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Abstract—Phylogenies represent the evolutionary history of a
set of taxa and are typically reconstructed using computational
analysis of genomic or other genetic sequence data. A common
question is to ask whether a phylogenetic estimate is trustwor-
thy. Felsenstein introduced the influential application of non-
parametric statistical resampling to place confidence intervals
on a reconstructed phylogenetic tree. Since then, this task –
referred to as phylogenetic support estimation – has become a
de facto requirement in systematics and wherever reconstructed
phylogenies are reported. And algorithmic development efforts
have continued to build upon Felsenstein’s original method.

In this study, we propose a novel statistical optimization
technique to improve statistical resampling assessments of phylo-
genetic tree support. The technique uses a statistical criterion as
a means to assess re-estimation difficulty of different resampled
replicate datasets and more intelligently allocate computational
effort, given the computationally difficult optimization problems
that are addressed during re-estimation in this context. We couple
the new statistical optimization technique with a recently intro-
duced sequence-aware resampling method named RAWR, and
we evaluate the performance of these methods using simulated
and empirical benchmarking datasets. The new method is also
used to conduct a case study of Darwin’s finches. We find that
the resulting phylogenetic support estimates offer comparable or
often improved type I and II error compared to the original
RAWR method, at the cost of additional computational runtime.
Our study outcomes point the way to future algorithmic enhance-
ments and better informed statistical resampling approaches.

Index Terms—phylogeny, phylogenetic, tree, multiple sequence
alignment, support, confidence interval, resampling, maximum
likelihood optimization

I. INTRODUCTION

One of the most widely used resampling methods is boot-

strap resampling, which samples an input set of observations

uniformly at random with replacement [1]. Bootstrap resam-

pling has found many applications throughout science and

engineering. A particularly important application can be found

in the field of phylogenetics, where bootstrap resampling is

used to assess reliability of phylogenetic reconstruction [2].

This task – sometimes referred to as phylogenetic support

estimation – is now routine wherever reconstructed phyloge-

nies are reported, and the original publication describing the

phylogenetic bootstrap method is the 41st most cited of all

time [3].

As with other non-parametric resampling techniques, a

primary advantage of bootstrap resampling is that it does not

require a parametric model and attendant assumptions about

model appropriateness for a particular dataset. Still, bootstrap

resampling requires another important simplifying assumption:

that the input observations are independent and identically

distributed (i.i.d.). In the context of phylogenetic reconstruc-

tion using biomolecular sequence data, a host of evolutionary

and other factors can violate this simplifying assumption [2].

These include biomolecular structure and function, genetic

recombination, sequence insertion and deletion processes, and

many others.

To move beyond the simplifying assumption of i.i.d. data,

Wang et al. [4] recently introduced a new sequence-aware

resampling technique named RAWR (“RAndom Walk Resam-

pling”). The resampling method takes the form of a random

walk conducted directly on an input set of unaligned sequence

data. Sequence data are resampled asynchronously between

walk reversals, where the latter make use of anchor positions

as synchronization points (similar to the concept of barriers

in parallel computing). A key property of RAWR is the

“neighbor preservation” principle: neighboring site positions

(e.g., neighboring bases in the case of DNA sequence data) in a

resampled sequence are guaranteed to also appear as neighbors

in the corresponding original sequence in the input. The

neighbor preservation principle is key to preserving sequential

ordering information in the input, which is necessary for

critical downstream estimation tasks such as multiple sequence

alignment. To date, RAWR has been successfully applied to

place confidence intervals on phylogenetic trees [4] as well as

other biomolecular sequence analysis tasks [5]. Performance

studies have consistently demonstrated that RAWR offers

comparable or often better type I and II error compared to

bootstrap resampling and other state-of-the-art methods.

But there is a catch. All statistical resampling methods

– RAWR included – require additional estimation to be

performed on resampled replicates. The added computational
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overhead can be onerous for estimation tasks that require

computationally difficult optimization.

Part of the reason for this burden is due to the modularized

design of statistical resampling applications. In part to mitigate

resampling bias, resampling is completely decoupled from

re-estimation on resampled replicates. As a consequence,

resampling is oblivious to downstream re-estimation. And

all replicates are homogeneous from the perspective of re-

estimation: all replicates are treated similarly with the same

re-estimation method and a priori allocation of computational

effort is equal across replicates. We believe that an “unin-

formed” re-estimation strategy is in fact an opportunity for

improved algorithmic design – one which may be exploited

to obtain improvements in support estimation accuracy (and

potentially other aspects of method performance).

II. MATERIALS AND METHODS

Our study introduces a novel optimization technique for

improving RAWR support estimation. The former method

builds on the latter method – which itself requires an initial

MSA and tree estimate as input. We now provide a detailed

description of these methods.

A. Methods under study

Initial MSA and tree estimates for phylogenetic support

annotation. To begin, an initial multiple sequence alignment

and phylogenetic tree are estimated on the input set of un-

aligned sequences, and the latter serves as the “annotation”

tree for phylogenetic support annotation purposes. Estimation

is performed using a two-phase approach: in the first stage

of two-phase analysis, a multiple sequence alignment (MSA)

is estimated using the unaligned sequences as input; in the

second stage, a phylogenetic tree is estimated using the

estimated MSA as input.

