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Abstract

Understanding binding epitopes involved in protein-protein interactions and accu-

rately determining their structure is a long standing goal with broad applicability in

industry and biomedicine. Although various experimental methods for binding epitope

determination exist, these approaches are typically low throughput and cost intensive.

Computational methods have potential to accelerate epitope predictions, however, re-

cently developed artificial intelligence (AI)-based methods frequently fail to predict

epitopes of synthetic binding domains with few natural homologs. Here we have devel-

oped an integrated method employing generalized-correlation-based dynamic network
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analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2

Multimer structures, to unravel the structure and binding epitope of the therapeutic

PD-L1:A!body complex. Both AlphaFold2 and conventional molecular dynamics tra-

jectory analysis were ine”ective in distinguishing between two proposed binding mod-

els, parallel and perpendicular. However, our integrated approach, utilizing dynamic

network analysis, demonstrated that the perpendicular mode was significantly more

stable. These predictions were validated using a suite of experimental epitope mapping

protocols, including cross-linking mass spectrometry and next-generation sequencing-

based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure

bound in the perpendicular pose, highlighting the necessity for exploratory research in

the search for binding epitopes and challenging the notion that AI-generated protein

structures can be accepted without scrutiny. Our research underscores the potential

of employing dynamic network analysis to enhance AI-based structure predictions for

more accurate identification of protein-protein interaction interfaces.

Introduction

Immunotherapies are a potentially transformative class of cancer treatment, with check-

point inhibition emerging as a leading strategy.1 The e!cacy of these therapies hinges

on achieving precise molecular interactions between a therapeutic biomolecule and the

correct epitope on the checkpoint protein. For Programmed Death receptor Ligand 1

(PD-L1) targeted therapies (Fig. 1A) that have shown e!cacy against a range of can-

cers,2–5 anti-PD-L1 antibodies must bind to the extracellular domain of PD-L1 (Fig.

1B, UniProt Q9NZQ7) in a manner that blocks the native PD-1 ligand binding, e”ec-

tively disrupting cancer cells’ evasion of the immune response.6,7 The development of

novel therapeutics thus relies on achieving precise and specific binding to a particular

surface epitope.8 This underscores the urgent need for e!cient methods to rapidly

and accurately identify binding epitopes of therapeutic biomolecules on the surfaces of

immune checkpoint proteins.
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Full-length IgG monoclonal antibodies are a mainstay of cancer immunotherapy,

but many IgG formulations su”er from limitations such as limited tissue penetration,

suboptimal pharmacokinetics, and complex post-translational modifications that must

be optimized during production.9 These challenges have spurred research into alterna-

tive protein sca”olds for PD-L1 targeted therapies, including diabody, DARPin, and

a!body sca”olds.10–12 Such non-antibody sca”old proteins can be engineered using

in vitro directed evolution to isolate high a!nity binding domains against a range

of molecular targets.13–15 In particular, the highly stable a!body triple ω-helix bun-

dle16,17 (Fig. 1C) with a molecular weight of ↓6.5 kDa o”ers a promising alternative

sca”old.

A variety of experimental methods have been employed for epitope mapping of anti-

bodies and non-antibody sca”olds, including X-ray crystallography, NMR, mass spec-

trometry, peptide arrays, and deep mutational scanning-based approaches.18–26 While

these methods are highly informative, they can be time-consuming and costly. Com-

putational methods o”er a faster and more cost-e”ective alternative. Tools like AIMS

(Automated Immune Molecule Separator)27 facilitate comprehensive characterization

of TCR-MHC interactions and antibody polyreactivity, providing key biophysical in-

sights into immunology. Studies on the biophysical compatibility in TCR-MHC inter-

actions28 and polyreactivity in antibodies29 have demonstrated how AI-based methods

can enhance our understanding of immune responses and protein interactions.

However, even advanced AI-based protein structure prediction tools such as Al-

phaFold and RoseTTAFold30–33 have faced challenges in accurately predicting protein-

protein interactions.34–37 While there are successful cases, such as the model of a PD-

L1/CD80 complex,38 large screening studies have shown a low number of highly ac-

curate antibody-antigen complex predictions.39,40 Similarly, traditional computational

methods often fail to accurately identify binding epitopes, sometimes producing am-

biguous results that suggest binding at multiple locations (Fig. 1D).

Here we present a comprehensive methodology for predicting and analyzing the

structure and interactions of a PD-L1 complex,41,42 with a focus on epitope map-
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ping. Our approach leverages recent advances in computational biophysics method-

ologies and the power of the latest generation of supercomputers.43 Initially, we em-

ploy an integrated computational approach that utilizes AlphaFold, ClusPro,44 and

Zdock45 for complex structure prediction. These predicted structures are then re-

fined through molecular dynamics simulations performed with QwikMD46 and GPU-

accelerated NAMD.47 Further insights are obtained through dynamic network anal-

ysis.48 We prioritize computational methods because they are faster and more cost-

e”ective compared to experimental approaches. While various experimental methods

for binding epitope determination exist, they are typically low throughput and cost-

intensive. By using advanced computational techniques first, we can generate and re-

fine accurate models of the PD-L1 complex, providing a detailed understanding of the

potential interaction interfaces e!ciently and economically. These computational pre-

dictions then guide the subsequent experimental validation, making the process more

targeted and e”ective. Here, experimental validation of our computational models is

conducted using a suite of techniques including site-specific mutagenesis, biochemi-

cal assays, chemical cross-linking mass spectrometry, and next-generation sequencing

(NGS)-based deep mutational scanning (DMS).49 These experimental methods con-

firm the computationally predicted protein-protein interaction interface and identify

specific residues involved in the interactions.

