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A B S T R A C T

This two-part work presents a novel theory for model reference adaptive control (MRAC) of deterministic
nonlinear ordinary differential equations (ODEs) that contain functional, nonparametric uncertainties that
reside in a native space, also called a reproducing kernel Hilbert space (RKHS). As discussed in the first
paper of this two-part work, the proposed framework relies on a limiting distributed parameter system (DPS).
To allow implementations of this framework in finite dimensions, this paper shows how several techniques
developed in parametric MRAC, such as the 𝜎-modification method, the deadzone modification, adaptive error
bounding methods, and projection methods, can be generalized to the proposed nonparametric setting. Some of
these techniques assure uniform ultimate boundedness of the trajectory tracking error, while others guarantee
its asymptotic convergence to zero. This paper introduces nonparametric metrics of performance that are cast
in terms of the functional uncertainty classes in the native space. These performance metrics are relative to
the best offline approximation error of the functional uncertainty. All the provided performance bounds are
explicit in the dimension of the approximations of the functional uncertainty. Numerical examples show the
applicability of the proposed theoretical results.

Contents

1. Introduction ...................................................................................................................................................................................................... 2
2. Problem statement ............................................................................................................................................................................................. 2
3. The nonparametric control law and the limiting DPS ............................................................................................................................................ 3
4. Power functions and approximation bounds ......................................................................................................................................................... 4
5. Approximation theory suboptimality.................................................................................................................................................................... 4
6. Finite-dimensional approximations of DPS ........................................................................................................................................................... 5
7. The 𝜎-modification............................................................................................................................................................................................. 6

7.1. A relaxed functional uncertainty approach ............................................................................................................................................... 6
7.2. Practical tracking of the 𝜎-modification.................................................................................................................................................... 8
7.3. Coordinate implementations for realizable controllers................................................................................................................................ 8

8. The deadzone modification ................................................................................................................................................................................. 8
8.1. A tight functional uncertainty approach ................................................................................................................................................... 8
8.2. Relaxed functional uncertainty approaches ............................................................................................................................................... 10

9. An error bounding method ................................................................................................................................................................................. 10
10. An adaptive error bounding method .................................................................................................................................................................... 11
11. Projection methods ............................................................................................................................................................................................ 12

11.1. The vector projection operator ............................................................................................................................................................... 12
11.2. Projection operators in native spaces ....................................................................................................................................................... 13
11.3. Applying the projection operator in a native space.................................................................................................................................... 15

12. Ultimate bounds and fill distances....................................................................................................................................................................... 15
13. Concluding remarks on theoretical results ............................................................................................................................................................ 16

∗ Corresponding author.
E-mail address: a.lafflitto@vt.edu (A. L’Afflitto).
https://doi.org/10.1016/j.arcontrol.2024.100968
Received 6 December 2023; Received in revised form 14 September 2024; Accepted 17 September 2024
vailable online 27 September 2024 
367-5788/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/arcontrol
https://www.elsevier.com/locate/arcontrol
mailto:a.lafflitto@vt.edu
https://doi.org/10.1016/j.arcontrol.2024.100968
https://doi.org/10.1016/j.arcontrol.2024.100968
http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2024.100968&domain=pdf


A.J. Kurdila et al. Annual Reviews in Control 58 (2024) 100968 
13.1. A comparison of theoretical results .......................................................................................................................................................... 16
13.2. The role of the Grammian matrix ............................................................................................................................................................ 17

14. Numerical example ............................................................................................................................................................................................ 18
15. Conclusion ........................................................................................................................................................................................................ 19

Declaration of competing interest ........................................................................................................................................................................ 20
Data availability ................................................................................................................................................................................................ 20
Acknowledgments .............................................................................................................................................................................................. 20
References......................................................................................................................................................................................................... 20
1. Introduction

This paper is the second of a two-part work that presents in a
systematic and tutorial manner both the theoretical foundation and
several specific algorithms for a general theory of nonparametric model
reference adaptive control (MRAC). In the first part of this work,
we illustrated in detail the essential idea underlying the proposed
approach to adaptive control systems design. Initially, in the overall
approach, the nonlinear matched uncertainty is neither parameterized
by a regressor vector nor reconstructed through estimators or other
techniques but is assumed to be an element of a generally infinite
dimensional reproducing kernel Hilbert space (RKHS), also known as
native space. Substantial effort was devoted to explaining not only
the differences but also the advantages of the proposed approach over
classical approaches to MRAC design in particular and similar adaptive
control design techniques in general. These techniques, indeed, which
we refer to as parametric methods, require the user to either provide a
parameterization of the matched uncertainties or devise some tools to
parameterize such uncertainties.

This paper discussed in detail how the general theory of nonpara-
metric MRAC can be applied in practice. Practical implementations of
the proposed theory involve using finite-dimensional approximations
of the space of uncertainties. Nevertheless, when applied to finite-
dimensional problems of practical interest, using some classical tools of
RKHSs, the proposed nonparametric framework allows quantifying ex-
plicitly the controller’s performance as a function of the dimensions of
the finite-dimensional functional space that approximates the infinite-
dimensional space in which the uncertainty resides. In the classical
parametric framework, on the contrary, such results are generally
unavailable. Furthermore, by their nature, parametric MRAC systems
can address considerably smaller classes of functional uncertainties
than those that can be addressed by applying the proposed framework.

The core of the proposed approach lies in defining a so-called
limiting distributed parameter system (DPS). This DPS captures both
the trajectory tracking error dynamics and the adaptive laws. Since
the adaptive law corresponding to the functional uncertainty evolves
in an infinite-dimensional space, the first paper of this two-part work
concluded that the adaptive laws comprised in the limiting DPS were
not directly applicable to problems of practical interest. This paper
shows how the limiting DPS can be approximated in finite dimensions,
and, hence, applied to problems of practical interest. This result is
attained by extending to an RKHS setting several classical adaptive con-
trol techniques such as the deadzone modification of MRAC (Peterson &
Narendra, 1982), the 𝜎-modification of MRAC (Ioannou & Fidan, 2006),
the error bounding method, the adaptive error bounding method, and
the use of continuous convex projection operators (Pomet & Praly,
1992). The proposed framework introduces metrics to measure the
performance of all adaptive controllers proposed herein. In this paper,
this metric captures the ultimate bound on the trajectory tracking
error, and, as already discussed, classical tools of RKHS theory allow
expressing explicitly this metric as a function of the dimension of the
approximating RKHS. While retaining the same framework, alternative
metrics, which capture other key aspects of the trajectory tracking error
dynamics, such as its rate of convergence, can be considered.

This paper is structured as follows. Section 2 draws from the anal-
ogous section in the first paper of this two-part work, and succinctly
 𝑥

2 
provides a formal statement of the problem. Section 3 summarizes the
main results of the first paper of this two-part work. These results are
the MRAC laws for a plant model, whose nonlinearities are captured by
infinite-dimensional RKHS, and sufficient conditions for the existence
of solutions of both the adaptive and the closed-loop trajectory tracking
error dynamics at all times. Before discussing how these results can be
applied to finite-dimensional problems of practical interest,

Sections 4 and 5 present two sets of results instrumental to the scope
of this paper. Specifically, Section 4 discusses a key tool in RKHS the-
ory, that is, power functions, and how those can be used to characterize
the error while approximating infinite-dimensional RKHSs using finite-
dimensional Hilbert spaces. Section 5 introduces the novel notion of
approximation theory suboptimality. This metric of performance will
be used to compare the performance of all the controllers considered
in this paper for multiple uncertainty classes using a standard measure.

Since the limiting controller presented in Section 3 yields in infinite
dimensional spaces, and, hence, cannot be implemented in practice, in
Sections 6–11, we present multiple generalizations of classical robust
adaptive systems to the nonparametric setting that allow a finite-
dimensional implementation of these results. The robust adaptive con-
trol techniques considered include the 𝜎-modification of MRAC, the
deadzone modification, error bounding and adaptive error bounding
methods, and the continuous convex projection operator. All the con-
trol systems presented in this paper can be derived or interpreted as
resulting from a two-stage design process. In the first stage, the analyst
defines the limiting DPS discussed in Section 3. In the second stage,
this ideal control system is specialized to a finite-dimensional setting
to provide robustness to errors due to the attempt to approximate an
infinite-dimensional RKHS employing a finite-dimensional one.

Section 13 provides a summary of the results attained in this paper.
A central role in this section is played by Tables 2 and 3, where the per-
formance of the proposed control techniques is compared for multiple
uncertainty classes. Finally, in Section 14, we present the outcome of
numerical simulations, and, in Section 15, we draw conclusions about
this work and recommend future research directions.

2. Problem statement

In this paper, we consider plants in the form

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵 (𝑢(𝑡) + 𝑓 (𝑥(𝑡))) , 𝑥(𝑡0) = 𝑥0, 𝑡 ≥ 𝑡0, (1)

where 𝑥 ∶ [𝑡0,∞) → X denotes the plant trajectory, X = R𝑛 is the
state space, 𝑢 ∶ [𝑡0,∞) → R denotes the control input, the system matrix
𝐴 ∈ R𝑛×𝑛 is unknown, the control influence operator 𝐵 ∈ R𝑛 is known
and such that the pair (𝐴,𝐵) is controllable, and 𝑓 ∶ R𝑛 → R is the
nonlinear matched uncertainty. In the first paper of this two-part work,
we provided a detailed discussion of the usefulness of this model and
how, despite some limitations, such as the scalar input and the lack of
unmatched uncertainties, it is sufficiently generic to explain the novel
framework presented here.

Our goal is to find a state-feedback control law 𝜇 ∶ X → R such that
the input 𝑢(𝑡) = 𝜇(𝑥(𝑡)) steers the plant trajectory toward the reference
trajectory 𝑥𝑟 ∶ [𝑡0,∞) → X defined as the solution of the reference model
̇ 𝑟(𝑡) = 𝐴ref𝑥𝑟(𝑡) + 𝐵ref 𝑟(𝑡), 𝑥𝑟(𝑡0) = 𝑥𝑟,0, 𝑡 ≥ 𝑡0, (2)
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where the reference command input 𝑟 ∶ [𝑡0,∞) → R is continuous and
bounded, 𝐴ref ∈ R𝑛×𝑛 is Hurwitz, 𝐵ref ∈ R𝑛, the pair (𝐴ref , 𝐵ref ) is
controllable, and the matching conditions

𝐴ref = 𝐴 + 𝐵𝛼T, (3)

𝐵ref = 𝐵𝛽, (4)

are verified by for some 𝛼 ∈ R𝑛 and 𝛽 ∈ R; note that 𝛼, in general, is
nknown, whereas 𝛽 must be known.
Defining the trajectory tracking error 𝑒(𝑡) ≜ 𝑥(𝑡) − 𝑥𝑟(𝑡), 𝑡 ≥ 𝑡0, our

oal is to design a feedback control law 𝜇(⋅) so that asymptotic tracking,
hat is,

lim
→∞

‖𝑥(𝑡;𝜇) − 𝑥𝑟(𝑡)‖R𝑛 = 0, (5)

here 𝑥(𝑡;𝜇) denotes the solution of (1) with control input 𝑢(𝑡) = 𝜇(𝑥(𝑡)).
n some cases, such a result is not attainable. Thus, a weaker, but suf-
iciently useful objective is pursued, namely practical tracking (Aulisa,
urns, & Gilliam, 2023; Aulisa & Gilliam, 2015). This objective consists
in finding a feedback control law 𝜇(⋅) so that, given a user-defined
tolerance 𝛿 > 0,

lim sup
𝑡→∞

‖𝑥(𝑡;𝜇) − 𝑥𝑟(𝑡)‖R𝑛 ≤ 𝛿, (6)

where the limit supremum of a bounded function 𝜑 ∶ [𝑡0,∞) → R𝑛 is
defined as

lim sup
𝑡→∞

𝜑(𝑡)
𝛥
= lim

𝑇→∞

{

sup
𝑡≥𝑇

𝜑(𝑡)
}

. (7)

Observe that if (5) is attained, then (6) is satisfied for all 𝛿 > 0.
As discussed in Section 4 of the first paper of this two-part work, we

assume that the functional matched uncertainty 𝑓 resides in a native
space

 ≜ span{K𝑥 | 𝑥 ∈ X} (8)

of real-valued functions over X, where K𝑥 (⋅) ≜ K (⋅, 𝑥), K ∶ X × X → R
denotes an admissible, bounded on the diagonal kernel function, and
the closure is taken with respect to the inner product

⟨

K𝑥,K𝑦
⟩

 ≜
K(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X. In particular, we consider the following three
classes of functional uncertainties.

Definition 2.1 (Functional Uncertainty Classes). Let 𝑁 ∈ N, 𝑅 > 0, and
𝜖 > 0. The real parametric uncertainty class of radius 𝑅 is defined as

𝛷𝑁 ,𝑅 ≜
{

𝑓 = 𝛷T
𝑁𝛩𝑁 | 𝛩𝑁 ∈ R𝑁 , ‖𝑓‖ ≤ 𝑅

}

⊂ span{𝛷𝑁}. (9)

The nonparametric uncertainty class of radius 𝑅 and projection error less
than 𝜖 is defined as

𝑁,𝜖,𝑅 ≜
{

𝑓 ∈  | ‖(𝐼 −𝛱𝑁 )𝑓‖ ≤ 𝜖, ‖𝑓‖ ≤ 𝑅
}

⊂ . (10)

The nonparametric uncertainty class of radius 𝑅 is defined as

𝑅 ≜
{

𝑓 ∈  | ‖𝑓‖ ≤ 𝑅
}

⊂ . (11)

As extensively discussed in the first paper of this two-part work,
these three classes are such that

𝛷𝑁 ,𝑅 ⊂ 𝑁,𝜖,𝑅 ⊂ 𝑅. (12)

Classical parametric adaptive control systems only consider the class
of functional uncertainties 𝛷𝑁 ,𝑅. The proposed framework, instead,
allows addressing the broader classes 𝑁,𝜖,𝑅 and 𝑅.

3. The nonparametric control law and the limiting DPS

In this section, we briefly summarize the key result of the first paper
of this two-part work. Assuming that 𝑓 in (1) is contained in the native
space  of real-valued functions over X given by (8), it holds that
𝑓 (𝑥) = 𝐸𝑥𝑓 = ⟨K𝑥, 𝑓⟩ , for all 𝑥 ∈ X, (13) m

3 
and (1) can be written as

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵
(

𝑢(𝑡) + 𝐸𝑥(𝑡)𝑓
)

, 𝑥(𝑡0) = 𝑥0, 𝑡 ≥ 𝑡0.

To design MRAC laws that account for uncertainties in both 𝐴 and
𝑓 , we consider the nonparametric adaptive control input

𝑢(𝑡) = 𝜇(𝑡, 𝑥(𝑡), 𝛼̂(𝑡),K𝑥(𝑡), 𝑓 (𝑡, ⋅)), 𝑡 ≥ 𝑡0, (14)

where the control law is defined as

𝜇(𝑡, 𝑥, 𝛼,K𝑥, 𝑓 ) ≜ 𝛼T𝑥 + 𝛽𝑟(𝑡) − ⟨K𝑥, 𝑓⟩ ,

(𝑡, 𝑥, 𝛼,K𝑥, 𝑓 ) ∈ [𝑡0,∞) × X × R𝑛 × ×, (15)

𝛼̂(𝑡) ∶ [𝑡0,∞) → R𝑛 and 𝑓 (𝑡, ⋅) ∶ [𝑡0,∞) →  denote adaptive gains and
verify the adaptive laws

̇̂𝛼(𝑡) = −𝛤𝛼𝑥(𝑡)𝑒T(𝑡)𝑃𝐵, 𝛼̂(𝑡0) = 𝛼̂0, (16)
𝜕𝑓 (𝑡, ⋅)

𝜕𝑡
= 𝛾𝑓K(⋅, 𝑥(𝑡))𝑒T(𝑡)𝑃𝐵

= 𝛾𝑓𝐸
∗
𝑥(𝑡)𝐵

T𝑃𝑒(𝑡), 𝑓 (𝑡0, ⋅) = 𝑓0(⋅), (17)

It is worthwhile noting that (17) is a partial differential equation (PDE).
ith the control input (14), the trajectory tracking error dynamics are
iven by

̇(𝑡) = 𝐴ref 𝑒(𝑡) − 𝐵
(

𝛼̃T(𝑡)𝑥(𝑡) − ⟨K𝑥(𝑡), 𝑓 (𝑡, ⋅)⟩
)

,

𝑒(𝑡0) = 𝑥0 − 𝑥𝑟,0, 𝑡 ≥ 𝑡0, (18)

here 𝛼̃(𝑡) ≜ 𝛼− 𝛼̂(𝑡) and 𝑓 (𝑡, ⋅) ≜ 𝑓 −𝑓 (𝑡, ⋅). Furthermore, (16)–(18) can
e collected to write the limiting DPS error equations in matrix operator
orm

𝜕
𝜕𝑡

⎧

⎪

⎨

⎪

⎩

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

⎭

=
⎡

⎢

⎢

⎣

𝐴ref −𝐵𝑥T(𝑡) 𝐵𝐸𝑥(𝑡)
𝛤𝛼𝑥(𝑡)𝐵T𝑃 0 0
−𝛾𝑓𝐸∗

𝑥(𝑡)𝐵
T𝑃 0 0

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑒(𝑡)
𝛼̃(𝑡)
𝑓 (𝑡, ⋅)

⎫

⎪

⎬

⎪

⎭

(19)

ith the same initial conditions as in (16)–(18). In (19), we do not have
matrix of real numbers but an operator since it contains the bounded
inear operators 𝐸𝑥 ∶  → R and 𝐸∗

𝑥 ∶ R → .
The next theorem shows the boundedness of solutions of (19), that

s, of

↦ 𝑧(𝑡) ≜
(

𝑒(𝑡), 𝛼̃(𝑡), 𝑓 (𝑡, ⋅)
)

∈ R𝑛 × R𝑛 × ≜ Z (20)

nd the convergence of the trajectory tracking error 𝑒(⋅) to zero despite
he uncertainties in 𝐴 and 𝑓 .

heorem 3.1. Consider the limiting DPS (19), suppose that the kernel
(⋅, ⋅) that defines the native space  is bounded on the diagonal, and
19) is forward complete. Then, the trajectory of the limiting error DPS is
niformly bounded, and

lim
→∞

𝑒(𝑡) = 0

niformly in 𝑡0 ∈ [0,∞).

Theorem 3.1 assumes the forward completeness of the map (20).
he next result provides sufficient conditions for this result to hold.

heorem 3.2. Consider the limiting error DPS given by (19) and the
eference model given by (2). Suppose that the kernel K (⋅, ⋅) that defines
he native space  of real-valued functions is bounded on the diagonal,
nd that the native space  is continuously embedded in the space of
ipschitz continuous functions 𝐶0,1 (X), that is,  ↪ 𝐶0,1 (X). Then, for
ny 𝑧(𝑡0) ∈ Z, (19) is forward complete with 𝑧 ∈ 𝐶1([𝑡0,∞),Z), that is, the
apping 𝑡 ↦ 𝑧(𝑡) =

(

𝑒(𝑡), 𝛼̃(𝑡), 𝑓 (𝑡, ⋅)
)

is defined on [𝑡 ,∞).
0
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4. Power functions and approximation bounds

In native space theory, a powerful tool to characterize the error in
approximating an infinite-dimensional space using a finite-dimensional
space is given by the power function. This tool allows quantifying the
error due to projecting the DPS (17) into a finite-dimensional RKHS
and will be used extensively in the remainder of this work. For a
brief discussion on relevant properties of orthogonal projections, see
Section 4 of the first paper of this two-part work.

Consider the admissible kernel function K ∶ X × X → R, and the
associated RKHS (8). The power function can be defined as follows.

Definition 4.1 (Power Function). Let 𝑈 ⊆  denote a closed subspace
of , let 𝛱𝑈 denote the -orthogonal projection onto 𝑈 , and let ∗

denote the topological dual of . The mapping 𝑈 ∶ ∗ → R such that

𝑈 (ℎ∗) ≜ sup
𝑓∈⧵{0}

|

|

ℎ∗(𝑓 ) − ℎ∗(𝛱𝑈𝑓 )||
‖𝑓‖

, for all ℎ∗ ∈ ∗, (21)

is the power function associated with 𝑈 .

