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Doped moiré magnets: Renormalized flat bands and excitonic phases
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We explore the phase diagram of a twisted bilayer of strongly interacting electrons on a honeycomb lattice
close to half filling using the slave-boson mean-field theory. Our analysis indicates that a variety of new phases
can be realized as a function of chemical doping and twist angle. In particular, we find a nonmagnetic excitonic
insulating phase that breaks the translational symmetry of the underlying moiré pattern. This phase results from
the interplay of strong Coulomb interactions and the twist angle. In addition, we show that the features of the
renormalized dispersion, such as the magic angles, depend significantly on the interactions. Our results highlight
the rich physics arising in doped moiré superlattices of Mott insulators.
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I. INTRODUCTION

The discovery of superconductivity in twisted bilayer
graphene [1] has sparked extensive research into moiré su-
perlattices. The quantum interference of electronic wave
functions in twisted or misaligned bilayers leads to the sup-
pression of the kinetic energy of electrons relative to the
electron-electron interaction energy. By leveraging the high
tunability of such platforms, much effort is made to ex-
plore and control correlated electronic phases of matter [2–4],
which have long been a complex and intriguing area of re-
search [5]. Correlated phases of matter can also be realized in
bulk d- and f -electron materials such as cuprates [6] or heavy
fermions [7]. In these systems, the strong electron-electron
interaction surpasses the kinetic energy due to the absence
of screening. The correlated electronic states realized via the
twisting share many similarities with these phases. However,
some important differences are notable [8].

While moiré engineering of electronic phases in weakly
correlated layers such as semiconductors and graphene has
been extensively studied, the research on the moiré super-
lattices composed of Mott insulators and magnets is at its
seminal stages. To date, a limited number of theoretical in-
vestigations on moiré superlattices of magnetic materials have
been conducted [9–17]. Several of these predicted phases have
been demonstrated experimentally [18–20]. One prominent
example of such a platform is the twisted cuprates where the
Dirac spectrum emerges with the formation of the Bogoli-
ubov quasiparticle excitations of the d-wave superconducting
phases [21–25].
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In this article, we explore the venue of small twist angle
bilayers of honeycomb materials with strong Coulomb re-
pulsion [26] described by the t-J model [27,28]. Our study
is motivated by the observation that many two-dimensional
Mott insulators with novel magnetic quantum phases possess
a honeycomb lattice structure [29]. Contrary to the twisted
noninteracting materials, where the nontrivial correlated states
are stabilized in a narrow range of dopings close to Fermi
energy [30], in the system considered here, due to the strong
interactions in each layer, electronic states in a wide range
of energies participate in the formation of the ground state.
In this aspect, our approach is essentially different from the
commonly used approximation that utilizes the projection into
the flat topological bands at charge neutrality. Here, we use the
entire band structure of the interacting continuum model, and
the obstruction to the Wannierization present in the low-lying
Chern bands is avoided. This sacrifices some of the ultravi-
olet details of the band structure due to the truncation of the
Brillouin zone but preserves the physical picture of the local
moments.

Our results show that twisted doped Mott insulators can
host new types of quantum phases, one example of which is an
excitonic insulator of spinons. The emergence of this phase is
crucially related to both strong correlations in each layer and
the relative twist of the two layers, which produces the moiré
minibands. Within our mean-field analysis, the gaps between
the minibands are controlled by the interactions, which en-
ables the stabilization of the nonmagnetic insulating phases
when the Fermi level lies in one of such gaps. This excitonic
insulator originates from the finite momentum hybridization
of the interlayer spinons and breaks the translation symme-
try of the underlying moiré lattice while the intralayer order
parameters stay homogeneous.

The rest of the paper is organized as follows. In Sec. II,
we describe the parton mean-field theory for the strongly
interacting hexagonal bilayer. Section III details the phase
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FIG. 1. (a) The depiction of a twisted bilayer doped Mott in-
sulator with the intra- and interlayer hopping and superexchange
parameters. The intralayer hopping and superexchange are denoted
with t and J . The interlayer hoppings (superexchange) terms consid-
ered are indicated with arrows: JAA and tAA correspond to AA and
BB terms, and JAB and tAB interpolate between different sublattices
of different layers. (b) At high values of the interlayer superexchange
JAA and sufficient hole doping μ0 < 0, the ground state of the system
is the excitonic insulator of spinons characterized by the nonzero
values of the order parameter χAA(BB) = 〈 f̂

(1)†
A(B) f̂

(2)
A(B)〉, which breaks

the translation symmetry of the moiré lattice as indicated. The area
of the unit cell in this phase (shaded with white) is three times larger
than the area of the hexagonal moiré unit cell (shown with blue), and
the lattice vectors in the real space are promoted from aM

1 and aM
2 to

d1 and d2.

diagram of the slave-boson mean-field theory. Some aspects
peculiar to the twisted bilayers, such as the magic angles and
the twist-angle dependence of the phases, are also discussed.
We conclude with a summary of our results and an outlook in
Sec. IV.

II. MODEL AND METHODS

We consider a twisted honeycomb bilayer as depicted in
Fig. 1(a). Assuming the limit of strong Coulomb interactions
and small doping, we use the following t-J model, which
captures both inter- and intralayer interactions:

Ĥt−J = −
∑

〈i j〉

ti jP̂ĉ
†
iσ ĉ jσ P̂

+
∑

〈i j〉

Ji j

(

Ŝi · Ŝ j −
1

4
n̂in̂ j

)

− μ0

∑

i

ĉ
†
iσ ĉiσ . (1)

Here, we define ti j ≡ t and Ji j ≡ J for the indices i, j belong-
ing to the neighboring cites of the honeycomb lattice in the
same layer. The interlayer hoppings and magnetic couplings
have the forms ti j = tAA(|i − j|) and Ji j = JAA(|i − j|) for
i, j belonging to the same sublattice in both layers whereas
ti j = tAB(|i − j|), Ji j = JAB(|i − j|) when i, j belong to op-
posite sublattices in the two layers. We assume that tAA =
tBB, tAB, JAA = JBB, JAB are smooth functions of their ar-
gument, which justifies using the interacting analog of the
Bistritzer-MacDonald model [31].

The spin operators are expressed in terms of Abrikosov
fermions as Ŝi = 1

2

∑

σσ ′ f̂
†
iσ σσσ ′ f̂iσ ′ , where σ is a vector of

Pauli matrices and P̂ denotes the projector into the subspace
of singly occupied sites. We implement the single-occupancy
constraint via slave-boson formalism [32]

ĉiσ = b̂
†
i f̂iσ , (2)

which leads to the holonomic condition
∑

σ

f̂
†
iσ f̂iσ + b̂

†
i b̂i = 1. (3)

The relation above will be taken into account at the mean-field
level by introducing into the Hamiltonian a corresponding
term with a constant Lagrange multiplier λ. Within our mean-
field analysis, we consider solutions with uniform holon
occupation δ ≡ 〈b̂†

i b̂i〉. We further decouple the superex-
change term in (1) in the direct and exchange channels as
shown in Appendix A. In this work, we do not consider the
superconducting state and retain the susceptibilities of the
form χi j = 〈 f̂

†
i f̂ j〉. The direct terms can be expressed in terms

of δ through the constraint equation (3) (see Appendixes A
and B). The resulting mean-field Hamiltonian can be
written as

Ĥ = Ĥintra + Ĥinter + (λ − μ0)
∑

k

f̂
†
k f̂k + C, (4)

where

f̂k =
(

f̂
(1)
kA

f̂
(1)
kB

f̂
(2)
kA

f̂
(2)
kB

)

, (5)

and indices (1) and (2) denote the layer. The intralayer term is
as follows:

(Ĥintra )QQ′ = δQQ′

∑

k

f̂
†
k Hintra(k) f̂k, (6)

where Q and Q′ lie within the moiré reciprocal lattice spanned
by vectors �n (see Fig. 2). The contribution from the two
valleys can be presented as follows:

Hintra(k) = −
(

δt +
χJ

4

)

(

K
(1)
k 0

0 K
(2)
k

)

, (7)

with the rotated hopping matrices

K
(l )
k = vF [R(±θ/2)(k + Q) · (σ̂x, σ̂y)], vF = 3

2 at, (8)

where we set the lattice constant a equal to unity. The inter-
layer Hamiltonian Ĥinter is a sum of the hopping Ĥ t

inter and
superexchange Ĥ J

inter components as introduced here:

(Ĥinter )
t (J )
QQ′ =

∑

kλnm

f̂
†
k H

t (J )
inter,mλ f̂kδQ−Q′, λ(�m−q

t (J )
n ), (9)
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(a) (b)

FIG. 2. (a) The small hexagon shows the moiré Brillouin zone;
vectors �n connecting vertices on the moiré reciprocal lattice are
indicated with blue arrows. (b) Three adjacent moiré Brillouin zones
are shown together with blue arrows corresponding to vectors �n and
indicating possible hybridization momenta of spinons in homoge-
neous superexchange case qJ

n = 0. If this possibility is realized, both
the terms Ĥ t

inter and Ĥ J
inter [see (9)] are of this type. The black arrows

represent the hybridization possibilities entering the term Ĥ J
inter in the

case of spatially modulated superexchange qJ
n = �n. Note that in this

case, every Dirac cone can hybridize with the Dirac cone from the
other layer at the same point in the momentum space.

where λ = ±1 represent the hopping from layer 2 to layer 1,
and the inverse process correspondingly, m and n run between
1 and 3, and qt

n = 0 [31]. Therefore, for Ĥ t
inter the possible

hybridization momenta between the states in different layers
are always �n, shown with blue arrows in Fig. 2.

Interlayer superexchange has a momentum dependence of
the general form

〈

f̂
(1)†
iα f̂

(2)
jβ

〉

= χαβ

3
∑

n=1

eiqJ
n ·j. (10)

We consider two possible mean-field solutions where qJ
n = 0

and qJ
n = �n: in the latter choice, the interlayer hybridization

momenta are modified by the momentum imparted by the
spinon interlayer order parameters. The possible hybridiza-
tion vectors in momentum space entering Ĥ J

inter in this case
are shown with black arrows in Fig. 2(b). The part of the
Hamiltonian that corresponds to interlayer couplings assumes
the form

H t
inter,mλ =

(

0 T t
m

0 0

)

δλ,1 + (H.c.)δλ,−1, (11)

H J
inter,mλ =

(

0 T J
m

0 0

)

δλ,1 + (H.c.)δλ,−1, (12)

T t
m = −

(

δtAA ωm−1δtAB

ω−(m−1)δtAB δtAA

)

, (13)

T J
m = −

(

χAAJAA

4 ωm−1 χABJAB

4

ω−(m−1) χABJAB

4
χBBJAA

4

)

, (14)

where ω = e2π i/3. The constant term C found in (4) depends

on the choice of qJ
m and can be found in Appendix B.

The mean-field Hamiltonian in (4) has similarities to the
Bistritzer-MacDonald model describing the noninteracting bi-
layer of graphene [31] and possesses similar symmetries: C6

rotations, moiré translations TM, and the time reversal. When
χAA �= χBB, the C2 symmetry is broken, and the KM and KM′

points located in the corners of the hexagonal moiré Brillouin

zone become gapped. Another symmetry-breaking pattern
corresponds to qJ

n �= 0. In the latter phase, if simultaneously
δ �= 0, the moiré translation symmetry TM is broken, and the
unit cell in the real space triples as shown with white in
Fig. 1(b).

The correlated twisted bilayer model has also some dis-
tinctive features compared to the noninteracting counterpart,
which are captured by the self-consistency equations deter-
mining χAA, χBB, and χAB that we now address. The Fourier
transform of the hopping term with momentum K equal to
the distance to the K point acts as an interlayer hybridiza-
tion parameter tAA in the noninteracting Bistritzer-MacDonald
model. Similarly, in our model, the corresponding superex-
change JAA ≡ JK

AA is found as the Fourier transform of the
function J (|i − j|) at the momentum K. However, besides
tAA ≡ tK

AA and JAA, the mean-field values of χAA(BB) depend
on the Fourier transforms of J (|i − j|) but at different mo-
menta equal to either zero or to the reciprocal lattice vector

J0
AA =

∫

d2r

�
J (r), JG

AA =
∫

d2r

�
J (r)e−iG·r, (15)

as

χAA =
JK

AA

J0
AA

∑

k, n<EF

〈nk|
(

Ĥ J
inter

)

AA|nk〉 , (16)

in qJ
n = 0 case, and

χAA =
JK

AA

3
(

J0
AA + 2JG

AA

)

∑

k, n<EF

〈nk|
(

Ĥ J
inter

)

AA|nk〉 (17)

in the case of spatially nonuniform interlayer superexchange.
With |nk〉, we indicate the wave function of the full Hamilto-
nian Ĥ in miniband n at momentum k, and (Ĥ J

inter )AA denotes
the interlayer hybridization Hamiltonian term (9) with all but
AA matrix components set to zero (see Appendix B). Due to
the prefactors in (16) and (17), the resulting phase diagram
depends on the spread of the superexchange: the more it is
localized in the real space, the larger the interlayer spinon
condensates are, and the C2-breaking phases are stabilized at
the smaller values of JAA.

We consider two types of Ansätze for the interlayer su-
perexchange terms Ĥ J

inter: the uniform with qJ
n = 0, and the

qJ
n = �n. In the former case, the band structure of spinons

is analogous to the one of the electrons in the Bistritzer-
MacDonald model, as shown in Fig. 4(a). The latter choice
triples the unit cell in real space leading to the appearance
of an additional Dirac cone at the gamma point due to the
folding of the moiré Brillouin zone, as shown in Fig. 4(b).
If simultaneously χAA �= χBB, C2 symmetry is broken and all
Dirac cones develop a gap, as indicated in Figs. 4(c)–4(e).

III. RESULTS AND DISCUSSION

By minimizing the Hamiltonian (4) with respect to the free
parameters λ, δ, χ , χAA, χBB, χAB, and solving the resulting
mean-field equations (see Appendix B) self-consistently, we
obtain the phase diagram as presented in Fig. 3 in terms of the
interlayer superexchange JAA and the chemical potential μ0.
The breakdown of the phases with associated order parameters
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FIG. 3. The phase diagram for the hexagonal Mott insulator bi-
layer with the twist angle θ = 10◦. The parameters used are tAA =
tAB = t/5, J = 0.5t , JAB = 0.1t , J0

AA = J0
AB = 0.2t , JG

AA = 0. The
blue dashed line indicates the change in the boundary of the EI phase
when the twist angle is lowered to 7◦.

FIG. 4. (a)–(e) Examples of spinon band structure for all five
phases in the phase diagram in Fig. 3, i.e., (a) metal, (b) U (1) × U (1)
spin liquid, (c) U (1) gapped spin liquid, (d) quantum paramagnet,
and (e) excitonic insulator. The Fermi levels are shown with red lines.
(f) Schematic phase diagram as a function of JAA and the hole doping
δ; gray color indicates the parameter region not attainable within the
studied μ0-JAA values.

FIG. 5. Mean-field parameters δ and χ in the vicinity of the
excitonic insulator phase in the bottom right corner of the phase
diagram in Fig. 3. Both quantities experience abrupt changes as JAA

and μ0 are varied when several minibands cross the Fermi level.

and symmetry properties is shown in Table I. Furthermore,
the spinon band structures realized in each phase are shown in
Fig. 4.