Our study utilized MAFFT [6] – a widely used software

package for MSA estimation. The software implements several

different MSA estimation algorithms, some of which have

been shown to offer competitive estimation accuracy compared

to the state of the art [7], [8] and others which offer greater

computational efficiency at the cost of estimation accuracy.

The initial MSA was estimated using MAFFT version 7.490

with default settings, which corresponds to its FFT-NS-2

algorithm – one of the faster algorithms in the software suite

which offers less accuracy compared to other implemented

algorithms such as MAFFT’s L-INS-i algorithm option [6].

Using the MAFFT-estimated MSA as input, a phylogenetic

tree was reconstructed using maximum likelihood estimation

(MLE) under the GTR+Γ model of nucleotide substitution [9].

We used RAxML version 8.2.12 to conduct phylogenetic MLE

analyses [10]. The resulting phylogenetic tree estimate serves

as the “annotation” tree for phylogenetic support estimation

purposes.

RAWR support estimation. The RAWR method for phy-

logenetic support estimation provides both a baseline for

comparison purposes and an initial resampling analysis that

our new optimization technique builds upon. RAWR support

estimation consists of multiple steps: (i) RAWR is used

to perform sequence-aware resampling and obtain replicate

sets of unaligned sequences, (ii) MSA and tree re-estimation

is performed on each replicate set of unaligned sequences,

and (iii) phylogenetic tree support for the annotation tree is

calculated using re-estimated trees. We now recap details for

each stage of analysis.

The input to RAWR analysis consists of the initial MSA

and tree that were estimated using a two-phase method. The

output consists of phylogenetic support values for each internal

branch of the input tree – i.e., a real value between 0 and 1

where larger values reflect greater estimation reliability.

RAWR begins by conducting sequence-aware resampling

to obtain replicate sets of unaligned sequence data. The re-

sampling procedure takes the form of random walk conducted

directly on the input MSA. The random walk randomly selects

a starting site and then proceeds in a random direction. The

direction is reversed with certainty at the first and last position,

and with probability γ elsewhere; our study experiments uti-

lized reversal probability γ = 0. Sites are resampled along the

random walk path and the unaligned sequences corresponding

to the sampled sites as read in random walk order constitute the

replicate set of unaligned sequences; equivalently, resampled

aligned sequences are unaligned by omitting indels. The walk

concludes once a length criterion is satisfied, where the walk

length equals the length of the input MSA.

MSA and tree re-estimation are performed on the replicate

set of unaligned sequences. We utilized the same two-phase

approach and methods as in the initial MSA and tree estima-

tion procedures.

The resampling and re-estimation procedures are repeated to

obtain resampling replication. Our study utilized 100 RAWR

replicates for each input dataset analysis. Finally, phylogenetic

support for each internal branch of the input annotation tree is

calculated as the fraction of re-estimated trees that also display

that branch.

Statistical optimization of RAWR support estimation.

Our new optimization technique builds upon RAWR support

estimation. Figure 1 provides an illustrated example and

flowchart for the procedure. (Detailed pseudocode is provided

in Algorithm 1 in the Supplementary Appendix.)

The optimization procedure proceeds from where RAWR re-

sampling and re-estimation concludes. (See above for RAWR

analysis procedures). An optimization criterion is used to

identify RAWR replicates that pose greater challenges to

phylogenetic reconstruction and may yield less reliable re-

estimates, as these could benefit from more intensive com-

putational analysis to improve MSA and tree reconstruction.

We utilize model likelihood under the GTR+Γ substitution

model for this purpose, where likelihood score is calculated

using the initial MSA estimate as data. The model likelihood

calculations were performed using RAxML version 8.2.11.

A data-driven threshold is then calculated based on the best

score in the larger of two sets: (a) the low-scoring tail of

the optimization score distribution across RAWR replicates,

where the tail consists of all optimization scores that are 1
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standard deviation below the mean (which is equivalent to a

standard score/z-score of 1), and (b) the lowest decile of the

optimization score distribution across RAWR replicates. An

additional threshold adjustment is performed to ensure that a

sufficient number of replicates are selected for re-analysis: if

the number of replicates in the lowest decile of scores is less

than or equal to the number of replicates that scored more than

1 standard deviation below the mean, the threshold is set to

the score with rank that is the average of these two quantities.

The selected replicates are re-analyzed using more com-

putationally intensive and accurate MSA and tree estimation

methods (as compared to the original estimation as well as re-

estimation on RAWR replicates). MAFFT’s L-INS-i algorithm

was used for this purpose, which offers improved MSA

accuracy compared to the FFT-NS-2 algorithm at the cost

of increased computational overhead. RAxML was then used

to reconstruct a phylogenetic tree using the resulting MSA

estimate as input; RAxML MLE was run using the same model

and settings as elsewhere in our study.

The resulting “re-re-estimates” replace the previous re-

estimates in corresponding RAWR replicates. The annotation

tree support calculation is updated accordingly based upon the

set of optimized tree re-estimates/re-re-estimates.

B. Performance study using simulated and empirical bench-

marking data

Simulated benchmarking datasets. Our study utilizes

simulation conditions and datasets from the previous study of

Wang et al. [4]. The model conditions include a wide range

of dataset sizes and evolutionary divergence for assessing

performance of phylogenetic reconstruction and phylogenetic

support estimation. Below we recap the procedures for simu-

lating the synthetic benchmarking datasets.

