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The hydrodynamics of a self-propelling swimmer undergoing intermittent S-start
swimming are investigated extensively with varying duty cycle DC, swimming period
T , and tailbeat amplitude A. We find that the steady time-averaged swimming speed Ūx
increases directly with A, but varies inversely with DC and T , where there is a maximal
improvement of 541.29 % over continuous cruising swimming. Our results reveal two
scaling laws, in the form of input versus output relations, that relate the swimmer’s
kinematics to its hydrodynamic performance: swimming speed and efficiency. A smaller
DC causes increased fluctuations in the swimmer’s velocity generation. A larger A, on
the other hand, allows the swimmer to reach steady swimming more quickly. Although
we set out to determine scaling laws for intermittent S-start swimming, these scaling laws
extend naturally to burst-and-coast and continuous modes of swimming. Additionally, we
have identified, categorized and linked the wake structures produced by intermittent S-start
swimmers with their velocity generation.

Key words: swimming/flying

1. Introduction
Predator–prey behaviour on land, in the air and on water is a fascinating natural
phenomenon. For example, to escape from a pursuer, a swimming fish can reach more
than ten times gravitational acceleration with only a 30 cm long body by using fast-start
propulsion (Triantafyllou, Weymouth & Miao 2016). Indeed, humans look up to the
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fast-starting techniques of aquatic animals and hope to apply them to launch bio-inspired
underwater robots.

Two fast-starting strategies are usually employed by swimmers, the C- and S-start,
according to the bending shape of the swimmer. The S-start propulsion strategy allows
the prey to remain in its initial swimming direction and win the pursuit–evasion game.
It differs from the C-start strategy, which causes the fish to rotate and change its initial
orientation (Weihs 1973). Besides serving as an escape response, S-start behaviour is also
used during prey strikes (Domenici & Blake 1997). Recently, much effort has been put
into understanding the hydrodynamics of C-start swimming (e.g. Borazjani et al. 2012;
Gazzola, Rees & Koumoutsakos 2012; Li et al. 2014), while little is known about the
S-start motion (Triantafyllou 2012).

We conducted a biological experiment on zebrafish (Danio rerio) to better understand
S-start swimming. The experiment uses zebrafish with body length 3 cm. Experiments are
carried out in a cubic water tank of dimensions 50 cm × 3 cm × 3 cm. In the water tank,
the top is open for taking movies, and the bottom is illuminated by LEDs. High-speed
cameras are used to track fish movement. A sufficient amount of lighting is used to create
a well-lit environment for recording movies. Interestingly, we find that the locomotion of
zebrafish generally consists of two phases: an S-start swimming phase for providing initial
acceleration, followed by a gliding phase for saving energy (see supplementary movie 1
available at https://doi.org/10.1017/jfm.2024.103). In this study, we refer to the combined
locomotive gait as intermittent S-start swimming.

The trajectories of swimming zebrafish during intermittent S-start and continuous
swimming were analysed, and we observed distinct behaviour (see figure 1(d) and
supplementary movie 1). In S-starts, zebrafish displayed more frequent tail undulations
(characterized by a shorter period Ts), resulting in pronounced lateral movements. This
is followed by a glide phase (Tg) without noticeable lateral motion. The continuous
swimming of zebrafish displayed a lower tail undulation frequency or longer swimming
period T . For S-start swimming, the total period T can be decomposed into an initial
S-start phase of period Ts, which is followed by a gliding phase of period Tg, i.e. T =
Ts + Tg (figure 1b). In chase–escape scenarios, zebrafish benefit from a higher undulation
frequency in the S-start phase. During the gliding phase, energy may be conserved, or this
behaviour may develop passively as a result of elevated oxygen consumption rates during
S-starts (Brett & Sutherland 1965).

Intermittent S-start swimming shares kinematic characteristics with burst-and-coast
(B-and-C) swimming (Gleiss et al. 2011; Dai et al. 2018). A B-and-C swimming strategy
involves an undulating burst phase with time period Tburst, and a non-undulating coast
phase with time period Tcoast (figure 1c). In B-and-C swimming, swimmers employ the
same swimming frequency as in continuous swimming, i.e. Tburst = T (figures 1a,c). A
B-and-C swimming strategy is usually adopted to conserve energy, characterized by low
swimming speeds (Chuang 2009; Floryan, Van Buren & Smits 2017; Akoz & Moored
2018; Akoz et al. 2019; Liu, Huang & Lu 2020; Ashraf, Wassenbergh & Verma 2021;
Gupta et al. 2021; Li et al. 2021). S-start swimming, on the other hand, is characterized by
higher swimming frequencies, with swimmers striving for higher swimming speeds rather
than enhanced efficiency.

