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Abstract—Phylogenies represent the evolutionary history of a
set of taxa and are typically reconstructed using computational
analysis of genomic or other genetic sequence data. A common
question is to ask whether a phylogenetic estimate is trustwor-
thy. Felsenstein introduced the influential application of non-
parametric statistical resampling to place confidence intervals
on a reconstructed phylogenetic tree. Since then, this task —
referred to as phylogenetic support estimation — has become a
de facto requirement in systematics and wherever reconstructed
phylogenies are reported. And algorithmic development efforts
have continued to build upon Felsenstein’s original method.

In this study, we propose a novel statistical optimization
technique to improve statistical resampling assessments of phylo-
genetic tree support. The technique uses a statistical criterion as
a means to assess re-estimation difficulty of different resampled
replicate datasets and more intelligently allocate computational
effort, given the computationally difficult optimization problems
that are addressed during re-estimation in this context. We couple
the new statistical optimization technique with a recently intro-
duced sequence-aware resampling method named RAWR, and
we evaluate the performance of these methods using simulated
and empirical benchmarking datasets. The new method is also
used to conduct a case study of Darwin’s finches. We find that
the resulting phylogenetic support estimates offer comparable or
often improved type I and II error compared to the original
RAWR method, at the cost of additional computational runtime.
Our study outcomes point the way to future algorithmic enhance-
ments and better informed statistical resampling approaches.

Index Terms—phylogeny, phylogenetic, tree, multiple sequence
alignment, support, confidence interval, resampling, maximum
likelihood optimization

I. INTRODUCTION

One of the most widely used resampling methods is boot-
strap resampling, which samples an input set of observations
uniformly at random with replacement [1]. Bootstrap resam-
pling has found many applications throughout science and
engineering. A particularly important application can be found
in the field of phylogenetics, where bootstrap resampling is
used to assess reliability of phylogenetic reconstruction [2].
This task — sometimes referred to as phylogenetic support
estimation — is now routine wherever reconstructed phyloge-
nies are reported, and the original publication describing the
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phylogenetic bootstrap method is the 41st most cited of all
time [3].

As with other non-parametric resampling techniques, a
primary advantage of bootstrap resampling is that it does not
require a parametric model and attendant assumptions about
model appropriateness for a particular dataset. Still, bootstrap
resampling requires another important simplifying assumption:
that the input observations are independent and identically
distributed (i.i.d.). In the context of phylogenetic reconstruc-
tion using biomolecular sequence data, a host of evolutionary
and other factors can violate this simplifying assumption [2].
These include biomolecular structure and function, genetic
recombination, sequence insertion and deletion processes, and
many others.

To move beyond the simplifying assumption of i.i.d. data,
Wang et al. [4] recently introduced a new sequence-aware
resampling technique named RAWR (“RAndom Walk Resam-
pling”). The resampling method takes the form of a random
walk conducted directly on an input set of unaligned sequence
data. Sequence data are resampled asynchronously between
walk reversals, where the latter make use of anchor positions
as synchronization points (similar to the concept of barriers
in parallel computing). A key property of RAWR is the
“neighbor preservation” principle: neighboring site positions
(e.g., neighboring bases in the case of DNA sequence data) in a
resampled sequence are guaranteed to also appear as neighbors
in the corresponding original sequence in the input. The
neighbor preservation principle is key to preserving sequential
ordering information in the input, which is necessary for
critical downstream estimation tasks such as multiple sequence
alignment. To date, RAWR has been successfully applied to
place confidence intervals on phylogenetic trees [4] as well as
other biomolecular sequence analysis tasks [5]. Performance
studies have consistently demonstrated that RAWR offers
comparable or often better type I and II error compared to
bootstrap resampling and other state-of-the-art methods.

But there is a catch. All statistical resampling methods
— RAWR included - require additional estimation to be
performed on resampled replicates. The added computational
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overhead can be onerous for estimation tasks that require
computationally difficult optimization.

Part of the reason for this burden is due to the modularized
design of statistical resampling applications. In part to mitigate
resampling bias, resampling is completely decoupled from
re-estimation on resampled replicates. As a consequence,
resampling is oblivious to downstream re-estimation. And
all replicates are homogeneous from the perspective of re-
estimation: all replicates are treated similarly with the same
re-estimation method and a priori allocation of computational
effort is equal across replicates. We believe that an “unin-
formed” re-estimation strategy is in fact an opportunity for
improved algorithmic design — one which may be exploited
to obtain improvements in support estimation accuracy (and
potentially other aspects of method performance).

II. MATERIALS AND METHODS

Our study introduces a novel optimization technique for
improving RAWR support estimation. The former method
builds on the latter method — which itself requires an initial
MSA and tree estimate as input. We now provide a detailed
description of these methods.

A. Methods under study

Initial MSA and tree estimates for phylogenetic support
annotation. To begin, an initial multiple sequence alignment
and phylogenetic tree are estimated on the input set of un-
aligned sequences, and the latter serves as the “annotation”
tree for phylogenetic support annotation purposes. Estimation
is performed using a two-phase approach: in the first stage
of two-phase analysis, a multiple sequence alignment (MSA)
is estimated using the unaligned sequences as input; in the
second stage, a phylogenetic tree is estimated using the
estimated MSA as input.