Results

We began by investigating the native PD-1:PD-L1 interaction interface, localized within

the IgV-like domain of PD-L1.50 An exhaustive analysis of bound PD-L1 structures in

the Protein Data Bank (PDB) revealed insights into its interactions with other proteins

and structural nuances of the complex assembly. By analyzing available PDB struc-

tures of PD-L1 bound to other proteins and focusing on amino acid residues within

a 4Å radius of the binding interfaces, we found diverse sets of native contacts across

PD-L1’s surface (Fig. 2A). This analysis highlights the complexity in defining the Af-
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fibody binding epitope on PD-L1 (Fig. 1D), and shows PD-L1’s promiscuity and the

challenges faced by traditional blind-docking methods.

A potential alternative to traditional blind-docking approaches is provided by AI-

based modeling tools, such as AlphaFold2, specifically its Multimer version.30,31 In

this study, we carried out a comparative analysis of PD-L1 binding orientations using

three distinct prediction methods: AlphaFold2 Multimer, ClusPro, and ZDock, with

ClusPro and ZDock utilizing existing structural data for binding space constraints and

AlphaFold2 Multimer operating in a ”blind-mode.” Additionally, we used the recently

launched AlphaFold3,51 also operating in this ”blind-mode.” With the exception of

AlphaFold3, the top three predicted structures (see Fig.2B) from each method re-

vealed two main binding orientations for the A!body: a parallel and a perpendicular

orientation of A!body relative to PD-L1’s beta sheets (Fig.2C). AlphaFold3 only pre-

sented an ensemble of conformations around the parallel orientation. Although dual

binding modes have been reported for certain receptor complexes,52,53 it is rather an

exceptional case, and the parallel and perpendicular binding orientations for PD-L1

complexes were considered ostensible. It is important to note that what we describe

here as a parallel or perpendicular mode is actually an ensemble of conformations that

can be clustered into two main groups: one where the beta-sheets of PD-L1 are parallel

to the A!body alpha-helix, and another where the beta-sheets of PD-L1 are perpen-

dicular to the A!body alpha-helix, as illustrated in Fig.2C. Hence, our nomenclature

in this article. The results presented in Fig.2B show that the four static computational

methods could not confidently determine the binding epitope on PD-L1, prompting us

to further analyze the structures to determine which orientation is more probable.

To investigate the stability of the two potential PD-L1:A!body binding orienta-

tions, we next conducted molecular dynamics (MD) simulations using GPU-resident

NAMD 3.0,47 running 16 independent 100 ns replicas for each orientation. Initial

visual assessments of the conformational clusters using VMD54 indicated greater sta-

bility in the perpendicular orientation (Fig. S1). For a more rigorous evaluation, we

analyzed the final 25 ns of each trajectory using three methods. Firstly, we measured
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the root-mean-square deviation (RMSD) of the A!body from its initial conformation,

finding similar mean RMSD values for both orientations but with larger fluctuations

in the parallel mode (Fig.2D). Secondly, the Molecular Mechanics Poisson-Boltzmann

Surface Area (MM-PBSA) method was used to calculate binding free energy, yielding

comparable results but greater variability for the parallel orientation (Fig.2E). Lastly,

leveraging a technique developed by our group we employed generalized-correlation-

based Dynamic Network Analysis48 to derive relative binding strengths.55 The results,

displayed in Fig.2F and Fig. S2, reveal the perpendicular mode as notably more stable.

To assess the reliability of the results, a bootstrap analysis with a sample size of 16

was conducted, resampling the data 1,000 times with replacement. The BCa method

was employed to construct 95% confidence intervals for the mean di”erence between

the perpendicular and parallel configurations. The analysis revealed a significant dif-

ference in the sum of correlations (see Fig. S3). These combined findings suggest

the perpendicular binding conformation as the most probable for the PD-L1:A!body

interaction.

Experimental Validation of Predicted Epitope

To validate the predicted binding mode, we first used VMD54 for visual inspection

and AlphaFold2 Multimer scores to identify mutations to PD-L1 that would poten-

tially disrupt A!body binding. Ultimately, six point mutations were selected for both

computational and experimental testing: I54A, Q66D, V68Y, M115A, Y123D, and

R125E. These six amino acid residues were selected based on the following criteria:

two residues where contacts were shared by both orientations (V68Y, M115A), two

residues where contacts were predominantly found in the perpendicular orientation

(Y123D and R125E), forming relevant hydrogen bonds along the trajectory, and two

residues where contacts were predominantly found in the parallel orientation (I54A,

Q66D). Except for the mutations V68Y and M115A, which showed a smaller reduc-

tion of score for both the parallel and perpendicular binding modes, the other four

mutations caused AlphaFold2 to generate only one type of binding mode. Therefore,
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from the computational results, I54A, Q66D, Y123D, and R125E were expected to be

central to the definition of the binding epitope (Fig. 3A,B).

One mutation, in particular, caught our attention due to the position of the amino

acid Q66 (see Fig.3D,E). The mutation Q66 lies on the C’ sheet and has rare contacts

with the A!body in the perpendicular orientation during MD simulations (Fig.3D).

However, it is close enough to eventually form hydrogen bonds with the A!body.

Meanwhile, in the parallel orientation, this residue is surrounded by many other amino

acids, forming contacts with at least three of them, as shown in Fig. 3E). We then

investigated the impact of Q66 mutations in more detail. A computational mutational

scanning analysis at position 66 showed that the original amino acid Gln (Q) favored

binding, while positively charged amino acids such as Arg (R) and His (H) were the

most detrimental (Fig. 3C). Interestingly, Ile (I) and Val (V), which are hydrophobic

amino acids, also impaired binding according to AlphaFold2.

These PD-L1 variants were recombinantly produced and their binding a!nities were

evaluated using native poly(acrylamide) gel electrophoresis and single bead-based cy-

tometry (Fig.4A, S5, S6). The results indicated moderate binding loss for I54A, Q66D,

and M115A, and minimal change for R125E, suggesting the binding epitope is located

on the GFCC’ face of the IgV-like domain (Fig.4D). Notably, Y123D’s complete loss

of binding suggested the perpendicular binding mode compared to V68Y with mod-

erate a!nity loss. Comparing the AlphaFold2 scores with the binding a!nity data

(Fig.3A,B vs. Fig.4A, Fig. S6) revealed that while AlphaFold2 e”ectively captured

major a!nity di”erences, it was less e”ective in detecting subtle variations. The ob-

served reduction in binding a!nity caused by the Q66D mutation also supported the

perpendicular mode. As discussed previously, according to our MD simulations, mu-

tations at position Q66 could impact the perpendicular mode but are expected to be

more detrimental to the parallel mode.

