999, pp. 76-78.

R. Helfenstein and J. Koko, “Parallel preconditioned conjugate gradient
algorithm on GPU,” Journal of Computational and Applied Mathemat-
ics, vol. 236, no. 15, pp. 3584-3590, 2012.

A. Engelmann and T. Faulwasser, “Essentially decentralized conjugate
gradients,” arXiv preprint arXiv:2102.12311, 2021.

S. Xu, R. C. De Lamare, and H. V. Poor, ‘“Distributed estimation over
sensor networks based on distributed conjugate gradient strategies,”
IET Signal Processing, vol. 10, no. 3, pp. 291-301, 2016.

H. Ping, Y. Wang, and D. Li, “Dcg: Distributed conjugate gradient for
efficient linear equations solving,” arXiv preprint arXiv:2107.13814,
2021.

C. Xu, J. Zhu, Y. Shang, and Q. Wu, “A distributed conjugate gradient
online learning method over networks,” Complexity, vol. 2020, pp.
1-13, 2020.

A. H. Sayed, “Diffusion adaptation over networks,” in Academic Press
Library in Signal Processing. Elsevier, 2014, vol. 3, pp. 323-453.
R. Fletcher and C. M. Reeves, “Function minimization by conjugate
gradients,” The computer journal, vol. 7, no. 2, pp. 149-154, 1964.
E. Polak and G. Ribiere, “Note sur la convergence de directions
conjugeés. rev. francaise informat,” Recherche Opertionelle, 3e année,
vol. 16, pp. 35-43, 1969.

B. T. Polyak, “The conjugate gradient method in extremal problems,”
USSR Computational Mathematics and Mathematical Physics, vol. 9,
no. 4, pp. 94-112, 1969.

M. Zhu and S. Martinez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322-329, 2010.

O. Shorinwa and M. Schwager, “Distributed conjugate gradient method
via conjugate direction tracking,” arXiv preprint arXiv:2309.12235,
2023.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on February 27,2025 at 04:56:48 UTC from IEEE Xplore. Restrictions apply.