As S-start swimming plays an important role in predator–prey behaviour, some
questions arise naturally. How do kinematic parameters, such as tailbeat amplitude A,
duty cycle DC, and swimming period T , influence the swimming performance (speed
and energy consumption) of intermittent S-start swimmers? Do scaling laws apply to
intermittent S-start swimming as they do to continuous swimming? What kind of wake

984 A2-2

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 3/

�
��

��
��

��
��

��
�4

2:
1.

��
7�

42�
.�

�!
��

��
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2024.103
https://doi.org/10.1017/jfm.2024.103


Hydrodynamics and scaling laws for intermittent S-start swimming

1

0.2

0.1

0

–0.1

0 0.2 0.4 0.6 0.8

S-start swimming
Continuous swimming

1.0 1.2
t (s)

T

Ts

Ts Tg

T

y/L
Tg

Tburst Tcoast

1

0

0

–1

–1

1

0

–1

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Non-dimensional time

N
or

m
al

iz
ed

ta
ilb

ea
t a

m
pl

itu
de

N
or

m
al

iz
ed

ta
ilb

ea
t a

m
pl

itu
de

N
or

m
al

iz
ed

ta
ilb

ea
t a

m
pl

itu
de

(b)

(a)

(d )

(c)

Figure 1. Kinematics of (a) continuous, (b) S-start, and (c) burst-and-coast swimming. (d) Real-time motion
of the zebrafish tail tracked during S-start and continuous swimming. In (a,d), T denotes the time period of
continuous swimming; Ts and Tg in (b,d) describe the time period of the S-start and gliding phase in the
intermittent S-start swimming, respectively; Tburst and Tcoast in (c) refer to the time period of the burst and
coast phases in the burst-and-coast swimming, respectively. In (d), y is the time-dependent tailbeat amplitude,
L = 3 cm is the body length, and t is time.

structures are generated by intermittent S-start swimmers? We attempt to address these
questions by simulating numerically self-propelling foils undergoing intermittent S-start
swimming. Despite the fact that we set out to determine scaling laws for intermittent S-start
swimming, these scaling laws apply to S-start, B-and-C and continuous swimming as well.

2. Problem description and methodology
We consider a computational model in which a fish-like NACA0012 foil self-propels
right to left in a rectangular domain. The foil can move freely in both horizontal x and
vertical/lateral y directions (figure 2a). Figure 2(b) shows the foil’s length as L = 1 cm,
and its tailbeat amplitude as A. The intermittent S-start swimming is derived from the
following kinematics:

y(x, t) =





S(t) Am(x) sin

[
2π

(
x
λ

− t
Ts

)
− 2π

λ

]
, 0 ≤ t ≤ Ts,

0, Ts < t ≤ T,
(2.1)
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Figure 2. (a) Sketch of the computational domain; (b) NACA0012 foil; (c) intermittent S-start motion; and
(d) foil’s centreline envelope.

in which the smoothing function S(t), given by

S(t) =






0.5
[

1 − cos
(

4πt
Ts

)]
, 0 ≤ t ≤ 0.25Ts,

1, 0.25Ts < t ≤ 0.75Ts,

0.5
[

1 − cos
(

4πt
Ts

)]
, 0.75Ts < t ≤ Ts,

(2.2)

is employed to avoid discontinuous accelerations at the junction of the S-start and gliding
phase (figure 2c). In the equations above, Am(x) = a0 × (0.02 − 0.08x + 0.16x2) denotes
the amplitude function (Videler & Hess 1984) so that A = Am(L), t is the time, λ = L is the
wavelength of the travelling wave, Ts denotes the period of the S-start phase, and T is the
total swimming period that includes both the S-start and the gliding phase. The envelope
of the foil’s centreline using (2.1) is shown in figure 2(d).

Three non-dimensional numbers are considered in this work: duty cycle (Akoz &
Moored 2018)

DC = S-start period
total swimming period

= Ts

T
, (2.3)

swimming number (Gazzola, Argentina & Mahadevan 2014)

Sw = 2πLA
Tν

, (2.4)

and energy consumption coefficient

CE = CoT
ρν2

(
L
W

)
. (2.5)
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Figure 3. Grid convergence study using four grids, M1 to M4.

