No signatures of first-person biases in Theory of Mind judgments about thinking
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Abstract

We readily get intuitions about a problem’s complexity, how
much thinking it will require to solve, and how long it should
take, both for ourselves, and for others. These intuitions al-
low us to make inferences about other people’s mental pro-
cessing—Ilike whether they are thinking hard, remembering, or
merely mind-wandering. But where do these intuitions come
from? Prior work suggests that people try solving problems
themselves so as to draw inferences about another person’s
thinking. If we use our own thinking to build up expectations
about other people, does this introduce biases into our judg-
ments? We present a behavioral experiment testing for effects
of first-person thinking speed on judgments about another per-
son’s thinking in the puzzle game Rush Hour. Although people
overwhelmingly reported solving the puzzles themselves, we
found no evidence for participants’ thinking speeds influencing
their judgments about the other person’s thinking, suggesting
that people can correct for first-person biases.
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Introduction

Imagine playing chess against a friend. You advance a pawn,
and then a moment later, realize that you’ve made a grave
mistake: moving that pawn opened up your queen to an at-
tack. You glance up at your friend’s face, hoping that they
haven’t noticed. It seems they haven’t. As you wait for their
move, you study the game from their perspective: the pawn
that you just advanced is now threatening their rook, and find-
ing a safe square to move it to is proving rather tricky...

This capacity to think about other people’s minds, known
as Theory of Mind, appears to be a distinctive human capacity
(Horschler* & Berke*, et al., 2023; Martin & Santos, 2016)
that serves as the backbone to some of our most complex
behaviors: learning and using language (Tomasello, 1992;
Goodman & Frank, 2016), transferring knowledge (Gweon,
2021; Ho, Littman, MacGlashan, Cushman, & Austerweil,
2016), making socio-moral evaluations (Young, Cushman,
Hauser, & Saxe, 2007; Jara-Ettinger, Tenenbaum, & Schulz,
2015), and influencing other people (Ho, Saxe, & Cushman,
2022). Theory of Mind is often conceptualized as the abil-
ity to infer other people’s unobservable mental states (such as
their beliefs, desires, and intentions) through an expectation
that agents act rationally (Gergely & Csibra, 2003; Dennett,
1989). Consistent with this idea, computational models for-
malizing this process successfully capture human intuitions
in a range of social tasks including how we attribute beliefs

and desires (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017;
Jern, Lucas, & Kemp, 2017), how we predict action (Jara-
Ettinger, Schulz, & Tenenbaum, 2020; Baker, Saxe, & Tenen-
baum, 2009), and how we engage in complex forms of so-
cial behavior (e.g., Ho et al., 2016; Bridgers, Jara-Ettinger, &
Gweon, 2020; Goodman & Frank, 2016; Ullman et al., 2009).

However, we do a lot more than just infer other people’s
mental states like beliefs and desires. We also infer dynamic
mental processes going on in other minds, like thinking, de-
ciding, mind-wandering, imagining, planning, remembering,
and worrying, even from an early age (Richardson & Keil,
2022). In adults, this capacity is quite nuanced, and people
make surprisingly rich inferences about the processes hap-
pening in another mind just based on how long someone takes
to answer a question or solve a puzzle (Berke & Jara-Ettinger,
2021; Berke, Tenenbaum, Sterling, & Jara-Ettinger, 2023;
Zhang, Kemp, & Lipovetzky, 2023). To make these types
of inferences, it is critical to understand the difficulty of the
type of thinking someone is engaging in. For instance, the
same pause will elicit different inferences depending on how
complex we believe the problem is. If the problem is easy,
you might think they’re distracted; if it’s hard you might think
they’re highly skilled; and if it’s nearly impossible, you would
suspect that they already knew the answer.

Given how central the ability to estimate problem complex-
ity is to these inferences about other people’s mental pro-
cessing, this raises the question of where this ability comes
from. In past work, people self-reported simulating solv-
ing problems themselves (Berke et al., 2023), suggesting a
role for first-person simulation (Gallese & Goldman, 1998).
And, on one hand, simulating solving the problem oneself
would seem to be a good strategy—what better way to know
how much thinking something requires than to think about
it? But on the other hand, under some instantiations, such an
approach could produce strong biases as you might inappro-
priately project your own patterns of thinking onto others.