Site-directed mutagenesis and a!nity measurements indicated that the perpendicu-

lar binding mode was more likely to be the correct binding mode. However, the goal of

this study is to confirm the computational results with maximum confidence. Since the
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site-directed mutagenesis results did not fully align with the AlphaFold2 predictions,

we considered them insu!cient to definitively distinguish between the perpendicu-

lar and parallel binding modes. Therefore, we turned to crosslinking-coupled mass

spectrometry (XL-MS), which identifies the epitope by determining the proximity of

cross-linkable amino acid side chains within the complex. This technique involved ex-

posing a sample of the bound PD-L1 complex to a mass-labeled crosslinker, followed

by enzymatic fragmentation and MS/MS analysis to locate cross-linking sites. This

approach revealed both the epitope and the binding orientation.

The XL-MS analysis revealed ten di”erent proximity-dependent crosslinks between

the A!body and PD-L1, distributed across six PD-L1 amino acids: H69, Y81, K105,

Y112, R113, and Y123. These residues form a triangular shape on the GFCC’ face

of the IgV-like domain (Fig.4E; Blue). The amino acids within this triangle, includ-

ing I54, Y56, E58, D61, and others, were therefore implicated as being part of the

binding epitope by XL-MS, however again XL-MS alone was not capable of completely

excluding either parallel or perpendicular modes.

To provide even higher resolution for experimental epitope mapping, we next turned

to deep mutational scanning (DMS) with next-generation sequencing (NGS) by yeast

display. This o”ered a high-throughput approach to epitope mapping and involved dis-

playing a mutated PD-L1 variant library on the surface of yeast cells, and quantifying

both PD-L1 variant expression level and A!body binding strength using fluorescent ac-

tivated single cell sorting (FACS)/flow cytometry coupled with high-throughput DNA

sequencing. The PD-L1 variant library contained all possible single amino acid sub-

stitutions within the PD-L1 sequence constructed as a scanning one codon-one amino

acid library (Fig. S7, S8). The FACS gating strategy is shown in (Fig.4B). Sorting

and deep-sequencing yeasts displaying PD-L1 variants that were highly expressed but

which exhibited reduced or no A!body binding activity (Fig.4B, regions P1 and P2)

allowed us to identify the binding epitope with high resolution. The Illumina sequenc-

ing read counts of sorted PD-L1 variants were visualized as a heatmap (Fig.4C) and

included several surface-exposed residues along with others within the ε-sandwich of
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the IgV-like domain, potentially destabilizing PD-L1’s structure (Fig. S9, S10). The

binding epitope identified by DMS covering all possible single mutations, showed higher

precision compared to the other methods (Fig.4F).

When we compared the computationally suggested perpendicular and parallel modes

with the DMS data, both on the primary protein sequence of PD-L1 and its crys-

tal structure with PD-156 (Fig.4G-H), the implicated residue positions validated the

perpendicular binding mode, characterized by more significant involvement of the G

ε-strand and less of the BC loop, CC’ loop, C ε-strand, and C’ ε-strand. Our findings

for the experimental validation of binding epitope and orientation are summarized in

Figure 4I. Furthermore, in Fig. 4, we compared the binding epitopes determined by

deep mutational scanning (DMS) and next-generation sequencing (NGS) to those sug-

gested by AlphaFold2 and our correlation analysis. The results demonstrated a high

degree of similarity between the experimental and computational methods.

Discussion

Alternative binding sca”olds such as A!bodies are being explored for anti-(PD-L1)

therapies. In order to elicit an e”ective immune response, A!body binding must target

the correct epitope on PD-L1, therefore correctly identifying binding epitopes and

providing high resolution methods to compare subtle di”erences in modes of binding

for di”erent binders is crucial. Computational methods o”er significant potential in

this regard, but frequently they provide ambiguous results.

Here we introduced a methodology combining computational techniques and ex-

perimental validation to predict and analyze the structure and interactions of a PD-

L1:A!body complex. Through an integrated approach utilizing AlphaFold2, network

analysis of molecular dynamics simulations, and deep mutational scanning we were

able to understand and validate the critical interaction regions of a high a!nity PD-

L1:A!body complex.

Our findings indicated that AlphaFold2 Multimer, ClusPro, and ZDock yield anal-
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ogous results, and suggested two potential binding modes referred to as parallel and

perpendicular (Fig. 2B,C). We subjected the structures of both modes to MD simu-

lations and used Dynamic Network Analysis of the trajectories to discover that the

perpendicular mode exhibited higher stability (Fig. 2F, Fig. S2). Notably, traditional

MD trajectory analyses such as RMSD and MM-PBSA struggled to distinguish the

binding di”erences between the two modes (Fig. 2D,E). The advantage of the network

analysis lies in its foundation on the generalized correlation of atomic motions, making

it more adept than standard chemical descriptors in predicting interface interactions.57

While conducting in silico targeted mutations for epitope mapping, we observed

that AlphaFold2 adeptly captured experimentally measured trends in a!nity of mu-

tants versus the WT, but failed with small a!nity variations (Fig. 3A,B, Fig.S6). These

results highlight the important role MD simulations can play in successfully refining

the AlphaFold2 predictions and elevating the perpendicular binding mode as the most

probable predicted mode. Further experimental validation by high-resolution cross-

linking mass spectrometry and deep mutational scanning confirmed the perpendicular

mode as the accurate binding conformation (Fig. 4). Notably, using just AlphaFold2

scoring, less favorable structural conformations, such as the parallel binding mode, still

garnered relatively high prediction scores.