Grid #x/L Ūx (cm s−1) #Ūx (%)

M1 5.00 × 10−3 6.6808 12.376
M2 2.00 × 10−3 7.6244 4.016
M3 1.25 × 10−3 7.9434 0.950
M4 1.00 × 10−3 8.0196 —

Table 1. Grid convergence study with #t = 10−4T .

Here, ν = 0.0091 poise is the fluid kinematic viscosity, ρ = 1 g cm−3 is the density of the
fluid, and W is the width of the swimmer into the plane of the paper. In (2.5), CoT denotes
the cost of transport, which describes the energy consumption of a self-propelling body.
There are two common definitions of CoT – metabolic and mechanical. Here, we focus
on the mechanical CoT , which is the ratio of time-averaged total power and time-averaged
swimming speed (in the horizontal x direction) (Bale et al. 2014). The Reynolds number
is defined as Re = ŪxL/ν.

Numerical investigations are conducted using the open-source IBAMR software, which
is a distributed-memory parallel implementation of the immersed boundary (IB) method
that incorporates the Cartesian grid adaptive mesh refinement (AMR) technique (Griffith
2009; Griffith & Patankar 2020). The IBAMR software has been used extensively to study
fish-like swimming (e.g. Bhalla, Griffith & Patankar 2013b; Tytell et al. 2016; Hoover et al.
2018). The computational domain is taken to be a rectangular box of size 40L × 10L with
periodic boundary conditions along the axial direction and no-slip boundary conditions in
the lateral direction (figure 2a).

A grid convergence study is conducted for an intermittent S-start swimmer with
(DC, T, A/L, λ/L) = (0.2, 0.5 s, 0.2, 1.0). Here, s denotes seconds. The simulations are
conducted on four grids (M1 to M4) with uniform mesh spacings #x/L = #y/L =
5.00 × 10−3 (M1), 2.00 × 10−3 (M2), 1.25 × 10−3 (M3) and 1.00 × 10−3 (M4) in the
finest level. The time step size is fixed at #t = 1.00 × 10−4T . In figure 3, the time history
of swimming velocity ux is presented for the four grids. Table 1 lists the steady swimming
speed Ūx. There is a relatively small difference between M3 and M4 in terms of Ūx
(0.95 %). For the remainder of the simulations, mesh M3 is selected.

Using M3, a time step size convergence study is performed by selecting four values of
#t: #t1 = 5.00 × 10−4T , #t2 = 2.50 × 10−4T , #t3 = 1.00 × 10−4T and #t4 = 0.50 ×
10−4T . Table 2 lists the corresponding Ūx values. The difference between Ūx using #t3
and #t4 is only 0.01 %. Grid M3 and time step size #t3 are selected for the remainder of
the simulations based on accuracy and computational resources. More convergence studies
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Time step size #t/T Ūx (cm s−1) #Ūx (%)

#t1 5.00 × 10−4 7.9475 0.034
#t2 2.50 × 10−4 7.9448 0.018
#t3 1.00 × 10−4 7.9434 0.010
#t4 0.50 × 10−4 7.9426 —

Table 2. Time step size convergence study using grid M3 with #x/L = #y/L = 1.25 × 10−3.

T(s)Sw
A/L

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.05 6283.19 4188.79 3141.59 2513.27 2094.40 1795.20 1570.80
0.10 12566.37 8377.58 6283.19 5026.55 4188.79 3590.39 3141.59
0.15 18849.56 12566.37 9424.78 7539.82 6283.19 5385.59 4712.39
0.20 25132.74 16755.16 12566.37 10053.10 8377.58 7180.78 6283.19

Table 3. Sw values for various A and T .

related to the IB method can be found in our previous works (e.g. Bhalla et al. 2013a; Patel,
Bhalla & Patankar 2018).

3. Results and discussions
The hydrodynamics of intermittent S-start swimming is investigated by measuring the
swimming speed and the energy consumption associated with a self-propelling foil
for DC = 0.20–1.00 with #DC = 0.20, T = 0.50–2.00 s with #T = 0.25 s, and A =
0.05–0.20L with #A = 0.05L. The calculated values of Sw corresponding to different
pairs of A and T are listed in table 3. We discuss first hydrodynamic performance,
then scaling laws, and finally classify the wake structures of an intermittent S-start
swimmer. The trends of hydrodynamic performance (swimming speed and CoT) are
plotted in dimensional units. This avoids confusion related to non-dimensionalization
and ensures reproducibility. Eventually, hydrodynamic performance metrics are expressed
non-dimensionally through scaling laws in § 3.2.