Our study utilized MAFFT [6] — a widely used software
package for MSA estimation. The software implements several
different MSA estimation algorithms, some of which have
been shown to offer competitive estimation accuracy compared
to the state of the art [7], [8] and others which offer greater
computational efficiency at the cost of estimation accuracy.
The initial MSA was estimated using MAFFT version 7.490
with default settings, which corresponds to its FFT-NS-2
algorithm — one of the faster algorithms in the software suite
which offers less accuracy compared to other implemented
algorithms such as MAFFT’s L-INS-i algorithm option [6].

Using the MAFFT-estimated MSA as input, a phylogenetic
tree was reconstructed using maximum likelihood estimation
(MLE) under the GTR+I" model of nucleotide substitution [9].
We used RAXML version 8.2.12 to conduct phylogenetic MLE
analyses [10]. The resulting phylogenetic tree estimate serves
as the “annotation” tree for phylogenetic support estimation
purposes.

RAWR support estimation. The RAWR method for phy-
logenetic support estimation provides both a baseline for
comparison purposes and an initial resampling analysis that
our new optimization technique builds upon. RAWR support
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estimation consists of multiple steps: (i) RAWR is used
to perform sequence-aware resampling and obtain replicate
sets of unaligned sequences, (ii)) MSA and tree re-estimation
is performed on each replicate set of unaligned sequences,
and (iii) phylogenetic tree support for the annotation tree is
calculated using re-estimated trees. We now recap details for
each stage of analysis.

The input to RAWR analysis consists of the initial MSA
and tree that were estimated using a two-phase method. The
output consists of phylogenetic support values for each internal
branch of the input tree — i.e., a real value between 0 and 1
where larger values reflect greater estimation reliability.

RAWR begins by conducting sequence-aware resampling
to obtain replicate sets of unaligned sequence data. The re-
sampling procedure takes the form of random walk conducted
directly on the input MSA. The random walk randomly selects
a starting site and then proceeds in a random direction. The
direction is reversed with certainty at the first and last position,
and with probability ~ elsewhere; our study experiments uti-
lized reversal probability v = 0. Sites are resampled along the
random walk path and the unaligned sequences corresponding
to the sampled sites as read in random walk order constitute the
replicate set of unaligned sequences; equivalently, resampled
aligned sequences are unaligned by omitting indels. The walk
concludes once a length criterion is satisfied, where the walk
length equals the length of the input MSA.

MSA and tree re-estimation are performed on the replicate
set of unaligned sequences. We utilized the same two-phase
approach and methods as in the initial MSA and tree estima-
tion procedures.

The resampling and re-estimation procedures are repeated to
obtain resampling replication. Our study utilized 100 RAWR
replicates for each input dataset analysis. Finally, phylogenetic
support for each internal branch of the input annotation tree is
calculated as the fraction of re-estimated trees that also display
that branch.

Statistical optimization of RAWR support estimation.
Our new optimization technique builds upon RAWR support
estimation. Figure 1 provides an illustrated example and
flowchart for the procedure. (Detailed pseudocode is provided
in Algorithm 1 in the Supplementary Appendix.)

The optimization procedure proceeds from where RAWR re-
sampling and re-estimation concludes. (See above for RAWR
analysis procedures). An optimization criterion is used to
identify RAWR replicates that pose greater challenges to
phylogenetic reconstruction and may yield less reliable re-
estimates, as these could benefit from more intensive com-
putational analysis to improve MSA and tree reconstruction.
We utilize model likelihood under the GTR+I" substitution
model for this purpose, where likelihood score is calculated
using the initial MSA estimate as data. The model likelihood
calculations were performed using RAXML version 8.2.11.

A data-driven threshold is then calculated based on the best
score in the larger of two sets: (a) the low-scoring tail of
the optimization score distribution across RAWR replicates,
where the tail consists of all optimization scores that are 1
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standard deviation below the mean (which is equivalent to a
standard score/z-score of 1), and (b) the lowest decile of the
optimization score distribution across RAWR replicates. An
additional threshold adjustment is performed to ensure that a
sufficient number of replicates are selected for re-analysis: if
the number of replicates in the lowest decile of scores is less
than or equal to the number of replicates that scored more than
1 standard deviation below the mean, the threshold is set to
the score with rank that is the average of these two quantities.

The selected replicates are re-analyzed using more com-
putationally intensive and accurate MSA and tree estimation
methods (as compared to the original estimation as well as re-
estimation on RAWR replicates). MAFFT’s L-INS-i algorithm
was used for this purpose, which offers improved MSA
accuracy compared to the FFT-NS-2 algorithm at the cost
of increased computational overhead. RAXML was then used
to reconstruct a phylogenetic tree using the resulting MSA
estimate as input; RAXML MLE was run using the same model
and settings as elsewhere in our study.

The resulting “re-re-estimates” replace the previous re-
estimates in corresponding RAWR replicates. The annotation
tree support calculation is updated accordingly based upon the
set of optimized tree re-estimates/re-re-estimates.

B. Performance study using simulated and empirical bench-
marking data

Simulated benchmarking datasets. Our study utilizes
simulation conditions and datasets from the previous study of
Wang et al. [4]. The model conditions include a wide range
of dataset sizes and evolutionary divergence for assessing
performance of phylogenetic reconstruction and phylogenetic
support estimation. Below we recap the procedures for simu-
lating the synthetic benchmarking datasets.