For small values of JAA, the ground state corresponds to
the uniform order parameter χAA = χBB, i.e., qJ = 0. This
metallic phase, highlighted in dark blue, exhibits a dispersion
that is essentially a renormalized version of that found in
twisted bilayer graphene. Yet there are key differences, such
as the nonlinear behavior of the magic angle as a function of
parameters, as discussed below.

For higher values of the chemical potential, μ0, we obtain
Mott insulating phases (i.e., no doping, δ = 0). Within the
parton mean-field theory, these phases are either the spin
liquids or the quantum paramagnets. The spin liquid phases
are highlighted in red and orange in the phase diagram: the
first phase is the plain intralayer U (1) × U (1) spin liquid

with χ �= 0 and all other order parameters being zero. The
latter phase, highlighted with orange, is a U (1) spin liquid

state with the gap at E = 0 arising due to the development of
the nontrivial interlayer spinon order parameter χAA = −χBB

with qJ
n = �n. Due to the gap opening, this phase features

the chiral edge currents of spinons localized on the bound-
aries between the AB and BA stacking arrangements [33].
For larger values of interlayer Heisenberg exchange, JAA, the
Dirac kinetic term provided by the intralayer spinon order
parameter vanishes, with the corresponding phase becoming
a topologically trivial flat band. This gapped phase, which we
call the quantum paramagnet and show with brown color, is
characterized by the formation of interlayer singlets.

The last phase, shown with cyan, is insulating with δ > 0
and is particularly distinctive compared to the noninteracting
twisted models. The Fermi level in this phase lies between
the minibands with the mean-field parameters δ and χ varying
across the phase in a steplike fashion, as shown in Fig. 5. Thus,
the latter phase encompasses multiple phases separated by the
metal-insulator transitions. As one can infer from the Table I,
in this phase, both the interlayer and intralayer spinon con-
densates are present. Furthermore, the combination of δ �= 0
and the momentum dependence of the order parameter breaks
spontaneously the moiré translational symmetry, such that the
area of the unit cell in the real space triples, as shown in
Fig. 1(b). Therefore, this state is an exotic valence bond solid
characterized by the formation of the interlayer singlets.
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TABLE I. Summary of the phases. The first column labels the phase together with its color code in the diagram in Fig. 3. The next four
columns represent the values of the parameters distinguishing the phases in the diagram. The sign “+” means that the order parameter is
positive, and “−” stands for negative. The sixth column indicates whether the interlayer spinon order parameters χAA(BB) are uniform (qJ

n = 0)
or develop spatial modulation (qJ

n = �n). The last two columns show whether the C2 symmetry protecting the Dirac cones and the moiré
translations TM are spontaneously broken (indicated by the cross mark) or preserved (shown with the check mark).

Phase δ χ χAA χBB qJ
n C2 TM

[Red] U (1) × U (1) spin liquid 0 + 0 0 �n � �

[Orange] U (1) gapped spin liquid 0 + + − �n ✗ �

[Brown] quantum paramagnet 0 0 + − �n ✗ �

[Blue] metal + + + + 0 � �

[Cyan] excitonic insulator (EI) + + + − �n ✗ ✗

This phase essentially represents the excitonic insulator

(EI) of spinons, in analogy with the excitonic insulator arising
due to pairing between an electron and a hole separated by a
finite momentum vector [34]. In our case, it is a particle-hole
bound state between the spinons belonging to different layers
and separated by momentum �n, which leads to the nonva-
nishing expectation value of the order parameters χAA(BB) =
〈 f̂

(1)†
A(B) f̂

(2)
A(B)〉.

As indicated in Fig. 3 with the blue dashed line, the ex-
citonic insulator phase expands toward μ0 = 0 as the twist
angle is lowered due to the increase in the number of mini-
bands. Therefore, at small twist angles, this phase is realized
at a lower doping level. However, crucially, we find that the
condition JAA � J0

AA needs to be satisfied in order for the
EI phase to exist; i.e., the superexchange at zero momentum
should be much smaller than at the momentum K. As a re-
sult, some destructive interference effects with respect to the
nearest-neighbor superexchange are likely required to observe
this phase. Lastly, we note that the mean-field parameters that
distinguish different phases are the interlayer spinon suscep-
tibilities χAA and χBB. The parameter χAB is found to be
nonzero only in the metal phase.

Another distinctive aspect of the considered model is
the superexchange dependence of the magic angles found
in the correlated metallic phase. As discussed above, the
Hamiltonian in this phase is in many ways analogous to the
Bistritzer-MacDonald model, with certain parameters deter-
mined self-consistently. The magic angles then occur due to
the interplay between the interactions and the dispersion, in
turn, both dependent on mean-field parameters such as χ

and δ.
In Fig. 6(a), we showcase the effect of the interlayer su-

perexchanges JAA and JAB on the three largest magic angles.
The main influence on the dispersion of the energy levels
at neutrality can be captured via the renormalization of the
effective intralayer and two interlayer tunneling terms

t eff = δt +
χJ

4
,

t eff
AA = δtAA +

χAAJAA

4
,

t eff
AB = δtAB +

χABJAB

4
. (18)

From Fig. 6(b), we infer that when the parameters JAA and
JAB are increased, the ratios t eff

AA/t eff and t eff
AB/t eff also grow.

This is to be expected from the definitions (18). However,
the actual increase is faster than linear due to the mean-field
renormalization of χAA, χBB, and χAB. Since the effective
interlayer tunneling is increased, all magic angles increase in
magnitude.

Next, we discuss the validity of our method. Large-N ,
slave-boson mean-field theory is a static approximation that
becomes exact in the limit of N → ∞ [35]. This naturally
can raise the concern if our results can hold for N = 2. It is
well established that the phase transition associated with the
condensation of the slave boson is in general not a true phase
transition and 1/N corrections can turn it into a crossover [35].
However, if the order parameter breaks additional symmetries
such as translations or rotations, it is anticipated that the phase
transition can survive [36]. We note that the excitonic insulator
phase breaks moiré translational symmetry. In addition, for
the single-band Hubbard model, slave-particle theories are

(a)

(b)

FIG. 6. Renormalization of the three largest magic angles of
spinons (a) and the effective tunneling terms (b) as a function of
parameters JAA and JAB as they are varied simultaneously. Due to the
net increase in the interlayer tunneling with respect to the intralayer
shown on the bottom panel, the magic angles increase as indicated
on the Fermi velocity density plot on the top panel. The parameters
used are tAA = tAB = t/2, J = 0.2t , J0

AA = J0
AB = t/4, and JG

AA = 0,
and vF0 = 3at/2 denotes the bare Fermi velocity.
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benchmarked by quantum Monte Carlo [37] and dynamical
mean field theory simulations [38], which show qualitative
agreement [39].