The 10-taxon and 50-taxon simulation datasets were sim-

ulated using INDELible version 1.03 [11]. Non-ultrametric

model trees are simulated under a random birth process with

branch lengths drawn uniformly at random from the open

unit interval. For the 100-taxon simulations, random birth-

death model trees were sampled using r8s version 1.7 [12],

and model trees were then deviated away from ultrametricity

using Nakhleh et al.’s [13] approach with deviation factor

c = 2.0. All model trees were rescaled based on a height

parameter h. Then, nucleotide sequence evolution along each

model tree was simulated under a finite-sites models of

nucleotide substitutions coupled with a model of sequence

insertions/deletions, where root sequence length was set to 1

kb. The nucleotide substitution model consisted of the general

time-reversible (GTR) model [9], with base frequency and sub-

stitution rate parameters set to empirical NemATol estimates

from the previous study of Liu et al. [8]. The 10-taxon and 50-

taxon simulations of sequence evolution were performed with

INDELible [11] and the indel model of Fletcher and Yang

[11]. The 100-taxon simulations of sequence evolution were

performed with ROSE [8] and utilized the indel model with

medium gap length distribution from the study of Liu et al.

[8]. Simulations were repeated for each model condition to

obtain 20 replicate datasets. Model conditions and summary

statistics for the simulated datasets are listed in Table I.

Empirical benchmarking datasets. Our study utilized

empirical benchmarking datasets from the Comparative RNA

Website (CRW) database [14]. The CRW rRNA datasets

were comprehensively curated using biomolecular sequence

data, structural information, and other heterogeneous data.

As such, this resource provides a “gold standard” reference

for benchmarking multiple sequence alignment [7], [8]. The

manually curated MSA provided with each dataset serves

as the reference MSA in our experiments. A reference tree

was obtained using MLE analysis of the reference MSA; to

this end, RAxML was used to perform maximum likelihood

phylogenetic inference under the same finite-sites substitution

model and the same software settings as in the simulation

experiments.

The simulations in our simulation study reflect non-coding

nucleotide sequence evolution and dataset sizes up to 100

taxa. We therefore focused on intronic rRNA datasets with

at most 250 sequences for the purposes of experimental

consistency. Sites with more than 99% missing data were

omitted during data preprocessing. Summary statistics for the

empirical benchmarking datasets are listed in Table II.

Performance criteria used in evaluations. Phylogenetic

support estimation performance was evaluated based on both

type I and type II error with respect to the model tree in the

simulation experiments and the reference tree in the empirical

CRW benchmarking experiments. Accuracy assessments in

our study focus on precision-recall curves, receiver operating

characteristic (ROC) curves, and area under these curves, as

these facilitate simultaneous assessment of type I and type II

error and tradeoffs between them.

Confusion matrices for the PR and ROC curves are formed

from four classes of error. True positives (TP) are bipartitions

of the annotation tree with support values greater than or

equal to a given threshold and also appear in the reference

tree. False positives (FP) are bipartitions of the annotation tree

with support values greater than or equal to a given threshold

but do not appear in the reference tree. False negatives (FN)

are bipartitions of the annotation tree with support values less

than a given threshold but appear in the reference tree. True

negatives (TN) are bipartitions of the annotation tree with

support values less than a given threshold and do not appear

in the reference tree. The PR curve plots precision (
|TP|

|TP|+|FP| )

versus recall or true positive rate (
|TP|

|TP|+|FN| ). The ROC curve

plots true positive rate (
|TP|

|TP|+|FN| ) versus false positive rate

(
|FP|

|TN|+|FP| ). Custom scripts and the scikit-learn Python library

[15] were used to calculate confusion matrices, curves, and

AUC values.

Computational runtime and memory usage were also as-

sessed for the phylogenetic support estimation methods under

study. The former are reported as serial wall-clock runtimes.
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TABLE I: Simulation study: model condition parameters and summary statistics. The following table is reproduced from [4].

Model condition parameters consists of number of taxa, model tree height, and insertion/deletion probability. The 10-taxon

model conditions are named 10.A through 10.E in order of generally increasing evolutionary divergence, and the 50- and

100-taxon model conditions are named similarly. The following summary statistics are reported for each model condition

(n = 20): “ANHD” is the average normalized Hamming distance of a pair of aligned sequences in an MSA, “Gappiness”

is the proportion of an MSA matrix that consists of indels, “length” is the number of MSA columns, and “SP-FN” and

“SP-FP” are the proportions of nucleotide-nucleotide homologies that appear in the true alignment but not in the estimated

alignment or vice versa, respectively. The average normalized Robinson–Foulds distance (“nRF”) between the model tree and

the RAxML(MAFFT)-inferred tree is also reported for each model condition (n = 20).