The 10-taxon and 50-taxon simulation datasets were sim-
ulated using INDELible version 1.03 [11]. Non-ultrametric
model trees are simulated under a random birth process with
branch lengths drawn uniformly at random from the open
unit interval. For the 100-taxon simulations, random birth-
death model trees were sampled using r8s version 1.7 [12],
and model trees were then deviated away from ultrametricity
using Nakhleh et al’s [13] approach with deviation factor
¢ = 2.0. All model trees were rescaled based on a height
parameter h. Then, nucleotide sequence evolution along each
model tree was simulated under a finite-sites models of
nucleotide substitutions coupled with a model of sequence
insertions/deletions, where root sequence length was set to 1
kb. The nucleotide substitution model consisted of the general
time-reversible (GTR) model [9], with base frequency and sub-
stitution rate parameters set to empirical NemATol estimates
from the previous study of Liu et al. [8]. The 10-taxon and 50-
taxon simulations of sequence evolution were performed with
INDELible [11] and the indel model of Fletcher and Yang
[11]. The 100-taxon simulations of sequence evolution were
performed with ROSE [8] and utilized the indel model with
medium gap length distribution from the study of Liu et al.
[8]. Simulations were repeated for each model condition to
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obtain 20 replicate datasets. Model conditions and summary
statistics for the simulated datasets are listed in Table I.

Empirical benchmarking datasets. Our study utilized
empirical benchmarking datasets from the Comparative RNA
Website (CRW) database [14]. The CRW rRNA datasets
were comprehensively curated using biomolecular sequence
data, structural information, and other heterogeneous data.
As such, this resource provides a “gold standard” reference
for benchmarking multiple sequence alignment [7], [8]. The
manually curated MSA provided with each dataset serves
as the reference MSA in our experiments. A reference tree
was obtained using MLE analysis of the reference MSA; to
this end, RAXML was used to perform maximum likelihood
phylogenetic inference under the same finite-sites substitution
model and the same software settings as in the simulation
experiments.

The simulations in our simulation study reflect non-coding
nucleotide sequence evolution and dataset sizes up to 100
taxa. We therefore focused on intronic rRNA datasets with
at most 250 sequences for the purposes of experimental
consistency. Sites with more than 99% missing data were
omitted during data preprocessing. Summary statistics for the
empirical benchmarking datasets are listed in Table II.

Performance criteria used in evaluations. Phylogenetic
support estimation performance was evaluated based on both
type I and type II error with respect to the model tree in the
simulation experiments and the reference tree in the empirical
CRW benchmarking experiments. Accuracy assessments in
our study focus on precision-recall curves, receiver operating
characteristic (ROC) curves, and area under these curves, as
these facilitate simultaneous assessment of type I and type II
error and tradeoffs between them.

Confusion matrices for the PR and ROC curves are formed
from four classes of error. True positives (TP) are bipartitions
of the annotation tree with support values greater than or
equal to a given threshold and also appear in the reference
tree. False positives (FP) are bipartitions of the annotation tree
with support values greater than or equal to a given threshold
but do not appear in the reference tree. False negatives (FN)
are bipartitions of the annotation tree with support values less
than a given threshold but appear in the reference tree. True
negatives (TN) are bipartitions of the annotation tree with
support values less than a given threshold and do not ap ear
in the reference tree. The PR curve plots precision (|TP\ JrIFPI)

versus recall or true positive rate (W). The ROC curve

plots true positive rate (%) versus false positive rate

(\TI\I‘|FJI:\IFP|) Custom scripts and the scikit-learn Python library

[15] were used to calculate confusion matrices, curves, and
AUC values.

Computational runtime and memory usage were also as-
sessed for the phylogenetic support estimation methods under
study. The former are reported as serial wall-clock runtimes.
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Fig. 1: [llustrated example with flowchart of Optimized RAWR method for phylogenetic support estimation. The Optimized
RAWR method begins with RAWR resampling and re-estimation. Beginning with an input set of unaligned sequences (row
1), the input is aligned to obtain an initial multiple sequence alignment (MSA) and a phylogenetic tree is reconstructed using
the initial MSA estimate as input (row 2). The latter serves as the “annotation” tree for phylogenetic support estimation
purposes. Sequence-aware resampling of the initial MSA is then performed using RAWR: the MSA is resampled via random
walk resampling and a replicate set of unaligned sequences is obtained (rows 3 and 4, respectively). Then, an MSA and
phylogenetic tree are re-estimated on the replicate set of unaligned sequences (rows 5 and 6, respectively); sequence resampling
and MSA/tree re-estimation are repeated, resulting in a set of re-estimated trees (row 6). The re-estimated trees are scored and
ranked using the model likelihood criterion on the initial MSA estimate (row 7). The likelihood score serves as an indicator of
re-estimation difficulty. Low-scoring replicates based on the optimization score distribution’s low-scoring tail are re-analyzed
using more computationally intensive approaches than in preceding steps, resulting in a set of re-re-estimated MSAs and trees
for the low-scoring replicates (rows 8 and 9). The re-re-estimated trees replace previously re-estimated trees for the low-scoring
replicates (row 10). Finally, phylogenetic support for each non-leaf branch of the annotation tree is calculated based on the
proportion of re-estimated/ re-re-estimated trees that also display that branch (row 11).
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TABLE I: Simulation study: model condition parameters and summary statistics. The following table is reproduced from [4].
Model condition parameters consists of number of taxa, model tree height, and insertion/deletion probability. The 10-taxon
model conditions are named 10.A through 10.E in order of generally increasing evolutionary divergence, and the 50- and
100-taxon model conditions are named similarly. The following summary statistics are reported for each model condition
(n = 20): “ANHD” is the average normalized Hamming distance of a pair of aligned sequences in an MSA, “Gappiness”

is the proportion of an MSA matrix that consists of indels,

“length” is the number of MSA columns, and “SP-FN” and

“SP-FP” are the proportions of nucleotide-nucleotide homologies that appear in the true alignment but not in the estimated
alignment or vice versa, respectively. The average normalized Robinson—Foulds distance (“nRF”’) between the model tree and
the RAXML(MAFFT)-inferred tree is also reported for each model condition (n = 20).