IV. CONCLUSION

We examined the twisted hexagonal correlated insulators
via the slave-boson mean-field theory. The associated phase
diagram, which now results from the effect of twist on both the
band structure and the form of interactions, is shown to host
the exotic translational symmetry-breaking excitonic insulator
phase. This phase arises due to the existence of the minigaps
controlled by the interaction, and hence sensitive to the twist
angle. Despite the similarity of our model Hamiltonian at the
mean-field level to the Bistritzer-MacDonald model, the inter-
actions play an essential role in the stabilization of phases that
are absent in the noninteracting Bistritzer-MacDonald model.
In particular, the flat bands corresponding to magic angles
are determined by the electron-electron interactions as much
as the tunneling terms between the layers. Furthermore, due
to the correlated nature of underlying monolayers, changes
in doping levels have a significant impact on the parameters
of the model. The high tunability of the lower-dimensional
materials with respect to doping raises hopes that the phe-
nomenology described in this work can be observed in future
experiments.
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APPENDIX A: MEAN-FIELD THEORY

FOR AA-STACKING PATTERN

In this Appendix, we derive the mean-field formalism for
the AA-stacked bilayer. We assume the interlayer hopping is

local and the AB hopping is absent. In the limit of U → ∞
and close to half filling, the t-J model is a valid approximation,

Ĥt−J = −
∑

〈i j〉

ti jP̂ĉ
†
iσ ĉ jσ P̂ − μ0

∑

i

ĉ
†
iσ ĉiσ

+
∑

〈i j〉

Ji j

(

Ŝi · Ŝ j −
1

4
n̂in̂ j

)

, (A1)

where ti j denotes the hopping between the sites i and j (both
of the indices may take values in the first and the second
layers), Ji j is the superexchange parameter, and P̂ is the
projector into the space of singly occupied sites. The oper-
ators ĉiσ and ĉ

†
iσ are the annihilation and creation operators

of fermions with position i and spin σ . In order to accom-
modate the constraint of not having doubly occupied sites,
we use the parton decomposition, ĉiσ = b̂

†
i f̂iσ . The constraint

takes the convenient for numerical calculations holonomic
form

∑

σ f̂
†
iσ f̂iσ + b̂

†
i b̂i = 1.

In terms of the parton fields, the t-J model Hamilto-
nian (A1) with the added constraint reads [6]

Ĥ0 = −t
∑

〈i j〉

( f̂
†
iσ f̂ jσ b̂ib̂

†
j + c.c.) − μ0

∑

i

f̂
†
iσ f̂iσ

+ J
∑

〈i j〉

(

Ŝi · Ŝ j −
1

4
n̂in̂ j

)

+ λ
∑

i

( f̂
†
iσ f̂iσ + b̂

†
i b̂i − 1). (A2)

We assume constant mean occupation of holes 〈b̂†
i b̂i〉 = δ

and decouple the spinon terms in the exchange channel, in-
troducing the real-valued Hubbard-Stratonovich field χi j =
〈 f̂

†
iσ f̂ jσ 〉 δ〈i j〉 that modifies the nearest-neighbor hoppings. The

mean-field expressions for the density-density and spin-spin
terms then read

n̂in̂ j = (1 − b̂
†
i b̂i )(1 − b̂

†
j b̂ j ) ∼ (1 − δ)2,

Ŝi · Ŝ j = 2 f̂
†
iσ f̂iβ f̂

†
jβ f̂ jσ − ( f̂

†
iσ f̂iσ )( f̂

†
jβ f jβ )

∼ 1
4χ2

i j − 1
4 (χi j f

†
σ i fσ j + c.c.) + 1

4 (1 − δ). (A3)

The proof of the last identity is contained in Sec. A 1. By
utilizing the identities (A3) in (A2) and taking the Fourier
transform, we obtain the Hamiltonian for a single monolayer

Ĥ0 = −
(

δt +
Jχ

4

)

∑

kσ

[g(k) f̂
†
kσA f̂kσB + c.c.] + (λ − μ0)

∑

kσα

f̂
†
kσα

f̂kσα +
3JN

4
χ2 +

N

4
(1 − δ)(3δJ − 8λ), (A4)

where N is the number of unit cells, and the function g(k) =
∑

j e−ik·γ j is the hopping term well known from the theory of
the graphene monolayer: in our notations γ1 = (0, a) with the
remaining γ j obtained by 2π/3 rotations. In order to describe
a strongly interacting bilayer, we take the Hamiltonian (A4)
twice—for the layers 1 and 2—and supplement the sum by
the interlayer hopping and interlayer superexchange

ĤAA = Ĥ
(1)
0 + Ĥ

(2)
0 + Ĥt + ĤJ , (A5)

where in the basis

f̂k =
(

f̂
(1)
kA

f̂
(1)
kB

f̂
(2)
kA

f̂
(2)
kB

)

(A6)

we write

Ht = −

⎛

⎜

⎜

⎜

⎜

⎝

0 0 3δtAA 0

0 0 0 3δtAA

3δtAA 0 0 0

0 3δtAA 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, (A7)
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with the hopping tAA tripled to make the comparison with
the nonzero twist angle case more convenient. We use 3JAA

for the superexchange alike. The interlayer superexchange
contains spin-spin and density-density interlayer terms,

ĤJ = 3JAA

∑

i

(

Ŝ
(1)
iA · Ŝ

(2)
iA + Ŝ

(1)
iB · Ŝ

(2)
iB

)

− 3JAA

∑

i

(

1

4
n̂

(1)
iA n̂

(2)
iA −

1

4
n̂

(1)
iB n̂

(2)
iB

)

. (A8)

Making a further assumption that the hole occupation is the same in each layer and sublattice, all the above terms can be
treated using the expressions analogous to (A3). The resulting Hamiltonian for the AA stacking reads

Ĥuntw = −
∑

kσ

f̂
†
kσ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

μ0 − λ
(

δt + χJ

4

)

g(k) 3δtAA + 3χAAJAA

4 0
(

δt + χJ

4

)

g∗(k) μ0 − λ 0 3δtAA + 3χBBJAA

4

3δtAA + 3χAAJAA

4 0 μ0 − λ
(

δt + χJ

4

)

g(k)

0 3δtAA + 3χBBJAA

4

(

δt + χJ

4

)

g∗(k) μ0 − λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

f̂kσ + Hconst, (A9)

where the constant term is Hconst = 3
2 NJχ2 + 3NJAA

4 (χ2
AA + χ2

BB) + N
2 (1 − δ)(3δJ + 3δJAA − 8λ) . The parameters of the Hamil-

tonian are μ0, the intra- and interlayer hoppings t and tAA, and the intra- and interlayer superexchanges J and JAA. The mean-field
parameters χ , χA, χB, λ, and δ are self-consistently determined by minimizing the free energy,

χ =
1

6

∫

BZ

d2k

K

4
∑

n=1

〈nk|Ĥ0|nk〉 θ (EF − En(k)) ≡
I0

6
,

χAA(BB) =
∫

BZ

d2k

K

4
∑

n=1

〈nk|ĤAA(BB)|nk〉 θ (EF − En(k)) ≡ IAA(BB),

δ = 1 −
1

2

∫

BZ

d2k

K

4
∑

n=1

θ (EF − En(k)),

λ =
1

2
t I0 +

3tAA

2
(IAA + IBB) −

3

8
(1 − 2δ)(J + JAA ), (A10)

where Ĥ0 =
∑

kl g(k) f̂
(l )†
kA f̂

(l )
kB + H.c., ĤAA(BB) =

∑

k f̂
(1)†
kA(B)

f̂
(2)
kA(B) + H.c., En(k) and |nk〉 are the eigenvalues and eigen-

vectors of Ĥuntw, K is the area of the hexagonal Brillouin zone,
and θ denotes a step function.