Let 𝑥 ∈ X, 𝛼 ∈ R, and 𝛿𝛼𝑥 (𝑓 ) ≜
(

𝐸𝑥𝑓
)

𝛼. If ℎ = 𝛿𝛼𝑥 (𝑓 ), then we use the
hort-hand notation 𝑈 (𝑥) for 𝑈 (ℎ∗). Consider also the set of centers

𝑁 ≜
{

𝜉1,… , 𝜉𝑁
}

⊂ 𝛺 ⊂ X. (22)

t is shown in Wittwar, Santin, and Haasdonk (2018) that we always
have the pointwise error bound

|𝐸𝑥
(

𝐼 −𝛱𝑁
)

𝑓 | ≤ 𝑁 (𝑥)‖
(

𝐼 −𝛱𝑁
)

𝑓‖ ≤ 𝑁 (𝑥) ‖𝑓‖ , (23)

for all 𝑥 ∈ X and 𝑓 ∈ , where 𝐼 ∶  →  denotes the identity operator,
𝛱𝑁 ∶  → 𝑁 denotes the orthogonal projection onto

𝑁 ≜ span
{

K𝜉𝑖 | 𝜉𝑖 ∈ 𝛯𝑁 , 1 ≤ 𝑖 ≤ 𝑁
}

⊂ , (24)

and 𝑁 (⋅) denotes the power function associated with the
finite-dimensional space 𝑁 ; with a minor abuse of notation, 𝑁 (⋅)
stands for 𝑁

(⋅). Given 𝑓 ∈ ,𝛱𝑁𝑓 denotes the orthogonal projection
of 𝑓 into the finite-dimensional space 𝑁 , and

(

𝐼 −𝛱𝑁
)

𝑓 denotes its
orthogonal complement. Thus, through (23), the power function 𝑁 (⋅)
provides an upper bound on the magnitude of

(

𝐼 −𝛱𝑁
)

𝑓 . Now, as
discussed in Section 6 below, it possible to deduce adaptive control
aws that assure asymptotic convergence of the trajectory tracking error
o zero irrespectively of 𝛱𝑁𝑓 , that is, irrespectively of the effect on
1) of the component of 𝑓 in a user-defined subspace 𝑁 . Thus, only
he effect of the component of 𝑓 orthogonal of 𝑁 on (1), namely
𝐼 −𝛱𝑁

)

𝑓 , must be assessed, and (23) provides an essential tool to
his goal.
Definition 4.1 is not particularly useful for algorithms, at least in
ost problems of practical interest. To overcome this limitation, we
ecall the following result.

heorem 4.1. Let K ∶ X × X → R denote the kernel that induces the
ative space  and let 𝑈 ⊆  be a closed subspace induced by the kernel
𝑈 (𝑥, 𝑦) = (𝛱𝑈K𝑥)(𝑦). Then, it holds that

2
𝑈 (𝑥) = K(𝑥, 𝑥) − K𝑈 (𝑥, 𝑥), for all 𝑥 ∈ X. (25)

Let  denote a native space defined by the kernel function K(⋅, ⋅),
et 𝑈 ⊆  be a closed subspace induced by the kernel K𝑈 (𝑥, 𝑦) =
𝛱𝑈K𝑥)(𝑦). It holds that K(𝑥, 𝑥) ≥ K𝑈 (𝑥, 𝑥) for all 𝑥 ∈ X. Thus, given
he set of centers (22) and finite-dimensional subspace

𝑁 ≜ span{K𝜉𝑖 | 𝜉𝑖 ∈ 𝛯𝑁} ⊂ , (26)

t follows from Theorem 4.1 that
√

K(𝑥, 𝑥) − K (𝑥, 𝑥), (27)
𝑁 (𝑥) = 𝑁

4 
Box 1: To apply the proposed nonparametric MRAC framework to
problems of practical interest, the underlying DPS needs to be pro-
jected onto finite-dimensional RKHSs. Some of the proposed adaptive
control systems are affected by the orthogonal complement of this
projection. The power function, a classical tool from RKHS theory, al-
lows estimating the 𝐿∞-norm of the projection error and, ultimately,
its effect on the trajectory tracking error performance.

where the reproducing kernel K𝑁 (⋅, ⋅) of 𝑁 is given by

𝑁 (𝑥, 𝑦) ≜ KT
𝛯𝑁

(𝑥)K−1
𝑁 K𝛯𝑁

(𝑦), for all 𝑥, 𝑦 ∈ X, (28)

K𝛯𝑁
(⋅) ≜

[

K𝜉1 (⋅),… ,K𝜉𝑁 (⋅)
]T
, and

K𝑁 ≜ [K(𝜉𝑖, 𝜉𝑗 )](𝑖,𝑗) = [(K𝜉𝑖 ,K𝜉𝑗 )](𝑖,𝑗) ∈ R𝑁×𝑁 (29)

denotes the Grammian matrix of the set of kernel basis functions {K𝜉𝑖}
𝑁
𝑖=1

located at the set of 𝑁 centers given by (22), and [⋅](𝑖,𝑗) denotes a matrix
by specifying the element on the 𝑖th row and 𝑗th column. Thus, having
chosen the set of centers 𝛯𝑁 ⊂ 𝛺, we can compute (28) and (27),
and hence, quantify the effect of the unknown matched uncertainty
employing (23).

It is worthwhile reflecting on the novelty of (27) and (23). These
equations give a geometric condition, defined in closed form in terms of
the centers 𝛯𝑁 , that can be used to bound the pointwise approximation
error at any point 𝑥 in a domain of interest 𝛺 ⊆ X. The authors are
unaware of such a simple and computable result when the space of
approximants is defined in terms of finite element, spline, Fourier, ridge
function, or common single layer or multilayer neural network bases,
for example.

5. Approximation theory suboptimality

In this work, we use a convenient overarching strategy to assess
the performance of various types of adaptive control methods when
the uncertainty belongs to one of the classes (9)–(11). To present this
strategy, consider the following definition. For the statement of this
definition, recall that identity operator 𝐼 ∶ R𝑁 → R𝑁 is defined such
that 𝐼𝑥 = 𝑥.

Definition 5.1 (Approximation Theory Suboptimality). Consider the un-
certainty class 𝑁,𝜖,𝑅 given by (10), and let the closed-loop trajectory of
(1) with 𝑓 ∈ 𝑁,𝜖,𝑅 be denoted by 𝑥𝑁 ∶ [𝑡0,∞) → X. Let the functional
𝐽 ∶ 𝐶([𝑡0,∞),X) → R+ measure the performance of an adaptive control
method, where if 𝐽 (𝑥𝑁 ) = 0, then the best performance is attained.
An adaptive control system is approximation theory  (𝜖)-suboptimal over
𝑁,𝜖,𝑅 if, controlling the plant model (1) by means of this adaptive
ontrol system, there exist a constant 𝐶 > 0 and a known function
∶ R+ → R+ such that  (𝜖) ≥ 𝜖 for all 𝜖 ≥ 0 and

𝐽 (𝑥𝑁 ) ≤ 𝐶 (𝜖), for all 𝑓 ∈ 𝑁,𝜖,𝑅. (30)

If  (𝜖) = 𝐼 for all 𝜖 ≥ 0, then (30) takes the form

𝐽 (𝑥𝑁 ) ≤ 𝐶𝜖, for all 𝑓 ∈ 𝑁,𝜖,𝑅, (31)

and we say that the controller is nearly approximation theory optimal
over 𝑁,𝜖,𝑅.

Intuitively, the notion of approximation theory  (𝜖)-suboptimal
over 𝑁,𝜖,𝑅 reflects the fact that we expect the approximation of the
uncertainty to influence the performance of the adaptive control sys-
tem. In general, we expect that the poorer the approximation, the lower
the performance. Inequality (30) says that if the uncertainty 𝑓 ∈ 𝑅
is approximated from 𝑁 with error 𝜖, then the performance of the
closed-loop controller is of the order 𝑂( (𝜖)). Inequality (31) is to be

interpreted as a special, easily quantifiable case of (30). The positive
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Box 2: The notion of approximation theory suboptimality, which
is inspired by the notion of near optimality commonly used in
approximation theory and statistical learning theory, explicitly cor-
relates the controller’s performance to the ability to approximate
the infinite-dimensional space of functional uncertainties by means
of finite-dimensional spaces. Approximation theory suboptimality
requires establishing an upper-bound on a user-defined performance
measure. Such an upper bound must be a function of the largest
component of a functional uncertainty that is orthogonal to the
user-defined, finite-dimensional approximating space.

constant 𝐶 in (30) and (31) is to be interpreted as an offline rate
of convergence of best approximations. Sometimes, it is possible to
derive alternative forms that are explicit in the dimension 𝑁 . Thus, we
introduce

𝜖𝑁 (𝑥) ≜ ((𝐼 −𝛱𝑁 )𝑓 )(𝑥), for all 𝑥 ∈ X, (32)

which denotes the pointwise error of the best offline approximation of
𝑓 , and the following notion.

Definition 5.2 (Approximation Theory Suboptimality, cont.). Con- sider
he uncertainty class 𝑁,𝜖,𝑅 given by (10), and let the closed-loop
rajectory of (1) with 𝑓 ∈ 𝑁,𝜖,𝑅 be denoted by 𝑥𝑁 ∶ [𝑡0,∞) → X. Let
the functional 𝐽 ∶ 𝐶([𝑡0,∞),X) → R+ measure the performance of an
adaptive control system, where if 𝐽 (𝑥𝑁 ) = 0, then the best performance
s attained. An adaptive control scheme is  (𝑁)-suboptimal over 𝑁,𝜖,𝑅
f, applying this system to the plant model (1), there exist a constant
> 0 and a known function  ∶ N → R+ such that  (𝑁) ≥ ‖𝜖𝑁‖,

where

𝐽 (𝑥𝑁 ) ≤ 𝐶 (𝑁). (33)

If  (𝑁) = ‖𝜖𝑁‖ = ‖(𝐼 −𝛱𝑁 )𝑓‖, then (33) becomes

𝐽 (𝑥𝑁 ) ≤ 𝐶‖𝜖𝑁‖ = 𝐶‖(𝐼 −𝛱𝑁 )𝑓‖. (34)

Definition 5.2 can be considered an extension of Definition 5.1
because any method that satisfies (34) satisfies (31). Indeed, ‖𝜖𝑁‖ =
‖(𝐼 − 𝛱𝑁 )𝑓‖ ≤ 𝜖 for all 𝑓 ∈ 𝑁,𝜖,𝑅. However, it is more difficult to
establish (33) and (34).

The description of estimates as ‘‘nearly optimal’’ is common in
approximation theory (DeVore, 1998; DeVore & Lorentz, 1993), and
statistical learning theory (Temlyakov, 2011). Some early connections
between adaptive control schemes and cost functions within a differ-
ential game framework are presented in L’Afflitto (2017). However, to
the authors’ knowledge, this notion has not been systematically used in
adaptive control theory to date. For brevity, we just call such methods
approximation theory optimal for short. The relevance of inequalities
(30)–(34) lies in that they measure the performance of the closed-loop
controller against a well-known, universal standard, namely the error
of best offline approximation of 𝑓 from 𝑁 .

In this paper, we capture the performance of adaptive systems by
means of the performance measure

𝐽 (𝑥𝑁 (⋅)) ≜ lim sup
𝑡→∞

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖R𝑛 . (35)

This index captures the ultimate bound on the tracking error of the
trajectory in a model reference adaptive control strategy that uses 𝑁
to approximate the functional uncertainty 𝑓 that is known to lie in .
If, for some method, we derive an ultimate bound on the tracking error
of the form 𝑒𝑁,∞, then it must hold that 𝐽 (𝑥𝑁 (⋅)) ≤ 𝑒𝑁,∞. However,
it must be noted that, in general, 𝑒𝑁,∞ is only a conservative estimate
of the performance of the adaptive control system. For this reason, we
introduce the following definition.
5 
Box 3: If the user-defined performance measure captures the ultimate
bound on the trajectory tracking error, then the concept approxi-
mation theory suboptimality specializes to asymptotic approximation
optimality.

Definition 5.3 (AAO Adaptive Systems). Let 𝑥𝑁 ∶ [𝑡0,∞) → X denote the
closed-loop trajectory of (1) with 𝑓 ∈ 𝑁,𝜖,𝑅. If (30) or (34) are verified
with performance measure (35), then an adaptive control system is
asymptotically approximation optimal (AAO). If 𝑒𝑁,∞ = 0 for any 𝑁 , then
we say that the adaptive control system is AAO∗.

For some control systems, such as the deadzone method with a
suitably defined deadzone size (see Section 8 below), we establish that

𝐽 (𝑥𝑁 (⋅)) ≤ 𝑒𝑁,∞ ≤ 𝐶𝜖. (36)

Using well-known tools from the theory of native spaces, in this paper,
we derive further upper bounds on 𝑒𝑁,∞ that are explicit functions
of the number of bases 𝑁 as in (34). For some other methods, such
as the 𝜎-modification (see Section 7 below), the function  is more
complicated, and the bounds derived in this paper are only suboptimal.

It is instructive to compare the bound given by (36) to the situation
when a classical real parametric MRAC system is used and the plant
uncertainty 𝑓 is contained in the smaller uncertainty class 𝑓 ∈ 𝛷𝑁 ,𝑅.
In this case the performance metric 𝐽 (⋅) for the closed-loop trajectory
𝑡 ↦ 𝑥𝑁 (𝑡) reduces to

𝐽 (𝑥𝑁 ) ≜ lim
𝑡→∞

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖ ≡ ‖(𝐼 −𝛱𝑁 )𝑓‖ = 0, for all 𝑓 ∈ 𝛷𝑁 ,𝑅.

Given our terminology, the performance of the classical real parametric
gradient learning law, for the performance functional that captures the
ultimate bound on the tracking error, is approximation theory optimal
over 𝛷𝑁 ,𝑅 for every 𝑁 for which 𝑓 ∈ 𝑁 . We are interested in
generalizing this statement of classical parametric adaptive control to
obtain similar guarantees, but in a setting that includes nonparametric
uncertainty classes.

6. Finite-dimensional approximations of DPS

As discussed in Section 3, for each 𝑡 ∈ [𝑡0,∞), the adaptive gain
𝑓 (𝑡, ⋅) ∈  is nonparametric and, hence, not implementable. Thus, to
overcome this limitation, throughout the remainder of this paper, we
devise finite-dimensional adaptive gains 𝑓𝑁 (𝑡, ⋅) ∈ 𝑁 that approximate
𝑓 (𝑡, ⋅) and reside in the finite-dimensional space 𝑁 ⊆  given by (26).
Several finite-dimensional control adaptive systems are considered,
and all these systems stem from the very same set of considerations
presented in this section.

Before we proceed, a comment about notation is in order. When
building approximations, we eventually restrict our analysis to some
compact set 𝛺 ⊂ X wherein the uniform approximation assumption is
verified (see Definition 3.1 of the first paper in this two-part work).
Restricting the kernel K(⋅, ⋅) initially defined on X × X to the subset
𝛺 × 𝛺 defines a native space of real-valued functions over the set 𝛺.
This is a standard construction of RKHS over subsets; see the discussion
in Berlinet and Thomas-Agnan (2011), Paulsen and Raghupathi (2016),
Saitoh and Sawano (2016) for details. This restriction process is so
common in many analyses and applications that it is made without
comment; see Wendland (2004). In this paper, we abuse notation and
use the same symbols  and K(⋅, ⋅) both for (𝛺) and K ∶ 𝛺 ×𝛺 → R,
which concern the analysis over the subset 𝛺, and(X) and K ∶ X×X →
R. Whether we refer to functions defined over the specific domain 𝛺
or X in any particular situation should be clear from the context.

In light of Theorem 4.1 of the first part of this work, for each
𝑡 ∈ [𝑡0,∞), we let

𝐸 𝑓 = 𝐸 𝛱 𝑓 + 𝐸
(

𝐼 −𝛱
)

𝑓. (37)
𝑥(𝑡) 𝑥(𝑡) 𝑁 𝑥(𝑡) 𝑁
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Box 4: Employing finite-dimensional RKHS to approximate infinite-
dimensional spaces of functional uncertainties, the approximation
error perturbs the closed-loop plant dynamics in a manner that is
comparable to an unmatched uncertainty. Thus, when employing
finite-dimensional approximations of uncertainties, robust adaptive
control systems need to be employed. A key advantage of the pro-
posed nonparametric framework over parametric results lies in the
ability to correlate explicitly the controller’s performance with the
approximation error.

With this representation of the functional uncertainty, (1) becomes

̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵
(

𝑢(𝑡) + 𝐸𝑥(𝑡)𝛱𝑁𝑓
)

+ 𝐵𝐸𝑥(𝑡)(𝐼 −𝛱𝑁 )𝑓
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
approximation error

,

𝑥(𝑡0) = 𝑥0, 𝑡 ≥ 𝑡0.
(38)

This equation should be compared to common forms that appear in
approximation-based MRAC in real parametric adaptive control the-
ory; see Section 4.6 of Farrell and Polycarpou (2006) or Chapter
11 of Lavretsky and Wise (2012). An important difference between
parametric MRAC and the proposed nonparametric framework is that,
in the nonparametric setting, we exploit the Hilbert space structure of
the functional uncertainty.

Remark 6.1. In this paper, for brevity, we do not address problems
wherein the plant dynamics are affected by unmatched uncertainties,
that is, plant in the same form as

̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵 (𝑢(𝑡) + 𝑓 (𝑥(𝑡))) + 𝑑(𝑡), 𝑥(𝑡0) = 𝑥0, 𝑡 ≥ 𝑡0,

where 𝑑 ∶ [𝑡0,∞) → R𝑛 is unknown, continuous, and bounded. This
case can be addressed by applying any of the results presented in this
paper by replacing 𝐵𝐸𝑥(𝑡)(𝐼 −𝛱𝑁 )𝑓 with 𝐵𝐸𝑥(𝑡)(𝐼 −𝛱𝑁 )𝑓 + 𝑑(𝑡) for all
𝑡 ≥ 𝑡0.

We denote by 𝑥𝑁 (⋅) the closed-loop trajectory of (38) generated by
the control input

𝑢𝑁 (𝑡) = 𝛼̂T𝑁 (𝑡)𝑥𝑁 (𝑡) + 𝛽𝑟(𝑡) − 𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅) , 𝑡 ≥ 𝑡0, (39)

with 𝑓𝑁 (𝑡, ⋅) ∈ 𝑁 to be defined. In this case, the tracking error
dynamics are

𝑒̇𝑁 (𝑡) = 𝑥̇𝑁 (𝑡) − 𝑥̇ref (𝑡)

= 𝐴𝑥𝑁 (𝑡) + 𝐵
(

𝛼̂T𝑁 (𝑡)𝑥𝑁 (𝑡) − 𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅) + 𝐸𝑥𝑁 (𝑡)𝑓
)

− 𝐴ref𝑥𝑟(𝑡) − 𝐵ref 𝑟(𝑡)

=
(

𝐴 + 𝐵𝛼̂T𝑁 (𝑡)
)

𝑥𝑁 (𝑡) + 𝐵𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅) − 𝐴ref𝑥𝑟(𝑡) − 𝐵ref 𝑟(𝑡)

=
(

𝐴 + 𝐵𝛼̂T𝑁 (𝑡) + 𝐵𝛼T𝑁 − 𝐵𝛼T𝑁
)

𝑥𝑁 (𝑡) + 𝐵𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅)

− 𝐴ref𝑥𝑟(𝑡) − 𝐵𝛽𝑟(𝑡)

= 𝐴ref𝑥𝑁 (𝑡) − 𝐵𝛼̃T𝑁 (𝑡)𝑥𝑁 (𝑡) + 𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅) − 𝐴ref𝑥𝑟(𝑡)

= 𝐴ref 𝑒𝑁 (𝑡) − 𝐵
(

𝛼̃T𝑁 (𝑡)𝑥𝑁 (𝑡) − 𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅)
)

,

𝑒𝑁 (𝑡0) = 𝑥0 − 𝑥𝑟,0, 𝑡 ≥ 𝑡0, (40)

where

𝑓𝑁 (𝑡, ⋅) ≜ 𝑓 − 𝑓𝑁 (𝑡, ⋅) . (41)

To define the adaptive laws, assess the boundedness of the trajectory

tracking error and of the adaptive gains, and prove the asymptotic h

6 
Box 5: All the adaptive control systems presented in this paper
stem from the adaptive laws (45) and (47), and are certified by the
Lyapunov function candidate (42). These adaptive laws are modified
according to the technique considered. In all cases, uniform bounded-
ness of the trajectory tracking error and adaptive gains is guaranteed.
In some cases, uniform ultimate boundedness of the trajectory track-
ing error is ensured. In other cases, uniform asymptotic convergence
of the trajectory tracking error is proven.

convergence properties of the tracking error, we consider the Lyapunov
function candidate

𝑉
(

𝑒𝑁 , 𝛼̃𝑁 , 𝑓𝑁
)

= ⟨𝑃𝑒𝑁 , 𝑒𝑁 ⟩R𝑛 +
⟨

𝛤−1
𝛼 𝛼̃𝑁 , 𝛼̃𝑁

⟩

R𝑛 + 𝛾−1𝑓
⟨

𝑓𝑁 , 𝑓𝑁
⟩

 ,
(

𝑒𝑁 , 𝛼̃𝑁 , 𝑓𝑁
)

∈ R𝑛 × R𝑛 ×𝑁 .
(42)

he time derivative of (42) along trajectories of (40) is given by
̇ (𝑒𝑁 (𝑡), 𝛼̃𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)

)

= ⟨𝑃 𝑒̇𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛 + ⟨𝑃𝑒𝑁 (𝑡), 𝑒̇𝑁 (𝑡)⟩R𝑛

+ 2
(

⟨

𝛤−1
𝛼 𝛼̃T𝑁 (𝑡), ̇̃𝛼𝑁 (𝑡)

⟩

R𝑛 + 𝛾−1𝑓

⟨

𝑓𝑁 (𝑡, ⋅) , ̇̃𝑓𝑁 (𝑡, ⋅)
⟩



)

=
⟨(

𝐴T
ref𝑃 + 𝑃𝐴ref

)

𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)
⟩

R𝑛

− 2
⟨

𝑃𝐵
(

𝛼̃T𝑁 (𝑡)𝑥(𝑡) − 𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅)
)

, 𝑒𝑁 (𝑡)
⟩

R𝑛
(43)