Model Number Model Insertion/deletion True alignment MAFFT alignment RAxXML
iti f heigh P ili MAFFT) nRF
condition of taxa tree height robability ANHD Gappiness Length Length SP-FN  SP-FP ( ) n
10.A 10 0.47 0.13 0.380 0.591 2466 1543 0.566 0.629 0.186
10.B 10 0.7 0.1 0.479 0.618 2691 1602 0.687 0.750 0.243
10.C 10 1.2 0.06 0.591 0.645 2832 1588 0.811 0.850 0.443
10.D 10 2 0.031 0.642 0.591 2490 1583 0.815 0.841 0.464
10.E 10 44 0.013 0.696 0.578 2390 1623 0.904 0913 0.664
50.A 50 0.45 0.06 0.415 0.607 3070 2053 0.340 0.336 0.084
50.B 50 0.73 0.03 0.513 0.605 2525 1834 0.451 0.431 0.146
50.C 50 1.2 0.02 0.598 0.620 2646 1950 0.731 0.704 0.322
50.D 50 2 0.012 0.667 0.671 2720 2171 0.902 0.881 0.517
50.E 50 43 0.005 0.715 0.574 2474 2385 0.974 0.965 0.755
100.A 100 4 1 x107° 0.454 0.439 1682 1533 0.054 0.046 0.075
100.B 100 7 1 x10—° 0.479 0.439 2263 1861 0.209 0.176 0.119
100.C 100 15 5 x107° 0.646 0.571 2317 2418 0.680 0.603 0.470
100.D 100 25 2 x107° 0.683 0.614 2837 2799 0.899 0.853 0.607
100.E 100 20 4 x107° 0.672 0.614 2487 2701 0.848 0.796 0.661

TABLE 1II: Empirical study: summary statistics for intronic rRNA datasets. The following table is reproduced from [4]. The
empirical benchmarking datasets used in the study were obtained from the Comparative RNA Website (CRW) database [14].
The CRW database provides manually curated MSAs for each dataset, and these are used as reference alignments. A reference
tree was then constructed using MLE analysis of the reference alignment. (See Methods section for details.) Summary statistics
for each dataset are provided (n = 1), and the description of summary statistics are identical to Table I.

Dataset Number of taxa Reference alignment MAFFT alignment RAxML
ANHD  Gappiness Length Length SP-FN SP-FP (MAFFT) nRF
IGIA 110 0.606 0915 10368 6065 0.732 0.780 0.645
IGIB 202 0.579 0.910 16233 7070 0.825 0.863 0.678
IGIC2 32 0.533 0.700 4243 3530 0.691 0.716 0.517
IGID 21 0.719 0.782 5061 3063 0.874 0.905 0.778
IGIE 249 0.451 0.838 2751 2847 0.406 0.389 0.585
IGIIA 174 0.668 0.814 6406 6945 0.817 0.800 0.450

C. Empirical study of Darwin’s finches

Genomic sequence dataset. We re-analyzed genomic se-
quence data from Lamichanney et al.’s [16] study of Darwin’s
finches, which was also re-analyzed by Wang et al. [4]. The
dataset consisted of genomic sequence data for 25 samples
from different species in the clade and 34,972 loci in total. The
genomic loci included annotated genes, intergenic regions, and
scaffolds without gene annotations.

Initial MSA and tree estimation. The unaligned sequences
for each locus were aligned using MAFFT with default settings
to obtain an initial MSA estimate (as in the rest of the
study). MSAs were concatenated across loci for subsequent
phylogenetic tree reconstruction.

As in the rest of our study, maximum likelihood estimation
(MLE) was used to reconstruct a phylogenetic tree; for the

finch dataset analysis, MLE was performed on a concate-
nated and partitioned MSA. In terms of sequence length,
the concatenated and partitioned MSA is multiple orders of
magnitude larger than the simulated datasets. We therefore
used ExaML version 3.0.22 [17] — a variant of RAxML
that supports distributed-memory parallelism — to conduct
highly parallelized phylogenetic MLE on a high-performance
computing cluster. To facilitate the ExaML analysis, RAxML
version 8.2.9 was used to perform maximum parsimony (MP)
optimization and obtain an initial starting tree; ExaML version
3.0.22 was also used to specify additional analysis metadata
in the form of a partition configuration file. The resulting
tree estimate served as the annotation tree for the purposes
of phylogenetic support estimation.

Phylogenetic support estimation using RAWR. For each
locus, RAWR resampling was conducted on the initial lo-
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cus MSA to obtain a replicate set of unaligned sequences.
The replicate set of unaligned sequences was aligned using
MAFFT with default settings to obtain a re-estimated MSA for
each locus. Re-estimated MSAs were then concatenated across
loci to obtain a concatenated and partitioned MSA. The latter
MSA was used to perform phylogenetic tree re-estimation
using the same approach as in the initial tree estimation step.
The process was repeated to obtain a set of 100 re-estimated
trees, which were then used to calculate phylogenetic support
for the annotation tree.