3.1. Hydrodynamic performance
Figure 4 illustrates how DC, T and A affect the steady time-averaged swimming speed
Ūx of the foil. At a given A, Ūx decreases with increasing T and DC, with maximal
and minimal values achieved at (DC, T, A/L) = (0.20, 0.05 s, 0.20) and (DC, T, A/L) =
(1.00, 2.00 s, 0.05), respectively. Depending on DC, as much as 122.89 % to 541.29 %
can be gained with intermittent S-start swimming (DC < 1.0) compared to the continuous
swimming case (DC = 1.0); a smaller DC results in higher Ūx. For a given Ts = T × DC,
it can also be observed that the intermittent S-start swimming with a larger DC and
smaller T produces higher Ūx than that with a smaller DC and larger T; for example,
Ūx = 1.47 cm s−1 derived from (DC, T, A/L) = (0.40, 0.50 s, 0.05) is larger than Ūx =
1.02 cm s−1 for (DC, T, A/L) = (0.20, 1.00 s, 0.05), as shown in figure 4(a). Due to a
longer deceleration period in the gliding phase, a smaller DC may not be an optimal
strategy for the intermittent S-start swimmer at a specific undulating period Ts. According
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Figure 4. Influence of DC and T on Ūx with (a) A = 0.05L, (b) A = 0.10L, (c) A = 0.15L, and
(d) A = 0.20L.
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Figure 5. Influence of DC and T on CoT at (a) A = 0.05L, (b) A = 0.10L, (c) A = 0.15L, and (d) A = 0.20L.

to figure 4, a larger A corresponds to higher swimming speeds, which concurs with
previous studies on oscillating, undulating and self-propelling foils (e.g. Floryan, Van
Buren & Smits 2019). Overall, Ūx correlates strongly with A but inversely with DC and T .

The effects of DC, T and A on CoT are shown in figure 5, where CoT decreases with
increasing DC and/or T , but it increases with increasing A. As discussed in Chao, Alam
& Cheng (2022), an increase in tailbeat amplitude A requires more input power. A larger
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Figure 6. The effect of (a) DC, (b) T , and (c) A on ux, and (d–f ) the corresponding steady-state swimming
velocities Ūx. The effect of (g) DC, (h) T , and (i) A on uy, and ( j–l) the corresponding steady-state lateral
velocities Ūy.

value of A also hinders the flow passing around the foil. As a result, increasing A leads to
inefficient swimming, i.e. higher CoT . An inverse relationship forms between CoT and DC
at specific T and A. This is because a higher undulating frequency (smaller DC) requires
more input power. Given a set of (DC, A), the decline of CoT slows down with increasing
T . It is desirable to have a lower CoT because it indicates lower energy consumption, thus
greater mechanical efficiency. According to figure 5, intermittent S-start swimming results
in inefficient propulsion. Floryan et al. (2019) found that at a given Strouhal number, the
foil efficiency can be increased by increasing the trailing edge amplitude. However, this is
not the case for the present self-propelling foil, where CoT increases with an increase in A.