Mean-field treatment of Ŝi · Ŝ j term

We start by recalling the identity for Pauli matrices
σαβσγ δ = 2δαδδβγ − δαβδγ δ . With this, the spin exchange can
be cast as

4(Ŝi · Ŝ j ) = 2 f̂ †
σi

f̂βi f̂
†
β j f̂σ j − f̂ †

σi
f̂σi

f̂
†
β j f̂β j . (A11)

The first term on the right-hand side we write as

2 f̂
†
σ i f̂σ j f̂βi f̂

†
β j + 2n̂i = −2 f̂

†
σ i f̂σ j f̂

†
β j f̂βi + 2n̂i. (A12)

The remaining term is expanded as

f̂
†
↑i f̂↑i f̂

†
↑ j f̂↑ j + f̂

†
↓i f̂↓i f̂

†
↓ j f̂↓ j

− f̂
†
↑i f̂↑ j f̂

†
↓ j f̂↓i − f̂

†
↓i f̂↓ j f̂

†
↑ j f̂↑i

+ f̂
†
↑i f̂↑ j f̂

†
↓ j f̂↓i + f̂

†
↓i f̂↓ j f̂

†
↑ j f̂↑i

+ f̂
†
↑i f̂↑i f̂

†
↓ j f̂↓ j + f̂

†
↓i f̂↓i f̂

†
↑ j f̂↑ j, (A13)

where in the second line we added and in the third line
removed the same two terms. Using the anticommutation re-
lations, { f̂

†
iα, f̂ jβ} = δi jδαβ , we move all the operators with a

dagger in the last two lines to the left, which gives overall

4(Ŝi · Ŝ j ) = n̂i↑ + n̂i↓ − f̂ †
σi

f̂σ j f̂
†
β j f̂βi − f̂

†
↑i f̂

†
↓ j f̂↑ j f̂↓i

− f̂
†
↓i f̂

†
↑ j f̂↓ j f̂↑i + f̂

†
↑i f̂

†
↓ j f̂↓ j f̂↑i

+ f̂
†
↓i f̂

†
↑ j f̂↑ j f̂↓i. (A14)

The last four terms combine into the pairing term ( f̂
†
↑i f̂

†
↓ j −

f̂
†
↓i f̂

†
↑ j )( f̂↓ j f̂↑i − f̂↑ j f̂↓i ) that we ignore in this work. Thus, we

obtain the final expression Ŝi · Ŝ j � − 1
4 f̂

†
αi f̂α j f̂

†
β j f̂βi + 1

4 n̂i ∼
−χi j f̂

†
β j f̂βi − χi j f̂

†
βi f̂β j + χ2

i j + 1
4 n̂i.

APPENDIX B: DERIVATION OF THE TWISTED BILAYER

MEAN-FIELD HAMILTONIAN

In this Appendix, we derive the effective continuous model
of the twisted strongly correlated bilayer. In the limit of zero
twist angle, we expect it to reproduce the continuum limit of
the Hamiltonian (A9).

We use the indices a, b = 1, 2 to denote the layer index,
and α, β = A, B to label sublattices. The layers 1 and 2 are ro-
tated by the angles θ/2 and −θ/2 with respect to an imaginary
reference layer. The reciprocal lattice vectors in the refer-
ence layer are given by G1,2 = 2π/(

√
3a)(−1,∓1/

√
3). The

moiré reciprocal lattice vectors in the small twist angle limit
are GM

1,2 = 2π/(
√

3a)(±1/
√

3,−1)θ (we assume throughout
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that θ is small). The vectors �n connect nearest neighbors
in the moiré lattice, with �1 = (0, 4πθ/(3

√
3a)), and �2,3

obtained from it by 2π/3 and 4π/3 clockwise rotations (see
the left panel in Fig. 2). The moiré reciprocal lattice vectors
GM and �n are related as

GM
1 = �2 − �1, GM

2 = �3 − �1. (B1)

The derivation below closely follows one of the original
continuous Bistritzer-MacDonald (BM) model [40]. The start-
ing assumption is that one can write the t-J model (A1) in
the Wannier basis of the original monolayers. The form of the
interlayer terms in the resulting parton mean-field theory will
essentially depend on the properties of the interlayer superex-
change parameter J (|i − j|). It is clear that if the layers are
sufficiently far away from each other, the layer corrugation
is smooth, and the spatial variation of J is also expected to
be smooth. With this assumption, a BM-type model can be
derived, as we demonstrate below.

After switching from fermion to spinon fields and introduc-
ing the mean-field parameter χi j as explained in Appendix A,
one obtains a mean-field Hamiltonian analogous to (A9). The
essential difference is that in the nonzero twist angle case, the
superexchange is no longer constant in space, which leads to
the appearance of the terms

Û = −
1

4

∑

i j

J (|i − j|)χi j f̂
†(1)
i f̂

(2)
j ,

Û ∗ = −
1

4

∑

i j

J (|i − j|)χ∗
i j f̂

†(1)
j f̂

(2)
i ,

X =
1

4

∑

i j

J (|i − j|)χ∗
i jχi j,

N = −
1

4

∑

i j

J (|i − j|)n̂in̂ j, (B2)

in place of the superexchange terms in (A9). We further
assume that the mean field χi j can condense at nonzero mo-
menta qJ

n ,

χi j = χαβ

3
∑

n=1

ei�n·j. (B3)

The reason to expect qJ
n �= 0 is that when the interlayer

superexchange is sufficiently high, the gap opening is energet-
ically favorable. In order for the gap to open, the Dirac cones
belonging to different layers need to be able to hybridize at
zero momentum. This is achieved precisely by setting qJ

n =
�n, which will be evident from the form of the Hamiltonian
obtained below.

We begin our BM-type model derivation by evaluating the
expectation value of the first (Û ) term in (B2) between the
monolayer Bloch states,

∣

∣ f (a)
pα

〉

=
1

√
N

∑

R(a)

eip·(R(a)+t(a)
α )

∣

∣R(a) + t(a)
α

〉

, (B4)

where R(a) labels the positions of atoms on the A sublattice
in layer (a), and t(a)

α is the basis vector in the same layer:
tA = (0, 0), tB = (a, 0) before twisting. The requisite inter-
layer matrix element can be written as

U
(12)
αβ (p, p′) ≡

〈

f (1)
pα

∣

∣Û
∣

∣ f
(2)
p′β

〉

= −
χαβ

4N

∑

R(1)R(2)n

e−ip·(R(1)+t(1)
α )eip′·(R(2)+t

(2)
β

)eiqJ
n ·(R(2)+t

(2)
β

)J
(

R(1) + t(1)
α − R(2) − t

(2)
β

)

. (B5)

We further expand J in a Fourier integral

J
(

R(1) + t(1)
α − R(2) − t

(2)
β

)

=
1

N�

∑

q

∑

G

J
(12)
q+Gei(q+G)·(R(1)+t(1)

α −R(2)−t
(2)
β ), (B6)

where the G summation runs over the reciprocal lattice vectors of the reference layer, and q summation is over the hexagonal
Brillouin zone. The letter � denotes the size of the unit cell in the real space, and N is the number of electrons. Plugging this
expression back into the matrix element (B5) produces

U
(12)
αβ (p, p′) = −

χαβ

4N2�

∑

R(1)R(2)

∑

qGn

ei(q+G−p)·R(1)
e−i(q+G−p′−qJ

n )·R(2)
J

(12)
q+Gei(qJ

n ·t
(2)
β

+p′·t(2)
β

−p·t(1)
α +q·(t(1)

α −t
(2)
β

)+G·(t(1)
α −t

(2)
β

)). (B7)

We further make use of the identities
1

N

∑

R(2)

ei(q+G−p′−qJ
n )·R(2) =

∑

G(2)

δq+G,p′+qJ
n+G(2) =

∑

G′

δp′−q−G+R−G′,−qJ
n
,

1

N

∑

R(1)

ei(q+G−p)·R(1) =
∑

G′′

δp−q−G+R+G′′,0, (B8)

where G′ and G′′ lie within the reference layer, R+ is a rotation matrix with parameter θ/2, and R− = RT
+. Integration over q

present in (B7) combines these two delta functions into the one with the argument

p − p′ + R+G′′ − R−G′ − qJ
n (B9)

with a condition q = p′ − G + R−G′ + qJ
n . Substituting these in (B7) gives

U
(12)
αβ (p, p′) = −

χαβ

4�

∑

GG′G′′n

J
(12)
p′+R−G′+qJ

n
δp−p′+R+G′′−R−G′−qJ

n
eiκ , (B10)
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where the phase is

κ = p′ · t
(2)
β − p · t(1)