Phylogenetic support estimation wusing Optimized
RAWR. As in the RAWR analysis of Darwin’s finches,
Optimized RAWR was adapted to perform multi-locus data
analysis. The procedure begins with RAWR analysis using
the steps described above. All replicates are scored under the
optimization criterion where model likelihood under the finite-
sites substitution model is calculated using the concatenated
and partitioned MSA as data. Low-scoring replicates are
selected for re-analysis using more intensive MSA and tree es-
timation methods: MAFFT L-INS-i was used to re-re-estimate
MSAs for each locus, re-re-estimated MSASs are concatenated
across loci, and ExaML was used to perform parallelized
phylogenetic MLE on the concatenated and partitioned MSA.
The resulting tree replaces the previously re-estimated tree
for the corresponding replicate. Phylogenetic support for the
annotation tree is calculated using the updated set of re-
estimated/re-re-estimated trees, following the procedure used
throughout our study.

III. RESULTS

A. Performance study using simulated and empirical bench-
marking data

Performance benchmarking using simulated datasets.
Table III compares type I and type II error of RAWR ver-
sus Optimized RAWR. On the 10-taxon model conditions,
Optimized RAWR returned PR-AUC improvements over the
baseline RAWR method in all cases. The smallest improve-
ment was seen on the least divergent 10.A model condition.
As model conditions increased in evolutionary divergence
and MSA and tree reconstruction became more challenging,
Optimized RAWR’s PR-AUC and ROC-AUC advantage grew
to as much as 7.9% and 7.2%, respectively, on the most
divergent 10-E model condition. Average PR-AUC and ROC-
AUC improvement of Optimized RAWR over RAWR on
the 10-taxon model conditions amounted to 3.0% and 2.6%,
respectively. These differences were not statistically significant
based on a one-tailed pairwise t test, with the exception of both
AUC comparisons on the most divergent 10.E model condition
and the ROC-AUC comparison on the 10.C model condition.

Similar outcomes were observed on the 50- and 100-taxon
model conditions, with one difference: AUC improvement
of Optimized RAWR over baseline RAWR was statistically
significant for all model conditions other than the ROC-
AUC comparison on the 50.A model condition and both
AUC comparisons on the 100.A model condition — both of
which have lowest evolutionary divergence among the 50-
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and 100-taxon model conditions, respectively. PR-AUC and
ROC-AUC improvement of Optimized RAWR over baseline
RAWR averaged around 1% and 5%, respectively. The largest
AUC improvements were generally seen on the most divergent
model conditions.

Our study also compared computational runtime and peak
memory usage of the phylogenetic support estimation methods
under study. Runtimes are reported in Figure 2. Baseline
RAWR and Optimized RAWR runtimes amounted to under
10 minutes across the 10-taxon datasets, on average. As
expected due to the computational difficulty of the MSA and
tree estimation problems under study, runtimes on 50-taxon
datasets grew to a few hours; the largest runtimes in our study
were observed on the 100-taxon datasets — amounting to as
much as a half a day or so per dataset. Runtimes tended to
increase as evolutionary divergence increased from the 50.A to
50.E model conditions, and similarly on the 100-taxon model
conditions.

As Optimized RAWR includes baseline RAWR analysis as
an initial step, the former naturally requires more runtime
than the latter. By comparing average runtime of the former
versus the latter, we found that runtime overhead of our new
optimization technique was a relatively small fraction of the
overall runtime required for baseline RAWR analysis; the
outcome was consistent across all model conditions in our
simulation study. We note that this occurred despite Optimized
RAWR’s use of a slower and more accurate two-phase method
for re-re-estimation, as compared to RAWR re-estimation.

Peak memory usage was modest and amounted to at most
a few hundred MiB in all cases. We note that this amount
of main memory is well within the scope of commonly
available personal computers and high-performance computing
facilities.

Performance benchmarking using empirical CRW
datasets. Table IV reports PR-AUC and ROC-AUC results
for the phylogenetic estimation methods under study. AUC
improvement of Optimized RAWR over baseline RAWR was
largest on the IGIB and IGID datasets, with respective PR-
AUC improvements of 1.4% and 1.4% and respective ROC-
AUC improvements of 1.6% and 1.8%. We note that IGIB is
largest dataset by sequence length and second largest dataset
by number of taxa, and IGID has highest sequence divergence
based on reference MSA ANHD. Smaller AUC differences
were observed on the other CRW datasets.

B. Empirical study of Darwin’s finches

Figure 3 visualizes the annotation tree that was estimated
using the initial two-phase analysis, along with phylogenetic
support values that were estimated using either the baseline
RAWR method or Optimized RAWR method. The phylo-
genetic support values returned by the two methods were
quite similar, with a maximum difference of at most 10%.
There was a directionality trend: Optimized RAWR returned
comparable (within 1-2%) or higher phylogenetic support on
all branches, as compared to baseline RAWR. Furthermore,
the higher support values returned by Optimized RAWR (as
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TABLE III: Simulation study: PR-AUC and ROC-AUC comparisons of baseline RAWR versus Optimized RAWR methods for
phylogenetic support estimation. Average PR-AUC and ROC-AUC values are reported for each method on each model condition
(n = 20). For each model condition and comparison of either PR-AUC or ROC-AUC values, a one-tailed pairwise t test was
used to evaluate statistical significance of AUC value differences between the two methods and a p-values is reported (n = 20).