Here, we investigate these questions by searching for ev-
idence of first-person thinking in third-person judgments
about what is going on in another agent’s mind as they solve
a puzzle. In particular, adopting the experimental paradigm
and computational framework from Berke et al., 2023, we test
people’s inferences about how distracted someone is as they
solve a puzzle. If our own first-person thinking were input
directly into this inference, then faster thinkers might expect



other people to also solve puzzles quickly, and more heavily
rely on distraction to explain pauses. Despite finding that par-
ticipants overwhelmingly report trying to solve the puzzles
themselves, we found no evidence of participants’ own think-
ing speed influencing their judgments of distraction. This
suggests that, while people may use first-person simulation to
estimate the complexity of a problem, they must have some
way to correct for the biases of their own thinking.
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Figure 1: Rush Hour game used to study how people think
about thinking. a) Example puzzle. A set of horizontal and
vertical “cars” are arranged in a grid. The goal of the game is
to move the red car out of the grid through the exit marked by
the red triangle on the grid’s right side. Cars can only move
through empty squares and along their row or column. b-f)
step-by-step schematic of the solution to this puzzle.

Computational Model

Domain Consider the puzzle in Fig. la from the puzzle
game Rush Hour. A Rush Hour puzzle consists of a grid with
non-overlapping “cars” (visualized as rectangles) of different
colors and lengths, each positioned horizontally or vertically
on the grid. Cars can only slide along their row or column,
such that vertically-oriented cars can slide up and down, and
horizontal cars can slide left and right. However, cars cannot
move through other cars. The goal of the game is to move the
red car to the exit on the right side of the board (indicated by
the red triangle). The solution to the puzzle is a sequence of
moves that clears the red car’s path to the exit. For instance,
the specific puzzle shown in Fig. 1la can be solved in five
moves (Fig. 1b-f): green up two spaces, purple left two, light
blue down three, pink up one, and red right three.

Model overview Although the computational model used
in this work is the same as in Berke et al., 2023, we present a
brief, high-level overview here for completeness.

The model formalizes inferences about mental processes
as Bayesian inference over a generative model of mental pro-
cessing. The generative model is a probabilistic solver used
to estimate the amount of computation needed to solve a
puzzle. This solver is built to make efficient use of mental
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Figure 2: Conceptual illustration of the logic behind how
computation is represented in our approach. Each tree rep-
resents the space of an agent’s possible thinking trajectories
through the puzzle. a) If the solution (shown in light blue) to
a thinking problem is one layer deep, then we expect agents
to answer quickly; if they don’t, we get the intuition that they
got distracted. b) If, on the other hand, the solution is several
layers deep and the agent responds slowly, we may instead
get the intuition that they were thinking deeply.

resources—i.e., minimize the total amount of computation
needed to solve the task, and the memory load of plans—
and has three design features supporting that end. First,
to break the problem down into sub-goals, the solver uses
means-ends-analysis (Newell & Simon, 1961; Newell, Si-
mon, et al., 1972). Second, the solver implements an expec-
tation that thinking is costly and people allocate their think-
ing rationally to reduce the amount of expected computation.
This is implemented using a heuristic-guided search that esti-
mates the amount of future computation and selects sub-goals
and moves to reduce it. Finally, the solver interleaves plan-
ning and mental execution of moves to reduce memory load
(similar to the approach in Korf, 1990). In the context of the
high-level schematic in Fig. 2, this means that the solver as-
sumes that agents are simultaneously constructing the think-
ing tree as they reason through the problem, deciding which
branches to explore and expand by estimating which branches
might require the least computation (i.e., the fewest number
of additional moves) to reach a solution. For further details
on the solver, please refer to Berke et al., 2023.

The solver, by virtue of being probabilistic, produces a dis-
tribution over how much computation it takes to solve a puz-
zle. This reflects the intrinsic uncertainty about how much an-
other agent might have to think to find the solution, which de-
pends on which sub-goals they prioritize thinking about (such
that, on one extreme, they might be lucky and hit upon the so-
lution immediately and, on the other extreme, they might first
explore initially promising but ultimately fruitless avenues).
By assuming that computation takes time and a prior over
speed, this distribution over computation is transformed into
a distribution over the time it should take to solve a puzzle.
Combining this generative model of thinking in Rush Hour
(i.e. the solver) with other cognitive processes (like day-
dreaming; see Berke et al., 2023) yields a full generative pro-
cess of timing, which is inverted using Bayesian inference.