Model Number Model Insertion/deletion True alignment MAFFT alignment RAxML
condition of taxa tree height Probability

ANHD Gappiness Length Length SP-FN SP-FP
(MAFFT) nRF

10.A 10 0.47 0.13 0.380 0.591 2466 1543 0.566 0.629 0.186
10.B 10 0.7 0.1 0.479 0.618 2691 1602 0.687 0.750 0.243
10.C 10 1.2 0.06 0.591 0.645 2832 1588 0.811 0.850 0.443
10.D 10 2 0.031 0.642 0.591 2490 1583 0.815 0.841 0.464
10.E 10 4.4 0.013 0.696 0.578 2390 1623 0.904 0.913 0.664

50.A 50 0.45 0.06 0.415 0.607 3070 2053 0.340 0.336 0.084
50.B 50 0.73 0.03 0.513 0.605 2525 1834 0.451 0.431 0.146
50.C 50 1.2 0.02 0.598 0.620 2646 1950 0.731 0.704 0.322
50.D 50 2 0.012 0.667 0.671 2720 2171 0.902 0.881 0.517
50.E 50 4.3 0.005 0.715 0.574 2474 2385 0.974 0.965 0.755

100.A 100 4 1 ×10
−5 0.454 0.439 1682 1533 0.054 0.046 0.075

100.B 100 7 1 ×10
−5 0.479 0.439 2263 1861 0.209 0.176 0.119

100.C 100 15 5 ×10
−5 0.646 0.571 2317 2418 0.680 0.603 0.470

100.D 100 25 2 ×10
−5 0.683 0.614 2837 2799 0.899 0.853 0.607

100.E 100 20 4 ×10
−5 0.672 0.614 2487 2701 0.848 0.796 0.661

TABLE II: Empirical study: summary statistics for intronic rRNA datasets. The following table is reproduced from [4]. The

empirical benchmarking datasets used in the study were obtained from the Comparative RNA Website (CRW) database [14].

The CRW database provides manually curated MSAs for each dataset, and these are used as reference alignments. A reference

tree was then constructed using MLE analysis of the reference alignment. (See Methods section for details.) Summary statistics

for each dataset are provided (n = 1), and the description of summary statistics are identical to Table I.

Dataset Number of taxa Reference alignment MAFFT alignment RAxML

ANHD Gappiness Length Length SP-FN SP-FP
(MAFFT) nRF

IGIA 110 0.606 0.915 10368 6065 0.732 0.780 0.645
IGIB 202 0.579 0.910 16233 7070 0.825 0.863 0.678
IGIC2 32 0.533 0.700 4243 3530 0.691 0.716 0.517
IGID 21 0.719 0.782 5061 3063 0.874 0.905 0.778
IGIE 249 0.451 0.838 2751 2847 0.406 0.389 0.585
IGIIA 174 0.668 0.814 6406 6945 0.817 0.800 0.450

C. Empirical study of Darwin’s finches

Genomic sequence dataset. We re-analyzed genomic se-

quence data from Lamichanney et al.’s [16] study of Darwin’s

finches, which was also re-analyzed by Wang et al. [4]. The

dataset consisted of genomic sequence data for 25 samples

from different species in the clade and 34,972 loci in total. The

genomic loci included annotated genes, intergenic regions, and

scaffolds without gene annotations.

Initial MSA and tree estimation. The unaligned sequences

for each locus were aligned using MAFFT with default settings

to obtain an initial MSA estimate (as in the rest of the

study). MSAs were concatenated across loci for subsequent

phylogenetic tree reconstruction.

As in the rest of our study, maximum likelihood estimation

(MLE) was used to reconstruct a phylogenetic tree; for the

finch dataset analysis, MLE was performed on a concate-

nated and partitioned MSA. In terms of sequence length,

the concatenated and partitioned MSA is multiple orders of

magnitude larger than the simulated datasets. We therefore

used ExaML version 3.0.22 [17] – a variant of RAxML

that supports distributed-memory parallelism – to conduct

highly parallelized phylogenetic MLE on a high-performance

computing cluster. To facilitate the ExaML analysis, RAxML

version 8.2.9 was used to perform maximum parsimony (MP)

optimization and obtain an initial starting tree; ExaML version

3.0.22 was also used to specify additional analysis metadata

in the form of a partition configuration file. The resulting

tree estimate served as the annotation tree for the purposes

of phylogenetic support estimation.

Phylogenetic support estimation using RAWR. For each

locus, RAWR resampling was conducted on the initial lo-
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cus MSA to obtain a replicate set of unaligned sequences.

The replicate set of unaligned sequences was aligned using

MAFFT with default settings to obtain a re-estimated MSA for

each locus. Re-estimated MSAs were then concatenated across

loci to obtain a concatenated and partitioned MSA. The latter

MSA was used to perform phylogenetic tree re-estimation

using the same approach as in the initial tree estimation step.

The process was repeated to obtain a set of 100 re-estimated

trees, which were then used to calculate phylogenetic support

for the annotation tree.

Phylogenetic support estimation using Optimized

RAWR. As in the RAWR analysis of Darwin’s finches,

Optimized RAWR was adapted to perform multi-locus data

analysis. The procedure begins with RAWR analysis using

the steps described above. All replicates are scored under the

optimization criterion where model likelihood under the finite-

sites substitution model is calculated using the concatenated

and partitioned MSA as data. Low-scoring replicates are

selected for re-analysis using more intensive MSA and tree es-

timation methods: MAFFT L-INS-i was used to re-re-estimate

MSAs for each locus, re-re-estimated MSAs are concatenated

across loci, and ExaML was used to perform parallelized

phylogenetic MLE on the concatenated and partitioned MSA.