Figure 6 illustrates how examined parameters DC, T and A affect the instantaneous
swimming speed in horizontal and vertical directions. As expected, a smaller DC causes
significant fluctuations in ux and uy at given (T, A) (figures 6a,g). A continuous swimming
mode generates steady forward motion with fewer fluctuations, whereas an intermittent
S-start gait leads to higher swimming speeds with larger fluctuations around the mean
velocity. In a similar way, a smaller T and a larger A lead to more fluctuating ux and uy
velocities (figures 6b,c,h,i). Interestingly, the ux curve is stabilized easily with a higher A,
whereas A = 0.05L leads to a negative Ūy (figure 6l). This result suggests that an S-start
swimmer may adopt smaller DC and T , but a larger A to achieve higher instantaneous
and time-averaged speeds (figures 6a–f ). However, it has been observed from biological
experiments that the fish does not tend to produce large amplitudes when adopting
an S-start motion. A plausible explanation is that larger tailbeat amplitudes produce
high-speed flows (that could reveal the fish’s whereabouts) and are costlier energetically.
The decision-making behaviour behind this observation deserves further exploration.
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3.2. Scaling laws applicable to intermittent S-start, B-and-C and continuous swimming
To better understand the effects of swimming parameters DC, T and A on Ūx and CoT
(figures 4 and 5), scaling laws for swimming speed and efficiency are derived. In the
previous subsection, we considered variations in both S-start and B-and-C swimming
kinematics because Ts and T were varied independently. In terms of scaling laws, we
do not distinguish explicitly between the two gaits, and refer to them collectively as
S-start or intermittent motions. The scaling laws for hydrodynamic performance metrics
are derived by balancing the work done by thrust and drag forces. We note that our starting
point for deriving the scaling laws differs from previous studies on continuous swimming
that consider force balance instead of energy balance. Due to the differences in duration
and intensity of thrust and drag forces between S-start and glide phases of intermittent
swimming, a force balance approach is not appropriate. Using the principle of energy
balance, we can account explicitly for S-start and glide periods (Ts and Tg, respectively)
in scaling laws. According to this, during steady swimming, the energy spent/work done
by the thrust force during the S-start phase is used in overcoming the hydrodynamic drag
throughout the swimming period. In steady state and over the course of a swimming cycle,
the swimmer’s kinetic energy remains the same. This is because kinetic energy gained
through thrust forces is lost through drag forces. At the end of the cycle, the swimmer
achieves the same swimming velocity as when it started (see figure 6). As a result, the
kinetic energy term does not appear in the energy balance statement that follows next.
We note that the scaling laws that we derive have an input versus output relationship.
Inputs to the laws are the foil kinematic parameters, which are known beforehand and do
not require computational fluid dynamics simulation. This is different from the velocity
scale given in Akoz & Moored (2018) (for an intermittent swimmer), which has a mixed
form – that is, it contains both input (foil kinematic parameters) and output (thrust force)
quantities, depends on drag and thrust decomposition of the hydrodynamic force, and relies
on potential flow theory.

3.2.1. Scaling laws based on overcoming the viscous drag
An intermittent swimmer undulates its body at an effective angular frequency
ωeff = ω/DC = 2π/(DC × T) = 2π/Ts, with DC < 1. Here, ω = 2π/T denotes the
angular frequency, T is the total swimming period, and Ts is the flapping time period.
During steady swimming in a low to moderate Reynolds number flow regime, the thrust
energy is expended overcoming viscous drag, i.e.

ET ∼ ED. (3.1)

Here, ET (henceforth called thrust energy) represents the energy used or work done
by thrust forces during the flapping period Ts, and ED (henceforth called viscous drag
energy) represents the energy spent during the entire swimming period, T = Ts + Tg, in
overcoming viscous drag (figure 1b).

The thrust energy can be estimated through thrust force FT ∼ ρ U2
lateral Ap as ET ∼

FTŪxTs. Here, Ulateral = Aω/DC is the deformation velocity in the lateral direction, A
is the tailbeat amplitude, and Ap is the projected area of the swimmer into the plane of the
paper. Thus, Ap ∼ L × W, in which L is the length of the swimmer, and W is the width
of the swimmer (into the plane of the paper). Gazzola et al. (2014) provide a geometric
argument for the thrust force scale for undulatory swimmers. This scale has also been
used in prior studies of aquatic locomotion (Bale et al. 2014; Floryan, Van Buren & Smits
2018; Floryan et al. 2019). The viscous drag energy can be estimated from the viscous
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drag force FD as ED ∼ FDŪxT . The viscous drag force can be estimated from the Blasius
solution FD ∼ µ(Ūx/δ)Ap. Here, Ūx is the steady time-averaged swimming speed, and
δ ∼ L/

√
Re is the boundary layer thickness, with Re = ŪxL/ν the Reynolds number. By

equating thrust to viscous drag work, we obtain

ET ∼ ED,

ρ(Aω/DC)2ApŪxTs ∼
µŪxAp

L

(
ŪxL
ν

)1/2

Ūx(Ts + Tg)

↪→ Ūx ∼ (Aω)4/3(DC)−2/3L1/3ν−1/3,






(3.2)

in which we used the definition DC = Ts/(Ts + Tg). Equation (3.2) can be
non-dimensionalized and rewritten succinctly as

Re ∼ Sw4/3/DC2/3. (3.3)