During the review process of this work, AlphaFold351 was released as a web server,

promising significant improvements in prediction accuracy. As shown in Fig.2B, we

explored its capabilities and found that AlphaFold3 predicted only an ensemble of

conformations around the parallel orientation. This prediction conflicted with our

molecular dynamics-based results and did not align with the experimental validation

presented here. Given this discrepancy, we limited the use of AlphaFold3 to this initial

search of conformations presented in Fig.2B and did not use these structures for further

refinement using molecular dynamics simulations. We also did not employ AlphaFold3

for the mutational scanning presented in Fig. 3. We believe that AlphaFold3 predictions

in our comparison would not contribute substantively to the findings presented in this

study and could actually be misleading. Instead, we have focused on validating our
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experimental results with orthogonal techniques and believe they provide a robust basis

for the conclusions drawn.

As discussed in this work, various experimental methods for binding epitope deter-

mination exist, but they are typically low throughput and cost-intensive. Our approach

demonstrates the e!cacy of combining AlphaFold2 with MD simulations and Dynamic

Network Analysis to characterize binding interfaces e!ciently. The throughput of this

computational methodology is generally higher than experimental approaches, though

it varies based on system preparation, MD simulation time, and computational re-

sources. For example, the PD-L1 system can be analyzed using AlphaFold Multimer 2.3

in under 3 hours per run on Nvidia DGX-A100 hardware. Concurrent execution of dif-

ferent mutations enhances throughput, allowing deep mutational scanning within the

same 3-hour timeframe. MD simulations require careful setup and equilibration, but a

100-nanosecond simulation on modern graphical processing units (GPUs), such as the

Nvidia H100, takes less than 5 hours, compared to 15 hours on older GPUs (Nvidia

V100). Larger systems with more complex interactions may require more extensive

computational resources and time. This highlights the impact of hardware advance-

ments on improving throughput.

The low throughput in this work was primarily due to the experimental techniques

used for validation. Our goal was to employ advanced experimental methods to val-

idate our computational methodology, which involved complex and time-consuming

techniques. However, our approach can be adapted to require less experimental vali-

dation — as discussed, the binding a!nities analyzed by flow cytometry were mostly

su!cient — or to use advanced experiments in combination with simulations for a

feedback loop between computational and experimental work. For instance, the results

presented in Fig. 4 could serve as constraints in the simulations, providing a more ac-

curate depiction of the interface. This iterative approach could potentially aid in the

development of better binders.

In summary, our approach demonstrates the e!cacy of combining AlphaFold2 with

MD simulations and Dynamic Network Analysis in characterizing binding interfaces.
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The PD-L1:A!body complex serves as an illustrative case study, especially considering

the multitude of binding regions identified for PD-L1 binders (Fig. 2A). Our compu-

tational approach proved robust and was corroborated by an array of experimental

techniques. The methodology holds promise for exploring other bimolecular interac-

tions, as it can be easily implemented for other binding interfaces. Moreover, within

cancer therapeutics, our technique marks a significant step towards correct epitope

targeting for the design of enhanced cancer treatments.

Methods

In summary, here we employed AlphaFold2 Multimer30,31 to predict the structure of

the PD-L1:A!body complex. To investigate the most probable conformation from

the AlphaFold2 predictions, we prepared molecular dynamics (MD) simulations using

QwikMD46 and carried them out using the GPU-resident version of NAMD 3.0.47

Metrics including RMSD, MM-PBSA, and Dynamic Network Analysis48 were applied

to evaluate the stability of the A!body:PD-L1 complex structure.

To further confirm the correct conformation, we once more employed AlphaFold2

Multimer for a in silico mutational scanning. For native PAGE, bead-based cytometry

and XL-MS analysis, we produced A!body and PD-L1 variants in E. coli. For DMS,

a scanning NNK codon library covering the entire length of PD-L1 was displayed in

EBY100 yeast through an Aga2p anchor system. NGS was carried out using paired

end 300 bp reads on an Illumina NextSeq2000.

A detailed exploration of the methodologies is presented below.

PD-L1:A!body AlphaFold models

The aminoacid sequences for the mature domain of PD-L1 (UniProt Q9NZQ7, 18-234)

and the A!body58 (1-60) were used as a single FASTA input. The models for the

PD-L1:A!body complex were predicted using AlphaFold-Multimer30,31 version 2.3.2,

using all 5 available v3 multimer parameter sets, to generate 5 models each, resulting
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in a total of 25 predictions per sequence pair. The QwikFold VMD’s54 plugin was

used to set the experiments and post-process the results, and calculations were run

using the Cybershuttle59 Research Environment deployed at the SDSC Expanse60 su-

percomputer. QwikFold was used to align the models for visual inspection, addressing

per-residue confidence as measured by pLDDT.61 The predicted aligned error (PAE)

matrices were additionally inspected to assess the confidence in the relative position

and orientation of the two major binding conformations: perpendicular or parallel.

Using AlphaFold for epitope mapping

For in silico mutagenesis aimed at epitope mapping the PD-L1:A!body complex by

mutating the PD-L1 sequence, the selected mutations I54A, V68Y, M115A, Y123D,

R125E were used following the same procedure as above. Position Q66 was further

scanned for all the twenty common amino acids. The iptm+ptm score for the best

ranking model for the perpendicular orientation was plotted as bar graph (Fig. 3A-

B) The predicted template modelling (pTM)30 score and the interface predicted tem-

plate modelling (ipTM)31 score are extensions of the template modelling (TM)62 score,

which evaluates the accuracy of a protein’s global structure, minimizing the impact of

localized inaccuracies.63 Both provide valuable insights, the ipTM score is particularly

useful for evaluating the relative positions of subunits within a complex. High ipTM

scores generally correlate with accurate predictions of the entire complex. The pTM

score estimates how accurately AlphaFold-Multimer predicts the overall structure of

a protein complex. It is calculated by comparing the predicted structure with the

hypothetical true structure. A pTM score above 0.5 indicates that the predicted fold

might resemble the true structure, whereas a score below 0.5 suggests that the pre-

dicted structure is likely incorrect. On the other hand, the ipTM score focuses on the

accuracy of the predicted relative positions of the subunits within the protein complex.