The resulting tree replaces the previously re-estimated tree

for the corresponding replicate. Phylogenetic support for the

annotation tree is calculated using the updated set of re-

estimated/re-re-estimated trees, following the procedure used

throughout our study.

III. RESULTS

A. Performance study using simulated and empirical bench-

marking data

Performance benchmarking using simulated datasets.

Table III compares type I and type II error of RAWR ver-

sus Optimized RAWR. On the 10-taxon model conditions,

Optimized RAWR returned PR-AUC improvements over the

baseline RAWR method in all cases. The smallest improve-

ment was seen on the least divergent 10.A model condition.

As model conditions increased in evolutionary divergence

and MSA and tree reconstruction became more challenging,

Optimized RAWR’s PR-AUC and ROC-AUC advantage grew

to as much as 7.9% and 7.2%, respectively, on the most

divergent 10-E model condition. Average PR-AUC and ROC-

AUC improvement of Optimized RAWR over RAWR on

the 10-taxon model conditions amounted to 3.0% and 2.6%,

respectively. These differences were not statistically significant

based on a one-tailed pairwise t test, with the exception of both

AUC comparisons on the most divergent 10.E model condition

and the ROC-AUC comparison on the 10.C model condition.

Similar outcomes were observed on the 50- and 100-taxon

model conditions, with one difference: AUC improvement

of Optimized RAWR over baseline RAWR was statistically

significant for all model conditions other than the ROC-

AUC comparison on the 50.A model condition and both

AUC comparisons on the 100.A model condition – both of

which have lowest evolutionary divergence among the 50-

and 100-taxon model conditions, respectively. PR-AUC and

ROC-AUC improvement of Optimized RAWR over baseline

RAWR averaged around 1% and 5%, respectively. The largest

AUC improvements were generally seen on the most divergent

model conditions.

Our study also compared computational runtime and peak

memory usage of the phylogenetic support estimation methods

under study. Runtimes are reported in Figure 2. Baseline

RAWR and Optimized RAWR runtimes amounted to under

10 minutes across the 10-taxon datasets, on average. As

expected due to the computational difficulty of the MSA and

tree estimation problems under study, runtimes on 50-taxon

datasets grew to a few hours; the largest runtimes in our study

were observed on the 100-taxon datasets – amounting to as

much as a half a day or so per dataset. Runtimes tended to

increase as evolutionary divergence increased from the 50.A to

50.E model conditions, and similarly on the 100-taxon model

conditions.

As Optimized RAWR includes baseline RAWR analysis as

an initial step, the former naturally requires more runtime

than the latter. By comparing average runtime of the former

versus the latter, we found that runtime overhead of our new

optimization technique was a relatively small fraction of the

overall runtime required for baseline RAWR analysis; the

outcome was consistent across all model conditions in our

simulation study. We note that this occurred despite Optimized

RAWR’s use of a slower and more accurate two-phase method

for re-re-estimation, as compared to RAWR re-estimation.

Peak memory usage was modest and amounted to at most

a few hundred MiB in all cases. We note that this amount

of main memory is well within the scope of commonly

available personal computers and high-performance computing

facilities.

Performance benchmarking using empirical CRW

datasets. Table IV reports PR-AUC and ROC-AUC results

for the phylogenetic estimation methods under study. AUC

improvement of Optimized RAWR over baseline RAWR was

largest on the IGIB and IGID datasets, with respective PR-

AUC improvements of 1.4% and 1.4% and respective ROC-

AUC improvements of 1.6% and 1.8%. We note that IGIB is

largest dataset by sequence length and second largest dataset

by number of taxa, and IGID has highest sequence divergence

based on reference MSA ANHD. Smaller AUC differences

were observed on the other CRW datasets.

B. Empirical study of Darwin’s finches

Figure 3 visualizes the annotation tree that was estimated

using the initial two-phase analysis, along with phylogenetic

support values that were estimated using either the baseline

RAWR method or Optimized RAWR method. The phylo-

genetic support values returned by the two methods were

quite similar, with a maximum difference of at most 10%.

There was a directionality trend: Optimized RAWR returned

comparable (within 1-2%) or higher phylogenetic support on

all branches, as compared to baseline RAWR. Furthermore,

the higher support values returned by Optimized RAWR (as
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TABLE III: Simulation study: PR-AUC and ROC-AUC comparisons of baseline RAWR versus Optimized RAWR methods for

phylogenetic support estimation. Average PR-AUC and ROC-AUC values are reported for each method on each model condition

(n = 20). For each model condition and comparison of either PR-AUC or ROC-AUC values, a one-tailed pairwise t test was

used to evaluate statistical significance of AUC value differences between the two methods and a p-values is reported (n = 20).