The scaling law for the cost of transport CoT can be derived using its definition and
velocity scale (3.2) as

CoT = EL

ŪxT

∼
ρ(Aω/DC)3ApTs

(Aω)4/3(DC)−2/3L1/3ν−1/3T

↪→ CoT ∼ ρν2(W/L)(Sw)5/3(DC)−4/3,






(3.4)

The numerator of the cost of transport EL in (3.4) represents the energy spent or work done
by the swimmer deforming its body in the lateral direction. Following Bale et al. (2014),
the lateral power scales as PL ∼ ρ U3

lateral Ap. (According to Bale et al. (2014), most of
the muscle work is done in producing lateral deformations. Consequently, Pmuscle ≈ PL.)
Consequently, work done in generating body deformations during the swimming period is
EL = PLTs. The denominator ŪxT represents the distance travelled by the swimmer during
the swimming period. Equation (3.4) can be non-dimensionalized and rewritten succinctly
as

CE = CoT
ρν2

(
L
W

)
∼ Sw5/3/DC4/3. (3.5)

For a two-dimensional swimmer, a unit width is taken into the plane of the swimmer,
i.e. W = 1.

Equations (3.3) and (3.5) provide a relationship between (non-dimensional) swimming
speed Re and energy consumption CE of the foil as a function of its key kinematic
parameters Sw and DC. To see how well the above scaling laws fit the simulated data of
the previous section, we plot the foil’s measured outputs, Re and CE, against its kinematic
inputs, Sw4/3/DC2/3 and Sw5/3/DC4/3 in figures 7(a,b), respectively. It can be observed
that the output data for different values of DC collapse well onto a single straight line,
suggesting that (3.3) and (3.5) can be used as scaling laws to estimate the hydrodynamic
performance of an intermittent S-start swimmer. Furthermore, these two scaling laws also
explain the results of the previous section very well. For example, considering a swimmer
of fixed length L and time period T , (3.3) suggests that a larger A (thus Sw) leads to
a higher Ūx (figures 6c, f ). Similarly, a smaller DC generates a higher (time-averaged)
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105

DC = 0.2
DC = 0.4
DC = 0.5
DC = 0.6
DC = 0.8
DC = 1.0

104Re CE

Re ∼ Sw4/3/DC 2/3 CE ∼ Sw5/3/DC 4/3

103

105 106 106

106

107

108

107 108

Sw4/3/DC2/3 Sw5/3/DC4/3

(b)(a)

Figure 7. Scaling laws for (a) swimming speed Re, and (b) efficiency CE, based on overcoming the viscous
drag. The fitted dashed lines are Re = 0.037 Sw4/3/DC2/3 and CE = 1.032 Sw5/3/DC4/3, and the coefficients
of determination are R2 = 0.889 and 0.987 for (a,b), respectively.

swimming speed Ūx (figures 6a,d). Equation (3.5) also shows that CE is inversely related
to DC, which confirms the hypothesis that intermittent S-start swimming (DC < 1.0) is
less efficient than the continuous one (DC = 1.0).

3.2.2. Scaling laws based on overcoming the pressure drag
For high-speed flows, it can be argued that the thrust energy/work ET is spent in
overcoming the pressure drag FP instead of the viscous drag FD. For inviscid fluids, this
is indeed the case. The pressure force scales as the square of the body’s velocity, i.e.
FP ∼ ρŪ2

x Ap. For a geometric argument for the FP scale for undulatory swimmers, see
Gazzola et al. (2014). Thus, by equating thrust to pressure drag work, we obtain

ET ∼ EP,

ρ(Aω/DC)2ApŪxTs ∼ ρŪ2
x ApŪx(Ts + Tg)

↪→ Ūx ∼ Aω/DC1/2.





(3.6)

Through non-dimensionalization, we obtain

Re ∼ Sw/DC1/2. (3.7)

The corresponding CoT scale is obtained as

CoT = EL

ŪxT

∼
ρ(Aω/DC)3ApTs

Aω(DC)−1/2T

↪→ CoT ∼ ρν2(W/L)Sw2/DC3/2.