Behavioral Experiment

This experiment tests whether participants’ thinking speed in-
fluences their judgments about the mental processes going
on in someone else’s mind. The first phase of the experi-
ment tested participants’ inferences about how long some-
one spent distracted as opposed to thinking about solving a
puzzle, given an observed pause. Making this inference suc-
cessfully requires an estimate of the difficulty of the puzzle
and an expectation of how long it should take to solve. The
second phase of the experiment tested participants’ speed at
solving Rush Hour puzzles. All data, stimuli, and mate-
rials are available: https://osf.io/e3y9f/?view_only=
a8£094e9a20a45c285046045p453ce8

Participants

300 U.S. participants (Age: mean = 38 years, range = 19-77
years) were recruited on Prolific and randomly assigned to
one of three conditions consisting of a subset of the trials (N
= 100 participants per condition).

Stimuli

The stimuli in the phase of the experiment testing partici-
pants’ ToM judgments (see Procedure) consisted of 18 short
videos. Each video showed a static puzzle for some variable
length of time (a pause), followed by the appearance of the
words “Got it!” and an animation of the solution. Although
the experiment referenced that a person was solving the puz-
zles (see Procedure), the videos only showed the puzzle and
never showed any agents. The videos were generated by pair-
ing a set of 6 puzzles (shown in the first row of Fig. 3) with
three different pause times. The pause times were selected
S0 as to test videos where people’s judgment might show the
largest variability,' as predicted by the model. The second
row of Fig. 3 shows the standard deviation of the posterior
distribution over the proportion of the pause spent daydream-
ing (the target of the model’s inferences) as a function of the
pause duration (in intervals of 2.5 seconds). For each puz-
zle, the pause duration that maximized predicted variation
(the peak) was selected, as this trial should show the greatest
effect. Then, intervals of pause times resulting in a predicted
standard deviation of 0.2 or greater were constructed. From
these intervals, a shorter and a longer pause time were ran-
domly sampled, constrained (when possible) to be more than
2.5 seconds away from the already selected pause time (to en-
sure that the selected trials would be meaningfully different
from each other). The vertical lines in the second row of Fig.
3 depict the selected pause times, with the pause time for the
peak shown in orange, the shorter sampled pause in red, and
the longer sampled pause in blue.

The stimuli in the speed-test phase of the experiment con-
sisted of six other puzzles. The total set of twelve puzzles

IShort pause times might lead all participants to judge that the
character did not daydream, while very long pause times might lead
all participants to judge that the character daydreamed nearly the
whole time, resulting in homogeneous judgments. This motivated
using the model to identify the trials most likely to elicit heteroge-
neous judgments reflecting individual differences in thinking speed.

used in the two phases of experiment had been previously
validated against the model (Berke et al., 2023).

Procedure

Participants first completed a short tutorial on the puzzle
game Rush Hour. They were then introduced to a character
named Alex, who they would watch solving puzzles. Alex,
they were told, would pause to solve the puzzle in their head,
before saying “Got it!” and producing the solution. Some-
times, Alex would spend the whole pause thinking about how
to solve the puzzle, but other times, Alex would daydream.
Participants were instructed to try to tell what was going on
in Alex’s head during the pause before they said “Got it!”

In the phase testing judgments about Alex’s mental pro-
cessing, participants were assigned to one of three conditions,
determining which set of 6 short videos they would view. The
order of the videos was randomized. Because some of these
videos might not give participants enough time to fully simu-
late solving the puzzle themselves, participants were shown a
static preview of the puzzle for 10 seconds before they were
allowed to proceed to the video. For each video, participants
were asked to answer the question, “What was Alex doing?”
by positioning a slider with endpoints “thinking for the whole
pause” (coded as 0) to “daydreaming for the whole pause”
(coded as 100) and the midpoint labeled “thinking for half,
daydreaming for half.” See Fig. 4. After completing all trials,
participants answered the free-response question, “Did you
try to solve the puzzles in your head?”