This metric is crucial for assessing the interactions between proteins in a complex. An

ipTM score above 0.8 signifies a confident, high-quality prediction, while a score below

0.6 indicates a likely failed prediction. Scores between 0.6 and 0.8 fall into a grey zone
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where predictions might be accurate or erroneous.64

Molecular Dynamics Simulations

The perpendicular and parallel AlphaFold2 predicted models for the PD-L1 complex,

with PD-L1 trimmed to its IgV domain (residues 18-115), were subjected to refine-

ment and conformational sampling by molecular dynamics (MD) simulations following

standard protocols.46 The CHARMM36 force field65,66 and TIP3P water model67 were

used for all systems, with sodium ions as counter-ions randomly arranged in the sol-

vent. Each system comprised approximately 40,000 atoms. All MD simulations were

performed using the GPU-accelerated NAMD 3 package,47 assuming periodic bound-

ary conditions in the NpT ensemble. Temperature was maintained at 300 K using

Langevin dynamics, and pressure was kept at 1 bar using the Langevin piston method.

A cut-o” distance of 12.0 Åwas applied to short-range, non-bonded interactions, and

long-range electrostatic interactions were treated using the particle-mesh Ewald (PME)

method.68 The equations of motion were integrated using the r-RESPA multiple time

step scheme,69 updating Lennard-Jones interactions every step and electrostatic inter-

actions every two steps, with a time step of 2 fs for all simulations. The first 2 ns of

each simulation were used for system equilibration, followed by 100 ns production runs

performed in 16 replicas.

Molecular Dynamics Simulations Analysis

All analyses of MD trajectories were carried out employing VMD,54 its plugins and

TCL scripts,70 unless stated di”erently. Analysis outputs were post-processed to

generate graphs using Python371 libraries, including Matplotlib,72 Pandas,73,74 and

Seaborn,75 unless stated di”erently. Contacts were calculated using PyContact76 us-

ing a protocol adapted from previous work.77,78
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Binding A!nity Prediction

MM-PBSA is a computationally e!cient method for estimating the binding free en-

ergy (#Gbind) of protein-protein complexes.79–81 Here, to characterize PD-L1:A!body

coupling, we performed the e”ective free energy (#Ge”, neglecting the configurational

entropic contribution) binding a!nity prediction by MM-PBSA using the CaFE plu-

gin.82 Molecular Mechanics (MM) was computed with NAMD3,47 Solvent accessible

area with VMD,54 and Poisson-Boltzmann term was computed with APBS.83

Dynamic Network Analysis

The dynamical network analysis python package48 was used to extract correlations of

motion from PD-L1:A!body simulations. A network was defined as a set of nodes, all

Cω, with connecting edges.84 Edges connect pairs of nodes if corresponding monomers

are in contact, and 2 nonconsecutive monomers are said to be in contact if they fulfill

a proximity criterion, namely any heavy atoms (non-hydrogen) from the 2 monomers

are within 4.5Å of each other for at least 75% of the frames analyzed.85 Following

previously defined protocols, the dynamical networks were constructed from 20 ns

windows of the total trajectories sampled every 200 ps.86–88

Cluster analysis

Clustering analysis was performed using the unsupervised k-means algorithm as im-

plemented in CPPTRAJ,89 with the parameters “randompoint maxit” set to 500 and

“sieving” set to 10. The distance metric utilized for clustering was the RMSD of the

complex C, N, O, Cω and Cε atoms, and the clustering process concluded when the

number of clusters reached 5. The analysis was applied to the last quarter of each of

the 16 replica trajectories for each orientation (perpendicular and parallel), after fitting

to the complex backbone, excluding the 5 residues from both A!body’s termini.
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Native contacts for PDB structures

To reveal insights into the PD-L1:A!body complex assembly we performed an analysis

of PD-L1 (UniProt Q9NZQ7) structures found in the Protein Data Bank (PDB), with

interactions with other proteins.76 The native contacts identified after superposition of

available structures, with contacts defined by amino acid residues within a 4Å radius of

the PD-L1. Residues with contacts are highlighted in Fig.2. The structures considered

were: 3BIK, 3FN3, 3SBW, 4Z18, 4ZQK, 5GGT, 5GRJ, 5IUS, 5J89, 5J8O, 5JDR,

5JDS, 5N2D, 5N2F, 5NIU, 5O45, 5O4Y, 5X8L, 5X8M, 5XXY, 6NM7, 6NM8, 6NNV,

6NOJ, 6NOS, 6PV9, 6R3K, 6RPG, 6VQN, 6YCR, 7BEA, 7C88, 7CZD, 7DY7, 7NLD,

7OUN, 7SJQ, 7TPS.

Plasmids available on addgene:

Addgene plasmid #157674: pET28a-ybbR-His-ELP(MV7E2)3-FLN-SpyCatcher.

Cloning of PD-L1-HIS and PD-L1-HIS-SpyTag

The DNA sequence of the extracellular domain of human PD-L1 was chemically syn-

thesized with optimal codons for production in E. coli (GeneArt, Thermo Fisher Sci-

entific) and introduced into a pET28a vector via NdeI and XhoI restriction sites to

generating a new vector pET28a-PD-L1-HIS. The plasmid contents were confirmed by

further Sanger DNA sequencing analysis. A SpyTag was further introduced at the C-

terminus of PD-L1 by PCR using primers #1 and #2 (Table S2) based on the plasmid

pET28a-PD-L1-HIS and following Gibson assembly with master mix (NEB) generating

a new vector pET28a-PD-L1-ECD-HIS-SpyTag, which was confirmed by further DNA

sequencing analysis.