Model PR-AUC Pairwise ROC-AUC Pairwise
condition  "LAWR  Optimized RAWR "' RAWR  Optimized RAWR Ut
10.A 0.9949 0.9988 0.1649 0.9833 0.9833 0.5000
10.B 0.9830 0.9917 0.2109 0.9483 0.9548 0.1678
10.C 0.9197 0.9523 0.0594 0.9020 0.9434 0.0157
10.D 0.8999 0.9270 0.1219 0.9683 0.9808 0.0857
10.E 0.8919 0.9709 0.0429 0.8767 0.9483 0.0038
50.A 0.9981 0.9985 0.0079 0.9654 0.9756 0.0727
50.B 0.9955 0.9969 0.0013 0.9482 0.9620 0.0010
50.C 0.9797 0.9854 3.4e-07 0.8712 0.9762 7.0e-07
50.D 0.9710 0.9854 2.3e-05 0.9810 0.9914 2.4e-07
50.E 0.9429 0.9653 5.8e-07 09138 0.9834 6.8e-08
100.A 0.9930 0.9926 0.3698 0.8994 0.8994 0.4894
100.B 0.9899 0.9912 6.5e-06 0.9100 0.9215 2.5e-05
100.C 0.9621 0.9734 1.2e-08 0.7896 0.8560 2.0e-08
100.D 0.9409 0.9664 2.7e-08 0.7787 0.8855 2.8¢e-11
100.E 0.9445 0.9655 3.2e-08 0.7509 0.8579 2.5e-10
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Fig. 2: Simulation study: runtime comparison of phylogenetic support estimation methods. Average runtime of baseline RAWR
(“RAWR?”) and Optimized RAWR (“RAWR-Opt.”) are reported for each model condition (n = 20). Standard error bars are

shown.

TABLE IV: PR-AUC and ROC-AUC returned by phylogenetic
support estimation methods on empirical CRW datasets. AUC
values are reported for baseline RAWR (“RAWR”) and Opti-
mized RAWR (“Optimized”) on each CRW dataset (n = 1).

Model PR-AUC ROC-AUC
condition "L AWR Optimized RAWR Optimized
IGIA 0.8800  0.8825 09356  0.9401
IGIB 07999 08135 08939  0.9099
IGIC2 08773 08715 08691  0.8548
IGID 0.8524 08661 09107  0.9286
IGIE 0.8056  0.8089  0.8741  0.8766
IGIIA 0.8996 09043 09000  0.9077

compared to baseline RAWR) largely appeared within the
sharp-beaked ground finch clade, which also included some
other ground finch species.
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IV. DISCUSSION

Type I and type II error improvement of optimized RAWR
support estimates versus baseline RAWR support tended to
grow as two key experimental factors were varied: (1) dataset
sizes increased from 10 to 100 taxa, and (2) evolutionary di-
vergence increased. Both support estimation methods perform
re-estimation on RAWR replicates by addressing computation-
ally difficult optimization problems [19], [20], and the first
experimental factor directly determines combinatorial growth
of the optimization space. Theoretical and experimental work
has also confirmed the second factor’s primary contribution
to MSA and phylogenetic tree estimation [7], [8], [21]. The
optimized RAWR method’s PR-AUC and ROC-AUC improve-
ments over non-optimized RAWR amounted to nearly 10% on
the largest and most divergent (and therefore most challenging)
model conditions. This magnitude of improvement approaches
that observed for RAWR in comparison to state-of-the-art
phylogenetic support estimation methods [4].
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Fig. 3: Empirical study of Darwin’s finches: comparison of phylogenetic support estimates. The annotation tree that was initially
estimated by the two-phase method is visualized along with either (a) baseline RAWR support values or (b) Optimized RAWR
support values. We note that the annotation tree topology reported in our study differs from the estimate reported by Wang et al.
[4], but is identical to the estimate reported by Lamichhaney et al. [16]. Dendroscope [18] was used to visualize phylogenetic

trees and phylogenetic support values.

A similar outcome was observed in the empirical study
experiments. Type I and II error improvements returned by
RAWR optimization versus baseline were greater on larger
and more divergence intronic CRW datasets. Phylogenetic
support returned by the former method was comparable or
slightly higher than the latter on the Darwin’s finch genomic
sequence dataset. We note that traditional phylogenetic anal-
ysis of genomic sequence data can aggregate over disparate
phylogenetic signal across different loci [22], and the sheer
amount of sequence data in genomes can benefit statistical
reproducibility.

As is typical for any statistical resampling analysis, RAWR
optimization’s type I and II error improvements come at a
cost: namely, added computational runtime. Despite Optimized
RAWR’s use of a more intensive MSA method compared to
baseline non-optimized RAWR analysis, the runtime overhead
contributed by the former was relatively small compared to
the runtime requirements of the latter. Peak memory usage
of optimized and baseline RAWR methods were similar, and
main memory requirements did not prove to be a scalability
bottleneck for the model conditions under study.