(3.8)

Equation (3.8) can be non-dimensionalized and rewritten as

CE = CoT
ρν2

(
L
W

)
∼ Sw2/DC3/2. (3.9)
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108

107

106

104Re CE

103

(a) (b)
DC = 0.2
DC = 0.4
DC = 0.5
DC = 0.6
DC = 0.8
DC = 1.0

105 106 107 108 109 1010

Sw2/DC3/2Sw /DC1/2

Re ∼ Sw/DC 1/2
CE ∼ Sw2/DC 3/2

Figure 8. Scaling laws for (a) swimming speed Re, and (b) efficiency CE, based on overcoming the pressure
drag. The fitted dashed lines are Re = 1.279Sw/DC1/2 and CE = 0.029Sw2/DC3/2, and the coefficients of
determination are R2 = 0.883 and R2 = 0.980 for (a,b), respectively.

Equations (3.7) and (3.9) are compatible with inviscid flows as the effect of ν → 0 is
eliminated. According to figure 8, scaling laws based on overcoming the pressure drag
are also able to fit the data reasonably well. We attribute this match to the moderate
flow regime (103 < Re < 105) considered in this study. At very-low-speed (Re ∼ 1)
and very-high-speed (Re > 106) flows, we expect to see a more distinct trend between
viscous-based and pressure-based scaling laws. At low Re, the fluid–structure interaction
(FSI) equations are coupled strongly, while at high Re, explicit turbulence models are
required to resolve the turbulent flow features. In our flow solver, we solve the FSI
equations in a split manner without explicit turbulence models, which is suitable for
simulating moderate-Re FSI cases. The two scaling laws will be tested in low- and
high-speed flow regimes in a future study. Because we are considering moderate Re flows
in this study, we prefer viscous scaling laws over pressure-based ones to describe the
hydrodynamic performance of intermittent S-start swimmers (speed and efficiency). To
validate whether the data statistically support the different scaling laws that have been
presented, we have conducted t-tests on the scaling laws.

In order to check whether the data support the different scaling laws presented in this
section, we performed t-tests on the data. We assume that the data fit power laws of the
form Re = c1Swα1DCα2 and CE = c2Swα3DCα4 . Using ordinary least squares regression
on the data, the coefficients obtained were α1 = 0.9829, α2 = −0.8928, α3 = 1.7833 and
α4 = −1.2453. After that, two-sample t-tests were performed on the statistical values of
Re and CE, as well as their simulation values, at a significance level of 0.05. As expected,
the means of the data sets were equal and the statistics converged to the simulation values.
We accept the null hypothesis at significance level 0.05. Table 4 and table 5 present the
least squares regression fit and two-sample t-test results, respectively.

3.2.3. Special cases of DC → 0 and DC → 1
The two cases DC → 0 and DC → 1 warrant separate discussion. The swimmer reaches
DC → 0 if: (i) it does not flap its body at all; (ii) its gliding period is much longer than its
flapping period, i.e. Tg ( Ts; or (iii) it flaps infinitely fast in an infinitely short period
of time. The first two scenarios imply that Sw → 0. It follows that the body’s steady
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α1 α2 α3 α4

Value 0.9829 −0.8928 1.7833 −1.2453
Standard error 0.0173 0.0192 0.0159 0.0147

Table 4. Values and standard errors in {αi} obtained using the ordinary least squares regression.

t-statistic Degrees of freedom Standard error p-value

Re 0.025673 334 0.001405 0.979533
CE 0.032521 334 0.001779 0.974076

Table 5. Results of t-tests between the simulation and statistical values of Re and CE.

swimming velocity and energy expenditure should also approach zero when DC → 0.
The viscous and pressure scaling laws discussed in §§ 3.2.1 and 3.2.2 lead naturally
to this conclusion. These laws are in the form Swm/DCn, with m > n and m, n ∈ R+.
As DCn → 0, Swm → 0 at a faster rate, which leads to the expected result. The third
scenario is unphysical, as there is a practical limitation to how rapidly a body can flap. For
example, Sanchez-Rodriguez, Raufaste & Argentina (2023) mentioned that an undulatory
swimmer’s tailbeat frequency is generally less than 20 Hz. Also, a very fast oscillation
in a very short amount of time breaks the local thermodynamic equilibrium assumption
of fluid mechanics, which requires that flow quantities (velocity, pressure) change at a
reasonable rate (Jakobsen 2008). Thus scenario (iii) is not considered in the scaling laws
derived in this work. (Moreover, it seems impossible to obtain experimental or simulation
data to validate some candidate scaling law in this situation.)