Cloning of PD-L1-HIS-SpyTag Mutants

For the mutational analysis, six point-mutations (I54A, Q66D, V68Y, M115A, Y123D

and R125E) were designed and incorporated by site directed mutagenesis using the
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Q5® Site-Directed Mutagenesis kit (NEB) with primers #3 and #4 for I54A, #5

and #6 for Q66D, #6 and #7 for V68Y, #8 and #9 for M115A, #10 and #11 for

Y123D, and #11 and #12 for R125E (Table S2), generating new plasmids pET28-

PD-L1-SpyTag-I54A, -Q66D, -V68Y, -M115A, -Y123D and -R125E, which was

confirmed by further DNA sequencing analysis.

Expression, Refolding, and Purification of PD-L1 Variants

The plasmid with the sequence of the PD-L1 variant was introduced into competent E.

coli BL21(DE3) strain. Recombinant cells were cultured in 5 ml of Luria-Bertani (LB)

medium with 50 µg ml→1 kanamycin at 37 °C overnight. The culture was transferred to

50 mL of Terrific broth (TB) medium with 50 µg ml→1 kanamycin and cultivated at 37

°C and 200 rpm until an optical density at 600 nm (OD600) of 0.8-1.0 was reached. The

expression of recombinant protein was induced by the addition of 1.0 mM isopropyl-ε-

D-thio-galactopyranoside (IPTG) and the culture was further incubated at 37 °C and

200 rpm for 9 hrs. The cells were harvested by centrifugation at 4,000 g for 20 min

at 4 °C. The harvested cell pellet was resuspended in a denaturing lysis bu”er (10 mM

Tris-Cl, and 8M urea; pH 8). Resuspended cells were placed on ice and disrupted for 15

min using a sonic dismembrator using a 3 s on: 5 s o” pattern to allow cooling between

each pulse. The lysate was centrifuged at 14,000 g for 20 min at 4 °C. The supernatant

was collected and incubated with Ni-NTA resin for 30 min at room temperature to

allow the His6-tagged proteins to bind to the Ni-NTA resin. Then, the mixture was

loaded onto a column. The resin was washed with 10–20 resin volumes of wash bu”er

(20 mM imidazole, 10 mM Tris-Cl, and 8M urea; pH 8). Recombinant proteins were

eluted in the elution bu”er (500 mM imidazole, 10 mM Tris-Cl, and 8M urea; pH 8).

The eluted protein solution was serially dialyzed to 8 M, 4 M, 2 M, and 0 M Urea with

5% glycerol, 5% sucrose, 1% arginine, 0.5 mM NaCl in 20 mM Tris-Cl (pH 7.4), and

finally to 1x PBS bu”er. Precipitation during dialysis was removed by centrifugation

at 14,000 g for 20 min at 4 °C and supernatant was further purified by SEC column.
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Cloning of AFF-HIS and ybbR-HIS-ELP-FLN-Anti-PD-

L1-AFF (L-AFF)

DNA sequence of Anti-PD-L1 A!body (AFF) was chemically synthesized based on

the codon usage of E. coli (GeneArt, Thermo Fisher Scientific) and introduced into

pET28a vector via NdeI and XhoI restriction sites generating a new vector pET28a-

Anti-PD-L1-AFF-HIS (for preparation of AFF-HIS), which was confirmed by further

DNA sequencing analysis. To immobilize AFF on the PS beads for flow cytometry

analysis, ybbR tag and linker was introduced at the N-terminus of AFF (for preparation

of L-AFF) by PCR using primers #13 and #14 based on the plasmid pET28a-Anti-PD-

L1-AFF-HIS and using primers #15 and #16 based on the plasmid #157674 (Addgene)

(Table S2). Two PCR products were assembled into a new vector pET28a-ybbR-HIS-

ELP-FLN-Anti-PD-L1-AFF by Gibson assembly with master mix (NEB), which was

confirmed by further DNA sequencing analysis.

Expression and Purification of AFF-His and L-AFF

The plasmid with the sequence of AFF-His or L-AFF was introduced into competent E.

coli BL21(DE3) strain. Recombinant cells were cultured in 5 ml of Luria-Bertani (LB)

medium with 50 µg ml→1 kanamycin at 37 °C overnight. The culture was transferred

to 50 mL of Terrific broth (TB) medium with 50 µg ml→1 kanamycin and cultivated at

37 °C and 200 rpm until an optical density at 600 nm (OD600) of 0.8-1.0 was reached.

The expression of recombinant protein was induced by the addition of 0.5 mM IPTG

and the culture was further incubated at 20 °C and 200 rpm for 9 hrs. The cells were

harvested by centrifugation at 4,000 g for 20 min at 4 °C. The cells were harvested by

centrifugation at 4,000 g for 20 min at 4 °C. The harvested cell pellet was resuspended

in lysis bu”er (50 mM Tris, 50 mM NaCl, 0.1% Triton X-100, 5 mM MgCl2; pH 8.0),

and disrupted with a sonic dismembrator. The lysate was centrifuged at 14,000 g for 20

min at 4 °C. The supernatant was collected and incubated with Ni-NTA resin, loaded

onto a column, washed with wash bu”er (1x PBS with 20 mM imidazole; pH 7.4), and
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eluted in elution bu”er (1x PBS with 500 mM imidazole; pH 7.4). The eluted protein

solution was further purified by SEC column.

Native-PAGE Analysis

Binding behavior between AFF and PD-L1 mutants (WT, I54A, Q66D, V68Y, M115A,

Y123D and R125E) were screened by Native-PAGE. 5 µL of 10 µM L-AFF was mixed

with 5 µL of each 10 µM PD-L1 mutants, incubated several hours at RT, and then

total solution was run in Native-PAGE. Protein bands were visualized by Coomassie

staining. Bound and unbound fraction of PD-L1 were calculated based on the intensity

of stained protein bands.