We attribute type I and II error improvements to the model
likelihood optimization criterion and its ability to identify
resampling replicates that may benefit from more intensive
re-estimation. We note that the use of a model likelihood crite-
rion under a finite-sites substitution-only model for unaligned
sequence data is unconventional. Prior theoretical and exper-
imental work has provided some insights into its application
in the study context of MSA and tree reconstruction using
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unaligned sequence data [8]. While atypical, the use of the
optimization approach in this study has paid similar dividends
for the problem of simultaneous MSA and tree estimation
using unaligned sequence data [7], [8]. As in the earlier
studies, we conjecture that the unconventional but effective
use of phylogenetic MLE under finite-sites substitution-only
models relies on the constrained set of sequence position
homologies that are explored when re-estimating MSAs using
accurate MSA estimation methods. On the other hand, this
study utilizes sequence-aware statistical resampling to obtain
resampled sequences that are then re-aligned, unlike the earlier
studies that performed re-alignment on subsets of the original
input sequences using a phylogenetic divide-and-conquer ap-
proach.

Our proposed approach improved phylogenetic support es-
timation accuracy despite the use of a simple threshold-based
rule for selecting RAWR-resampled replicates to perform
more intensive additional optimization. This aspect of our
method presents a promising algorithmic design opportunity.
We conjecture that more sophisticated techniques may return
further improvements (see future research directions below).

V. CONCLUSIONS

In this study, we introduce a new optimization approach
for improving sequence-aware resampling analysis of phylo-
genetic tree support. The optimization technique is used to
identify resampled replicates that may benefit from more in-
tensive optimization during re-estimation. Using simulated and
empirical benchmarking datasets, we validate the performance
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of the resulting phylogenetic tree support estimates and we
find that the estimates show favorable type I and type II error
improvements compared to RAWR, a state-of-the-art method.
We also demonstrate the utility of the new method in a case
study of Darwin’s finches.

We conclude with thoughts on future research directions. As
mentioned above, both resampling and re-estimation may ben-
efit from informed techniques that draw on interdependence of
these two tasks. Also, the statistical optimization approach in
our study may benefit from the use of more complex models
of sequence evolution, such as the combination of finite-sites
substitution models [9] with models of sequence insertion
and deletion events [23]-[25]. However, joint modeling will
further exacerbate computational scalability challenges. The
latter is a fundamental topic in computational biology and
bioinformatics, and a host of scalability-enhancing techniques
have been explored. These include distributed and coordinated
optimization across parallelized re-estimations, divide-and-
conquer algorithms [7], [8], [26], and statistical approximation
techniques.
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I. SUPPLEMENTARY METHODS

Darwin’s finches dataset.

The study re-analyzed genomic sequence data originally
studied by Lamichhaney et al. (2015) using datasets used
by Wang et al. (2021). Original Illumina HiSeq2000
paired-end read data was downloaded from the NCBI
SRA database (accession number PRINA263122 at
http://www.ncbi.nlm.nih.gov/sra). For each of 25 different

species, one sample was randomly selected (accession
numbers  SRR1607296,  SRR1607504, @ SRR1607439,
SRR1607359, SRR1607385, SRR1607440, SRR1607547,
SRR1607403, SRR1607458, SRR1607472, SRR1607551,
SRR1607494, SRR1607399, SRR1607462, SRR1607343,
SRR1607534, SRR1607406, SRR1607485, SRR1607508,
SRR1607543, SRR1607365, SRR1607420, SRR1607466,

SRR1607529, and SRR1607480).

Software commands used in performance study involv-
ing simulated and empirical benchmarking data.

The following commands was used to perform MSA
estimation/re-estimation using MAFFT version 7.490:

mafft <unaligned sequence file>
> <estimated aligned sequence file>

mafft —--maxiterate 4
——localpair <unaligned sequence file>
> <estimated aligned sequence file>

RAXML analyses were performed with RAXML version
8.2.12 using the following command:

raxmlHPC -f a -s <estimated alignment
file> —-n <output file suffix/name> -m
GTRGAMMA -p <random number> —#2

2" Kevin J. Liu
Department of Computer Science and Engineering
Michigan State University
East Lansing, MI, USA
kjl@msu.edu

raxmlHPC -f a -s <estimated alignment
file> -n <output file suffix/name> -m
GTRCAT -V -p <random number> —#2

The 100-taxon model trees in the study were sampled
using r8s version 1.7 and the following script:

begin r8s;

simulate diversemodel=bdback seed=<random
see>

nreps=20 ntaxa=<10 or 50> T=0;

describe tree=0 plot=chrono_description;
end;

Software commands used in experiments on Darwin’s
finches dataset.

Multiple sequence alignments of multi-locus were converted
from FASTA format into a binary format, required by ExaML
to perform MLE analyses. ExaML version 3.0.22 was used:

parse-examl -s <estimated alignment file>
-m DNA —-g <partition file> -n <output file
name/sample number>

ExaML MLE analyses requires a starting tree and our
study used the following commands and RAxXML version
8.2.12:

raxmlHPC-AVX -y -s <estimated alignment
file> —m GTRGAMMA -n <output file
suffix/replicate ID> —-p <random seed> —-g
<partition file>

ExaML MLE analyses were performed using the binary
file and the starting tree using the following command:

examl-AVX -t <start tree file> -m GAMMA



-s <binary file> -n <output file suffix>

Software commands used in both simulated and empir-
ical study results analysis.