+ 2
(

−
⟨

𝛼̃𝑁 (𝑡), 𝛤−1
𝛼

̇̂𝛼𝑁 (𝑡)
⟩

R𝑛 − 𝛾−1𝑓

⟨

𝑓𝑁 (𝑡, ⋅) , ̇̂𝑓𝑁 (𝑡, ⋅)
⟩



)

= − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2
[

−
⟨

𝑃𝐵𝛼̃T𝑁 (𝑡)𝑥(𝑡), 𝑒𝑁 (𝑡)
⟩

R𝑛 −
⟨

𝛼̃𝑁 (𝑡), 𝛤−1
𝛼

̇̂𝛼𝑁 (𝑡)
⟩

R𝑁
]

+ 2
[⟨

𝑃𝐵𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅) , 𝑒𝑁 (𝑡)
⟩

R𝑛
− 𝛾−1𝑓

⟨

𝑓𝑁 (𝑡, ⋅) , ̇̂𝑓𝑁 (𝑡, ⋅)
⟩



]

= − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 − 2
⟨

𝛼̃𝑁 (𝑡), 𝑥(𝑡)𝑒T𝑁 (𝑡)𝑃𝐵 + 𝛤−1
𝛼

̇̂𝛼𝑁 (𝑡)
⟩

R𝑛

+ 2
⟨

𝑓𝑁 (𝑡, ⋅), 𝐸∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡) − 𝛾−1𝑓
̇̂𝑓𝑁 (𝑡, ⋅)

⟩


, 𝑡 ≥ 𝑡0. (44)

Based on the well-known strategy in the classical MRAC approach,
we would like to cancel all terms other than − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 , 𝑡 ≥ 𝑡0.
Thus, we consider the adaptive law
̇̂𝛼𝑁 (𝑡) = −𝛤𝛼𝑥𝑁 (𝑡)𝑒T𝑁 (𝑡)𝑃𝐵, 𝛼̂𝑁 (𝑡0) = 𝛼̂𝑁,0, 𝑡 ≥ 𝑡0, (45)

which has the same structure as (15). Ideally, we would like to set

𝜕𝑓𝑁 (𝑡, ⋅)
𝜕𝑡

= 𝛾𝑓𝐸
∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡0, ⋅) = 𝑓0(⋅), 𝑡 ≥ 𝑡0, (46)

as is done for the limiting DPS in (17). However, this is only possible if
𝑁 ≡ . Indeed, we know that ̇̂𝑓𝑁 (𝑡, ⋅) ∈ 𝑁 for each 𝑡 ∈ [𝑡0,∞). How-
ever, in general, it holds that 𝐸∗

𝑥𝑁 (𝑡)𝐵
T𝑃𝑒𝑁 (𝑡) = K

(

𝑥𝑁 (𝑡), ⋅
)

𝐵T𝑃𝑒𝑁 (𝑡) ∉
𝑁 , 𝑡 ≥ 𝑡0. Thus, we propose the adaptive law

𝜕𝑓𝑁 (𝑡, ⋅)
𝜕𝑡

= 𝛾𝑓𝛱𝑁𝐸∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡0, ⋅) = 𝑓0(⋅), 𝑡 ≥ 𝑡0; (47)

it is worthwhile noting that (47) is a PDE, not an ODE. With this choice,
it follows from (44) that

𝑉̇
(

𝑒𝑁 (𝑡), 𝛼̃(𝑡), 𝑓𝑁 (𝑡, ⋅)
)

= − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨
(

𝐼 −𝛱𝑁
)

𝐸∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡), 𝑓𝑁 ⟩

≤ − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨𝐵T𝑃𝑒𝑁 (𝑡), 𝐸𝑥(𝑡)(𝐼 −𝛱𝑁 )𝑓 ⟩ , 𝑡 ≥ 𝑡0, (48)

hich is not sign-definite, and, hence, any Lyapunov argument would
e inconclusive. To overcome this situation, in the following, we apply
obust adaptive laws to guarantee the stability of both the closed-loop
rajectory tracking error dynamics and the adaptive laws.

. The 𝝈-modification

.1. A relaxed functional uncertainty approach

The first method we study to account for the fact that the right-
and side of (48) is not sign definite is captured by the following
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theorem. This result, which is based on the classical 𝜎-modification
of MRAC (Farrell & Polycarpou, 2006; Ioannou & Sun, 2012; Sastry &
odson, 2011), relies on the adaptive laws

̇̂𝛼𝑁 (𝑡) = −𝛤𝛼𝑥𝑁 (𝑡)𝑒T𝑁 (𝑡)𝑃𝐵 − 𝜎𝛼̂𝑁 , 𝛼̂𝑁 (𝑡0) = 𝛼̂𝑁,0, 𝑡 ≥ 𝑡0, (49)
𝜕𝑓𝑁 (𝑡, ⋅)

𝜕𝑡
= 𝛾𝑓𝛱𝑁𝐸∗

𝑥𝑁 (𝑡)𝐵
T𝑃𝑒𝑁 (𝑡) − 𝜎𝑓𝑁 (𝑡, ⋅) , 𝑓𝑁 (𝑡0, ⋅) = 𝑓𝑁,0. (50)

where 0 < 𝜎 < 𝜆min(𝑄)
2𝜆max(𝑄) , the pair (𝑃 ,𝑄) verifies the algebraic Lyapunov

equation

−𝑄 = 𝐴T
ref𝑃 + 𝐴ref (51)

with 𝑄 ∈ R𝑛×𝑛 user-defined, symmetric, and positive-definite, and
min(⋅) and 𝜆max(⋅) denote the eigenvalues of their argument with the
mallest and largest real part, respectively. For the statement of this
esult, it is worthwhile recalling the definition of bounded on the
iagonal kernel provided in Definition 5.1 of the first part of this work.

heorem 7.1. Suppose that the plant dynamics (38) with control input
39), and the adaptive laws (49) and (50) generate solutions 𝑥𝑁 (𝑡), 𝛼̂𝑁 (𝑡),
nd 𝑓𝑁 (𝑡, ⋅) defined for all 𝑡 ∈ [𝑡0,∞). Assume further that 𝑓 ∈ 𝑅, where
he functional uncertainty class 𝑅 is given by (11), and the kernel K (⋅, ⋅)
s bounded on the diagonal. Then, for any subset 𝛺 ⊇

⋃

𝑡≥𝑡0>0 𝑥𝑁 (𝑡), there
s a constant 𝑇 ∈ (𝑡0,∞) such that

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖2X ≤ 𝐷
𝜎
, (52)

or all 𝑡 ≥ 𝑇 , where

≜
2‖𝑃𝐵‖2

(

sup𝜉∈𝛺 𝑁 (𝜉)
)2 𝑅2

𝜆min (𝑄)
+ 𝜎

(

𝛾−1𝛼 𝛼2 + 𝛾−1𝑓 𝑅2
)

. (53)

roof. Consider the Lyapunov function candidate (42). Employing the
daptive laws (49) and (50), it holds that

̇ (𝑡) = − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨
(

𝐼 −𝛱𝑁
)

𝐸∗
𝑥𝑁 (𝑡)𝑒

T
𝑁 (𝑡)𝑃𝐵, 𝑓𝑁 ⟩𝑁

+ 2𝜎
(

𝛼̃T𝑁𝛤−1
𝛼 𝛼̂𝑁

)

+ 2𝛾−1𝑓 𝜎⟨𝑓𝑁 , 𝑓𝑁 ⟩𝑁
,

= − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨
(

𝐼 −𝛱𝑁
)

𝐸∗
𝑥𝑁 (𝑡)𝑒

T
𝑁 (𝑡)𝑃𝐵, 𝑓𝑁 ⟩𝑁

+ 2𝜎⟨𝛼̃𝑁 , 𝛼̂𝑁 ⟩𝛼 + 2𝛾−1𝑓 𝜎⟨𝑓𝑁 , 𝑓𝑁 ⟩𝑁
, 𝑡 ≥ 𝑡0,

where 𝑉 (𝑡) denotes 𝑉
(

𝑒𝑁 (𝑡), 𝛼̃𝑁 (𝑡), 𝑓𝑁 (𝑡)
)

, and ⟨𝛼̃𝑁 , 𝛼̂𝑁 ⟩𝛼 ≡
(

𝛼̃T𝑁𝛤−1
𝛼 𝛼̂𝑁

)

enotes a weighted inner product. We then can apply the identity

𝑎, 𝑏 − 𝑎⟩ = −⟨𝑎, 𝑎 − 𝑏⟩ = −
( 1
2
⟨𝑎 − 𝑏, 𝑎 − 𝑏⟩ + 1

2
⟨𝑎, 𝑎⟩ − 1

2
⟨𝑏, 𝑏⟩

)

,

o ⟨𝛼̂, 𝛼̃⟩𝛼 = ⟨𝛼̂, 𝛼 − 𝛼̂⟩𝛼 and ⟨𝑓𝑁 , 𝑓𝑁 ⟩𝑁
= ⟨𝑓𝑁 , 𝑓 − 𝑓𝑁 ⟩𝑁

. Thus,

𝑉̇ (𝑡) = − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨
(

𝐼 −𝛱𝑁
)

𝐸∗
𝑥𝑁 (𝑡)𝑒

T
𝑁 (𝑡)𝑃𝐵, 𝑓 ⟩

− 𝜎
(

⟨𝛼̃(𝑡), 𝛼̃(𝑡)⟩𝛼 + ⟨𝛼̂(𝑡), 𝛼̂(𝑡)⟩𝛼 − ⟨𝛼, 𝛼⟩𝛼
)

− 𝛾−1𝑓 𝜎
(

‖𝑓𝑁 (𝑡, ⋅) ‖2𝑁
+ ‖𝑓𝑁 (𝑡, ⋅) ‖2𝑁

− ‖𝑓‖2
)

, 𝑡 ≥ 𝑡0.

Removing the guaranteed negative terms that contain 𝛼̂2(⋅) and
‖𝑓𝑁 (⋅, ⋅) ‖2𝑁

gives us

𝑉̇ (𝑡) ≤ − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨
(

𝐼 −𝛱𝑁
)

𝐸∗
𝑥𝑁 (𝑡)𝑒

T
𝑁 (𝑡)𝑃𝐵, 𝑓𝑁 (𝑡, ⋅)⟩𝑁

− 𝜎⟨𝛼̃(𝑡), 𝛼̃(𝑡)⟩𝛼 + 𝜎⟨𝛼, 𝛼⟩𝛼 − 𝛾−1𝑓 𝜎‖𝑓𝑁 (𝑡, ⋅) ‖2𝑁
+ 𝛾−1𝑓 𝜎‖𝑓‖2 , (54)

for all 𝑡 ≥ 𝑡0. From the first line of (54), we have

−𝑒T𝑁 (𝑡)𝑄𝑒𝑁 (𝑡) + 2⟨
(

𝐼 −𝛱𝑁
)

𝐸∗
𝑥𝑁 (𝑡)𝑒

T
𝑁 (𝑡)𝑃𝐵, 𝑓𝑁 (𝑡, ⋅)⟩𝑁

= − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨𝐵T𝑃𝑒T𝑁 (𝑡), 𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓𝑁 (𝑡, ⋅)⟩R𝑛 ,

= − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨𝑒𝑁 (𝑡), 𝑃𝐵𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓 ⟩R𝑛 ,

≤ −𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 + 2‖𝑒𝑁 (𝑡)‖‖𝑃𝐵𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓‖,

≤ −1
2
𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2

− 2𝜆min (𝑄)

(

1
‖𝑒𝑁 (𝑡)‖2 −

‖𝑒𝑁 (𝑡)‖‖𝑃𝐵𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓‖
)

,

4 𝜆min (𝑄)

7 
𝑡 ≥ 𝑡0.

Within the bracket, we get

1
4
‖𝑒𝑁 (𝑡)‖2 −

‖𝑒𝑁 (𝑡)‖‖𝑃𝐵𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓‖
𝜆min (𝑄)

= 1
4
‖𝑒𝑁 (𝑡)‖2 − 𝜈(𝑡)‖𝑒𝑁 (𝑡)‖

=
(1
2
‖𝑒𝑁 (𝑡)‖ − 𝜈(𝑡)

)2
− 𝜈(𝑡)2, 𝑡 ≥ 𝑡0, (55)

where 𝜈(𝑡) ≜ −
‖𝑃𝐵𝐸𝑥𝑁 (𝑡)(𝐼−𝛱𝑁 )𝑓‖

𝜆min(𝑄) . Thus, it follows from (55) that (54) is
equivalent to

𝑉̇ (𝑡) ≤ −1
2
𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 − 2𝜆min (𝑄)

[

( 1
2
‖𝑒𝑁 (𝑡)‖ − 𝜈(𝑡)

)2
− 𝜈2(𝑡)

]

− 𝜎⟨𝛼̃(𝑡), 𝛼̃(𝑡)⟩𝛼 + 𝜎⟨𝛼, 𝛼⟩𝛼 − 𝛾−1𝑓 𝜎‖𝑓𝑁 (𝑡, ⋅) ‖2𝑁
+ 𝛾−1𝑓 𝜎‖𝑓‖2

≤ −1
2
𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 + 2𝜆min (𝑄)

(

‖𝑃𝐵𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓‖
𝜆min (𝑄)

)2

− 𝜎⟨𝛼̃(𝑡), 𝛼̃(𝑡)⟩𝛼 + 𝜎⟨𝛼, 𝛼⟩𝛼 − 𝛾−1𝑓 𝜎‖𝑓𝑁 (𝑡, ⋅) ‖2𝑁
+ 𝛾−1𝑓 𝜎‖𝑓‖2 ,

≤ −
[

𝜎𝑒T𝑁 (𝑡)𝑄𝑒𝑁 (𝑡) + 𝜎
(

⟨𝛼̃(𝑡), 𝛼̃(𝑡)⟩𝛼 + 𝛾−1𝑓 ‖𝑓𝑁 (𝑡, ⋅) ‖2𝑁

)]

− 1
2
𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 + 𝜎𝑒T𝑁 (𝑡)𝑄𝑒𝑁 (𝑡) +

2‖𝑃𝐵𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓‖2

𝜆min (𝑄)

+ 𝜎
(

⟨𝛼, 𝛼⟩𝛼 + 𝛾−1𝑓 ‖𝑓‖2
)

≤ −𝜎𝑉 (𝑡) − 1
2
𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 + 𝜎𝜆max (𝑄) ‖𝑒𝑁 (𝑡)‖2

+
2‖𝑃𝐵𝐸𝑥𝑁 (𝑡)

(

𝐼 −𝛱𝑁
)

𝑓‖2

𝜆min (𝑄)
+ 𝜎

(

⟨𝛼, 𝛼⟩𝛼 + 𝛾−1𝑓 ‖𝑓‖2
)

≤ −𝜎𝑉 (𝑡) −
( 1
2
𝜆min (𝑄) − 𝜎𝜆max (𝑄)

)

‖𝑒𝑁 (𝑡)‖2

+
2‖𝑃𝐵𝐸𝑥𝑁 (𝑡)

(

𝐼 −𝛱𝑁
)

𝑓‖2

𝜆min (𝑄)
+ 𝜎

(

⟨𝛼, 𝛼⟩𝛼 + 𝛾−1𝑓 ‖𝑓‖2
)

, 𝑡 ≥ 𝑡0.

y hypothesis, 1
2𝜆min (𝑄) − 𝜎𝜆max (𝑄) > 0. Therefore,

𝑉̇ (𝑡) ≤ −𝜎𝑉 (𝑡) +
2‖𝑃𝐵𝐸𝑥𝑁 (𝑡)

(

𝐼 −𝛱𝑁
)

𝑓‖2

𝜆min (𝑄)

+ 𝜎
(

𝛾−1𝛼 𝛼2 + 𝛾−1𝑓 ‖𝑓‖2
)

, 𝑡 ≥ 𝑡0.

Initially, let 𝛺 = R𝑛, and recall that, by (23),
‖

‖

‖

𝐸𝑥𝑁 (𝑡)(𝐼 −𝛱𝑁 )𝑓‖‖
‖

≤ sup
𝜉∈𝛺

𝑁 (𝜉) ‖𝑓‖ ,

nd, by the assumption of boundedness of the kernel on the diagonal,
e obtain that

𝑁 (𝑥) = ‖(𝐼 −𝛱𝑁 )K𝑥‖ ≤ ‖K𝑥‖ ≤ K̄,

which implies that ||
|

𝐸𝑥𝑁 (𝑡)(𝐼 −𝛱𝑁 )𝑓 ||
|

< ∞. Thus, it follows from (53)
that

𝑉̇ (𝑡) ≤ −𝜎𝑉 (𝑡) +𝐷, 𝑡 ≥ 𝑡0, (56)

and hence,

𝑉 (𝑡) ≤ 𝐶1𝑒
−𝜎𝑡 + 𝐷

𝜎
, 𝑡 ≥ 𝑡0, (57)

where 𝐶1 denotes a coefficient that depends on the initial condition of
the system. Inequality (57) shows that all the trajectories are bounded
and 𝑉 (⋅) converges exponentially fast to the level set

𝑆0 ≜
{

(

𝑒𝑁 , 𝛼̃𝑁 , 𝑓𝑁
)

∈ Z ∶ 𝑉
(

𝑒𝑁 , 𝛼̃𝑁 , 𝑓𝑁
)

≤ 𝐷
𝜎

}

(58)

and enters it in a finite time 𝑇 > 𝑡0. During this first pass, we set
𝛺 = X = R𝑛. Now that we know that trajectories are bounded, we
can choose 𝛺 to be any subset that contains the tail of the trajectory,
that is, for all 𝑡 ≥ 𝑡0 ≥ 0. The smaller the set 𝛺, the tighter the bounds
on performance. □
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Theorem 7.1 proves the effectiveness of the control system compris-
ing the control input (39), and the adaptive laws (49) and (50), and
uantified the trajectory tracking error assuming that 𝑓 ∈ 𝑅. In the
ollowing, we assess the practical tracking of this control architecture
or multiple classes of functional uncertainties.

.2. Practical tracking of the 𝜎-modification

In the following, we assess the performance of the control archi-
ecture proposed in Theorem 7.1 for the functional uncertainty classes
𝛷𝑁 ,𝑅, 𝑁,𝜖,𝑅, and 𝑅 given by (9)–(11). To this goal, consider the cost
unction (35).
It follows from (23) that

|

|

|

𝐸𝑥𝑁 (𝑡)(𝐼 −𝛱𝑁 )𝑓 ||
|

≤ ‖(𝐼 −𝛱𝑁 )𝑓‖𝑁 (𝑥𝑁 (𝑡)), 𝑡 ≥ 𝑡0.

Now, if 𝑓 ∈ 𝛷𝑁 ,𝑅, then (𝐼 − 𝛱𝑁 )𝑓 = 0. A review of the proof
of Theorem 7.1 shows that for any uncertainty 𝑓 in the smallest
uncertainty class 𝛷𝑁 ,𝑅, we have

𝐽 2(𝑥𝑁 ) ≤
𝛾−1𝛼 ‖𝛼‖2R𝑛 + 𝛾−1𝑓 𝑅2

𝜆min(𝑃 )
. (59)

lternatively, if 𝑓 ∈ 𝑁,𝜖,𝑅, then proceeding as in the proof of Theo-
rem 7.1, we have that

𝐽 2(𝑥𝑁 ) ≤ 2‖𝑃𝐵‖2𝜖2𝑅2

𝜎𝜆min(𝑃 )𝜆min(𝑄)
+

𝛾−1𝛼 ‖𝛼‖2R𝑛 + 𝛾−1𝑓 𝑅2

𝜆min(𝑃 )
. (60)

inally, if 𝑓 ∈ 𝑅, then, as shown by Theorem 7.1, it holds that

2(𝑥𝑁 ) ≤ 2‖𝑃𝐵‖2

𝜎𝜆min(𝑃 )𝜆min(𝑄)

(

sup
𝜉∈𝛺

𝑁 (𝜉)
)2

𝑅2

+
𝛾−1𝛼 ‖𝛼‖2R𝑛 + 𝛾−1𝑓 𝑅2

𝜆min(𝑃 )
. (61)

It is worthwhile to note how the upper bounds on 𝐽 (⋅) increase as the
size of the uncertainty class increases.