Flow Cytometry Analysis

The binding a!nity between Anti-(PD-L1)-AFF and PD-L1 mutants was analyzed us-

ing the Attune NxT (Thermo Fisher Scientific) flow cytometer equipped with a 488 nm

and a 561 nm laser. L-AFF was immobilized onto the surface of amine-functionalized

PS beads via ybbR Tag. The amine groups reacted to a NHS group from sulfos-

uccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC; Thermo

Fischer Scientific) in 50 mM HEPES bu”er pH 7.5 for 30 min. The thiol group from

Coenzyme A (CoA, 200 µM) reacted to a maleimide group from sulfo-SMCC in cou-

pling bu”er (50 mM sodium phosphate, 50 mM NaCl, 10 mM EDTA, pH 7.2) for 2

hrs. Finally, the ybbR-tagged protein L-AFF was immobilized onto the surface using

SFP-mediated ligation to CoA in Mg2+ supplemented 1x PBS bu”er. This resulted in

covalent immobilization of AFF to PS beads. Protein-immobilized beads were exten-

sively washed and kept in 1x PBS bu”er prior to immediate use. GFP-labeled PD-L1

mutants were prepared by conjugating SpyTag of PD-L1 mutants to GFP-SpyCatcher.

L-AFF immobilized beads were incubated in GFP-labeled PD-L1 mutants’ solution

with di”erent concentrations ranging from 0.008 nM to 625 nM for 1-2 hrs at RT.

After washing, shift of fluorescence from GFP was recorded and plotted against the
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concentration of PD-L1 mutants to derive the dissociation constant between PD-L1

mutants and L-AFF.

XL-MS Epitope Mapping

The conformational epitope mapping for PD-L1 and Anti-PD-L1-AFF was performed

by chemical cross-linking and high-resolution mass spectrometry (XL-MS; CovalX,

Switzerland). 10 µL of PD-L1 (6 µM) was mixed with 10 µL of AFF (6 µM) to

obtain PD-L1/AFF mix with a final concentration of 3 µM. Then, 2 µL of deuter-

ated cross-linker disuccinimidyl suberate (DSS d0/d12, 2 mg/mL in DMF) was added

to the protein mixture and the solution was incubated for 180 min at RT to com-

plete the cross-linking reaction. After cross-linking the reaction was stopped with 20

mM ammonium bicarbonate, the samples were submitted to reduction, alkylation, and

proteolysis with five di”erent enzymes (trypsin, chymotrypsin, ASP-N, elastase, and

thermolysin). After enrichment of the cross-linked peptides, the samples were ana-

lyzed by high-resolution mass spectrometry (nLC-Q-Exactive Orbitrap MS). The NHS

groups of DSS reacts only with positively charged amino groups or hydroxyl groups

including Arg, His, Lys, Ser, Thr, and Tyr. Specific amino acid residues that were

cross-linked were identified by tandem MS/MS analysis. Based on these cross-linked

amino acids and the crystal structure of PD-L1, possible binding epitope was proposed.

Cloning for Yeast Surface Display of PD-L1

For the mutational analysis, PD-L1 sequence was amplified by PCR using primers

#17 and #18 (Table S2) based on the plasmid pET28a-PD-L1-ECD-HIS and intro-

duced via NheI and BamHI restriction site into the yeast plasmid pYD1 for surface

display (Addgene plasmid #73447) generating a new vector pCHA-HA-PD-L1-ECD-

HIS-Xpress-Aga2p, which was confirmed by further DNA sequencing analysis.
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Site-Saturation PD-L1 Libraries

Sequence of PD-L1-ECD was divided into two regions; IgV-like domain (F19 to A132;

114 aa) and IgC-like domain (P133 to R238; 106 aa). Site-saturation mutagenesis

libraries spanning all 114 positions for IgV-like domain (Library A) and for all 106

positions for IgC-like domain (Library B) encoding all the 19 possible amino acid mu-

tations were produced by Twist Bioscience. The backbone template was prepared by

digestion of plasmid pCHA-HA-PD-L1-ECD-HIS-Xpress-Aga2p with NheI and BamHI.

After agarose gel electrophoresis, purified backbone template was mixed with each of

synthesized PD-L1 Library A and B with a ratio of 1:10. Then, the mixture was

directly transformed into Saccharomyces cerevisiae EBY100 following a typical lithium

acetate transformation procedure for introducing site=saturation mutagenesis library

into backbone template via endogenous homologous recombination. Right after trans-

formation, serial dilutions were plated on synthetic defined (SD) agar 2% (w/v) glucose

plates lacking tryptophan (-Trp) to count the number of transformants. Remaining

transformation reaction solution was further grown in liquid SD glucose -Trp medium

for 48 h at 30 °C with continuous shaking at 200 rpm. Then, cultured yeast library was

harvested, prepared as 50% glycerol stock and stored at -80 °C for further analysis.

Yeast Surface Display

Saccharomyces cerevisiae EBY100 transformants harboring the plasmid pCHA-HA-

PD-L1-ECD-HIS-Xpress-Aga2p or PD-L1 yeast library A and B were cultivated in

SD-TRP liquid medium with 2% glucose for 24 h at 30 °C with continuous shaking

at 200 rpm. Protein expression and protein display were then induced by transferring

the culture to a fresh pH-bu”ered liquid medium (0.1 M Potassium phosphate pH 7.0)

lacking tryptophan containing 0.2% (w/v) glucose and 1.8% (w/v) galactose and by

shaking for 24 h at 30 °C.
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Cell Sorting with Dual Labelling

PD-L1 libraries are displayed with N-terminal HA tag. Therefore, the expression of

PD-L1 was labelled via HA-tag and the binding of AFF-HIS was labelled via HIS-tag.

Yeast cells displaying the PD-L1 libraries were incubated with 4 nM of AFF-HIS in

1x PBS containing 0.1% BSA for > 1 h at RT with shaking. After washing with 1x

PBS containing 0.1% BSA, cells were incubated with a mixture of primary antibodies,

HA tag recombinant rabbit monoclonal antibody (RM305; Thermo) and 6x-His tag

monoclonal antibody (HIS.H8; Sigma) in 1x PBS containing 0.1% BSA for 1 h at RT.