α +
(

t(1)
α − t

(2)
β

)

· (p′ + R−G′) + qJ
n · t(1)

α

= −p · t(1)
α + p′ · t(1)

α +
(

p − p′ + R+G′′ − qJ
n

)

· t(1)
α − R−G′ · t

(2)
β + qJ

n · t(1)
α

= R+G′′ · t(1)
α − R−G′ · t

(2)
β . (B11)

The matrix element then takes the form

U
(12)
αβ (p, p′) = −

χαβ

4�

∑

G′G′′n

J
(12)
p′+R−G′+qJ

n
δp−p′+R+G′′−R−G′−qJ

n
ei(R+G′′·t(1)

α −R−G′·t(2)
β ). (B12)

In the above form, we make a series of approximations. First, we expand around the momenta in the vicinity of the K point in
both layers,

p = R+K + δp, p′ = R−K + δp′. (B13)

As J decays fast in the momentum space away from the rotated layer K points R+K , R+C3K , and R+C2
3 K , we keep only

G′
1 = 0, G′

2 = C3K − K , and G′
3 = C2

3 K − K . For sufficiently small twist angles, the delta function imposes alike G′′
1 = 0,

G′′
2 = C3K − K , and G′′

3 = C2
3 K − K . Since we assume qJ

n � G′, we can let

J
(12)
p′+R+G′+qJ

n
� J

(12)
p′+R+G′ � �JAAδαβ + �JAB(1 − δαβ ), (B14)

where we used the requirements imposed by a C3 symmetry. We further introduce the moiré reciprocal lattice vectors that assume
constant value in the small-angle approximation,

R+G′
1 − R−G′′

1 = 0, R+G′
2 − R−G′′

2 ≡ GM
1 , R+G′

3 − R−G′′
3 ≡ GM

1 + GM
2 . (B15)

The final form of this interlayer superexchange is then

U
(12)
δpδp′ = −

1

4

∑

n

(

χAAJAA χABJAB

χABJAB χBBJAA

)

δδp+�1−qJ
n,δp′ −

1

4

∑

n

(

χAAJAA ωχABJAB

ω−1χABJAB χBBJAA

)

δδp+�2−qJ
n,δp′

−
1

4

∑

n

(

χAAJAA ω−1χABJAB

ωχABJAB χBBJAA

)

δδp+�3−qJ
n,δp′ , (B16)

where ω = e2π i/3. If we set qJ
n = �n, unlike in the classic BM model, the next-nearest neighbors on the moiré lattice can also

hybridize as shown with the long black arrows in Fig. 2(b). Hybridization at zero momentum also becomes possible.
We now discuss the Fourier transform of the X term in (B2). It is convenient to perform this calculation separately for the

qJ
n = 0 and qJ

n = �n cases. We begin with the first case:

χ2
αβ

4

∑

i j

J (|i − j|) =
χ2

αβ

4�N

∑

R(1)R(2)Gq

JG+qei(G+q)·(R(1)−R(2)+t(1)−t(2) ) =
Nχ2

αβ

4�

∑

G(1)G(2)Gq

JG+qδG+q,G(1)δG+q,G(2) eiG(1)·(t(1)−t(2) ). (B17)

At nonzero twist, the only matching reciprocal lattice vectors are G(1) = 0 and G(2) = 0, so we obtain

Nχ2
αβ

4�

∑

Gq

JG+qδG+q,0 =
Nχ2

αβ

4
J0, (B18)

where we introduced Jk=0 = �J0. An analogous calculation for the qJ
n = �n case proceeds as follows:

χ2
αβ

4

∑

i jnn′

J (|i − j|)e−i(�n′ −�n )· j =
χ2

αβ

4�N

∑

R(1)R(2)Gq nn′

JG+qei(G+q)·(R(1)−R(2)+t(1)−t(2) )e−i(�n′−�n )·(R(2)+t(2) )

=
Nχ2

αβ

4�

∑

G(1)G(2)Gq nn′

JG+qδG+q,G(1)δG+q+�n′−�n,G(2) eiG(1)·(t(1)−t(2) )e−i(�n′−�n )·t(2)
. (B19)

We further sum over Gq obtaining

Nχ2
αβ

4�

∑

G(1)G(2) nn′

JG(1)δG(1),G(2)+�n−�n′ e
iG(1)·(t(1)−t(2) )ei(�n−�n′ )·t(2)

. (B20)

Since G(1) and G(2) differ only by a unit reciprocal lattice vector, the momentum conservation allows for the possibilities listed
in Table II.

Using the delta function, we then obtain, depending on the sublattice indices, the following:
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TABLE II. Combinations of summation variables that yield nonzero results in the sum (B20).

G(1) G(2) G(1) − G(2) (n, n′)

0 0 0 (1,1),(2,2),(3,3)
G

(1)
1 G

(2)
1 GM

1 (2,1)
G

(1)
2 G

(2)
2 GM

2 (3,1)
G

(1)
1 − G

(1)
2 G

(2)
1 − G

(2)
2 GM

1 − GM
2 (2,3)

−G
(1)
1 −G

(2)
1 −GM

1 (1,2)
−G

(1)
2 −G

(2)
2 −GM

2 (1,3)
−G

(1)
1 + G

(1)
2 −G

(2)
1 + G

(2)
2 −GM

1 + GM
2 (3,2)

(i) χAA terms (t(1) = 0, t(2) = 0) or χBB terms (t(1) �= 0, t(2) �= 0):

3Nχ2
ααJ0

AA

4
+

6Nχ2
ααJG

AA

4
, (B21)

where Jk=G1 = Jk=G2 = . . . ≡ �JG;
(ii) χAB terms (t(1) = 0, t(2) �= 0) or χBA terms (t(1) �= 0, t(2) = 0):

3Nχ2
ABJ0

AB

4
+

Nχ2
ABJG

AB

4

(

e∓iG1·t + e∓iG2·t + e∓i(G1+G2 )·t + c.c.
)

=
3Nχ2

ABJ0
AB

4
+

Nχ2
ABJG

AB

4

(

e∓2π i/3 + e±2π i/3 + 1 + c.c.
)

=
3Nχ2

ABJ0
AB

4
. (B22)

As the last (N ) term in (B2) can be treated analogously, this concludes the derivation of the continuum model of the
twisted hexagonal Mott insulator. The complete versions of the model with qJ

n = 0 and qJ
n = �n together with the mean-field

equations are summarized below.

1. Uniform χ case

We write the mean-field Hamiltonian for the twisted hexagonal bilayer as a sum of the intralayer and the interlayer parts

Ĥu = Ĥ intra + Cintra + Ĥ inter
u + Cinter

u . (B23)

We further perform on Ĥu the gauge transformation with a unitary matrix

Uδpδp′ =

⎛

⎜

⎜

⎜

⎜

⎝

δδp,δp′−�1/2 0 0 0

0 δδp,δp′−�1/2 0 0

0 0 δδp,δp′+�1/2 0

0 0 0 δδp,δp′+�1/2

⎞

⎟

⎟

⎟

⎟

⎠

(B24)

simultaneously with a shift of variables δp → δp − �1/2, δp′ → δp′ + �1/2. Just like in the Bistritzer-MacDonald model,
in this basis, only the states in different layers with momenta that differ by �n can hybridize. This makes it convenient to
parametrize

δp = Q + k, δp′ = Q′ + k, (B25)

where Q and Q′ belong to the different sublattices of the honeycomb lattice built on vectors �n.
After this procedure, the intralayer term takes the form

(Ĥ intra )QQ′ = δQQ′

∑

k

f̂
†
k H intra(k) f̂k, (B26)

where

H intra(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ − μ0 −
(

δt + χJ

4

)

K
(1)
k 0 0

−
(

δt + χJ

4

)