Model PR-AUC Pairwise ROC-AUC Pairwise
condition

RAWR Optimized RAWR
t-test

RAWR Optimized RAWR
t-test

10.A 0.9949 0.9988 0.1649 0.9833 0.9833 0.5000
10.B 0.9830 0.9917 0.2109 0.9483 0.9548 0.1678
10.C 0.9197 0.9523 0.0594 0.9020 0.9434 0.0157
10.D 0.8999 0.9270 0.1219 0.9683 0.9808 0.0857
10.E 0.8919 0.9709 0.0429 0.8767 0.9483 0.0038

50.A 0.9981 0.9985 0.0079 0.9654 0.9756 0.0727
50.B 0.9955 0.9969 0.0013 0.9482 0.9620 0.0010
50.C 0.9797 0.9854 3.4e-07 0.8712 0.9762 7.0e-07
50.D 0.9710 0.9854 2.3e-05 0.9810 0.9914 2.4e-07
50.E 0.9429 0.9653 5.8e-07 0.9138 0.9834 6.8e-08

100.A 0.9930 0.9926 0.3698 0.8994 0.8994 0.4894
100.B 0.9899 0.9912 6.5e-06 0.9100 0.9215 2.5e-05
100.C 0.9621 0.9734 1.2e-08 0.7896 0.8560 2.0e-08
100.D 0.9409 0.9664 2.7e-08 0.7787 0.8855 2.8e-11
100.E 0.9445 0.9655 3.2e-08 0.7509 0.8579 2.5e-10
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Fig. 2: Simulation study: runtime comparison of phylogenetic support estimation methods. Average runtime of baseline RAWR

(“RAWR”) and Optimized RAWR (“RAWR-Opt.”) are reported for each model condition (n = 20). Standard error bars are

shown.

TABLE IV: PR-AUC and ROC-AUC returned by phylogenetic

support estimation methods on empirical CRW datasets. AUC

values are reported for baseline RAWR (“RAWR”) and Opti-

mized RAWR (“Optimized”) on each CRW dataset (n = 1).

Model PR-AUC ROC-AUC
condition

RAWR Optimized RAWR Optimized

IGIA 0.8800 0.8825 0.9356 0.9401
IGIB 0.7999 0.8135 0.8939 0.9099
IGIC2 0.8773 0.8715 0.8691 0.8548
IGID 0.8524 0.8661 0.9107 0.9286
IGIE 0.8056 0.8089 0.8741 0.8766
IGIIA 0.8996 0.9043 0.9000 0.9077

compared to baseline RAWR) largely appeared within the

sharp-beaked ground finch clade, which also included some

other ground finch species.

IV. DISCUSSION

Type I and type II error improvement of optimized RAWR

support estimates versus baseline RAWR support tended to

grow as two key experimental factors were varied: (1) dataset

sizes increased from 10 to 100 taxa, and (2) evolutionary di-

vergence increased. Both support estimation methods perform

re-estimation on RAWR replicates by addressing computation-

ally difficult optimization problems [19], [20], and the first

experimental factor directly determines combinatorial growth

of the optimization space. Theoretical and experimental work

has also confirmed the second factor’s primary contribution

to MSA and phylogenetic tree estimation [7], [8], [21]. The

optimized RAWR method’s PR-AUC and ROC-AUC improve-

ments over non-optimized RAWR amounted to nearly 10% on

the largest and most divergent (and therefore most challenging)

model conditions. This magnitude of improvement approaches

that observed for RAWR in comparison to state-of-the-art

phylogenetic support estimation methods [4].
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(a) RAWR (b) Optimized RAWR

Fig. 3: Empirical study of Darwin’s finches: comparison of phylogenetic support estimates. The annotation tree that was initially

estimated by the two-phase method is visualized along with either (a) baseline RAWR support values or (b) Optimized RAWR

support values. We note that the annotation tree topology reported in our study differs from the estimate reported by Wang et al.

[4], but is identical to the estimate reported by Lamichhaney et al. [16]. Dendroscope [18] was used to visualize phylogenetic

trees and phylogenetic support values.

A similar outcome was observed in the empirical study

experiments. Type I and II error improvements returned by

RAWR optimization versus baseline were greater on larger

and more divergence intronic CRW datasets. Phylogenetic

support returned by the former method was comparable or

slightly higher than the latter on the Darwin’s finch genomic

sequence dataset. We note that traditional phylogenetic anal-

ysis of genomic sequence data can aggregate over disparate

phylogenetic signal across different loci [22], and the sheer

amount of sequence data in genomes can benefit statistical

reproducibility.

As is typical for any statistical resampling analysis, RAWR

optimization’s type I and II error improvements come at a

cost: namely, added computational runtime. Despite Optimized

RAWR’s use of a more intensive MSA method compared to

baseline non-optimized RAWR analysis, the runtime overhead

contributed by the former was relatively small compared to

the runtime requirements of the latter. Peak memory usage

of optimized and baseline RAWR methods were similar, and

main memory requirements did not prove to be a scalability

bottleneck for the model conditions under study.

We attribute type I and II error improvements to the model

likelihood optimization criterion and its ability to identify

resampling replicates that may benefit from more intensive

re-estimation. We note that the use of a model likelihood crite-

rion under a finite-sites substitution-only model for unaligned

sequence data is unconventional. Prior theoretical and exper-

imental work has provided some insights into its application

in the study context of MSA and tree reconstruction using

unaligned sequence data [8]. While atypical, the use of the

optimization approach in this study has paid similar dividends

for the problem of simultaneous MSA and tree estimation

using unaligned sequence data [7], [8]. As in the earlier

studies, we conjecture that the unconventional but effective

use of phylogenetic MLE under finite-sites substitution-only

models relies on the constrained set of sequence position

homologies that are explored when re-estimating MSAs using

accurate MSA estimation methods. On the other hand, this

study utilizes sequence-aware statistical resampling to obtain

resampled sequences that are then re-aligned, unlike the earlier

studies that performed re-alignment on subsets of the original

input sequences using a phylogenetic divide-and-conquer ap-

proach.