7.3. Coordinate implementations for realizable controllers

We can express the adaptive gain 𝑓𝑁 (⋅, ⋅) as

𝑁̂ (𝑡, ⋅) =
𝑁
∑

𝑗=1
𝜃̂𝑁,𝑗 (𝑡)K𝜉𝑁,𝑗

(⋅) , 𝑡 ≥ 𝑡0, (62)

here K𝜉𝑁,𝑗
denotes the kernel basis function centered around 𝜉𝑁,𝑗 and

̂𝑁,𝑗 (⋅) denotes the corresponding coefficient. Substituting (62) into (50)
ields the functional equation
𝑁

𝑗=1

̇̂𝜃𝑁,𝑗 (𝑡)K𝜉𝑁,𝑗
(⋅) = 𝛾𝑓𝛱𝑁K𝑥𝑁 (𝑡)𝑒

T
𝑁 (𝑡)𝑃𝐵 − 𝜎

𝑁
∑

𝑗=1
𝜃̂𝑁,𝑗 (𝑡)K𝜉𝑁,𝑗

(⋅) , (63)

or all 𝑡 ≥ 𝑡0. By the reproducing property, for any 𝛼 ∈ R and for
ach 𝑡 ∈ [𝑡0,∞), it holds that 𝐸∗

𝑥𝑁 (𝑡)𝛼 = K𝑥𝑁 (𝑡)𝛼. Thus, taking the inner
roduct of (63) with K𝜉𝑁,𝑖

, for any 𝑖 = 1,… , 𝑁 , gives us

𝑁

𝑗=1
⟨K𝜉𝑁,𝑖

,K𝜉𝑁,𝑗
⟩

̇̂𝜃𝑁,𝑗 (𝑡) = 𝛾𝑓 ⟨K𝜉𝑁,𝑖
,𝛱𝑁K𝑥𝑁 (𝑡)⟩𝑒T𝑁 (𝑡)𝑃𝐵

− 𝜎
𝑁
∑

𝑗=1
⟨K𝜉𝑁,𝑖

,K𝜉𝑁,𝑗
⟩ 𝜃̂𝑁,𝑗 (𝑡), 𝑡 ≥ 𝑡0. (64)

Thus, it follows from the definition of Grammian matrix (29) that
𝑁
∑

𝑗=1
K𝑖𝑗

̇̂𝜃𝑁,𝑗 (𝑡) = 𝛾𝑓K
(

𝜉𝑁,𝑖, 𝑥𝑁 (𝑡)
)

𝑒T𝑁 (𝑡)𝑃𝐵 − 𝜎
𝑁
∑

𝑗=1
K𝑖𝑗 𝜃̂𝑁,𝑗 (𝑡), 𝑡 ≥ 𝑡0,

or any 𝑖 = 1,… , 𝑁 . Introducing the vectors 𝛩̂𝑁 =
[

𝜃̂1,… , 𝜃̂𝑁
]T and

𝛯𝑁
(⋅) =

[

K𝜉𝑁,1
(⋅) ,… ,K𝜉𝑁,𝑁

(⋅)
]T
, (64) is equivalent to

̇̂𝛩 = 𝛾 K 𝑥 (𝑡)𝑒T (𝑡)𝑃𝐵 − 𝜎K 𝛩̂ . (65)
𝑁 𝑁 𝑓 𝛯𝑁 𝑁 𝑁 𝑁 𝑁
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Box 6: The adaptive law (66) is particularly similar to the adaptive
law employed in the 𝜎-modification of MRAC. However, the Gram-
mian matrix  in (66) allows correlating explicitly the adaptive law
to the error in approximating the infinite-dimensional space  with
the finite-dimensional space 𝑁 . The Grammian matrix is required
to make explicit guarantees in terms of 𝑁 about all the coordinate
realizations as 𝑁 varies.

Premultiplying (65) by the inverse of the Grammian matrix then yields
̇̂𝛩𝑁 (𝑡) = 𝛾𝑓K−1

𝑁 K𝛯𝑁

(

𝑥𝑁 (𝑡)
)

𝑒T𝑁 (𝑡)𝑃𝐵 − 𝜎𝛩̂𝑁 (𝑡),

𝛩̂𝑁 (𝑡0) = 𝛩̂𝑁,0, 𝑡 ≥ 𝑡0, (66)

hich is the adaptive law for the coordinate representation.
Remarkably, (66) for the approximation in the nonparametric metho

as a form that resembles that of the 𝜎-modification of MRAC (Lavret-
ky & Wise, 2012, Ch. 11). However, we emphasize that the nonpara-
etric method involves the Grammian matrix. The Grammian matrix
efines a consistent approximation scheme in the native space and
llows defining the error estimates for the nonparametric methods in
he native space  defined by the kernel K(⋅, ⋅).

emark 7.1. The coordinate implementation of the adaptive law (50)
rovided by (66) allows solving a matrix differential equation instead of
partial differential equation. In the following, we discuss several other
daptive control techniques, whose adaptive gains associated with the
unctional uncertainty can be computed as solutions of PDEs in some
orm that is similar to (50). By proceeding as in this section, these
daptive gains can be alternatively computed as solutions of matrix
DEs.

. The deadzone modification

.1. A tight functional uncertainty approach

The deadzone method is another robust modification of the classical
RAC laws that has been a staple of robust real parametric adaptive
ontrol theory (Farrell & Polycarpou, 2006; Ioannou & Sun, 2012;
avretsky & Wise, 2012; Sastry & Bodson, 2011). The deadzone modifi-
ation can be applied to problems wherein the functional uncertainty is
uch that 𝑓 ∈ 𝑁,𝜖,𝑅, and is defined in terms of a user-defined constant
such that

> 𝑑𝜖 ≜
2‖𝑃𝐵‖𝜆max(𝑃 )K̄𝜖

𝜆min(𝑄)
√

𝜆min(𝑃 )
. (67)

In this case, the adaptive laws are given by

̇̂𝛼(𝑡) =
{

−𝛤𝛼𝑥𝑁 (𝑡)𝑒T𝑁 (𝑡)𝑃𝐵, ‖𝑃 1∕2𝑒𝑁 (𝑡)‖ > 𝑑,
0 otherwise, (68)

𝜕𝑓𝑁 (𝑡, ⋅)
𝜕𝑡

=

{

𝛾𝑓𝛱𝑁𝐸∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡), ‖𝑃 1∕2𝑒𝑁 (𝑡)‖ > 𝑑,
0 otherwise,

(69)

ith initial conditions chosen to guarantee the continuity of the adap-
ive gains at all times; remarkably, if ‖𝑃 1∕2𝑒𝑁 (𝑡)‖ > 𝑑 for some 𝑡 ≥ 𝑡0,
hen (68) and (69) reduce to (45) and (47), respectively.

Theorem 8.1. Suppose that the plant dynamics (38) with control input
(39) and the adaptive laws (68) and (69) generate solutions 𝑥𝑁 (𝑡), 𝛼̂𝑁 (𝑡),
and 𝑓𝑁 (𝑡, ⋅) defined for all 𝑡 ∈ [𝑡0,∞). Finally, assume that 𝑓 ∈ 𝑁,𝜖,𝑅,
where the functional uncertainty class 𝑁,𝜖,𝑅 is given by (9), and assume
that the kernel K (⋅, ⋅) is bounded on the diagonal. Then, there exists 𝑇 ≜
𝑇 (𝑑) ∈ (𝑡0,∞) such that

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X < 𝑑
√

𝜆min(𝑃 )
, (70)
for all 𝑡 ≥ 𝑇 .
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Box 7: Similarly to the classical deadzone modification method
(Lavretsky & Wise, 2012, Ch. 11), the proposed deadzone modifi-
cation method requires the adaptive laws to operate only when the
trajectory tracking error is sufficiently large. Furthermore, it can be
proven that the trajectory tracking error lies outside the deadzone for
only a finite time interval. Despite the classical deadzone modifica-
tion, the adaptive law corresponding to the functional uncertainty
depends on both the projection operator and the adjunct of the
evaluation operator.

Proof. If ‖𝑃 1∕2𝑒𝑁 (𝑡)‖ > 𝑑 for some 𝑡 ≥ 𝑡0, then it follows from (48)
hat

̇ (𝑡) = − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨
(

𝐼 −𝛱𝑁
)

𝐸∗
𝑥𝑁 (𝑡)𝑒

T
𝑁 (𝑡)𝑃𝐵, 𝑓𝑁 (𝑡, ⋅)⟩

≤ −𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 + 2‖𝑒𝑁 (𝑡)‖ ‖𝑃𝐵‖ ‖𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓𝑁‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

‖𝐸𝑥𝑁 (𝑡)(𝐼−𝛱𝑁 )𝑓‖

,

where 𝑉 (𝑡) = 𝑉
(

𝑒𝑁 (𝑡), 𝛼̃(𝑡), 𝑓𝑁 (𝑡)
)

for brevity. By the definition of the
functional uncertainty class 𝑅,𝜖,𝑁 , and using the fact that the kernel
K(⋅, ⋅) is uniformly bounded on the diagonal by a constant K̄ > 0, we
have

‖𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓‖ ≤ ‖K𝑥𝑁 (𝑡)‖ ‖(𝐼 −𝛱𝑁 )𝑓‖ ≤ K̄𝜖,

for all 𝑡 ≥ 𝑡0. This implies that

𝑉̇ (𝑡) ≤ −𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 + 2K̄𝜖‖𝑃𝐵‖‖𝑒𝑁 (𝑡)‖,

≤ −
𝜆min(𝑄)
𝜆max(𝑃 )

‖𝑃 1∕2𝑒𝑁 (𝑡)‖2 +
2‖𝑃𝐵‖K̄𝜖
√

𝜆min(𝑃 )
‖𝑃 1∕2𝑒𝑁 (𝑡)‖

= −
𝜆min(𝑄)
𝜆max(𝑃 )

‖𝑃 1∕2𝑒𝑁 (𝑡)‖

(

‖𝑃 1∕2𝑒𝑁 (𝑡)‖ −
2‖𝑃𝐵‖𝜆max(𝑃 )K̄𝜖

𝜆min(𝑄)
√

𝜆min(𝑃 )

)

,

≤ −
𝜆min(𝑄)
𝜆max(𝑃 )

‖𝑃 1∕2𝑒𝑁 (𝑡)‖
(

‖𝑃 1∕2𝑒𝑁 (𝑡)‖ − 𝑑
)

, 𝑡 ≥ 𝑡0. (71)

Next, we show that there is 𝑇 ∈ (𝑡0,∞) such that ‖𝑃 1∕2𝑒𝑁 (𝑇 )‖ = 𝑑.
Assume that ‖𝑃 1∕2𝑒𝑁 (𝑡0)‖ > 𝑑; the case whereby ‖𝑃 1∕2𝑒𝑁 (𝑡0)‖ ≤ 𝑑 can
be easily addressed. If the tracking error leaves the deadzone at even
indexed times 𝑡2𝑖, 𝑖 ∈ N, and subsequently re-enters the deadzone at odd
indexed time 𝑡2𝑖+1, then 𝑉̇ (𝑡) < −𝐶 for all 𝑡 ∈ (𝑡2𝑖, 𝑡2𝑖+1], where 𝐶 > 0.
This means that 𝑉

(

𝑡2𝑖+1
)

≤ 𝑉
(

𝑡2𝑖
)

− 𝐶
(

𝑡2𝑖+1 − 𝑡2𝑖
)

. Additionally, we
know that 𝑉

(

𝑡2𝑖
)

= 𝑉
(

𝑡2𝑖−1
)

for all 𝑖 = 1, 2,… ,𝑀 , where 𝑀 ≤ ∞.
Therefore, ∑𝑀

𝑖=0
(

𝑡2𝑖+1 − 𝑡2𝑖
)

≤ 1
𝐶
∑𝑀

𝑖=1
(

𝑉2𝑖 − 𝑉2𝑖−1
)

≤ 1
𝐶 𝑉 (𝑡0) < ∞,

hich implies that the time spent outside the deadzone is finite. The
racking error ‖𝑃 1∕2𝑒𝑁 (𝑡)‖ is consequently bounded by 𝑑 after some
> 𝑡0. □

The proof of Theorem 8.1 provides an estimate of the performance
f the deadzone modification when the uncertainty 𝑓 is contained in
he uncertainty class 𝑅,𝜖,𝑁 . The upper bound on the trajectory tracking
rror given by (70) can be tightened as follows. If ⋃𝑡≥𝑡0>0 𝑥𝑁 (𝑡) ⊆ 𝛺,
here 𝛺 ⊂ X is bounded, then the fact that

𝐸𝑥𝑁 (𝑡)(𝐼 −𝛱𝑁 )𝑓‖ ≤
(

sup
𝜉∈𝛺

𝑁 (𝜉)
)

‖(𝐼 −𝛱𝑁 )𝑓‖ ≤
(

sup
𝜉∈𝛺

𝑁 (𝜉)
)

‖𝜖𝑁‖

(72)

or any 𝑓 ∈  and all 𝑡 ≥ 𝑡0, which follows from (23) and (32), allows
stablishing a tighter bound than (70). However, the deadzone method
escribed in Theorem 8.1 does not allow to choose 𝛺 a priori. Barrier
yapunov functions can be employed to attain this goal (Anderson,
arshall, & L’Afflitto, 2021a; Arabi, Gruenwald, Yucelen, & Nguyen,
018; L’Afflitto, 2018). Alternatively, it is possible to include control
eedback terms, in addition to the deadzone control term, which en-
ures the closed-loop trajectory remains in the set 𝛺 that is chosen
t the outset. This is the philosophy of approximation-based adaptive
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ontrol described in Chapter 12 of Lavretsky and Wise (2012), Sections
.2–6.4 and Chapter 7 of Farrell and Polycarpou (2006), and Theorems
.2.1–7.2.3 and Section 7.2.4 of Farrell and Polycarpou (2006), which
ssume suitable addition controls to guarantee that the approximation
et is entered in finite time and is positive invariant.
The next results characterize the performance of deadzone modifica-

ion assuming that there is a control law that allows constraining both
he trajectory tracking error and the adaptive gains within a bounded
ubset 𝛺. The goal is to obtain rather simple performance bounds on
he performance of the control scheme without all the attendant details
equired to carry out precise, complicated Lyapunov arguments for
he specific, complete control scheme. This result supposes that the
eadzone is characterized by a constant 𝑑 such that

> 𝑑𝑁 ≜
2‖𝑃𝐵‖𝜆max(𝑃 )

𝜆min(𝑄)
√

𝜆min(𝑃 )

(

sup
𝜉∈𝛺

𝑁 (𝜉)
)

‖𝜖𝑁‖ . (73)

Furthermore, the next result considers the control input

𝑢𝑁 (𝑡) =
{

𝛼̂T𝑁 (𝑡)𝑥𝑁 (𝑡) − 𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅) , for all 𝑥𝑁 (𝑡) ∈ 𝛺,
𝑣𝑁 (𝑥𝑁 (𝑡), 𝑒𝑁 (𝑡)) otherwise, (74)

here 𝛼̂𝑁 (𝑡) and 𝑓𝑁 (𝑡, ⋅) verify the adaptive laws (45) and (47) for all
∈ [𝑡0,∞) such that 𝑥𝑁 (𝑡) ∈ 𝛺 and the control law 𝑣𝑁 ∶ X × R𝑛 → R
enders the approximation set 𝛺 attractive and positive invariant. Such
olutions are often useful whenever the control law 𝑣𝑁 (⋅, ⋅), whose
erformance is poorly characterized or not as good as the adaptive
ontroller’s performance, which is characterized by the next theorem.
ndeed, for practical purposes, the term 𝑣𝑁 (𝑥𝑁 (𝑡), 𝑒𝑁 (𝑡)) is expected to
ork for all 𝑡 over an interval that is smaller than the interval over
hich the term 𝛼̂T𝑁 (𝑡)𝑥𝑁 (𝑡) − 𝐸𝑥𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅) is expected to work.

heorem 8.2. Suppose that (38) with control input (74) and the adaptive
aws (45) and (47) generate solutions 𝑥𝑁 (𝑡), 𝛼̂𝑁 (𝑡), and 𝑓𝑁 (𝑡, ⋅) defined for
ll 𝑡 ∈ [𝑡0,∞). Assume further that the functional uncertainty 𝑓 ∈ 𝑅,𝜖,𝑁
iven by (9), and that the kernel K (⋅, ⋅) is bounded on the diagonal. Then,
here exists 𝑇 ≜ 𝑇 (𝑑) ∈ (𝑡0,∞) such that

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X < 𝑑
√

𝜆min(𝑃 )
, (75)

for all 𝑡 ≥ 𝑇 .

Proof. With the hypotheses on the compensator 𝑣𝑁 (⋅, ⋅) and the ap-
proximation set 𝛺, the theorem statement should be verified only for
𝑥𝑁 (𝑡) ∈ 𝛺. If ‖𝑃 1∕2𝑒𝑁 (𝑡)‖ > 𝑑 and 𝑥𝑁 (𝑡) ∈ 𝛺 for some 𝑡 ∈ [𝑡0,∞), then
he time derivative of the Lyapunov function (42) along the trajectories
f (38) with control input (74) and (45) and (47) is given by

𝑉̇ (𝑡) = − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 + 2⟨
(

𝐼 −𝛱𝑁
)

𝐸∗
𝑥𝑁 (𝑡)𝑒

T
𝑁 (𝑡)𝑃𝐵, 𝑓𝑁 ⟩

≤ −𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 + 2‖𝑒𝑁 (𝑡)‖ ‖𝑃𝐵‖ ‖𝐸𝑥𝑁 (𝑡)
(

𝐼 −𝛱𝑁
)

𝑓𝑁‖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
‖𝐸𝑥𝑁 (𝑡)(𝐼−𝛱𝑁 )𝑓‖

, 𝑡 ≥ 𝑡0,

where 𝑉 (𝑡) = 𝑉
(

𝑒𝑁 (𝑡), 𝛼̃(𝑡), 𝑓𝑁 (𝑡)
)

for brevity. Now, it follows from (72)
that

𝑉̇ (𝑡) ≤ −𝜆min (𝑄) ‖𝑒𝑁 (𝑡)‖2 + 2‖𝑃𝐵‖‖𝜖𝑁‖‖𝑒𝑁 (𝑡)‖ sup
𝜉∈𝛺

𝑁 (𝜉),

≤ −
𝜆min(𝑄)
𝜆max(𝑃 )

‖𝑃 1∕2𝑒𝑁 (𝑡)‖2 +
2‖𝑃𝐵‖

√

𝜆min(𝑃 )
‖𝜖𝑁‖‖𝑃 1∕2𝑒𝑁 (𝑡)‖ sup

𝜉∈𝛺
𝑁 (𝜉)

= −
𝜆min(𝑄)
𝜆max(𝑃 )

‖𝑃 1∕2𝑒𝑁 (𝑡)‖
(

‖𝑃 1∕2𝑒𝑁 (𝑡)‖

−
2‖𝑃𝐵‖𝜆max(𝑃 )

𝜆min(𝑄)
√

𝜆min(𝑃 )
‖𝜖𝑁‖ sup

𝜉∈𝛺
𝑁 (𝜉)

)

≤ −
𝜆min(𝑄)
𝜆max(𝑃 )

‖𝑃 1∕2𝑒𝑁 (𝑡)‖
(

‖𝑃 1∕2𝑒𝑁 (𝑡)‖ − 𝑑
)

, 𝑡 ≥ 𝑡0. (76)

The tracking error ‖𝑃 1∕2𝑒𝑁 (𝑡)‖ is consequently bounded by 𝑑 for all
𝑡 ≥ 𝑇 for some 𝑇 ∈ (𝑡0,∞). The remainder of the proof follows that of
Theorem 8.1. □
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Following the same approach as in Section 7.3, the adaptive law for
he deadzone modification can be implemented as follows If ‖𝑒𝑁 (𝑡)‖ >
, for some 𝑡 ≥ 𝑡0, then
̇̂
𝑁 (𝑡) = 𝛾𝑓K−1 (𝛯𝑁 , 𝛯𝑁

)

K𝛯𝑁

(

𝑥𝑁 (𝑡)
)

𝑒T𝑁 (𝑡)𝑃𝐵, 𝛩̂𝑁 (𝑡0) = 𝛩̂𝑁,0, (77)

nd if ‖𝑒𝑁 (𝑡)‖ ≤ 𝜖, then ̇̂𝛩𝑁 (𝑡) = 0.
As it appears from (12), the assumption whereby 𝑓 ∈ 𝑁,𝜖,𝑅 may

e tight. In the following, we discuss how this assumption can be lifted
nd the results proposed thus far can be extended to broader classes of
unctional uncertainties.

.2. Relaxed functional uncertainty approaches

In principle, the deadzone defined by 𝑑 in (73) yields the tightest
ltimate performance bounds if we choose 𝑑 = (1 + 𝜂)𝑑𝑁 for an
rbitrarily small constant 𝜂. In this case, when the controller trajectory
emains in 𝛺, we conclude that we have the ultimate bound

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ (1 + 𝜂)
2‖𝑃𝐵‖𝜆max(𝑃 )
𝜆min(𝑄)𝜆min(𝑃 )

(

sup
𝜉∈𝛺

𝑁 (𝜉)
)

‖(𝐼 −𝛱𝑁 )𝑓‖ ,

(78)

or all 𝑡 ≥ 𝑇 and some 𝑇 ∈ (𝑡0,∞). In practice, however, we cannot
hoose such a deadzone since ‖(𝐼−𝛱𝑁 )𝑓‖ is unknown, and, hence, 𝜖𝑁
s unknown. It follows from (73) that, if 𝑓 ∈ 𝑅,𝜖,𝑁 , then an alternative
o (78) is given by

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ (1 + 𝜂)
2‖𝑃𝐵‖𝜆max(𝑃 )
𝜆min(𝑄)𝜆min(𝑃 )

(

sup
𝜉∈𝛺

𝑁 (𝜉)
)

𝜖, (79)

or all 𝑡 ≥ 𝑇 and some 𝑇 ∈ (𝑡0,∞), The right-hand side of (79) can be
valuated in practice and used for the design of the deadzone 𝑑.
If we assume that 𝑓 ∈ 𝑅, then, by proceeding as in Section 8.1, it

s possible to prove that

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ (1 + 𝜂)
2‖𝑃𝐵‖𝜆max(𝑃 )
𝜆min(𝑄)𝜆min(𝑃 )

(

sup
𝜉∈𝛺

𝑁 (𝜉)
)

𝑅, (80)

or all 𝑡 ≥ 𝑇 and some 𝑇 ∈ (𝑡0,∞). The right-hand side of (80) can be
valuated in practice and used for the design of 𝑑.