The other end of the DC range, DC → 1, implies continuous swimming. It can be
observed that as DC → 1, the scaling laws derived for the inertial flow regime reduce
to Re ∼ Sw and CE ∼ Sw2, whereas those obtained for the viscous flow regime reduce to
Re ∼ Sw4/3 and CE ∼ Sw5/3. For both flow regimes, our results are consistent with the
scaling laws for steady, continuous swimming velocity derived in Gazzola et al. (2014).

3.3. Wake structures
In figure 9(a), six different flow patterns are illustrated, including 2P (♦), 2P+S ("), 2S
(#), Mode I (◦), Mode II (+) and Mode III wake ($). At smaller DC and Sw, i.e. the
bottom left corner in the DC–Sw plane, two vortex pairs (2P) are generated by the S-start
phase, and a single vortex (S) is generated by the boundary layer separation in the gliding
phase (figure 9b). Increasing DC decreases the time lag between adjacent S-start phases,
thereby suppressing boundary layer separation. Consequently, only two vortex pairs are
observed as 2P wakes (figure 9c) when Sw ≤ 3000 and 0.5 ≤ DC < 1.0. Further, for
the 2P+S wake, the single vortex located in the middle of two vortex pairs gradually
approaches and merges with the upper vortex pair (figure 9b). In the far field, therefore,
the 2P+S wake would eventually become a 2P wake. Figure 9(a) illustrates a bifurcation
caused by the 2P+S and 2P wake behind the foil at smaller Sw. A typical 2S reverse
Kármán vortex street appears at DC = 1.0 (figure 9d).

By increasing Sw (by increasing either A or T), a blurry flow pattern, i.e. Mode I and
Mode II wakes, appears gradually at DC ≤ 0.5. There are four types of vortex structures
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Figure 9. (a) Flow patterns in the DC–Sw plane. (b–g) Typical wake structures. Red and blue denote positive
and negative vorticity, respectively.

in the Mode I and Mode II wakes: A, B, C and D (figures 9e, f ). The vortex structure
A corresponds to the boundary layer separation in the gliding phase, forming nS and
mP+nS structures in the Mode I and Mode II wakes, respectively (Williamson & Roshko
1988). The vortex structures B, C and D are generated during the S-start phase. The vortex
structure B in the Mode I and Mode II wakes is similar, where a strong positive vortex
is surrounded by two weak negative vortices. The vortex structure C contains several
negative vortices, with the Mode II wake providing more single vortex structures compared
to the Mode I wake; see figure 9(f ). The blurry vortex structure D describes the interaction
between vorticity produced by the S-start phase and the one produced by the gliding phase.
The evolution of Mode I and Mode II wakes due to the intermittent motion of a pitching foil
has also been reported in Akoz et al. (2019), where it is mentioned that vortex structures
B and D increase the swimming velocity, whereas structure C causes a deceleration. The
Mode III wake occupies a large portion of the DC–Sw plane. After a series of vortex
mergers, the Mode III wake eventually becomes a 2P wake, as shown in figure 9(g).

4. Conclusions
In this work, intermittent S-start swimming is studied in a systematic manner. The
numerical study reveals that the time-averaged swimming velocity Ūx and the cost of
transport CoT increase with decreasing duty cycle DC. This suggests that although
intermittent S-start swimming leads to higher swimming speeds (which is good for both
escaping predators and striking prey), it is an inefficient swimming gait compared to
continuous cruising. We also presented two scaling laws to characterize the hydrodynamic
performance of S-start swimmers, Re ∼ Sw4/3/DC2/3 and CE ∼ Sw5/3/DC4/3, which
are suitable for moderate speed flows (103 < Re < 105) considered in this work. During
swimming, hydrodynamic performance can be measured by Re and CE, which represent
swimming speed and energy consumption. We can use Sw and DC to measure kinematic
inputs for the swimmer. At high Re > 106, we expect the hydrodynamic performance
metrics to scale as Re ∼ Sw/DC1/2 and CE ∼ Sw2/DC3/2, although this needs to be
verified. Additionally, we also classified the wake structures of self-propelling intermittent
S-start swimmers in this work. Finally, we note that the plots relating to scaling results
appear to be stratified according to DC: points with higher DC values lie beneath points
with lower DC values. A similar stratification is also found in the work of Akoz & Moored
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(2018) (see their figure 10). Perhaps the scaling relations do not quite capture DC effects,
and this motivates further investigation.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2024.103.
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