Our proposed approach improved phylogenetic support es-

timation accuracy despite the use of a simple threshold-based

rule for selecting RAWR-resampled replicates to perform

more intensive additional optimization. This aspect of our

method presents a promising algorithmic design opportunity.

We conjecture that more sophisticated techniques may return

further improvements (see future research directions below).

V. CONCLUSIONS

In this study, we introduce a new optimization approach

for improving sequence-aware resampling analysis of phylo-

genetic tree support. The optimization technique is used to

identify resampled replicates that may benefit from more in-

tensive optimization during re-estimation. Using simulated and

empirical benchmarking datasets, we validate the performance
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of the resulting phylogenetic tree support estimates and we

find that the estimates show favorable type I and type II error

improvements compared to RAWR, a state-of-the-art method.

We also demonstrate the utility of the new method in a case

study of Darwin’s finches.

We conclude with thoughts on future research directions. As

mentioned above, both resampling and re-estimation may ben-

efit from informed techniques that draw on interdependence of

these two tasks. Also, the statistical optimization approach in

our study may benefit from the use of more complex models

of sequence evolution, such as the combination of finite-sites

substitution models [9] with models of sequence insertion

and deletion events [23]–[25]. However, joint modeling will

further exacerbate computational scalability challenges. The

latter is a fundamental topic in computational biology and

bioinformatics, and a host of scalability-enhancing techniques

have been explored. These include distributed and coordinated

optimization across parallelized re-estimations, divide-and-

conquer algorithms [7], [8], [26], and statistical approximation

techniques.
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I. SUPPLEMENTARY METHODS

Darwin’s finches dataset.

The study re-analyzed genomic sequence data originally

studied by Lamichhaney et al. (2015) using datasets used

by Wang et al. (2021). Original Illumina HiSeq2000

paired-end read data was downloaded from the NCBI

SRA database (accession number PRJNA263122 at

http://www.ncbi.nlm.nih.gov/sra). For each of 25 different

species, one sample was randomly selected (accession

numbers SRR1607296, SRR1607504, SRR1607439,

SRR1607359, SRR1607385, SRR1607440, SRR1607547,

SRR1607403, SRR1607458, SRR1607472, SRR1607551,

SRR1607494, SRR1607399, SRR1607462, SRR1607343,

SRR1607534, SRR1607406, SRR1607485, SRR1607508,

SRR1607543, SRR1607365, SRR1607420, SRR1607466,

SRR1607529, and SRR1607480).

Software commands used in performance study involv-

ing simulated and empirical benchmarking data.

The following commands was used to perform MSA

estimation/re-estimation using MAFFT version 7.490:

mafft <unaligned sequence file>

> <estimated aligned sequence file>

mafft --maxiterate 4

--localpair <unaligned sequence file>

> <estimated aligned sequence file>

RAxML analyses were performed with RAxML version

8.2.12 using the following command:

raxmlHPC -f a -s <estimated alignment

file> -n <output file suffix/name> -m

GTRGAMMA -p <random number> -#2

raxmlHPC -f a -s <estimated alignment

file> -n <output file suffix/name> -m

GTRCAT -V -p <random number> -#2

The 100-taxon model trees in the study were sampled

using r8s version 1.7 and the following script:

begin r8s;

simulate diversemodel=bdback seed=<random

see>

nreps=20 ntaxa=<10 or 50> T=0;

describe tree=0 plot=chrono_description;

end;

Software commands used in experiments on Darwin’s

finches dataset.

Multiple sequence alignments of multi-locus were converted

from FASTA format into a binary format, required by ExaML

to perform MLE analyses. ExaML version 3.0.22 was used:

parse-examl -s <estimated alignment file>

-m DNA -q <partition file> -n <output file

name/sample number>

ExaML MLE analyses requires a starting tree and our

study used the following commands and RAxML version

8.2.12:

raxmlHPC-AVX -y -s <estimated alignment

file> -m GTRGAMMA -n <output file

suffix/replicate ID> -p <random seed> -q

<partition file>

ExaML MLE analyses were performed using the binary

file and the starting tree using the following command:

examl-AVX -t <start tree file> -m GAMMA



-s <binary file> -n <output file suffix>

Software commands used in both simulated and empir-

ical study results analysis.

Maxmium-likelihood analyses requires initially estimated

multiple sequence alignments and re-estimated trees and our

study used the following commands and RAxML version

8.2.12:

raxmlHPC -f N -z <re-estimated trees file>

-s <estimated alignment file> -m GTRGAMMA

-n <output file name>

raxmlHPC -f N -z <re-estimated trees file>

-s <estimated alignment file> -m GTRCAT -V

-n <output file name>

Support value annotated trees require an originally inferred

tree and re-estimated trees and our study used the following

commands and RAxML version 8.2.12:

raxmlHPC -f b -m GTRGAMMA -t <originally

inferred tree> -z <re-estimated trees

file> -n <outputfile suffix/name ID>

raxmlHPC -f b -m GTRCAT -V -t <originally

inferred tree> -z <re-estimated trees

file> -n <outputfile suffix/name ID>

Algorithm 1

Optimized RAWR phylogenetic support estimation

1: procedure optimizedRAWRsupport(A, T, f1(), f2() g(),
γ, kr)