. An error bounding method

Having addressed the problem of extending classical modifications
f MRAC to problems involving infinite-dimensional uncertainties, in
his section, we discuss an approach involving a variable structure
ramework; it is worthwhile recalling that variable structure controllers
omprise, among many others, sliding mode control, super-twisting
ontrol, and other higher-order control systems inspired by the sliding
odel technology. In this section, in particular, we leverage the native
pace embedding modifications of the error bounding control methods
escribed in Chapters 4–7 of Farrell and Polycarpou (2006). While the
ection presents a particular error bounding adaptive control method,
he overall approach can be viewed as a template for deriving other
eneral methods based on other existing approaches of real parametric
daptive control theory. In the following, for brevity, we will assume
hat 𝐴 in (1), or, equivalently, (38), is known, and, hence, the matching
onditions (3) and (4) can be verified. Thus, the only uncertainty in
38) lies in 𝑓 . By proceeding as in Sections 7 and 8, the proposed results
can be extended to the case whereby 𝐴 is unknown.

For the statement of the results in this section, it follows from (32)
and the definition of evaluation functional that the pointwise error of
best approximation from 𝑁 is given by

𝜖𝑁 (𝑥) = ‖𝐸𝑥(𝐼 −𝛱𝑁 )𝑓‖ , for all 𝑥 ∈ X. (81)

Thus, it follows from (23) that

𝜖 (𝑥) ≤  (𝑥)‖(𝐼 −𝛱 )𝑓‖ ≤  (𝑥)‖𝑓‖ , (82)
𝑁 𝑁 𝑁  𝑁 

10 
Box 8: The proposed error bounding method can be considered a
variable structure control system. Indeed, the control input com-
prises both a compensator, which changes its structure according to
whether the trajectory tracking error lies outside or inside a boundary
layer, and an adaptive control term. Similar to any variable structure
method, the smaller is the diameter of the boundary layer, the smaller
is the ultimate bound on the trajectory tracking error, and the higher
are the frequencies of oscillation in the control input.

where 𝑁 (𝑥) is given by (27). Finally, we define the pointwise approxi-
mation error bound over the uncertainty class 𝑅 as

̄𝑁 (𝑥) ≜ 𝑁 (𝑥)𝑅, for all 𝑥 ∈ X, (83)

and note that

𝜖𝑁 (𝑥) ≤ 𝜖𝑁 (𝑥). (84)

Now, it follows from (27) that 𝑁 (⋅) depends on the location of centers
𝛯𝑁 . If the location of the centers 𝛯𝑁 is user-defined, then the upper
bound 𝜖𝑁 (𝑥) can be computed for any 𝑥 ∈ X.

Given the plant dynamics (1) and the reference model (2), the
controller considered in this section is given by

𝑢𝑁 (𝑡) = 𝛼T𝑥𝑁 (𝑡) + 𝛽𝑟(𝑡) − 𝐸𝑥𝑁 (𝑡)
(

𝑓𝑁 (𝑡, ⋅) + 𝑣𝑁 (⋅, 𝑒𝑁 (𝑡))
)

, 𝑡 ≥ 𝑡0 (85)

where 𝛼 ∈ R𝑛 and 𝛽 ∈ R verify the matching conditions (3) and (4),
respectively,

𝑣𝑁 (⋅, 𝑒𝑁 (𝑡)) ≜

{

sign(𝐵T𝑃𝑒𝑁 (𝑡))𝜖𝑁 (⋅) if 𝑒𝑁 (𝑡) ∉ 𝜀(),
1
𝜀𝐵

T𝑃𝑒𝑁 (𝑡)𝜖𝑁 (⋅) otherwise,
(86)

enotes the compensator,

 ≜
{

𝜂 ∈ X ∶ 𝐵T𝑃𝜂 = 0
}

, (87)

𝜀() ≜ {𝜂 ∈ X ∶ |𝐵T𝑃𝜂| ≤ 𝜀}, (88)

ign ∶ R → {−1, 0, 1} denotes the signum function, 𝜀 ≥ 0 is a user-defined
onstant, not to be confused with 𝜖 in (10), 𝑓𝑁 ∶ [𝑡0,∞) → R verifies
the adaptive law

𝜕𝑓𝑁 (𝑡, ⋅)
𝜕𝑡

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾𝑓𝛱𝑁𝐸∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡),

if 𝜀 = 0, or 𝜀 > 0 and ‖𝑒𝑁 (𝑡)‖X ≤ 4‖𝐵T𝑃‖𝜖𝑁,𝜖
𝜆min(𝑄) ,

0, otherwise

(89)

with the same initial conditions as (47), and

𝛺𝜀 ≜
⋃

𝑡≥𝑡0

{

𝑥 ∈ X ∶ ‖𝑥 − 𝑥𝑟(𝑡)‖X ≤ 𝜀
}

, (90)

̄𝑁,𝜀 ≜ sup
𝜉∈𝛺𝜀

𝜖𝑁 (𝜉) (91)

defining the approximation region and the maximum user error bound 𝜖𝑁,𝜀
over 𝛺𝜀, respectively. Interpreting  as a sliding surface and 𝜀() as and
the boundary layer of width 𝜖 around the sliding surface , (85) provides
an adaptive variable structure controller. It is worthwhile noting that
if 𝜀 > 0, then 𝑣𝑁 (⋅, ⋅) is continuous in both arguments. Alternatively, if
𝜀 = 0, then (85) is discontinuous over the sliding surface .

Theorem 9.1. Suppose that the trajectory tracking error dynamics (38)
with control input (85) and compensator (86) and the adaptive law (89)
generate solutions 𝑥𝑁 (𝑡) and 𝑓𝑁 (𝑡, ⋅) defined on [𝑡0,∞). Finally, assume that
𝑓 ∈ 𝑅, where 𝑅 is given by (11), and assume that the kernel K (⋅, ⋅) that
induces the native space  of real-valued functions over X is bounded on
the diagonal. If 𝜀 = 0, then

lim ‖𝑥 (𝑡) − 𝑥 (𝑡)‖ = 0. (92)

𝑡→∞ 𝑁 𝑟 X
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Alternatively, if 𝜀 > 0, then for any (arbitrarily small) constant 𝜂 > 0 there
xists a constant 𝑇 ≜ 𝑇 (𝜂) ∈ (𝑡0,∞) such that

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ (1 + 𝜂)
4‖𝑃𝐵‖
𝜆min(𝑄)

(

sup
𝜉∈𝛺𝜀

𝑁 (𝜉)

)

𝑅, 𝑡 ≥ 𝑇 . (93)

Proof. Employing the control law (85), the trajectory tracking error
dynamics are such that

̇𝑁 (𝑡) = 𝐴ref 𝑒𝑁 (𝑡) + 𝐵𝐸𝑥𝑁 (𝑡)
(

𝑓𝑁 (𝑡, ⋅) − 𝑣𝑁 (⋅, 𝑒𝑁 (𝑡))
)

,

𝑒𝑁 (𝑡0) = 𝑥0 − 𝑥𝑟,0, 𝑡 ≥ 𝑡0.
(94)

Now, consider the Lyapunov function candidate

𝑉 (𝑒, 𝑓 ) = 1
2
⟨𝑃𝑒, 𝑒⟩R𝑛 + 1

2
𝛾−1

⟨

𝑓, 𝑓
⟩

 , (𝑒, 𝑓 ) ∈ R𝑛 ×. (95)

he time derivative of 𝑉 (⋅, ⋅) along the trajectories of (1) with con-
rol input (85) and the compensator (86), and the trajectories of the
daptive law (89) is given by

̇ (𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)
)

= −1
2
⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛

+

⟨

𝐵T𝑃𝑒𝑁 (𝑡), 𝐸𝑥𝑁 (𝑡) (𝐼 −𝛱𝑁 )𝑓𝑁 (𝑡, ⋅)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

(𝐼−𝛱𝑁 )𝑓

−𝐸𝑥𝑁 (𝑡)𝑣𝑁

⟩

R

,

for all 𝑡 ≥ 𝑡0.
Next, we discuss the case whereby 𝜀 = 0. Successively, we address

the case whereby 𝜀 > 0. If 𝜖 = 0, then 𝑣𝑁 (⋅, 𝑒𝑁 (⋅)) is discontinuous in 𝑡
whenever 𝑒𝑁 (𝑡) ∈ . In this case,

𝑉̇
(

𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)
)

= −1
2
⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛

+ |𝐵T𝑃𝑒𝑁 (𝑡)|
(

sign(𝐵T𝑃𝑒𝑁 (𝑡))𝜖𝑁 (𝑥𝑁 (𝑡)) − 𝜖𝑁 (𝑥𝑁 (𝑡))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤0

,

or all 𝑡 ≥ 𝑡0. Now, since we have

̇ (𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)) ≤ −1
2
⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛 , 𝑡 ≥ 𝑡0,

the conclusion follows from an application of Barbalat’s lemma as
follows. Since 𝑉

(

𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)
)

is nonincreasing, we infer that 𝑒𝑁 ∈
𝐿∞([𝑡0,∞),R𝑛) and 𝑓𝑁 ∈ 𝐿∞([𝑡0,∞),). Furthermore, integrating
𝑉̇
(

𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)
)

, we conclude that 𝑒𝑁 ∈ 𝐿2([𝑡0,∞),R𝑛). Furthermore,
we can obtain that 𝑒̇𝑁 ∈ 𝐿∞([𝑡0,∞),R𝑛) since

‖𝑒̇𝑁 (𝑡)‖R𝑛 ≤ ‖𝐴‖‖𝑒𝑁‖𝐿∞([𝑡0 ,∞),R𝑛) + ‖𝐸𝑥(𝑡)‖
⏟⏟⏟

≤K̄

‖𝑓𝑁 (𝑡, ⋅)‖
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

≤‖𝑓𝑁 ‖𝐿∞([𝑡0 ,∞),)

, 𝑡 ≥ 𝑡0. (96)

Since 𝑒𝑁 ∈ 𝐿∞([𝑡0,∞),R𝑛)
⋂

𝐿2([𝑡0,∞),R𝑛) and 𝑒̇𝑁 ∈ 𝐿∞([𝑡0,∞),R𝑛),
Barbalat’s lemma implies that (92) is verified.

If 𝜀 > 0, then 𝑣𝑁 (⋅, 𝑒𝑁 (⋅)) is continuous in 𝑡. If |𝐵T𝑃𝑒𝑁 (𝑡)| ≥ 𝜖 for
some 𝑡 ∈ [𝑡0,∞), then

𝑉̇
(

𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)
)

= −1
2
⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛

+ |𝐵T𝑃𝑒𝑁 (𝑡)|
(

sign(𝐵T𝑃𝑒𝑁 (𝑡))𝜖𝑁 (𝑥𝑁 (𝑡)) − 𝑒𝑁 (𝑥𝑁 (𝑡))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤0

≤ −1
2
⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛 , 𝑡 ≥ 𝑡0.

lternatively, if |𝐵T𝑃𝑒𝑁 (𝑡)| < 𝜖 for some 𝑡 ∈ [𝑡0,∞), then it holds that

̇ (𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)
)

= −1
2
⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛

+ |𝐵T𝑃𝑒𝑁 (𝑡)|
(

sign(𝐵T𝑃𝑒𝑁 (𝑡))𝜖𝑁 (𝑥𝑁 (𝑡))

− 1
𝜀
𝑒𝑁 (𝑥𝑁 (𝑡))|𝐵T𝑃𝑒𝑁 (𝑡)|

)

≤ −1
⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛 + |𝐵T𝑃𝑒𝑁 (𝑡)|

(

2 sup 𝜖𝑁 (𝜉)

)

2 𝜉∈𝛺𝜀 (

11 
≤ −1
2
𝜆min(𝑄)‖𝑒𝑁 (𝑡)‖

(

‖𝑒𝑁 (𝑡)‖ −
4|𝐵T𝑃 |
𝜆min(𝑄)

𝜖𝑁,𝜀

)

.

We conclude that 𝑉̇
(

𝑒𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅)
)

< 0 for all 𝑡 ∈ [𝑡0,∞) such that

𝑁 (𝑡) ∉
{

𝜂 ∈ X ∶ ‖𝜂‖X ≤ 4‖𝐵T𝑃‖
𝜆min(𝑄)

𝜖𝑁,𝜀

}

.

Finally, proceeding as in Farrell and Polycarpou (2006, pp. 251, 270) or
the discussion in Khalil (2002, Sec. 4.8), we deduce that the amount of
time that the tracking error is outside the residual set
{

𝑥 ∈ X ∶ ‖𝑥‖X ≤ 4‖𝐵T𝑃‖
𝜆min(𝑄) 𝜖𝑁,𝜖

}

is finite, and (93) is proven. □

Remark 9.1. Theorem 9.1 provides an estimate of the trajectory
tracking error’s uniform ultimate bound, which is described by (93).
This ultimate bound is a function of the upper bound 𝑅 on ‖𝑓‖ ,
the difference between the kernel function K(⋅, ⋅) and its approximation
K𝑁 (⋅, ⋅) through the power function 𝑁 (⋅), and the user-defined param-
eter 𝜆min(𝑄). Smaller values of 𝑅, that is, smaller uncertainties on 𝑓 ,
produce smaller uniform ultimate bounds. If 𝑓 were known to reside
in 𝑁 , then the uniform ultimate bound would be zero. Such is the
case when 𝑓 is contained in the smaller real parametric uncertainty
class 𝑓 ∈ 𝛷𝑁 ,𝑅 ⊂ 𝑁 . Indeed, if 𝑓 ∈ 𝛷𝑁 ,𝑅, then, as discussed in
the first paper of this two-part work, 𝑓 can be written in the form of a
regressor vector of basis functions in 𝑁 , 𝜖𝑁 (𝑥) ≡ 0, 𝑒𝑁 (𝑥) ≡ 0, and the
adaptive law (89) reduces to the classical adaptive law of MRAC; see
(15) of the first paper of this two-part work. In general, larger values
of 𝑁 lead to better approximations of K(⋅, ⋅) by means of K𝑁 (⋅, ⋅) and,
hence, smaller uniform ultimate bounds. However, larger values of 𝑁
lead to larger computational costs. Finally, in general, larger values of
𝜆min(𝑄) produce slower convergence of the tracking error.

Remark 9.2. If 𝜀 = 0, then the compensator 𝑣𝑁 (⋅, 𝑒𝑁 (⋅)) is dis-
continuous across the sliding surface . In this case, it follows from
Definition 5.3 that the control system captured by Theorem 9.1 is
AO∗ for all 𝑓 ∈ 𝑅 and 𝑁 ∈ N. However, since the compensator is
iscontinuous, it is arguable whether we can say that such a controller
s implementable. Implementation would require an actuator that has
n infinite bandwidth, and no such hardware exists. Thus, chattering
ay be experienced.

emark 9.3. If 𝜀 > 0, then the compensator 𝑣𝑁 (⋅, 𝑒𝑁 (⋅)) is continuous
n time, and it can be implemented with actuators having a finite band-
idth. However, as shown by (93), the control system’s performance
egrades. Specifically, there is constant 𝐶 > 0 such that the practical
racking attained by the control input (85) and the adaptive law (89)
s given by

im sup
𝑡→∞

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ 𝐶
4‖𝑃𝐵‖
𝜆min(𝑄)

𝜖𝑁,𝜖 ≤ sup
𝜉∈𝛺𝜖

𝑁 (𝜉)‖𝑓‖

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
 (𝑁)

. (97)

hus, the power function 𝑁 (⋅) characterizes ‘‘how suboptimal’’ the
ethod is in terms of  .

0. An adaptive error bounding method

Section 9 described how the power function 𝑁 (⋅) of the finite-
imensional subspace 𝑁 ⊆  can be used systematically to derive
obust adaptive control methods for functional uncertainty in native
paces. One crucial piece of information needed to implement the
ontrol strategy in Section 9 is the constant 𝑅 > 0 in the upper bound
𝑓‖ ≤ 𝑅. Since this constant explicitly appears in the performance
pper bound in (93), it is essential in practice that this upper bound be
elected as tightly as possible.
In this section, we revisit the discussion outlined in Section 6 and,

everaging the general guidelines provided in Farrell and Polycarpou

2006), devise an approach whereby the radius 𝑅 that characterizes
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Box 9: By adding an adaptive term, which captures the norm of the
functional uncertainty, the adaptive error bounding method improves
on the classical error bounding method since this method does not
require the user to know an upper bound on the largest admissible
functional uncertainty. The adaptive bounding technique can be
formulated without or with a boundary layer. In the former case,
this system ensures asymptotic convergence to zero of the trajectory
tracking error but may suffer from chattering. In the latter case,
this system can only ensure uniform ultimate boundedness on the
trajectory tracking error.

the uncertainty class (11) is fixed a priori, but designed as an adaptive
ain.
Once again, we study the uncertain system in (1), or, equivalently,

38), that contains the scalar-valued uncertainty 𝑓 ∈ , the reference
ystem is given by (2), and the matching conditions (3) and (4) hold.
Since, Section 9 only discusses for brevity the case when the function
𝑓 ∈  is uncertain, in this section, we return to the case whereby 𝐴
is also unknown as we already did in Sections 7 and 8. We employ
the adaptive law (45) for the adaptive gain 𝛼̂(𝑡), 𝑡 ≥ 𝑡0, while the
approximation of the nonparametric adaptive law (47) is used for the
function estimate 𝑓𝑁 (𝑡, ⋅).

In the problem at hand, we introduce the time-varying adaptive gain
𝜆̂ ∶ [𝑡0,∞) → R corresponding to ‖𝑓‖ , and define the feedback control
input

𝑢𝑁 (𝑡) = 𝛼̂T(𝑡)𝑥𝑁 (𝑡) − 𝐸𝑥𝑁 (𝑡)
(

𝑓𝑁 (𝑡, ⋅) +𝑤𝑁 (⋅, 𝑒𝑁 (𝑡), 𝜆̂(𝑡))
)

, 𝑡 ≥ 𝑡0, (98)

where

𝑤𝑁 (𝑥, 𝑒, 𝜆) ≜ −sign
(

𝐵T𝑃𝑒
)

𝑁 (𝑥)𝜆, for all (𝑥, 𝑒, 𝜆) ∈ X × R𝑛 × R, (99)

denotes the compensator. It is worthwhile noting the relationship be-
tween the compensator given by (86) for 𝑒𝑁 ∉ 𝜀() and the compen-
sator given by (99). It follows from (11) and (83) that if 𝑒𝑁 ∉ 𝜀(),
then

𝑤𝑁 (𝑥, 𝑒, 𝑅) = −𝑣𝑁 (𝑥, 𝑒), for all (𝑥, 𝑒, 𝑅) ∈ X × R𝑛 × R+. (100)

Thus, we define 𝜆̃𝑁 (𝑡) ≜ ‖𝑓‖ − 𝜆̂𝑁 (𝑡), 𝑡 ≥ 𝑡0, which captures the error
in estimating ‖𝑓‖ . The adaptive law for 𝜆̂𝑁 (⋅) is given by
̇̂𝜆𝑁 (𝑡) = −𝛾𝜆

|

|

|

𝐵T𝑃𝑒𝑁 (𝑡)||
|

𝑁 (𝑥𝑁 (𝑡)), 𝜆̂𝑁 (𝑡0) = 𝜆̂𝑁,0, 𝑡 ≥ 𝑡0. (101)

where 𝛾𝜆 > 0. The next result proves the effectiveness of the proposed
approach.