After washing, cells were further incubated with a mixture of secondary antibodies,

Goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, alexa Fluor™ 488

(Thermo) and Goat anti-Mouse IgG (H+L) highly cross-adsorbed secondary antibody,

Alexa Fluor™ 594 (Thermo) in 1x PBS containing 0.1% BSA for 1 h on ice. Finally,

dually labelled cells were washed with ice-cold 1x PBS containing 0.1% BSA for further

analysis. Cells were sorted by FACSMelody™ Cell Sorter (BD Bioscience). Cells with

high expression level with decreased or no binding were sorted, transferred to SD -TRP

liquid medium with 2% glucose and 50 µg ml-1 ampicillin, cultivated for 48 h at 30 °C,

harvested, and prepared as 15% glycerol stock and stored at -80 °C for further analysis.

Illumina Sequencing and Data Analysis

Plasmids were extracted from the sorted cells using zymolyase (Zymo Research, Irvine,

USA) and GeneJET Plasmid Miniprep Kit (Thermo Scientific). Regions of the PD-L1

IgV- and IgC-like domain were amplified by the first PCR step and then indexes and

adapters were added for Illumina sequencing by the second PCR step with the primer

sets from IDT for Illumina–DNA/RNA UD Indexes Plate A and NEBNext® Ultra™ II

Q5® Master Mix (NEB). Final products were purified using AMPure XP beads (Beck-

man Coulter) and Illumina sequencing was performed with the Illumina NextSeq2000

for paired end 300 bp (PE 2x 300 bp, 600 cycles) (Functional Genomics Center Zurich).

The following data analyses were performed at sciCORE (http://scicore.unibas.ch/)
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scientific computing center at University of Basel. Briefly, sequencing results from

the paired end were combined after trimming reads presenting a quality under 20 and

translated into amino acid sequences. Each of identical amino acid sequences only

with one mutation (or wild type) were grouped and counted to calculate the ratio in

the sorted population (high expression with low/no binding) compared to the initial

population.
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(78) Seppälä, J.; Bernardi, R. C.; Haataja, T. J.; Hellman, M.; Pentikäinen, O. T.;
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Figures

Figure 1: Overview of PD-L1 cancer targeting and lack of reliability of blind docking. A)
(Left) By binding to PD-1, tumor cells overexpressing PD-L1 are able to inhibit T-cell
activation, thereby avoiding clearance. (Right) Interfering with PD-L1 interactions using
an immune checkpoint inhibitor (e.g., anti-(PD-L1) or anti-(PD-1) antibody) empowers T-
cells to e!ectively eliminate tumor cells. B) Structure of PD-L1 (UniProt: Q9NZQ7) with
its two domains: IgV-like (white) and IgC-like (yellow). C) Cartoon representation of the
3-helix bundle A”body. D) Blind docking predictions for the complex using ClusPro 2.0
server44,90–93 show a diverse set well ranked solutions.
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Figure 2: Results of structural predictions of the PD-L1:A!body complex. A)
Native contacts of PD-L1 complexes found in the PDB highlighted in red B) Comparative
Analysis of PD-L1 and A”body Binding Orientations: Alphafold2 Multimer, Alphafold3
ClusPro, and ZDock Predictions. The top 3 ranked structures from each prediction method
depict the binding orientations of PD-L1 and A”body. Two dominant orientations were
consistent across all predictions: one parallel to the beta sheet and another perpendicular
to it. This highlights the convergence of computational approaches in capturing putative
binding modes of this complex. C) Illustration of the two proposed orientations. D-F)
Boxplots for independent properties obtained from sixteen 100-nanosecond all atom MD
simulation replicates of the parallel and perpendicular orientations. D) A”body RMSD af-
ter fitting to PD-L1. E) Estimation of binding free energy using the Molecular Mechanics
Poisson-Boltzmann Surface Area (MM-PBSA) method. F) Sum of the correlation of inter-
facing residues normalized by the perpendicular average. The combined analysis of these
MD-based metrics strongly supports the perpendicular binding mode between PD-L1 and
A”body as the most probable configuration, underscoring the robustness and consensus of
computational assessment methods. The → indicates a significant di!erence between the per-
pendicular and parallel configurations in the total correlation, as determined by bootstrap
analysis.
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Figure 3: In silico site-specific mutagenesis to find PD-L1 residues involved in each of the
binding modes. A-C) AlphaFold2’s iptm+ptm score for the best ranking model of the
complex. A-B) Screening of selected PD-L1 mutations within the predicted binding interface:
I54A, Q66D, V68Y, M115A, Y123D, and R125E. C) Computational mutational scanning for
PD-L1 at position 66 for the perpendicular mode. D-E) Wild type model for the two major
orientations displaying position of residues selected for mutations. PD-L1 residues are showed
as dark gray sticks while A”body as silver sticks. Q66 is represented as ball-and-stick. For
the perpendicular binding mode the nearest a”body residue to Q66 is N25, while for the
parallel form Q66 is surrounded Y15, L18, and Y19.
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Figure 4: Experimental validation of binding epitope and perpendicular orientation. A) Site-
specific PD-L1 mutagenesis and quantification of relative binding activity by flow cytometry
and Native-PAGE. B) Cell labelling and sorting for strategy for epitope mapping by deep
mutational scanning using a yeast display PD-L1 variant library. C) Heatmap of positions
found among PD-L1 variants with reduced/no binding activity. D-G) Epitope mapping
analysis results mapped onto the crystal structure of PD-L1. Labels are color coded to
match the property analyzed, and indicated along the sequence in I. D) ω-sheet labels.
E) Binding epitope determined by XL-MS analysis (possible epitope in cyan, crosslinked
residues in blue). F) Binding epitope determined by DMS and NGS (red). G) Analysis
of binding orientation for the perpendicular orientation (green) H) Analysis of binding for
the parallel orientation (violet). I) PD-L1 sequence with markings in correponding colors to
figures D-H.
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