⊲ Input: MSA A,

phylogenetic tree T,

MSA method f()
⊲ f1() : progressive method

⊲ f2() : iterative refinement method,

phylogenetic tree estimation method g(),
reversal probability γ,

number of replicates kr,

⊲ Output: phylogenetic support estimates ǫ

2: re-estimates = <>

3: maximum-likelihood-scores = < (score, index) >
4: for i = 1 to kr do

5: Xi = resampleRAWRreplicate(A, γ)

6: AddItem(re-estimates <>, g(f1(Xi)))
7: Yi = maximum-likelihood-score(g(f1(Xi)), A)

8: AddItem(maximum-likelihood-scores <>, (Yi, i))

9: end for

10: count-threshold = |maximum-likelihood-scores| ∗ 0.1
11: score-threshold = mean(maximum-likelihood-scores)

12: − standarddeviation(maximum-likelihood-scores)

13: low-ml-scores-indices = <>

14: sort(maximum-likelihood-scores <>)

15: for (score, index) in maximum-likelihood-scores do

16: if (score ≤ score-threshold) ||
17: (|low-ml-scores-indices| ≤ count-threshold) then

18: AddItem(low-ml-scores-indices, index)

19: end if

20: end for

21: if count-threshold ≤ |low-ml-scores-indices| then

22: count-threshold = mean(count-threshold,

23: |low-ml-scores-indices|)
24: end if

25: for i in low-ml-scores-indices<> do

26: if Index(i) ≤ count-threshold then

27: re-estimates[i] = g(f2(Xi))
28: end if

29: end for

30: for all non-leaf edge e in T do do

31: ǫ(e) = proportion of Ti in re-estimates that display

32: bipartition corresponding to e

33: end for

34: return(ǫ)

35: end procedure



1: procedure resampleRAWRreplicate(A, γ)

2: Z = <>

3: select i ∈ [1, |A|] and walkDirection uniformly at

random

4: while !converged(Z, A) do

5: Z = Z ∪ A[i]
⊲ add ith column of A to Z

6: if reversal(γ) || (i == 1 && walkDirection is left)
7: || (i == |A| && walkDirection is right) then

8: reverse(walkDirection)

9: end if

10: i = next column index after i in walkDirection

order

11: end while

12: return unalign(Z)

13: ⊲ unalign(Z) drops indels from Z

14: ⊲ resampleRAWRreplicate() is excerpted from

15: Wang et al. (2021).

16: end procedure

17: procedure converged(Z, A)

18: return (length(Z) ≥ length(A))

19: ⊲ Sequence-length-based convergence criterion

20: requires

21: ⊲ number of resampled sites ≥ input MSA length

22: ⊲ converged() is excerpted from Wang et al. (2021).

23: end procedure

II. SUPPLEMENTARY RESULTS

Supplementary Table I: Simulation study: regression analy-

sis (I) between maximum-likelihood scores and topological

errors (i.e., normalized Robinson-Foulds distance). The

following summary statistics are reported on each model

condition (n=20): ”r” is the correlation coefficient and ”R2”

is the coefficient of determination.

Model r R2

condition
RAWR Optimized RAWR Optimized

10.A -0.7814 -0.7589 0.6406 0.6049
10.B -0.7620 -0.7232 0.6074 0.5716
10.C -0.7756 -0.7810 0.6170 0.6373
10.D -0.6472 -0.6709 0.4377 0.4792
10.E -0.2406 -0.2646 0.0960 0.1124
50.A -0.6951 -0.6945 0.4951 0.4359
50.B -0.6391 -0.6970 0.4894 0.4992
50.C -0.6878 -0.8214 0.4858 0.6813
50.D -0.6269 -0.8668 0.4005 0.7540
50.E -0.2885 -0.6802 0.1167 0.4757
100.A -0.7608 -0.7285 0.5996 0.5622
100.B -0.7476 -0.6985 0.5744 0.5064
100.C -0.7221 -0.9290 0.5392 0.8636
100.D -0.6704 -0.9557 0.4683 0.9147
100.E -0.6540 -0.9720 0.4480 0.9450

Supplementary Table II: Simulation study: regression analy-

sis (II) between maximum-likelihood scores and topological

errors (i.e., normalized Robinson-Foulds distance).

Model slope intercept
condition

RAWR Optimized RAWR Optimized

10.A -2.2278 -2.0685 1.062 1.0786
10.B -2.6521 -2.604 1.215 1.1865
10.C -2.0992 -2.1367 1.5314 1.401
10.D -1.6629 -1.6668 1.5098 1.4505
10.E -0.6472 -0.6472 1.2404 1.227
50.A -4.5549 -4.8964 1.1903 1.1416
50.B -3.0609 -3.7642 1.2288 1.2146
50.C -2.9225 -2.8127 1.5192 1.3367
50.D -3.1882 -2.3608 2.3581 1.6787
50.E -2.1848 -2.4713 2.3299 2.4324
100.A -5.4115 -1.6959 4.1572 1.3191
100.B -5.0376 -1.9041 3.7413 1.393
100.C -3.4486 -1.9763 2.3263 1.2855
100.D -3.6992 -4.6291 1.2512 1.2111
100.E -8.7102 -8.5497 1.1585 1.1321