The last phase tested participants’ puzzle-solving speed.
Participants were instructed to solve a puzzle in their head,
and then click the “Next” arrow as soon as they finished.
Then, they were shown the puzzle again, and asked to click
on the pieces whose movements were part of the solution that
they found. Even if the solution that they found was wrong,
they were instructed to click on the pieces that were part of
it. After a practice trial, participants solved and reported their
solutions for the six speed-test puzzles in randomized order.

Results

First-person reports of simulation Participants’ responses
to the question “Did you try to solve the puzzles in your
head?” were coded based on whether the answer indicated
that the participant tried to solve the puzzles themselves at
least some of the time vs. never. All but 6/300 participants
reported trying to solve the puzzles at least some of the time.

Effect of first-person thinking speed on ToM judgments
Any effect of first-person thinking on third-person judgments
may be small and difficult to detect. To tackle this challenge,
we analyze the data in three different ways, trading off the
sensitivity of the analysis for its assumptions.

The simplest approach to analyzing the data while mak-
ing the fewest assumptions is to correlate participants’ aver-
age time spent solving puzzles with their average judgment
across trials. As it does not use the computational model, we
call this analysis Model-free. However, as will be explained
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Figure 3: Trial-level stimuli design and results. Row 1 shows the six puzzles used in the thinking vs. daydreaming judgment
phase. Row 2 shows, as a function of pause duration, the model’s prediction about the variability of people’s judgments for
the puzzle in that column. Vertical lines indicate the selected pause durations (color-coded by their relative length: short:red;
mid-length:orange; long:blue). Rows 3-5 show the results from the individualized analysis. Each plot displays the results for
one trial, consisting of the puzzle in that column, plus a pause time. Row 3 gives the results for the shortest pause time, Row
4 for the mid-length pause time, and Row 5 for the longest pause time. These pause times were selected/sampled to elicit
heterogeneous inferences (see Stimuli). Points show model predictions on the x-axis, and the participant judgments on the
y-axis. If the model were able to predict individual differences in participant judgments at the trial level, we would expect each
plot to show a positive correlation. The black line is the best-fit line, and the shaded region gives a 95% confidence interval.

shortly, this approach does not make efficient use of the data
and results in a high exclusion rate.

Using the computational model to adjust for the varying
difficulties of the speed-test puzzles enables us to calculate
each participant’s “time-per-compute”—a model-based met-
ric for comparing across participants who solved different
puzzles correctly during the speed tests. Participants’ time-
per-compute are then correlated with their average judgment
across trials. This analysis includes more participants and is
therefore more powerful, but it assumes that the model cor-
rectly estimated the amount of thinking each speed-test puz-
zle requires. We call this the Model-based analysis.

The most sensitive approach uses the model to infer the
amount of thinking that each individual participant spent on
each speed-test puzzle, so as to calculate a time-per-compute,

which is used to produce individualized predictions of each
person’s judgment on each trial (Individualized analysis).
This analysis assumes that the model not only correctly es-
timates the amount of thinking for each puzzle, but also cap-
tures how people infer daydreaming. In exchange, the fine-
grained predictions lend greater power.

Model-free analysis If participants’ first-person thinking
systematically biases their third-person ToM judgments, then
people who solve Rush Hour puzzles quickly might expect
other people to also solve Rush Hour puzzles quickly. In
the context of this experiment, this suggests that people who
take less time to solve Rush Hour puzzles may judge Alex to
have spent more of the pause daydreaming, and people who
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Figure 4: Schematic of a trial in the experiment phase testing
judgments about thinking vs. daydreaming. Participants first
see a ten-second preview of the puzzle. Next, they watch a
video with a variable pause duration, followed by the message
“Got it!” and a video of the solution. Participants the report
the portion of the pause that the character spent daydreaming.

take longer to solve Rush Hour puzzles may judge Alex to
have spent less of the pause daydreaming. Therefore, the first
analysis looks for a negative correlation between each partic-
ipant’s average time spent on the speed tests and their average
judgment of how much of the pause Alex spent daydreaming.

Unfortunately, not all participants were able to solve all six
puzzles correctly in the speed testing phase. Since the six
puzzles varied in difficulty and therefore how long they take
to solve, simply averaging across participants’ times on the
puzzles that they solved correctly would result in averages
that reflect which puzzles the participant solved. And averag-
ing over the time spent on each puzzle, regardless of whether
it was solved correctly, could introduce noise resulting from
participants giving up or making mistakes. Thus, the cleanest
way to extract average puzzle-solving times is to restrict the
analysis to participants who all correctly solved a subset of
the puzzles, and to only use the times for those puzzles.