Theorem 10.1. Suppose that the plant dynamics (38) with control input
(98) and the adaptive laws (45), (47), and (101) generate solutions 𝑥𝑁 (𝑡),
̂𝑁 (𝑡), 𝑓𝑁 (𝑡, ⋅), and 𝜆̂𝑁 (𝑡) defined for all 𝑡 ∈ [𝑡0,∞). Finally, assume that
𝑓 ∈ 𝑅, where 𝑅 is given by (11), and assume that the kernel K (⋅, ⋅) that
induces the native space  is bounded on the diagonal. Then,

lim
𝑡→∞

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X = 0. (102)

Proof. Consider the Lyapunov function candidate

(𝑒, 𝛼̃𝑁 , 𝑓 , 𝜆̃) ≜ 𝑉 (𝑒, 𝛼̃𝑁 , 𝑓 ) + 𝛾−1𝜆 𝜆̃2𝑁 , (𝑒, 𝛼̃𝑁 , 𝑓 , 𝜆̃) ∈ R𝑛 × R𝑛 ×𝑁 × R,

(103)

where 𝑉 (𝑒, 𝛼̃𝑁 , 𝑓 ) is given by (42). Along the trajectories of (38) with
control input (98), (45), (47), and (69), it holds that

̇(𝑡) ≤ − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 − 2𝛾−1𝜆

⟨ ̇̂𝜆(𝑡), 𝜆̃(𝑡)
⟩

R

+ 2⟨𝐵T𝑃𝑒𝑁 (𝑡), 𝐸𝑥(𝑡)(𝐼 −𝛱𝑁 )𝑓 +𝑤𝑁 (𝑥𝑁 (𝑡), 𝑒𝑁 (𝑡), 𝜆̂𝑁 (𝑡))⟩R

≤ − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 − 2𝛾−1𝜆

⟨ ̇̂𝜆(𝑡), 𝜆̃(𝑡)
⟩

R
T
+ 2⟨𝐵 𝑃𝑒𝑁 (𝑡), 𝐸𝑥(𝑡)(𝐼 −𝛱𝑁 )𝑓 +𝑤𝑁 (𝑥𝑁 (𝑡), 𝑒𝑁 (𝑡), ‖𝑓‖ )⟩R𝑛

12 
+ 2⟨𝐵T𝑃𝑒𝑁 (𝑡), 𝑤𝑁 (𝑥𝑁 (𝑡), 𝑒𝑁 (𝑡), 𝜆̃𝑁 (𝑡))⟩R𝑛

≤ − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 − 2
⟨

𝛾−1𝜆
̇̂𝜆(𝑡) + |𝐵T𝑃𝑒𝑁 (𝑡)|𝑁 (𝑥𝑁 (𝑡)), 𝜆̃(𝑡)

⟩

R

+ 2 |
|

𝐵T𝑃𝑒𝑁 (𝑡)|
|

⎛

⎜

⎜

⎜

⎝

sign(𝐵T𝑃𝑒𝑁 (𝑡))𝐸𝑥(𝑡)(𝐼 −𝛱𝑁 )𝑓 − 𝑁 (𝑥𝑁 (𝑡))‖𝑓‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0

⎞

⎟

⎟

⎟

⎠

≤ − ⟨𝑄𝑒(𝑡), 𝑒(𝑡)⟩R𝑛 , 𝑡 ≥ 𝑡0,

where (𝑡) denotes (𝑒(𝑡), 𝛼̃𝑁 (𝑡), 𝑓 (𝑡), 𝜆̃(𝑡)) for brevity. A routine appli-
cation of Barbalat’s lemma, as has been done in Theorem 3.1 or in
Theorem 9.1, completes the proof. □

Theorem 10.1 provided an adaptive control scheme, that, despite
all the schemes considered Sections 6–9, does not require the user to
set a priori the radius of the class of admissible uncertainties. In light
of (100), we observe that, if 𝜀 = 0, then 𝑤𝑁 (⋅, ⋅, ⋅) is discontinuous in
its second argument across the sliding surface  given by (87). Thus,
Theorem 10.1 extends Theorem 9.1 for the case whereby 𝜀 = 0 to allow
adaptive bounds on the radius of the class of admissible functional
uncertainties. The case whereby 𝜀 > 0 is relatively straightforward
and left to the reader. Remarkably, the discontinuous nature of the
compensator (99) may induce chattering and may require actuators of
infinite bandwidth to act across the sliding surface . To avert this
problem, Theorem 10.1 can be extended by introducing a boundary
layer 𝜀() with 𝜀 > 0 and proceeding as in Theorem 9.1. Alternatively,
a higher-order variable structure architecture can be employed. Higher-
order variable structure control systems replace discontinuous terms
in the control input, such as 𝑤𝑁 (⋅, ⋅, ⋅) in (98) with terms defined as
the Lebesgue integral, or multiple Lebesgue integrals, over time of
discontinuous terms. In these cases, the mechanisms of the proofs are
substantially identical, and chattering in the controlled plant is averted
due to the smoothing effect of the integrals.

The adaptive control system outlined by Theorem 10.1 may suffer
from parameter drift due to the problem of approximating infinite-
dimensional uncertainties by means of finite-dimensional RKHSs, which
have been discussed at length in Section 6. This problem can be
overcome by constructing robust variations of Theorem 10.1 along the
same lines as the results in Sections 7 or 8.

Finally, similarly to the discontinuous case of error bounding con-
trol treated in Theorem 9.1, since the tracking error converges to zero
for any 𝑁 > 0, the control system presented by Theorem 10.1 is AAO∗

since

𝐽 (𝑥𝑁 ) ≜ lim sup
𝑡→∞

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X = 0 ≤ ‖𝜖𝑁‖ = ‖(𝐼 −𝛱𝑁 )𝑓‖ , (104)

for each 𝑁 > 0 and every initial condition.

11. Projection methods

In this section, we present an additional, alternative method to
account for the approximation disturbance term in (38). Specifically, in
the following, first, we recall the notion of continuously differentiable
vector projection operators in finite-dimensional spaces. Then, we ex-
tend for the first time this result to infinite-dimensional spaces. Finally,
we employ this result to address the problem of controlling the DPS,
whose functional uncertainty is approximated by a finite-dimensional
RKHS.

11.1. The vector projection operator

In classical, real parametric adaptive control theory, the projection
operator allows modifying the adaptive laws so that the adaptive gains
are guaranteed to lie within some user-defined convex constraint set at
all times. The projection operator acts as follows. The user defines a
second convex set that is similar to the original constraint set and con-
tained within the constraint set. Thus, the projection operator modifies

the adaptive law only if the adaptive gains lie outside the inner convex
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Box 10: The convex projection operator allows to constrain the
solution of an ODE within some user-defined convex constraint set by
progressively modifying the component of the ODE orthogonal to the
boundary of the constraint set. If the trajectory reaches the boundary
of the constraint set, then the ODE has no component orthogonal to
the boundary of the constraint set, and its solution is bounded to lie
within the set.

set and evolve toward the boundary of the original constraint set. This
modification is increasingly strong as some weighted distance between
the adaptive gain and the boundary of the constraint set increases. If
the adaptive gain reaches the boundary of the constraint set, then the
projection operator modifies the adaptive law to allow the adaptive
gain to evolve only in a direction that is locally tangential to the con-
straint set; for details, see Farrell and Polycarpou (2006), Ioannou and
Sun (2012), Krstic, Kanellakopoulos, and Kokotovic (1995), Lavretsky
and Wise (2012), to name a few classical references. This notion is
explained precisely in the following definition.

Definition 11.1 (Vector Projection Operator in R𝑝). Let  ⊆ R𝑝 denote a
convex set, and let ℎ ∶  → R be a continuously differentiable, convex
function such that inf𝜃∈ ℎ(𝜃) < 0. Further, consider the convex set

𝛺𝛿 ≜ {𝜃 ∈  ∶ ℎ(𝜃) ≤ 𝛿} , for all 𝛿 ∈ (−∞, 1]. (105)

The vector projection operator is given by

proj(𝜃, 𝜃𝑑 ) ≜

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃𝑑 − ℎ(𝜃)

( 𝜕ℎ(𝜃)
𝜕𝜃

)T( 𝜕ℎ(𝜃)
𝜕𝜃

)

( 𝜕ℎ(𝜃)
𝜕𝜃

)( 𝜕ℎ(𝜃)
𝜕𝜃

)T 𝜃𝑑 for (𝜃, 𝜃𝑑 ) ∈  ,

𝜃𝑑 otherwise,

(106)

here  ≜
{

(𝜃, 𝜃𝑑 ) ∈  × R𝑝 ∶ 𝜃 ∈ 𝛺1 ⧵𝛺0,
𝜕ℎ(𝜃)
𝜕𝜃 𝜃𝑑 > 0

}

.

Let 𝛺𝛿 ≜ {𝜃 ∈  ∶ ℎ(𝜃) < 𝛿} denote the interior of 𝛺𝛿 for some
𝛿 ∈ (−∞, 1], and 𝜕𝛺𝛿 ≜ {𝜃 ∈  ∶ ℎ(𝜃) = 𝛿, 𝛿 ∈ (−∞, 1]} denotes the
boundary of 𝛺𝛿 . A key property relating ℎ ∶  → R and 𝛺𝛿 , 𝛿 ∈ (−∞, 1],
is that
⟨

𝜕ℎ(𝜃)
𝜕𝜃

|

|

|

|𝜃=𝜃𝑏
, 𝜃𝑖 − 𝜃𝑏

⟩

R𝑝
< 0, for all (𝜃𝑏, 𝜃𝑖) ∈ 𝜕𝛺𝛿 ×𝛺𝛿 . (107)

Furthermore, a key property of the vector projection operator is that,
given (𝜃𝑏, 𝜃𝑖) ∈ 𝜕𝛺𝛿 ×𝛺𝛿 for some 𝛿 ∈ (0, 1],
(

𝜃𝑏 − 𝜃𝑖
)T (proj(𝜃𝑏, 𝜃𝑑 ) − 𝜃𝑑

)

≤ 0, for all 𝜃𝑑 ∈ R𝑝. (108)

Employing (106) and (108), it can be proven that if 𝜃(𝑡) ∈ 𝛺1 ⧵𝛺0
or some 𝑡 ∈ [𝑡0,∞), and 𝜃(𝑡) evolves toward the boundary of 𝛺1,
that is, 𝜕ℎ(𝜃(𝑡))

𝜕𝜃 𝜃̇(𝑡) > 0, then proj(𝜃(𝑡), 𝜃̇(𝑡)) modifies 𝜃̇(𝑡) by reducing
the magnitude of the component of 𝜃̇(𝑡) orthogonal to 𝜕𝛺1. Ultimately,
if 𝜃(𝑡) ∈ 𝜕𝛺1 for some 𝑡 ∈ [𝑡0,∞), then proj(𝜃(𝑡), 𝜃̇(𝑡)) is tangential to
𝜕𝛺1. The term projection operator comes from the fact that proj(𝜃, 𝜃𝑑 )
projects 𝜃𝑑 onto a hyperplane tangential to 𝜕𝛺1 whenever 𝜃 ∈ 𝜕𝛺1.

11.2. Projection operators in native spaces

Inspired by (106) and (108), in this section, we establish a projec-
tion operator for the function space of scalar-valued uncertainties .
Let  denote a scalar-valued RKHS, let  ⊆  denote a closed convex
set, and let ℎ ∶  → R be Fréchet differentiable, convex, and such
that inf𝑓∈ ℎ(𝑓 ) < 0. Per definition, if ℎ(⋅) is Fréchet differentiable over

, then, for each 𝑓 ∈ , there exists a (necessarily unique (Abraham,

13 
Marsden, & Ratiu, 2012)) operator 𝐷ℎ(𝑓 ) ∈ ∗, with ∗ being the
topological dual of , such that

ℎ(𝑓 + 𝑔) = ℎ(𝑓 ) + ⟨𝐷ℎ(𝑓 ), 𝑔⟩∗× + 𝑟(𝑓, 𝑔), for all 𝑔 ∈ , (109)

where ⟨⋅, ⋅⟩∗× denotes the duality pairing on ∗× and the remainder
term 𝑟(𝑓, 𝑔) is of the order 𝑂(‖𝑔‖2 ). We follow a common convention
and identify the bounded linear functional 𝐷ℎ(𝑓 ) ∈ ∗ with its Riesz
representer, and we use the same symbol for both so that for each 𝑓 ∈ 

⟨𝐷ℎ(𝑓 ), 𝑔⟩∗× = ⟨𝐷ℎ(𝑓 ), 𝑔⟩ , for all 𝑔 ∈ . (110)

Furthermore, per definition, since ℎ(⋅) is convex over , then, for any
𝛼 ∈ [0, 1], it holds that

ℎ(𝛼𝑓 + (1 − 𝛼)𝑔) ≤ 𝛼ℎ(𝑓 ) + (1 − 𝛼)ℎ(𝑔), for all 𝑓, 𝑔 ∈ . (111)

Similarly to (105), we define the closed set

𝛺𝛿 ≜ {𝑓 ∈  ∶ ℎ(𝑓 ) ≤ 𝛿} , for all 𝛿 ∈ (−∞, 1]. (112)

Since 𝛺𝛿 =  ∩ {𝑓 | ℎ(𝑓 ) ≤ 𝛿},  is closed by assumption, and
{𝑓 | ℎ(𝑓 ) ≤ 𝛿} is the inverse image under a continuous mapping of
he closed set (−∞, 𝛿], and, hence {𝑓 | ℎ(𝑓 ) ≤ 𝛿} is closed, 𝛺𝛿 is closed.
We denote the interior and boundary of 𝛺𝛿 , 𝛿 ∈ (−∞, 1], by

𝛺𝛿 ≜ {𝑓 ∈ 𝐷 | ℎ(𝑓 ) < 𝛿}, (113)

𝜕𝛺𝛿 ≜ {𝑓 ∈ 𝐷 | ℎ(𝑓 ) = 𝛿}, (114)

respectively. For each 𝛿 ∈ (∞, 1], the set 𝛺𝛿 is convex. Thus, in the
following, we prove a relationship that is analogous to (107) in Hilbert
spaces.

Lemma 11.1. Let  ⊆  be closed and convex, ℎ ∶  → R be Fréchet
ifferentiable and convex, and 𝛿 ∈ (−∞, 1]. Then,

⟨𝐷ℎ(𝑓 ), 𝑓𝑖 − 𝑓𝑏⟩ ≤ 0, for all (𝑓𝑏, 𝑓𝑖) ∈ 𝜕𝛺𝛿 ×𝛺𝛿 . (115)

Proof. It follows from (111) that, for any 𝛽 ∈ [0, 1],

ℎ(𝑓𝑏 + 𝛽(𝑓𝑖 − 𝑓𝑏)) ≤ ℎ(𝑓𝑏) + 𝛽(ℎ(𝑓𝑖) − ℎ(𝑓𝑏)),

and, hence,
ℎ(𝑓𝑏 + 𝛽(𝑓𝑖 − 𝑓𝑏)) − ℎ(𝑓𝑏)

𝛽
≤ ℎ(𝑓𝑖) − ℎ(𝑓𝑏) ≤ 0. (116)

Thus, taking the limit of (116) for 𝛽 → 0+, we deduce that the Gâteaux
derivative of ℎ at 𝑓𝑏 in the direction given by 𝑓𝑖 − 𝑓𝑏 (Oden, 1986),
which we denote by 𝐷ℎ(⋅), is such that

⟨𝐷ℎ(𝑓𝑏), 𝑓𝑖 − 𝑓𝑏⟩∗× ≤ 0. (117)

Fréchet differentiability implies Gâteaux differentiability, and, if this
occurs, then both derivatives are equal. Thus, (115) follows from
(110). □

Next, we introduce the definition of convex projection operator on
Hilbert spaces and, hence, generalize both (106) and (108). To this
goal, let us recall the definition of convex projection onto a closed and
convex subset of a Hilbert space.

Definition 11.2 (Convex Projection on ). Let  ⊂  be closed and
convex, and let 𝑓 ∈ . The convex projection 𝑃 ∶  →  is defined as

𝑃𝑓 ≜ argmin
𝑐∈

‖𝑓 − 𝑐‖ . (118)

Employing standard arguments, it can be shown that, since 
is closed and convex, 𝑐∗ ≜ min𝑐∈ ‖𝑓 − 𝑐‖ is well-defined and
nique (Kreyszig, 1989). We note that, ordinarily, in our problems of
KHS embedding, the closed convex set  is bounded, too. However,
although it is closed and bounded, it is generally not compact in .
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Fig. 1. The orthogonal projection 𝛱𝑁 ∶  → 𝑁 and the convex projection 𝑃 ∶  →

.

nly in a finite-dimensional space is a set compact if and only if it
s closed and bounded. This is an important difference between the
inite-dimensional setting in R𝑝 and the infinite-dimensional setting in
.

At this point, it is important to contrast the qualitative difference
between orthogonal projections onto a subspace 𝑁 ⊆  introduced
in Definition 4.3 of the first paper of this two-paper work and convex
projections onto a closed convex subset  ⊂  introduced in Defini-
ion 11.3. In our most common situation, wherein  is norm-bounded,
𝑃 is a bounded, convex, closed subset of . On the other hand, the
ange of an orthogonal projection 𝛱𝑁 is a closed, finite-dimensional
subspace. The range of 𝛱𝑁 is closed since it is finite-dimensional.
However, the range of 𝛱𝑁 is unbounded. Indeed, if 𝑓 ∈ 𝑁 , then
𝛼𝑓 ∈ 𝑁 for any 𝛼 ∈ R. This situation is depicted graphically in Fig. 1.
As shown in the figure, we have

𝑁
⋂


⏟⏞⏞⏟⏞⏞⏟
closed, convex

subset of vector space
(usually compact)

≜ 𝑁
⏟⏟⏟

closed vector space
unbounded

⋂


⏟⏟⏟

closed, convex set
(usually bounded)

.

Thus, the following remark is essential to appreciate the intent of this
section. For the statement of this remark, recall that the expression
‘‘parameter drift’’ means that one of the adaptive gains diverges due to
the presence of unmatched disturbances or other effects not accounted
for in the Lyapunov analysis that lead to the definition of the adaptive
laws.

Remark 11.1. Since the range of 𝛱𝑁 is unbounded, the orthogonal
projection 𝛱𝑁 by itself in an adaptive law, such as, for instance, (47),
does not prevent parameter drift.

In light of this observation, we construct a projection operator for
adaptive laws that embodies a notion of convex projection on .

Definition 11.3 (Convex Projection Operator in ). Let  ⊆  be closed
and convex, and let ℎ ∶  → R be a continuously Fréchet differentiable,
convex function such that inf𝜃∈ ℎ(𝜃) < 0. Further, consider the closed,
convex set (112). The convex projection operator in  is given by

Proj(𝑓, 𝑓𝑑 ) ≜
{

𝑃ℎ(𝑓 )𝑓𝑑 (𝑓, 𝑓𝑑 ) ∈  ,
𝑓𝑑 otherwise, (119)

where

𝑃ℎ(𝑓 )𝑓𝑑 ≜
[

𝐼 − ℎ(𝑓 )
(

⋅,
𝐷ℎ(𝑓 )

‖𝐷ℎ(𝑓 )‖

)



𝐷ℎ(𝑓 )
‖𝐷ℎ(𝑓 )‖

]

𝑓𝑑 , (𝑓, 𝑓𝑑 ) ∈ ×,

(120)

nd

≜
{

(𝑓, 𝑓 ) ∈  × ∶ 𝑓 ∈ 𝛺 ⧵𝛺 , ⟨𝐷ℎ(𝑓 ), 𝑓 ⟩ > 0
}

. (121)
𝑑 1 0 𝑑 

14 
Box 11: This paper presents the first convex projection operator over
RKHSs. Similarly to the classical convex projection operator, this tool
allows constraining the solution of differential equations evolving
over Hilbert spaces. It is worthwhile stressing that this operator
is not related to the classical projection operator, which is unable
to constrain solutions of differential equations within user-defined
closed and bounded sets.

Observe that the convex projection operator in  is nonlinear in
the first argument and linear in the second argument. The next result
shows how (108) can be extended to the convex projection operator
in . In the following, for brevity, we refer to the convex projection
operator in  as the projection operator.

Theorem 11.2. Let 𝛿 ∈ (0, 1], and suppose that 𝑓𝑖 ∈ 𝛺𝛿 and 𝑓𝑏 ∈ 𝜕𝛺𝛿 ,
where 𝛺𝛿 and 𝜕𝛺𝛿 are given by (113) and (114), respectively. Then,

𝑓𝑏 − 𝑓𝑖,Proj(𝑓𝑏, 𝑓𝑑 ) − 𝑓𝑑⟩ ≤ 0 for all 𝑓𝑑 ∈ . (122)

roof. If (𝑓𝑏, 𝑓𝑑 ) ∉ , then it follows from (119) that Proj(𝑓𝑏, 𝑓𝑑 ) = 𝑓𝑑 ,
nd the result follows immediately. Alternatively, if (𝑓𝑏, 𝑓𝑑 ) ∈ , then
t follows from (119) that

𝑓𝑏 − 𝑓𝑖,Proj(𝑓𝑏,𝑓𝑑 ) − 𝑓𝑑

⟩



= −

(

𝑓𝑏 − 𝑓𝑖, 𝐷ℎ(𝑓𝑏)
)


‖𝐷ℎ(𝑓𝑏)‖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

(

𝐷ℎ(𝑓𝑏), 𝑓𝑑
)


‖𝐷ℎ(𝑓𝑏)‖

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
>0

ℎ(𝑓𝑏) ≤ 0,

and the result is proven. □

Having outlined the general principles, in the following, we propose
some specific applications of the proposed approach. The goal is to
employ the convex projection operator to modify adaptive laws on
𝑓𝑁 (𝑡, ⋅), 𝑡 ≥ 𝑡0, such as, for instance, (47) so that parameter drift due
o the approximation error 𝐸𝑥(𝑡)(𝐼 − 𝛱𝑁 )𝑓 is averted. To this goal, it
s essential to design carefully ℎ(⋅) and, hence, both 𝛺0, that is, the
set wherein the projection operator does not alter the adaptive law,
irrespectively of the sign of ⟨𝐷ℎ(𝑓 ), 𝑓𝑑⟩ for any (𝑓, 𝑓𝑑 ) ∈ 𝛺0 ×, and
𝛺1, that is, the set wherein 𝑓𝑁 (𝑡, ⋅) must be contained for all 𝑡 ≥ 𝑡0. A
viable option is to set  =  and

ℎ(𝑓 ) =
‖𝛱𝑁𝑓‖2 − 𝑅2

𝛥
, for all 𝑓 ∈ , (123)

where 𝑅 > 0 captures the diameter of the uncertainty class 𝑅 given by
(11), and 𝛥 > 0 is a user-defined parameter. This way,

𝛺0 =
{

𝑓 ∈  ∶ ‖𝛱𝑁𝑓‖ ≤ 𝑅
}

, (124)

and, if 𝑓 ∈ 𝑅, then 𝛱𝑁𝑓 ∈ 𝑅 and

𝛺1 =
{

𝑓 ∈  ∶ ‖𝛱𝑁𝑓‖ ≤
√

𝑅2 + 𝛥
}

. (125)

An alternative option is to set  =  and

ℎ(𝑓 ) =
(1 + 𝛥)𝑅−2

‖

‖

𝛱𝑁𝑓‖
‖

2
 − 1

𝛥
, for all 𝑓 ∈ , (126)

where 𝑅 > 0 and 𝛥 > 0 so that

𝛺0 =
{

𝑓 ∈  ∶ ‖𝛱𝑁𝑓‖ ≤ 𝑅2

1 + 𝛥

}

, (127)

𝛺1 =
{

𝑓 ∈  ∶ ‖𝛱𝑁𝑓‖ ≤ 𝑅
}

. (128)

The next result shows that there is a close relationship between the
Fréchet derivative of ℎ at 𝑓 ∈  and 𝛱𝑁𝑓 .