K
(1)
k λ − μ0 0 0

0 0 λ − μ0 −
(

δt + χJ

4

)

K
(2)
k

0 0 −
(

δt + χJ

4

)

K
(2)
k λ − μ0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (B27)

and the rotated hopping matrices are

K
(l )
k = vF [R(±θ/2)(k + Q) · (σ̂x, σ̂y)], vF = 3

2 at . (B28)
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The intralayer constant term is

Cintra =
3

2
NJχ2 +

N

2
(1 − δ)(3δJ − 8λ). (B29)

The interlayer Hamiltonian can be cast as

(Ĥ inter
u )QQ′ =

∑

kλ

f̂
†
k

(

H inter
1 δQ′−Q,−λ�1 + H inter

2 δQ′−Q,−λ�2 + H inter
3 δQ′−Q,−λ�3

)

f̂k, (B30)

where the λ summation is over two values: λ = +1 corresponds to the hopping from layer 2 to layer 1, and λ = −1 in the
opposite direction. We further define

H inter
i = −

⎛

⎜

⎜

⎜

⎜

⎝

0 0 δtAA + χAAJAA

4 ωi−1
(

δtAB + χABJAB

4

)

0 0 ω−(i−1)
(

δtAB + χABJAB

4

)

δtAA + χBBJAA

4

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

δλ,1 + (H.c.)δλ,−1. (B31)

Lastly, the constant term arising from the interlayer tunneling and superexchange reads

Cinter
u =

N

4

(

χ2
AA + χ2

BB

)

J0
AA +

N

2
χ2

ABJ0
AB +

N

2
δ(1 − δ)

(

J0
AA + J0

AB

)

. (B32)

The mean-field equations for χ , χAA, χBB, χAB, λ, and δ obtained by minimizing (B23) are as follows:

χ =
1

6

∑

Q, En<EF

∫

d2k

K
〈nkQ|Ĥ intra|nkQ〉 , χAA(BB) =

JAA

J0
AA

∑

Q, En<EF

∫

d2k

K
〈nkQ|ĤAA(BB)

u |nkQ〉 ,

χAB =
JAB

2J0
AB

∑

Q, En<EF

∫

d2k

K
〈nkQ|ĤAB

u |nkQ〉 , δ = 1 −
1

2

∑

Q,En<EF

∫

d2k

K
〈nkQ|Ĥu|nkQ〉 ,

λ = 3tχ +
tAA

2

J0
AA

JAA
(χAA + χBB) +

2J0
AB

JAB

tAB

2
χAB −

1

8
(1 − 2δ)

(

3J + J0
AA + J0

AB

)

, (B33)

where

(Ĥ intra )QQ′ = δQQ′

∑

k

f̂
†
k

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 K
(1)
k 0 0

K
(1)
k 0 0 0

0 0 0 K
(2)
k

0 0 K
(2)
k 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

f
†
k , (B34)

and
(

ĤAA(BB,AB)
u

)

QQ′ =
∑

kλ

f̂
†
k

(

H
AA(BB,AB)
1 δQ′−Q,−λ�1 + H

AA(BB,AB)
2 δQ′−Q,−λ�2 + H

AA(BB,AB)
3 δQ′−Q,−λ�3

)

f̂k, (B35)

where, finally,

HAA
i =

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

δλ,1 + (H.c.)δλ,−1, HBB
i =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

δλ,1 + (H.c.)δλ,−1,

HAB
i =

⎛

⎜

⎜

⎝

0 0 0 ωi−1

0 0 ω−(i−1) 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

δλ,1 + (H.c.)δλ,−1. (B36)

2. Spatially dependent χ case

We keep the same gauge as in the uniform case and present the Hamiltonian as below:

Ĥnu = Ĥ intra + Cintra + Ĥ inter
nu + Cinter

nu . (B37)
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The third term in this expression is
(

H inter
nu

)

QQ′ =
∑

kλn

f̂
†
k

(

H inter
1,J δQ′−Q,−λ(�1−�n ) + H inter

2,J δQ′−Q,−λ(�2−�n ) + H inter
3,J δQ′−Q,−λ(�3−�n )

)

f̂k + Ĥ inter
nu,t , (B38)

where we defined

H inter
i,J = H inter

i

∣

∣

δ→0, Ĥ inter
nu,t = Ĥ inter

u

∣

∣

JAA,JAB→0. (B39)

The crucial novelty introduced by the presence of extra �n in (B38) is the possibility of hybridization between two Dirac cones
from different layers at the momenta �n − �m. This necessitates promoting Q and Q′ to the coordinates of the vertices belonging
to the triangular lattice spanned by vectors �n, which are the reciprocal lattice vectors in this model. This change makes the
area of the Brillouin zone three times smaller than in the uniform order parameter case solved on a honeycomb lattice spanned
by the same vectors. Consequently, the size of the moiré unit cell in the real space becomes three times larger. Lastly, the
constant coming from the interlayer hopping is Cinter

nu = 3N
4 (J0

AA + 2JG
AA)(χ2

AA + χ2
BB) + 3N

2 χ2
ABJ0

AB + N
2 δ(1 − δ)(J0

AA + J0
AB).

The mean-field equations for χ , χAA, χBB, χAB, λ, and δ are only slightly modified compared to the case with the uniform order
parameter (B34),

χ =
1

6

∑

Q, En<EF

∫

d2k

K
〈nkQ|Ĥ intra|nkQ〉 , χAA(BB) =

JAA

3
(

J0
AA + 2JG

AA

)

∑

Q, En<EF

∫

d2k

K
〈nkQ|ĤAA(BB)

nu |nkQ〉 ,

χAB =
JAB

6J0
AB

∑

Q, En<EF

∫

d2k

K
〈nkQ|ĤAB

nu |nkQ〉 , δ = 1 −
1

2

∑

Q,En<EF

∫

d2k

K
〈nkGM |Ĥnu|nkQ〉 ,

λ = 3tχ +
tAA

2

3(J0
AA + 2JG

AA )

JAA
(χAA + χBB) +

tAB

2

6J0
AB

JAB
χAB −

1

8
(1 − 2δ)

(

3J + J0
AA + J0

AB

)

, (B40)

with
(

ĤAA(BB,AB)
nu

)

QQ′ =
∑

kλ

f̂
†
k

(

H
AA(BB,AB)
1 δQ′−Q, −λ(�1−�n ) + H

AA(BB,AB)
2 δQ′−Q, −λ(�2−�n ) + H

AA(BB,AB)
3 δQ′−Q, −λ(�3−�n )

)

f̂k.

(B41)

APPENDIX C: SYMMETRIES OF THE NONUNIFORM χ MODEL

The symmetries of the BM model are well known [40]. In our model, on the other hand, we leave the possibility for the
mismatch in the momentum dependence between the terms responsible for the interlayer tunneling (denoted with t) and the
interlayer superexchange (denoted with J). Both types of terms can be cast in the form

(Hinter )
t (J )
δpδp′ =

∑

kλnm

f̂
†
δpH

t (J )
inter,mλ f̂δp′δ

δp′−δp, −λ(�m−q
t (J )
n ), H t

inter,mλ = −

(

0 T t
m

0 0

)

δλ,1 + (H.c.)δλ,−1,

H J
inter,mλ = −

(

0 T J
m

0 0

)

δλ,1 + (H.c.)δλ,−1, T t
m =

(

δtAA ωm−1δtAB

ω−(m−1)δtAB δtAA

)

, T J
m =

(

χAAJAA

4 ωm−1 χABJAB

4

ω−(m−1) χABJAB

4 +χBBJAA

4

)

.