Following this logic, we restricted this analysis to the 212
participants who were able to correctly solve the four easiest
puzzles in speed-testing. We further excluded from this anal-
ysis participants whose mean solving time for these four puz-
zles was outside of 1.5 times the interquartile range (IQR).2
This excluded 10 participants whose mean solving time was
above 19 seconds for these easy puzzles.

For each participant, we now have an average time spent
solving the puzzles. To compare participants’ judgments who
were assigned to different conditions and therefore viewed
different trials, we first averaged each participant’s judg-
ments across the six trials that they viewed, and then z-scored
each participant’s average judgment when compared to other
participants within their condition (thus accounting for any
differences between conditions). No significant correlation
could be found between each participant’s average time spent
on the speed tests and z-scored average judgment of how
much of the pause Alex spent daydreaming (r = 0.02, Clgsg,:
(-0.12,0.16). See Fig. SA. Furthermore, correlations between
participants’ average time spent solving the puzzles and av-

2Because the distribution of solving times is skewed (rightward),
IQR is a better measure of variability and better for defining outliers
than standard deviation, which assumes a symmetric distribution.
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Figure 5: Results from A) the model-free analysis B) and
model-based analysis. The black line is the best-fit line, and
the shaded region gives a 95% confidence interval. The plot
includes the Pearson correlation and its 95% confidence in-
terval. In both plots, each point represents one participant,
with their z-scored mean judgment of daydreaming on the
y-axis. In A) the x-axis shows the mean time spent solving
the puzzles during the speed testing phase, and in B) the x-
axis shows the mean time-per-compute estimated using the
model. If people base their judgments on their own experi-
ence of solving the puzzles themselves, then we would expect
a negative correlation between how much time it takes them
to solve puzzles and how much they judge Alex to daydream;
faster people should expect Alex to solve the puzzles faster
and therefore rely more on daydreaming to explain pauses.

erage judgment within each condition similarly yielded no
evidence: A: (r = 0.20, Clysq¢: (-0.04, 0.42); B: (r = —0.23,
Closg: (-0.45, 0.02); C: (r =0.09, Clgs9: (-0.14, 0.32).

While this analysis is direct and involves minimal process-
ing, it is not the most powerful, for two reasons. First, it
only included participants who solved at least the four eas-
iest speed-test puzzles correctly (resulting in a 29% exclu-
sion rate). To address this limitation, we conducted a Model-
based analysis using the computational model to estimate the
difficulty of each speed-test puzzle, allowing us to compare
participants who successfully solved different puzzles dur-
ing the speed tests. Second, it involved averaging judgments
across trials, which may lose power. This limitation will be
addressed later by the Individualized analysis.

Model-based analysis To measure the thinking speeds of
participants who correctly solved different puzzles in the
speed-test phase, we used the Rush Hour solver to estimate
the difficulty of each puzzle (the amount of mental computa-
tion that each puzzle would take to solve). We estimated how
much computation each puzzle required by using the MLE
of the distribution over computation predicted by the model.
This measure includes the expectation that agents may some-
times think about moves that look promising, but are not al-
ways correct. For each puzzle, each participant’s solving time
was divided by this measure to give an estimate of the partici-
pant’s time-per-compute on that puzzle. Averaging across the



puzzles that they solved correctly gave an estimate of their
overall time-per-compute. This approach yielded a time-per-
compute for 296/300 participants (four participants failed to
solve any puzzles correctly). Removing outliers (defined as
having a time-per-compute outside of 1.5 times the IQR, i.e.,
taking more than 5.5 seconds per mental move) resulted in
282 participants (for a 6% exclusion rate).

As in the Model-free analysis, we averaged participants’
judgments across trials. To compare participants across con-
ditions, we z-scored their average judgments. As before, no
evidence of a significant relation was found between each par-
ticipant’s average time-per-compute and average judgment of
daydreaming (r = 0.04, Closq,: (-0.08, 0.16)). See Fig. 5B.
Correlations within each condition similarly yielded no ev-
idence: A: (r = 0.10, Clos¢: (-0.10, 0.30); B: (r = —0.10,
Clos9: (-0.29, 0.11); C: (r =0.14, Closg,: (-0.07, 0.33).