Theorem 11.3. Consider the convex function (123) with  = . Then,

𝐷ℎ(𝑓 ) = 𝛱 𝑓, for all 𝑓 ∈ . (129)
𝑁
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Proof. Let 𝑔 ∈  and 𝛥 > 0. The Gâteaux derivative of ℎ evaluated at
𝑓 in the direction of 𝑔, is given by

𝐷ℎ(𝑓 ), 𝑔⟩∗× = lim
𝜖→0

ℎ(𝑓 + 𝜖𝑔) − ℎ(𝑓 )
𝜖

(130)

= lim
𝜖→0

⟨𝛱𝑁𝑓,𝛱𝑁𝑓 ⟩ + 2𝜖⟨𝛱𝑁𝑓,𝛱𝑁𝑔⟩
𝜖

+ lim
𝜖→0

𝜖2⟨𝛱𝑁𝑔,𝛱𝑁𝑔⟩ − ⟨𝛱𝑁𝑓,𝛱𝑁𝑓 ⟩
𝜖

= ⟨𝛱𝑁𝑓,𝛱𝑁𝑔⟩ = ⟨𝛱2
𝑁𝑓, 𝑔⟩ = ⟨𝛱𝑁𝑓, 𝑔⟩ ,

for all 𝑔 ∈ . (131)

Here, we have used the property whereby if 𝛱𝑁 denotes an orthogonal
rojection, then 𝛱𝑁 = 𝛱∗

𝑁 = 𝛱2
𝑁 . Since Fréchet differentiability

f ℎ implies its differentiability in the sense of Gâteaux, (131) yields
ℎ(𝑓 ) = 𝛱𝑁 , and the result is proven. □

Theorem 11.3 proves that, employing ℎ(⋅) given by (123) to define
he convex projection operator, the Fréchet derivative of ℎ(⋅) at 𝑓 ∈ 
is equivalent to the projection of 𝑓 onto 𝑁 . Thus, the notion of convex
projection operator given by Definition 11.3 and orthogonal projection
given by Definition 4.3 of the first paper of this two-part work can
be tightly related. A similar result can be proven by employing (126)
instead of (123).

11.3. Applying the projection operator in a native space

In this section, we discuss how the convex projection operator can
be employed in the context of DPSs. For the statement of this result,
consider the control input

𝑢𝑁 (𝑡) = 𝛼̂T𝑁 (𝑡)𝑥𝑁 (𝑡) − 𝐸𝑥𝑁 (𝑡)
(

𝑓𝑁 (𝑡, ⋅) + 𝑣𝑁 (⋅, 𝑒𝑁 (𝑡))
)

, 𝑡 ≥ 𝑡0, (132)

where the adaptive gain 𝛼̂ ∶ [𝑡0,∞) → R𝑛 verifies the adaptive law

̇̂𝛼𝑁 (𝑡) = proj(𝛼̂𝑁 (𝑡),−𝛾𝛼𝑥𝑁 (𝑡)𝑒T𝑁 (𝑡)𝑃𝐵), 𝛼̂(𝑡0) = 𝛼̂0, (133)

he vector projection operator proj(⋅, ⋅) is given by (106), 𝛾𝛼 > 0,
∈ R𝑛×𝑛 denotes the symmetric, positive-definite solution of (51),

̂ ∶ [𝑡0,∞) → 𝑁 verifies the adaptive law

𝜕𝑓𝑁 (𝑡, ⋅)
𝜕𝑡

= −Proj(𝑓𝑁 (𝑡, ⋅),𝛱𝑁 𝛾𝑓𝐸
∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡)), 𝑓 (𝑡0, ⋅) = 𝑓0, (134)

𝛾𝑓 > 0, the projection operator Proj(⋅, ⋅) is given by (119), 𝑥𝑁 ∶ [𝑡0,∞) →
X denotes the solution of (38) with control input (132), 𝑒𝑁 (𝑡) ≜ 𝑥𝑁 (𝑡)−
𝑥𝑟(𝑡), and the compensator 𝑣𝑁 ∶ X × R𝑛 → R is user-defined.

Theorem 11.4. Suppose that the plant dynamics (38) with control input
(98) and adaptive laws (133) and (134) generate solutions 𝑥𝑁 (𝑡), 𝛼̂𝑁 (𝑡),
and 𝑓𝑁 (𝑡, ⋅) defined for all 𝑡 ∈ [𝑡0,∞). If 𝑓 ∈ 𝑅, where 𝑅 is given by
(11), and the compensator 𝑣𝑁 (⋅, ⋅) is such that

𝐸𝑥𝑁 (𝑡)𝑣𝑁 (⋅, 𝑒𝑁 (𝑡))𝐵T𝑃𝑒𝑁 (𝑡) ≤ 0, for all 𝑡 ≥ 𝑡0, (135)

then 𝑡 ↦ 𝑥𝑁 (𝑡), 𝑡 ↦ 𝛼̂𝑁 (𝑡), and 𝑡 ↦ 𝑓𝑁 (𝑡, ⋅) are uniformly bounded on
X, R𝑛, and 𝑁 , respectively, for all 𝑡 ∈ [𝑡0,∞). Additionally, for any
arbitrarily small constant 𝜂 > 0, there exists 𝑇 ≜ 𝑇 (𝜂) ∈ (𝑡0,∞) such that

‖

‖

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖‖X ≤ (1 + 𝜂)
2‖𝐵T𝑃‖
𝜆min(𝑄)

𝜖𝑁 sup
𝜉∈𝛺

𝑁 (𝜉), for all 𝑡 ≥ 𝑇 , (136)

where 𝜖𝑁 ≜ sup𝑥∈𝛺 ‖𝐸𝑥(𝐼 −𝛱𝑁𝑓 )‖ , and 𝛺 ⊇
⋃

𝑡≥𝑡0>0 𝑥𝑁 (𝑡).

Proof. Consider the Lyapunov function candidate given by (42).
Taking the derivative of (42) along the trajectories of (38) with control
input (98), (133) and (134), we obtain that, for all 𝑡 ≥ 𝑡0,

̇ (𝑡) = − ⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term 1

−2
⟨

𝛼̃𝑁 (𝑡), 𝑥𝑁 (𝑡)𝑒T𝑁 (𝑡)𝑃𝐵 + 𝛾−1𝛼
̇̂𝛼𝑁 (𝑡)

⟩

tr
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term 2

+2
⟨

𝑓𝑁 (𝑡, ⋅),𝛱𝑁𝐸∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡) + 𝛾−1𝑓
̇̂𝑓𝑁 (𝑡, ⋅)

⟩


⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Term 3

15 
+ 2
⟨

𝐸𝑥𝑁 (𝑡)(𝐼 −𝛱𝑁 )𝑓, 𝐵T𝑃𝑒𝑁 (𝑡)
⟩

R
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term 4

+2
⟨

𝐸𝑥𝑁 (𝑡)𝑣𝑁 (⋅, 𝑒𝑁 (𝑡)), 𝐵T𝑃𝑒𝑁 (𝑡)
⟩

R
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term 5

,

(137)

ith 𝑉 (𝑡) = 𝑉 (𝑒𝑁 (𝑡), 𝛼̃𝑁 (𝑡)𝑓𝑁 (𝑡, ⋅)) for brevity.
Applying Lemma 11.3 of Lavretsky and Wise (2012), we deduce that

erm 2 is nonpositive for all 𝑡 ≥ 𝑡0. Furthermore, for all 𝑡 ≥ 𝑡0, it holds
hat

erm 3 = 2
⟨

𝛱𝑁𝑓 − 𝑓𝑁 (𝑡, ⋅),

𝛱𝑁𝐸∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡) − Proj(𝑓𝑁 (𝑡),𝛱𝑁 𝛾𝑓𝐸
∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒(𝑡))
⟩

𝑁
.

ow, let 𝛿 ∈ (−∞, 1] and 𝛺𝛿 = {𝑓 ∈  ∶ ‖𝜫𝑵𝑓‖ < 𝛿}. If 𝑓 ∈ 𝛺𝛿 ,
hen 𝛱𝑁𝑓 ∈ 𝛺𝛿 from the definition of 𝛺𝛿 . Thus, it follows from
heorem 11.2 that Term 3 in (137) is nonpositive.
Finally, by assumption, Term 5 is nonpositive. Thus,

erms 1 & 4 = − ⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛 + 2
⟨

𝑓𝑁 (𝑡, ⋅), (𝐼 −𝛱𝑁 )𝐸∗
𝑥𝑁 (𝑡)𝐵

T𝑃𝑒𝑁 (𝑡)
⟩



= − ⟨𝑄𝑒𝑁 (𝑡), 𝑒𝑁 (𝑡)⟩R𝑛 + 2
⟨

𝐸𝑥𝑁 (𝑡)(𝐼 −𝛱𝑁 )𝑓, 𝐵T𝑃𝑒𝑁 (𝑡)
⟩



≤ −𝜆min(𝑄)‖𝑒𝑁 (𝑡)‖

⋅
(

‖𝑒𝑁 (𝑡)‖ −
2‖𝐵T𝑃‖
𝜆min(𝑄)

‖𝜖𝑁‖ sup
𝑥∈𝛺

𝑁 (𝑥)
)

, (138)

for all 𝑡 ≥ 𝑡0, where 𝛺 ⊂ X is a compact set such that 𝑥(𝑡) ∈ 𝛺 at all
times. Thus, the result is attained. □

Theorem 11.4 requires that (135) is verified at all times. A com-
pensator that verifies such a requirement is given, for instance, by
𝑣𝑁 (𝑥𝑁 (𝑡), 𝑒𝑁 (𝑡)) = −sign

(

𝐵T𝑃𝑒𝑁 (𝑡)
)

, 𝑡 ≥ 𝑡0. This solution may lead
o chattering, and, to overcome this limitation, classical higher-order
ariable structure control systems can be designed; this extension is
eft for future work directions. This result also requires to construct

⊇
⋃

𝑡≥𝑡0>0 𝑥𝑁 (𝑡) to estimate the ultimate bound given by (136).
For a discussion on this point, the reader is referred to the proof of
Theorem 7.1.

12. Ultimate bounds and fill distances

Sections 7–10 discussed the ultimate performance for the cost func-
tional

𝐽 (𝑥𝑁 ) ≜ lim sup
𝑡→∞

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ 𝑒𝑁,∞,

where 𝑒𝑁,∞ is an ultimate bound on the tracking error for a specific
approach. The analysis of the ultimate bounds 𝑒𝑁,∞ yields inequalities
such as 𝑒𝑁,∞ ≤  (𝜖) or 𝑒𝑁,∞ ≤  (𝑁), for all 𝑓 ∈ 𝑅,𝜖,𝑁 , as the case may
be.

The functions  (⋅) for all of the cases of performance bounds are
expressed in terms of the power function 𝑁 (⋅) of 𝑁 ⊆  defined
by (27). Since 𝑁 (⋅) is known in closed form, these bounds can be
very powerful. They can be used offline to assess the performance
of algorithms, or they can be used online as parts of more advanced
adaptive control approaches. Carefully observe that the bounds on the
tracking error that use the power function 𝑁 (⋅) make no restrictions
on the regularity of the set 𝛺. In this section, we review a commonly
employed technique, as summarized in Schaback (1994), Wendland
(2004), which can be used to generate intuitive, alternative forms of
such error bounds. These alternative forms are attractive owing to their
inherent geometric structure.

The approach that follows can be applied to any bound that contains
the power function 𝑁 (⋅) of the subspace 𝑁 ∈ . Here, we consider
two general classes of error bounds that arise in the theorems above.
In the first class, we study expressions in the form

̄𝑁,∞ ≤ 𝑂
(

𝜖 sup
𝜉∈𝛺

𝑁 (𝜉)
)

, (139)

that arise when the uncertainty 𝑓 is contained in 𝑅,𝜖,𝑁 . Note that an

expression of this form arises in the study of variants of the deadzone,
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Table 1
Radial functions 𝜂 used to define kernels K(𝑥, 𝑦) ≜ 𝜂(‖𝑥− 𝑦‖2), for 𝑥, 𝑦 ∈ X. The symbol

𝑘−𝑑∕2 in the definition of Sobolev–Matern kernels denotes the modified Bessel function
f the second kind, and ⌈𝑥⌉ denotes the ceiling function. It holds that sup𝜉∈𝛺𝜀

𝑁 (𝜉) ≤

 (ℎ𝛯𝑁 ,𝛺) for centers 𝛯𝑁 ⊂ 𝛺. In this table, ℎ ≜ ℎ𝛯𝑁 ,𝛺 defined in (141) and 𝑐 > 0 is
generic constant that differs for each kernel. This table has been extrapolated from
chaback (1994), Wendland (2004).
Kernel name K(𝑥, 0) = K0(𝑟) Parameters  (ℎ)

Gaussian 𝑒−𝛼𝑟2 𝛼 > 0 𝑒−𝑐|log(ℎ)|∕ℎ

Inverse multiquadric (𝛼2 + 𝛽2)𝛽 𝛽 < 0 𝑒−𝑐∕ℎ

Wendland 𝜙𝑑,𝑘(𝑟) 𝑑, 𝑘 ∈ N ℎ2𝑘+1

Sobolev–Matern 2𝜋𝑑∕2

𝛤 (𝑘)
𝐾𝑘−𝑑∕2(𝑟∕2)𝑘−𝑑∕2 𝑑, 𝑘 ∈ N ℎ2𝑘−𝑑

Box 12: The fill distance is a measure of how scattered bases are
distributed over some domain. In the first part of this paper, we
described the performance of the proposed controllers as functions
of the number of elements in the center set in terms of the power
function. For some well-known kernels, the controllers’ performances
can be captured using fill distances as well.

𝜎-modification, continuous error bounding, continuous adaptive error
bounding, and projection methods for the functional uncertainty class
𝑅,𝜖,𝑁 . We also consider the larger class of functional uncertainties
𝑓 ∈ 𝑅, and for this class, we consider expressions in the form

𝑒𝑁,∞ ≤ 𝑂
(

sup
𝜉∈𝛺

𝑁 (𝜉)
)

. (140)

The alternative bounds are obtained by employing Table 1.
Consider the bounded set 𝛺 ⊂ X, the set of centers given by (22), a

reproducing kernel K ∶ X×X → R in the Table 1 and the corresponding
unction  ∶ R+ → R, and the fill distance ℎ𝛯𝑁 ,𝛺 of the centers 𝛯𝑁 in 𝛺
efined as

𝛯𝑁 ,𝛺 ≜ sup
𝜉∈𝛺

min
𝜉𝑖∈𝛯𝑁

‖𝜉 − 𝜉𝑖‖X. (141)

t follows from (82) that the norm on the projection error can be
stimated by means of the power function 𝑁 (⋅), and

𝑁 (𝑥) ≤ 𝑂
(

√

 (ℎ𝛯𝑁 ,𝛺)
)

. (142)

ote that the expressions in (82) hold for any set 𝛺 without regard to
ts regularity, but the bound in (142) requires some regularity of the
et 𝛺, such as the verification of the interior cone condition, to apply
he upper bound  (⋅) for the power function (Wendland, 2004).
It is immediate, then, that we obtain for the inequality in (139) the

lternate expression

𝑒𝑁,∞ ≤ 𝑂
(

𝜖
√

 (ℎ𝛯𝑁 ,𝛺)
)

. (143)

or all 𝑓 ∈ 𝑅,𝜖,𝑁 , and from the inequality in (140) we get

𝑒𝑁,∞ ≤ 𝑂
(

√

 (ℎ𝛯𝑁 ,𝛺)
)

(144)

or all 𝑓 ∈ 𝑅. We apply this technique specifically to Theorem 9.1,
hich captures the error bounding method, and Theorem 7.1, which
aptures the 𝜎-modification, in the corollaries below.

orollary 12.1. Let the hypotheses of Theorem 9.1 hold and let  (⋅)
e given by Table 1 for the user-defined choice of kernel function. For the
hoice 𝜖 > 0 in the compensator 𝑣𝑁 (⋅, ⋅) given by (86), there exists a constant
∈ (𝑡0,∞) such that the closed-loop trajectory tracking error satisfies

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ 𝑂
(

√

 (ℎ𝛯 ,𝛺 )
)

(145)

𝑁 𝜖
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for all 𝑡 ≥ 𝑇 . In particular, for the Gaussian, inverse multiquadric, and
Wendland kernels of smoothness index 𝑟 > 0, it holds that

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑂

(

𝑒
−
(

𝜇
log(ℎ𝛯𝑁 ,𝛺𝜖 )

ℎ𝛯𝑁 ,𝛺𝜖

)
)

Gaussian,

𝑂

(

𝑒
−
(

𝜇̃
ℎ𝛯𝑁 ,𝛺𝜖

)
)

inverse multiquadric,

𝑂
(

ℎ𝑟+1∕2
𝛯𝑁 ,𝛺𝜖

)

Wendland, smoothness 𝑟,

(146)

where 𝜇, 𝜇̃ > 0 are constant.

roof. Consider the kernel functions listed in Table 1. For the Gaussian,
nverse multi-quadratic, and Wendland kernel functions,
Table 1 provides a function  (⋅) such that

sup
∈𝛺𝜖

𝑁 (𝜉) ≤ 𝑂
(

√

 (ℎ𝛯𝑁 ,𝛺𝜖
)
)

.

It follows from Theorem 9.1 that there is a constant 𝐶 > 0 such that

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ 𝐶 sup
𝜉∈𝛺𝜀

𝑁 (𝜉) ≤ 𝐶̃
√

 (ℎ𝛯𝑁 ,𝛺𝜖
)

or all 𝑡 ≥ 𝑇 and some constant 𝑇 ∈ (𝑡0,∞). Thus, the result follows
directly from (82). □

The following corollary for the 𝜎-modification in Theorem 7.1 is
nalogous.

orollary 12.2. Let the hypotheses of Theorem 7.1 hold and let  (⋅) be
iven by Table 1 for the user-defined choice of kernel function. There exists
constant 𝑇 ∈ (𝑡0,∞) such that the closed-loop trajectory tracking error
atisfies

𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤ 𝑂
(

1
𝜎

(

√

 (ℎ𝛯𝑁 ,𝛺𝜖
) + 𝜎

))

(147)

for all 𝑡 ≥ 𝑇 . In particular, for the Gaussian, inverse multiquadric, and
Wendland kernels of smoothness index 𝑟 > 0, it holds that

‖𝑥𝑁 (𝑡) − 𝑥𝑟(𝑡)‖X ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑂
( 1
𝜎
(

𝑒−𝜇̃| log(ℎ𝛯𝑁 ,𝛺 )|∕ℎ𝛯𝑁 ,𝛺
)

+ 𝜎
)

, Gaussian,

𝑂
( 1
𝜎
(

𝑒−𝜇∕ℎ𝛯𝑁 ,𝛺 + 𝜎
)

)

, inv. multiquadric,

𝑂
( 1
𝜎

(

ℎ𝑟+1∕2
𝛯𝑁 ,𝛺 + 𝜎

))

, Wendland, smoothness 𝑟,

(148)

where 𝜇, 𝜇̃ > 0 are constant.

roof. The proof follows by proceeding as in the proof of Corol-
ary 12.1. □

3. Concluding remarks on theoretical results

3.1. A comparison of theoretical results

Some of the key theoretical results collected in this paper are
ummarized in Table 2. This table provides a concise inventory of the
erformance of some of the nonparametric adaptive control methods
or a collection of progressively larger functional uncertainty classes
iven by (12) in the hypothesis space  that contains the functional
atched uncertainty. In particular, Table 2 summarizes the controller
erformance, as measured by an ultimate bound 𝑒𝑁,∞ on the tracking
rror for multiple control schemes.
The first row of Table 2 shows the performance of the classical

parametric MRAC law, which only applies to the uncertainty class
𝛷𝑁 ,𝑅, and assures asymptotic convergence of the trajectory tracking
error to zero. The parametric MRAC law does not apply to the broader
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Table 2
Summary of the performance of the nonparametric adaptive control methods for the
functional uncertainty classes 𝛷𝑁 ,𝑅 ⊂ 𝑁,𝜖,𝑅 ⊂ 𝑅 ⊂ . Control techniques are sorted
by performance level. The first row shows the performance of the classical parametric
gradient adaptive law, which only applies to the uncertainty class 𝛷𝑁 ,𝑅, and assures
asymptotic convergence of the trajectory tracking error to zero. The parametric gradient
adaptive law does not apply to the broader uncertainty classes 𝑁,𝜖,𝑅 and 𝑅. The
econd row shows the performance of the limiting DPS system. This ideal controller
ssures asymptotic convergence of the trajectory tracking error 𝑒(⋅) to zero for any
ncertainty class considered. The remainder of this table shows the uniform ultimate
ounds on the trajectory tracking error 𝑒𝑁 (⋅) obtained by approximating functional
ncertainties on 𝑁 , that is, 𝑒𝑁,∞, which we distinguish from 𝑒∞ attained by the ideal,
imiting DPS. In this table, 𝐶0(𝑅) ≜ 𝐶1+𝐶2𝑅2, the function  (𝜖) ≜

√

𝐶𝜖2‖𝑁‖𝐿∞ + 𝐶0(𝑅)
captures the suboptimality of the 𝜎-modification in the class 𝑁,𝜖,𝑅, and 1(𝑁) ≜
√

𝐶‖𝑁‖𝐿∞𝑅2 + 𝐶0(𝑅) bounds the suboptimality in 𝑅. The term 𝑁 denotes the power
function of the subspace of approximations 𝑁 in the hypothesis space .
Method Type Uncertainty Class

𝛷𝑁 ,𝑅 𝑁,𝜖,𝑅 𝑅

Parametricgradient Classical 0 – –

Nonparametricgradient LimitingDPS 𝑒∞ = 0 𝑒∞ = 0 𝑒∞ = 0

Boundingmethod Ideal 0 0 0
Approx. 0 𝜖‖𝑁‖𝐿∞ ‖𝑁‖𝐿∞𝑅

Adaptiveerror bounding Ideal 0 0 0
Approx. 0 𝜖‖𝑁‖𝐿∞ ‖𝑁‖𝐿∞𝑅

Deadzone – 𝜖‖𝑁‖𝐿∞ ‖𝑁‖𝐿∞𝑅

Projection – 𝜖‖𝑁‖𝐿∞ ‖𝑁‖𝐿∞𝑅

𝜎-modification
√

𝐶0(𝑅) ≤  (𝜖) 1(𝑁)

uncertainty classes 𝑁,𝜖,𝑅 and 𝑅. The second row of Table 2 shows the
erformance of the limiting DPS system. This ideal controller assures
symptotic convergence of the trajectory tracking error 𝑒(⋅) to zero
or any uncertainty class considered. The remainder of Table 2 shows
the uniform ultimate bounds on the trajectory tracking error 𝑒𝑁 (⋅)
btained by approximating functional uncertainties on 𝑁 , that is,

𝑒𝑁,∞, which we distinguish from 𝑒∞ attained by the ideal, limiting DPS.
he power function 𝑁 defined in (27) plays a pivotal role in predicting
the controller’s performance a priori without relying on conservative
assumptions on the functional uncertainty, but on clearly quantifiable
characteristics of the kernel function defining the chosen RKHS  and
its approximation 𝑁 . Remarkably, these performance bounds are also
explicit functions of the number of centers 𝑁 , whereas in classical
adaptive control systems, such a dependence cannot assessed as an
explicit function of the dimension of the regressor vector.