(C1)

Furthermore, both interlayer terms can be diagonalized by
performing the Fourier transform over δp and δp′, which
yields

(Hinter )
t (J ) =

∑

jλnm

f̂
†
j H

t (J )
inter,mλ f̂ je

i(�m−qt (J )
n )·j. (C2)

Let us consider how the moiré translation symmetry acts on
the sum (Hinter )t + (Hinter )J . The interlayer hopping term in
our model has a trivial momentum dependence, i.e., qt

n =
0. Therefore, if the interlayer superexchange term has no
momentum dependence as well (qJ

n = 0), the translational
symmetry of the Hamiltonian that includes the sum of (Hinter )t

and (Hinter )J is identical to that in the Bistritzer-MacDonald
model. Hence, moiré translations are a good symmetry in this
case.

Now suppose qJ
n = �n. Consider performing a coordi-

nate transformation by shifting j by one of the moiré
lattice vectors a1 = 3a/(2θ )(1, 1/

√
3). Since ea1·�n = ω, and

ea1·(�n−�m ) = 1, the term (Hinter )t acquires the additional phase
equal to ω under moiré translation, whereas the interlayer
superexchange (Hinter )J stays invariant. If the superexchange
term was absent, one could have performed a gauge transfor-
mation with the matrix

M =

⎛

⎜

⎜

⎜

⎝

ω1/2 0 0 0
0 ω1/2 0 0
0 0 ω−1/2 0
0 0 0 ω−1/2

⎞

⎟

⎟

⎟

⎠

, (C3)

which would have restored (Hinter )t to the original form. If, on
the other hand, both superexchange and the hopping terms are
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FIG. 7. Textures in the real space corresponding to the terms
|(Hinter )t | (a), |(Hinter )J/3| (b), and their interference pattern
|(Hinter )t + (Hinter )J/3| (c). The moiré lattice vectors aM

1,2 are indi-
cated with blue arrows. As one can infer from the figures, the
first two terms are moiré-periodic, whereas the latter breaks moiré
translations.

present, this gauge transformation cannot bring their sum to
the original form. Therefore, having qJ

n = �n simultaneously
with δ �= 0 lowers the translation symmetry. The new transla-
tion vectors d1 = 2a/(2θ )(1, 1/

√
3), d2 = (3a/θ, 0) are the

reciprocal lattice vectors with respect to �n, since in this case
edi ·�n = edi·GM

n = 1, and such translation does not produce any
phases. This argument can be visualized by considering the
textures in the real space produced by the terms |(Hinter )t |,
|(Hinter )J/3|, and |(Hinter )t + (Hinter )J/3| with all the constant
prefactors in these terms such as δtAA or χAAJAA/4 set to
unity. As one can see from Fig. 7, the former two terms
produce a moiré-periodic pattern in real space, whereas the
latter breaks moiré translations.

Besides the moiré translations, in our model, the C2 sym-
metry can also be broken if χAA �= χBB. In order for (Hinter )J

to be invariant under C2, one requires [40]

σxT J
1 σx = T J

1 , σxT J
2 σx = T J

3 . (C4)

Since the hopping matrix interchanges both the diagonal
and off-diagonal entries and the off-diagonal terms are self-
consistently found to be equal across all phases, the case
χAA = χBB preserves this symmetry and χAA �= χBB breaks.

APPENDIX D: COMPARISON WITH THE UNTWISTED

CASE AND TWIST ANGLE DEPENDENCE

In this Appendix, we compare the model of the un-
twisted correlated bilayer introduced in Appendix A and the

FIG. 8. The comparison of the phase diagram between the θ =
10◦ (top) and the untwisted case (on the bottom). The band insulator
phase is characterized by δ = 1; i.e., no spinons are present in the
system. The parameters used to obtain the diagrams are matched
according to the procedure outlined in Appendix D. The variables
not fixed by matching are the same as in Fig. 3. We note that for the
values of parameters used, no excitonic insulator phase is found due
to the large ratio J0

AA/JAA required for matching.

model describing the correlated twisted bilayer obtained in
Appendix B.

Let us consider as a starting point the untwisted case de-
fined in the full hexagonal Brillouin zone (BZ). The matching
onto the continuous model is performed by dividing the Bril-
louin zone into two Dirac cones with the conservation of the
number of states

∫

BZ

d2k A

(2π )2
= 2

∫

|k|<R

d2k A

(2π )2
. (D1)
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FIG. 9. Band structure in the quantum paramagnet case with
θ = 10◦ (on the left) and θ = 0◦ (on the right). The parameters used
correspond to the JAA = 4t , μ = 1.5t in the phase diagrams in Fig. 8.

Therefore,

8π2a2

3
√

3
= 2πR2 → R =

√

4π

3
√

3
a. (D2)

We expect this truncation of the Brillouin zone to introduce
some errors, which we discuss further below.

The next step is to match the full untwisted Hamiltonian
[Eq. (A9)] with both the uniform [Eq. (B23)] and nonuni-
form [Eq. (B37)] cases. The uniform model reduces to the
untwisted case if, with θ = 0, we simultaneously set J0

AA =
3JAA. We also need to use χAB = 0 and J0

AB = 0, tAB = 0
which ensures that no traces of AB superexchange remain.
It can be further seen in the nonuniform case that up to
the redefinition of χAA and χBB, the Hamiltonian for the
untwisted bilayer can be reproduced by setting J0

AA = JG
AA =

3JAA, χAB = 0, J0
AB = 0.

We immediately note that the nature of the interlayer hy-
bridization is completely different in the θ = 0 and θ � 0

FIG. 10. Comparison of mean-field parameters δ and χ between
the metallic phases in the twisted and untwisted cases in Fig. 8.
The quantities agree well between θ = 10◦ and θ = 0◦ cases, which
justifies the matching procedure.

cases, and no smooth crossover exists between the two. In
the former case, the gap may open only at neutrality, whereas
in the latter, the minibands hybridize with each other, and
many gaps are present at the same time. Therefore, whenever
interlayer hybridization is important, we expect considerable
differences between the twisted and untwisted cases, even at
small angles, whereas the properties of the less reliant on
the existence of the gaps metallic phase should be relatively
similar.

This intuition is confirmed by the numerical simulations, as
seen in Fig. 8. We observe that the quantum paramagnet phase
in the twisted case occupies a much smaller fraction of the
diagram due to the difference in the hybridization pattern: two
remote flat bands occur in the θ = 0◦ case, whereas multiple

FIG. 11. Phase diagrams obtained for the same set of parameters
as used in Fig. 3 but for different twist angles: θ = 13◦ on the top
and θ = 7◦ on the bottom.
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flat bands exist in θ = 10◦ case, as shown in Fig. 9. The
latter configuration is much less efficient in minimizing the
interlayer part of the energy as the gap is effectively smaller.
We also point out that for the same reason, the spin liquid
phases are almost absent on the θ = 0◦ diagram, whereas the
twisted case features such phases.

As we expected, the metallic phases in both cases show
very similar properties as follows from the Fig. 10 in which
the parameters δ and χ are compared between the twisted
(θ = 10◦) and the untwisted cases. From this, we conclude
that the truncation of the Brillouin zone down to two circles
surrounding the Dirac points does not qualitatively affect our
results.

Lastly, we comment on the twist angle variation of the
phase diagram: the phase diagrams for θ = 13◦ and θ = 7◦ are
shown in Fig. 11. One would expect that the lower the twist
angle is, the more minibands there are, and the opportunity
to stabilize the gapped EI phase characterized by the small
but nonzero δ is increasing. This trend is seen among the
calculated phase diagrams presented in Fig. 11: the EI phase
is the only one essentially sensitive to the increase of the
twist angle and would eventually disappear as θ is increased.
The reason is that at the large twist angle, only two Dirac
cones within the cutoff radius R remain, and the minibands
are absent. Therefore, the phase diagram at large θ essentially
becomes the one corresponding to the untwisted case.
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