This analysis leveraged our computational model to search
for correlations between first-person thinking speed and third-
person ToM judgments. However, this analysis still uses the
judgment data inefficiently by averaging across trials to pro-
duce one overall mean judgment of distraction. If we could
use first-person thinking speed not just to predict participants’
overall but their trial-by-trial judgments, we may still be able
to detect an effect. With this goal in mind, the Individualized
analysis uses the model to actually infer each participant’s
time-per-compute and then predict each participant’s judg-
ments on each trial. This more fine-grained analysis relies
heavily on the model and its assumptions, but it may have the
power to detect effects that the coarser analyses missed.

Individualized analysis First, we used the model to infer
each participant’s time-per-compute. This involved condi-
tioning on each participant’s times for each speed-test puzzle,
and taking the expected value of the resulting posterior. The
advantage to this approach is that making use of the model’s
prior over thinking speed may help handle outliers without
resorting to exclusion, but if the model’s priors are misspeci-
fied, this could introduce further errors.

Time-per-compute was estimated for each of the 296 par-
ticipants who solved at least one puzzle correctly. For each
participant, this estimate was then used as the mean of the
generative model’s prior for mapping units of computation to
time. Running the model forward with individualized priors
over thinking speed generated individualized predictions of
daydreaming judgments for each trial.

Fig. 3 shows scatterplots of each participant’s judgment on
each trial against the model’s predictions. Combining data
across trials, the correlation between model predictions and
participant judgments was small but significant (r = 0.06,
Clgsg: (0.01, 0.11)). However, this correlation could re-
flect the model’s ability to capture how average participant
judgments vary from trial to trial, rather than how judgments
vary from person to person. To test whether the individual-
ized model is actually capturing the variation between partic-
ipants, we performed a permutation test scrambling the pair-

ings between each participant and their individualized model
predictions, while retaining trial structure. We found that the
observed correlation of r = 0.06 was expected under the null
distribution (p = 0.22), indicating that the model’s predic-
tive power came solely from predicting trial-level differences
rather than individual differences. No evidence of partici-
pants’ thinking speed biasing their judgments was found.

Discussion

It’s striking how invariant participants’ judgments about an-
other person’s thinking were to the participants’ own think-
ing speed. This is difficult to reconcile with the finding that
98% of participants reported trying to solve the puzzles them-
selves, and with the phenomenology of the task—it seems
hard to look at a puzzle and noft try to solve it!

In this experiment, there were two possible ways that first-
person simulation could serve as input for inferences about
another person’s mental processing. First, people could have
tried solving the puzzles themselves so as to judge their dif-
ficulty. But, since the solutions to the puzzles were shown,
perhaps participants could rely on the solutions at the end
of the video to extract the difficulty of the puzzle. Second,
people could have used their own mapping from computation
to time to anchor their expectations of how long the puzzle
would take someone else to think about. If not from first-
person, where did people get the mapping from complexity
to timing? Perhaps we have such good expectations of how
other people think that we can correct for differences between
our own mind and others, at least in terms of speed.

While correcting for speed differences between our own
mind and someone else’s seems plausible and computation-
ally simple (by scaling thinking times up or down), there are
other sorts of differences that seem harder to correct. For ex-
ample, if we make a silly mistake, we might not expect oth-
ers to make the same mistake—but do we always know how
much computation that mistake cost us, or what the counter-
factual thinking path would be? Similarly, if our first attempt
turned out to be right, we might not expect others to be quite
so lucky—but would we know how much computation would
have been used if we had taken a different thinking path? And
if we are a beginner, we might have no idea of the strategies
that experts use. For these kinds of differences, it is unclear
whether simulation is a useful strategy. And if we do still
simulate in these cases, what corrections do we apply?

This leads to an intriguing question: would someone whose
mind is more “typical” or “average” possess a more accurate
Theory of Mind than someone whose mind works very differ-
ently from those around them? The stereotype of the socially
inept genius seems to support this idea—a very unusual mind
might be a poor model of other minds, making simulation
misleading for predicting or drawing inferences about others.

In future work, we hope to further explore cases where peo-
ple may or may not use their own mind as a starting point for
understanding other minds. Altogether, this work helps un-
cover (or rule out) possible inputs to human social cognition.
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