Using standard kernels, Table 2 summarizes the performance for
a particularly large inventory of function spaces (Wendland, 2004).
Indeed, this table does not specify K(⋅, ⋅). For example, using either
the Wendland or Sobolev–Matern kernels of appropriate order, Table 2
holds when the uncertainty classes are contained in any of the Sobolev
spaces 𝐻𝑟(R𝑛) of smoothness index 𝑟 ∈ N, for 𝑟 large enough such that
the Sobolev space is a native space. The Sobolev space of integer index
𝑟 ∈ N consists of all functions in 𝐿2(R𝑛) that have weak derivatives
through order 𝑟 contained in 𝐿2(R𝑛), and it is a widely employed collec-
tion of spaces used to measure the regularity of functions. Alternatively,
if we use the Gaussian kernel, Table 2 applies to all functions in the
uncertainty class contained in the associated native space, which is
a space of holomorphic functions (Steinwart, Hush, & Scovel, 2006).
See Wendland (2004) for an inventory of other popular reproducing
kernels for which the theory in this paper holds. The variety of native
spaces enables the design of control methods based on knowledge about
the smoothness of the uncertainty. The Sobolev scale of smoothness
spaces 𝐻𝑟(R𝑛) is a well-known standard for categorizing the regularity
of functions (Adams & Fournier, 2003), and it plays a critical role in
studying approximations of PDEs. Here, we can infer a similar role for
nonparametric adaptive feedback control.

Table 2 also clarifies that the regularity of the functional uncertainty

can have a predictable effect on the bounds on the performance of a
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nonparametric feedback control strategy. As shown empirically in Sec-
tion 14 below, smoother kernels generally yield approximations that
converge faster whenever the uncertainty is correspondingly smooth.
Table 2 helps appreciate that the general nonparametric control theory
presented in this paper allows for improved tracking performance
guarantees that exploit this general observation.

It is also worth noting that using the techniques described in Sec-
tion 12, the bounds in Table 2 can be replaced in terms of fill distances
(141) of centers of approximation given by (22) in subsets 𝛺 ⊂ X that
support the closed loop trajectory. For families of well-known kernels,
such as the Sobolov–Matern, inverse multiquadric, exponential, or
Wendland kernels, we obtain controller performance bounds captured
by (143) and (144). These geometric descriptions help make the defini-
tion of approximations in these nonparametric methods more intuitive.
This geometric understanding of the role of the approximation centers
can lead to the development of new approaches in data-driven adaptive
control methods.

Viewed solely from an academic standpoint, results such as those in
Table 2 are interesting and compelling as they summarize a reasonable
next step that begins with the host of documented parametric MRAC
results in approximation-based adaptive control for deterministic, gen-
erally nonlinear ODEs. Table 2 should be compared to Table 11.1
in Lavretsky and Wise (2012), Table 4.2 in Farrell and Polycarpou
(2006), or Tables 8.1 through 8.5 in Ioannou and Sun (2012). Table 2
makes additional assumptions in comparison to the tables in these
standard references. However, the tables in these classical references
rely crucially on the fact that the uncertainty satisfies the uniform
approximation assumption in 𝐿∞(𝛺). For all the kernels discussed in
this paper, we have  ⊂ 𝐿∞(𝛺), so Table 2 holds in a more restrictive
setting that enables sharper error estimates. Table 2 still holds for a
vast collection of types of functional uncertainty, and the conclusions
are considerably stronger.

It is worthwhile recalling that Table 2 was developed assuming that
the functional uncertainty lies in the selected uncertainty class, and
that the controlled plant state 𝑥𝑁 (⋅) remains in a set 𝛺. In other words,
Table 2 assumed that the closed-loop plant trajectory remains in a com-
pact set 𝛺 that is known a priori. This is a strong assumption, but it is
also common in the initial study of the performance of approximation-
based adaptive control methods; see Farrell and Polycarpou (2006,
Ch. 4, 7). There can be substantial, and nontrivial, differences among
the hypotheses or operating assumptions of the methods in Table 2.
This should not be overlooked in assessing the table. For instance,
we expect that a significant improvement in the ‘‘uniformity of the
hypotheses’’ would be a major improvement to the table. Here, as
a significant example, we are thinking about the generalizations to
classes of methods that guarantee positive invariance of the set 𝛺,
like methods based on barrier functions. See Anderson, Marshall, and
L’Afflitto (2020, 2021b) for recent work by the authors.

Also, the table suffers in that it overlooks some common technical
issues related to discontinuous learning or feedback laws. Since the
deadzone modification and variable structure methods include types of
discontinuous feedback controls, then the Lyapunov analysis should be
carried out in the context of Filippov solutions or differential inclusions.
As it is standard in the classical texts on parametric adaptive control
theory, we just note these potential issues and assume that high-
frequency oscillations or chattering are not of substantial concern for
the problems at hand.

Table 3 summarizes additional key results of this paper. In particu-
lar, this table summarizes the performance of finite-dimensional control
systems presented in this paper in terms of the proposed notion of
approximation theory suboptimality.

13.2. The role of the Grammian matrix

As discussed in Remark 7.1, the adaptive gains associated with the

functional uncertainty can be found as solutions of PDEs, such as (47),
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Table 3
Summary of the performance of native space embedding methods in
terms of approximation theory suboptimality. Results on 𝑁,𝜖,𝑅 hold for
any 𝑁 ∈ N, including 𝑁 → ∞. In classical parametric MRAC, 𝑁 is fixed
a priori.
Method Class Performance

Real Parametric Gradient 𝛷𝑁 ,𝑅 AAO, 𝑒𝑁,∞ = 0
Bounding Control 𝑁,𝜖,𝑅 AAO∗, 𝑒𝑁,∞ = 0
Adaptive Bounding Control 𝑁,𝜖,𝑅 AAO∗, 𝑒𝑁,∞ = 0
Deadzone 𝑁,𝜖,𝑅 AAO, 𝑒𝑁,∞ ≤ 𝑂(ℎ𝑟

𝛯𝑁 ,𝛺)
𝜎-modification 𝑁,𝜖,𝑅  (𝜖)-suboptimal

(50), (69), (89), and (134). However, by proceeding as in Section 7.3,
these adaptive gains can be computed as solutions of matrix ODEs,
such as (66). In such equations, the Grammian matrix plays a key
role, which does not appear in the matrix ODEs underlying classical
adaptive control systems. This difference with matrix adaptive laws
of classical adaptive control systems is critical to define consistent
approximations in the native space. It is the Grammian matrix that
relates how implementations for each 𝑁 are all related to the same
space . These matrix ODEs and the associated Grammian matrix are
needed to conclude how performance can be related to approximation
error in the native space and guaranteed over the functional uncertainty
class for all 𝑁 . In classical adaptive control systems, such as MRAC, the
controller’s performance cannot be explicitly related to the dimension
of the regressor vector.

The appearance of the Grammian matrix has other important prac-
tical implications. As we discuss more carefully in the numerical ex-
amples in the next section, the appearance of the Grammian makes
clear that the bounds derived in the RKHS framework are achievable
only under certain conditions that depend on the combination of the
approximation error for a dimension 𝑁 , the condition number of
the Grammian, and size of the injected disturbance in the original
equations.

14. Numerical example

In this section, we present the results of a numerical example
that illustrates both the applicability of the proposed results and the
qualitative character of some of the performance bounds described in
this paper. For brevity, we focus on the results obtained by applying
the error bounding method discussed in Section 9. Since the analysis
of multiple control techniques over a single example may erroneously
lead to the conclusion that a technique is universally better than
another, and in consideration of the length of such a discussion, we
encourage the reader to employ the suite of computer codes produced
as part of this work (Wang, L’Afflitto, & Kurdila, 2024) and verify the
quality of results for multiple techniques and multiple examples. The
considerations made in the following regarding the quality of the error
bounding control method will serve as guidelines.

Consider the plant model given by (1) with X = R2, U = R,

𝐴 =
[

0 1
−𝜔2 −2𝜁𝜔

]

, 𝐵 =
[

0
𝜔2

]

, 𝑥 =
[

𝑥1
𝑥2

]

, (149)

𝜔 = 1 rad/s, and 𝜁 = 0.2. The functional uncertainty is given by

𝑓 (𝑥) = tanh(𝑥31 + 0.001𝑥52), 𝑥 ∈ R2. (150)

The reference model is given by (2) with 𝑟(𝑡) = cos(5𝑡), 𝑡 ≥ 0,

ref =
[

0 1
−𝜔2

ref −2𝜁ref𝜔ref

]

, 𝐵ref =
[

0,
𝜔2
ref

]

. (151)

ref = 20 rad/s, and 𝜁ref =
√

2
2 . The kernel function employed for all

imulations is the 3∕2 Sobolev–Matern kernel (Schaback, 1994) given
y

3,2(𝑥, 𝑦) =

(

1 +

√

3 ‖𝑥 − 𝑦‖X
)

𝑒−
√

3‖𝑥−𝑦‖X
𝑙 , (152)
𝑙

18 
Fig. 2. The power function ‘‘unwrapped’’ and plotted over the circle that supports the
ultimate dynamics.

with 𝑙 > 0. The larger the hyperparameter 𝑙, the larger the ‘‘variance’’
of the radial basis function defined by the kernel. Finally, we set

𝑄 =
[

1 0
0 2

]

and 𝜀 = 10−4. (153)

Applying the parameterization (62), the adaptive laws for the adap-
tive law on the functional uncertainty (47) takes the form
̇̂𝛩𝑁 (𝑡) = 𝛾𝑓K−1

𝑁 K𝛯𝑁
(𝑥𝑁 (𝑡))𝐵T𝑃𝑒𝑁 (𝑡), 𝛩̂𝑁 (0) = 𝛩̂𝑁,0, 𝑡 ≥ 0. (154)

Similar expressions can be deduced for the adaptive laws in (50), (69),
(89), and (134).

The basis centers 𝛯𝑁 are distributed evenly around the circular path
eventually approached by the reference signal 𝑥𝑟(⋅). It appears from
this distribution of centers that the RKHS embedding method is well-
suited to choosing bases that are scattered over the domain and need
not be defined on some regular grid in R𝑛. The choice of centers can be
understood as the locations in the domain where approximations can
interpolate the uncertainty.

Applying the error bounding method, the power function 𝑁 (⋅) is
plotted in Fig. 2 over the circular path that supports the asymptotic
dynamics for multiple hyperparameters and numbers of basis functions.
The power function is zero at the kernel centers and grows between
the kernel centers. The magnitude of the growth is determined by the
smoothness of the kernel function and the number of basis functions.
For 𝑙 = 5, the kernel function exhibits much greater growth away from
the centers compared to the kernel with 𝑙 = 10, for a fixed number
of basis functions. For the same hyperparameter, doubling the number
of basis functions effectively suppresses the growth between the basis
centers, which leads to better approximations. The plots in Fig. 2 can
be constructed once the centers are selected and do not reflect the
performance of the control strategy. This plot suggests the usefulness
of the power function as either a tool to assess the pointwise error in
an a priori manner for controller design or in an a posteriori fashion for
adaptive basis selection. Fig. 2 merely describes the offline error that
can result from the choice of some set of centers. Similar results can
be attained by applying any other adaptive control methods presented
herein.

Applying the error bounding method, Fig. 3 shows the power func-
tion at 𝑥𝑁 (𝑡) with 𝑡 ≈ 19.5 s versus the number of basis centers. The
power function at the time 𝑡 ≈ 19.5 s is at a local maximum value
and the transient behavior has mostly died out. The power function
can be used to build an upper bound for the pointwise approximation

error (𝐼 − 𝛱𝑁 )𝑓 at the state 𝑥𝑁 (𝑡). From Fig. 3, we deduce that the
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Fig. 3. Maximum steady state value of the power function 𝑁 (𝑥) at approximately
19.5 s.

Fig. 4. Scaled norm of the maximum steady-state error 4‖𝐵T𝑃‖
𝜆min (𝑄)

𝑅 employing the error
ounding method.

alue of the power function depends on the smoothness of the unknown
unction and the kernel function that defines . The power function
alue produced by the kernel with 𝑙 = 5 is larger than that produced
y the flatter kernel with 𝑙 = 10. In some sense, Fig. 3 illustrates an
deal behavior that we expect the closed-loop response to follow as 𝑁
ncreases and approaches ∞.
Fig. 4 captures the ultimate bound in Theorem 9.1. There are a

ew important observations regarding this plot. First, the dashed line in
ig. 4 captures the slope of the lines depicted in Fig. 3. Asymptotically,
s 𝑁 → ∞, we expect that the scaled ultimate tracking error should
heoretically decay at a rate that is no worse than the dashed line. This
s indeed the case for the kernel with 𝑙 = 5. Also, this rate of decrease
olds for low values of 𝑁 with 𝑙 = 10. However, for 𝑙 = 10 and large
alues of 𝑁 , the rate of convergence reaches a plateau. This is a generic
eature of the realizable controllers and is due to other unmodeled noise
n the simulation such as numerical integration error and numerical
onditioning of the factorization of the Grammian matrix, which is
iscussed further below.
Fig. 4 can also be used to introduce a new notion that helps distin-

uish the performance of these methods for different kernels. As already
iscussed, the combination of any injected external disturbance and
umerical conditioning error, as well as integration error in computa-
ional studies, introduces a lower plateau. This tracking error cannot be
educed below the plateau irrespective of the number of basis functions
19 
Fig. 5. Condition number of the Grammian matrix K(⋅, ⋅) given by (29).

used. For each type of kernel, it is possible to define an effective dimen-
ion for the control problem that is equal to the dimension 𝑁∞ at which
he tracking controller reaches the noise floor. For the kernels shown
n Fig. 4, 𝑁∞ = 35 for 𝑙 = 5 and 𝛾𝑓 = 1; 𝑁∞ = 20 for 𝑙 = 10 and 𝛾𝑓 = 1;
nd 𝑁∞ = 20 for 𝑙 = 10 and 𝛾𝑓 = 100. As expected, the learning rate
𝑓 does not influence the effective dimension, but the hyperparameter
oes. There is a large inventory of methods for the selection of optimal
yperparameters in offline statistical and machine-learning problems
n a stochastic setting. Fig. 4 shows that understanding the relationship
etween the hyperparameter and the effective dimension in problems
f nonparametric control theory is useful, and suggests an important
opic of future research.
While increasing 𝛾𝑓 should lead to faster convergence in time of

nline approximation 𝑓𝑁 , larger 𝛾𝑓 can result in undesirable high-
requency oscillations that may take an intractable amount of time to
ecay and contribute to large tracking error.
As noted in Müller and Schaback (2009), Pazouki and Schaback

2011), Powell, Liu, and Kurdila (2022), Wendland (2004), building
stimates from an RKHS can result in poor conditioning. Fig. 5 shows
that the condition number of the Grammian matrix grows as the
number of basis functions increases. In addition, the kernel with 𝑙 = 10
has worse conditioning than the kernel with 𝑙 = 5. A poorly conditioned
Grammian matrix can inject large numerical noise in native RKHS
embedding and eventually dominate the approximation error bounds.
As already noted, ill-conditioning of the Grammian matrix results in
the tracking error hitting a plateau. The scaled steady-state maximum
error produced by the kernel with 𝑙 = 10 improves as expected up to
around 𝑁 = 20 for the learning rate of 𝛾𝑓 = 1. It should be noted that
he relative numerical integration error in this example is 𝑂(10−3). We
would, therefore, expect an estimate using an inverse of the Grammian
matrix with a condition number greater than the order 𝑂(103), as seen
in Fig. 5, for 𝑁 > 15 to be potentially sensitive to numerical integration
error, which can also contribute to a plateau or even increase in the
tracking error as seen in Fig. 4. Future studies will aim to address these
large condition numbers.

Fig. 6 shows the evolution of the power function and the scaled
norm of the tracking error. In these simulations, the power function
rarely reaches the scaled norm of tracking error. However, the power
function still bounds the norm of the tracking error from the above,
except at a few points where numerical round-off errors appear.

15. Conclusion

This work, divided into two papers, presented a novel control
framework that we called nonparametric to distinguish it from existing

ones, which we refer to as parametric. The key idea underlying the
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Fig. 6. This figure shows the error bound as a function of time and the steady state
error throughout the simulation. Note that the pointwise error bound is minimal near
the kernel centers. Consequently, we observed smaller tracking error when the state
values approached the kernel centers.

proposed framework lies in assuming that the matched functional
uncertainties affecting the plant dynamics, which are captured by a set
of nonlinear ODEs, are elements of a native space. Thus, in the first
paper, we developed an adaptive law able to steer the plant’s trajectory
toward the trajectory of a reference model. This result employed a
DPS and, hence, could not be applied to problems of practical interest.
In this paper, we presented several approaches to approximate this
DPS in finite dimensions and, hence, assure both satisfactory trajectory
tracking and uniform boundedness of the trajectory tracking error as
well as of the adaptive gains.

The key elements of the novelty of the proposed nonparametric
adaptive control framework are multiple. Firstly, despite existing para-
metric methods, the user is not required to provide a parameterization
of the functional uncertainties using a regressor vector or to create some
mechanism producing such a parameterization. Secondly, the proposed
framework allows capturing classes of functional uncertainties that are
considerably more vast than those addressed by parametric methods.
Thirdly, and more importantly, the proposed framework allows us
to explicitly correlate a priori the ultimate bounds on the trajectory
tracking error with the dimension of the approximating native space.
In classical parametric methods, there is no explicit way to correlate a
priori the controller’s performance with the dimension of the regressor
vector. Additionally, the adaptive laws corresponding to the functional
uncertainties can be reduced to matrix ODEs, and one of the terms of
such ODEs is the Grammian matrix, which allows the user to gauge
the effect of the number and distribution bases used to define the
approximating native space. Finally, the proposed framework enables
the introduction of standard unified metrics of the performance of the
adaptive controller.

Future work directions are multiple and discussed throughout this
paper. The first lies in enforcing that the closed-loop plant trajectory
lies in some domain defined a priori. Furthermore, it is to be studied
how to distribute approximation centers, whether and how those cen-
ters can be moved throughout the control process, and their effect on
both the trajectory tracking error and the computational cost. Addition-
ally, as already discussed in the introduction to the first paper of this
two-part work, explicit connections to data-driven methods and deep
learning should be explored. Finally, this work primarily focused on the
effect of matched functional uncertainties. Neither the proposed results
nor any of the existing results, to our knowledge, provide ultimate
bounds on the tracking error as functions of any characterization of

the unmatched functional uncertainty class other than the bound on

20 
the unmatched uncertainty. The problem of tighter characterizations
of the unmatched uncertainties using a native space setting is left for
future investigation.
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