Maxmium-likelihood analyses requires initially estimated
multiple sequence alignments and re-estimated trees and our
study used the following commands and RAxXML version
8.2.12:

raxmlHPC —-f N -z <re—-estimated trees file>
-s <estimated alignment file> -m GTRGAMMA
-n <output file name>

raxmlHPC -f N -z <re-estimated trees file>
—-s <estimated alignment file> -m GTRCAT -V
-n <output file name>

Support value annotated trees require an originally inferred
tree and re-estimated trees and our study used the following
commands and RAXxML version 8.2.12:

raxmlHPC —-f b -m GTRGAMMA -t <originally
inferred tree> -z <re—-estimated trees
file> -n <outputfile suffix/name ID>

raxmlHPC —-f b -m GTIRCAT -V -t <originally
inferred tree> -z <re-estimated trees
file> -n <outputfile suffix/name ID>

Algorithm 1
Optimized RAWR phylogenetic support estimation

1: procedure optimizedRAWRsupport(4, T, f1(), f2() 9(),

14:

s kr)
> Input: MSA A,

phylogenetic tree T,

MSA method f()

> f1() : progressive method

> fa() : iterative refinement method,
phylogenetic tree estimation method g(),
reversal probability ~,

number of replicates k.,

> Output: phylogenetic support estimates e

re-estimates = <>
maximum-likelihood-scores = < (score, index) >
for i =1 to k, do
X,; = resampleRAWRreplicate(A, )
AddItem(re-estimates <>, g(f1(X;)))
Y; = maximum-likelihood-score(g(f1(X;)), A)
AddItem(maximum-likelihood-scores <>, (Y;, 7))
end for
count-threshold = |maximum-likelihood-scores| * 0.1
score-threshold = mean(maximum-likelihood-scores)
— standarddeviation(maximum-likelihood-scores)
low-ml-scores-indices = <>
sort(maximum-likelihood-scores <>)
for (score, index) in maximum-likelihood-scores do
if (score < score-threshold) ||
([low-ml-scores-indices| < count-threshold) then
AddItem(low-ml-scores-indices, index)
end if
end for
if count-threshold < [low-ml-scores-indices| then
count-threshold = mean(count-threshold,
[low-ml-scores-indices|)
end if
for i in low-ml-scores-indices<> do
if Index(7) < count-threshold then
re-estimates[i] = g(f2(X;))
end if
end for
for all non-leaf edge e in T do do
€(e) = proportion of T} in re-estimates that display
bipartition corresponding to e
end for
return(e)

35: end procedure




1: procedure resampleRAWRreplicate(A, )
2: 7z =<>

3: select ¢ € [1,|A|] and walkDirection uniformly at
random

4: while !converged(Z, A) do

5: Z=7ZU A[Z}

> add ith column of A to Z

6: if reversal(v) || (¢ == 1 && walkDirection is left)

7: || (i == |A| && walkDirection is right) then

8: reverse(walkDirection)

9: end if

10: i = next column index after ¢ in walkDirection
order

11: end while

12: return unalign(2)

13: > unalign(Z) drops indels from Z

14: > resampleRAWRreplicate() is excerpted from
15: Wang et al. (2021).

16: end procedure

17: procedure converged(Z, A)
18: return (length(Z) > length(A))

19: > Sequence-length-based convergence criterion
20: requires
21: > number of resampled sites > input MSA length

22: > converged() is excerpted from Wang et al. (2021).
23: end procedure

II. SUPPLEMENTARY RESULTS

Supplementary Table I: Simulation study: regression analy-
sis (I) between maximum-likelihood scores and topological
errors (i.e., normalized Robinson-Foulds distance). The
following summary statistics are reported on each model
condition (n=20): ”r” is the correlation coefficient and ”R?”
is the coefficient of determination.

Model r R?
condition "L WR  Optimized RAWR  Optimized
10.A 07814 -07589  0.6406  0.6049
10.B 07620 -07232  0.6074 05716
10.C 07756 -07810 06170  0.6373
10.D 06472 -0.6709 04377 04792
10.E 02406 -02646  0.0960  0.1124
50.A 06951 -0.6945 04951 04359
50.B 06391 -0.6970 04894  0.4992
50.C 06878  -0.8214 04858  0.6813
50.D 06269 -0.8668 04005  0.7540
50.E 02885 -0.6802  0.1167 04757
100.A 07608  -0.7285 05996 05622
100.B 07476 -0.6985 05744  0.5064
100.C 07221 09290 05392 0.8636
100.D 06704 -09557 04683 09147
100.E 06540 -09720 04480  0.9450

Supplementary Table II: Simulation study: regression analy-
sis (II) between maximum-likelihood scores and topological
errors (i.e., normalized Robinson-Foulds distance).

Model slope intercept
condition "L WR  Optimized RAWR  Optimized
10.A 22278 -2.0685 1.062 1.0786
10.B 26521 -2.604 1215 1.1865
10.C 20992 21367 15314 1.401
10.D 16629 -1.6668 15098  1.4505
10.E 06472 -0.6472 12404 1227
50.A 45549 48964 1.1903  1.1416
50.B 30609 37642 12288 12146
50.C 29225 28127 15192 13367
50.D 31882 23608 23581 1.6787
50.E 21848 24713 23299 24324
100.A 54115 -1.6959 41572 13191
100.B 50376 -1.9041 37413 1.393
100.C 34486 19763 23263 1.2855
100.D 36992 46291 12512 12111
100.E 87102 85497 11585  1.1321




