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Abstract

Understanding binding epitopes involved in protein-protein interactions and accu-
rately determining their structure is a long standing goal with broad applicability in
industry and biomedicine. Although various experimental methods for binding epitope
determination exist, these approaches are typically low throughput and cost intensive.
Computational methods have potential to accelerate epitope predictions, however, re-
cently developed artificial intelligence (AI)-based methods frequently fail to predict
epitopes of synthetic binding domains with few natural homologs. Here we have devel-

oped an integrated method employing generalized-correlation-based dynamic network



analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2
Multimer structures, to unravel the structure and binding epitope of the therapeutic
PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics tra-
jectory analysis were ineffective in distinguishing between two proposed binding mod-
els, parallel and perpendicular. However, our integrated approach, utilizing dynamic
network analysis, demonstrated that the perpendicular mode was significantly more
stable. These predictions were validated using a suite of experimental epitope mapping
protocols, including cross-linking mass spectrometry and next-generation sequencing-
based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure
bound in the perpendicular pose, highlighting the necessity for exploratory research in
the search for binding epitopes and challenging the notion that Al-generated protein
structures can be accepted without scrutiny. Our research underscores the potential
of employing dynamic network analysis to enhance Al-based structure predictions for

more accurate identification of protein-protein interaction interfaces.

Introduction

Immunotherapies are a potentially transformative class of cancer treatment, with check-
point inhibition emerging as a leading strategy.! The efficacy of these therapies hinges
on achieving precise molecular interactions between a therapeutic biomolecule and the
correct epitope on the checkpoint protein. For Programmed Death receptor Ligand 1
(PD-L1) targeted therapies (Fig. 1A) that have shown efficacy against a range of can-
cers,? ™ anti-PD-L1 antibodies must bind to the extracellular domain of PD-L1 (Fig.
1B, UniProt QINZQ7) in a manner that blocks the native PD-1 ligand binding, effec-
tively disrupting cancer cells’ evasion of the immune response.®” The development of
novel therapeutics thus relies on achieving precise and specific binding to a particular
surface epitope.® This underscores the urgent need for efficient methods to rapidly
and accurately identify binding epitopes of therapeutic biomolecules on the surfaces of

immune checkpoint proteins.



Full-length IgG monoclonal antibodies are a mainstay of cancer immunotherapy,
but many IgG formulations suffer from limitations such as limited tissue penetration,
suboptimal pharmacokinetics, and complex post-translational modifications that must
be optimized during production.® These challenges have spurred research into alterna-
tive protein scaffolds for PD-L1 targeted therapies, including diabody, DARPin, and
affibody scaffolds.'%12 Such non-antibody scaffold proteins can be engineered using
in vitro directed evolution to isolate high affinity binding domains against a range
of molecular targets. 3715 In particular, the highly stable affibody triple a-helix bun-
dle!:17 (Fig. 1C) with a molecular weight of ~6.5 kDa offers a promising alternative
scaffold.

A variety of experimental methods have been employed for epitope mapping of anti-
bodies and non-antibody scaffolds, including X-ray crystallography, NMR, mass spec-
trometry, peptide arrays, and deep mutational scanning-based approaches. 826 While
these methods are highly informative, they can be time-consuming and costly. Com-
putational methods offer a faster and more cost-effective alternative. Tools like AIMS
(Automated Immune Molecule Separator)?” facilitate comprehensive characterization
of TCR-MHC interactions and antibody polyreactivity, providing key biophysical in-
sights into immunology. Studies on the biophysical compatibility in TCR-MHC inter-
actions?® and polyreactivity in antibodies?? have demonstrated how Al-based methods
can enhance our understanding of immune responses and protein interactions.

However, even advanced Al-based protein structure prediction tools such as Al-
phaFold and RoseTTAFold3° 33 have faced challenges in accurately predicting protein-
protein interactions.?* 37 While there are successful cases, such as the model of a PD-
L1/CD80 complex,® large screening studies have shown a low number of highly ac-
curate antibody-antigen complex predictions.3*40 Similarly, traditional computational
methods often fail to accurately identify binding epitopes, sometimes producing am-
biguous results that suggest binding at multiple locations (Fig. 1D).

Here we present a comprehensive methodology for predicting and analyzing the

41,42

structure and interactions of a PD-L1 complex, with a focus on epitope map-



ping. Our approach leverages recent advances in computational biophysics method-
ologies and the power of the latest generation of supercomputers.® Initially, we em-
ploy an integrated computational approach that utilizes AlphaFold, ClusPro,** and
Zdock® for complex structure prediction. These predicted structures are then re-
fined through molecular dynamics simulations performed with QwikMD46 and GPU-
accelerated NAMD. 47 Further insights are obtained through dynamic network anal-
ysis.*® We prioritize computational methods because they are faster and more cost-
effective compared to experimental approaches. While various experimental methods
for binding epitope determination exist, they are typically low throughput and cost-
intensive. By using advanced computational techniques first, we can generate and re-
fine accurate models of the PD-L1 complex, providing a detailed understanding of the
potential interaction interfaces efficiently and economically. These computational pre-
dictions then guide the subsequent experimental validation, making the process more
targeted and effective. Here, experimental validation of our computational models is
conducted using a suite of techniques including site-specific mutagenesis, biochemi-
cal assays, chemical cross-linking mass spectrometry, and next-generation sequencing
(NGS)-based deep mutational scanning (DMS).4? These experimental methods con-
firm the computationally predicted protein-protein interaction interface and identify

specific residues involved in the interactions.

Results

We began by investigating the native PD-1:PD-L1 interaction interface, localized within
the IgV-like domain of PD-L1.°% An exhaustive analysis of bound PD-L1 structures in
the Protein Data Bank (PDB) revealed insights into its interactions with other proteins
and structural nuances of the complex assembly. By analyzing available PDB struc-
tures of PD-L1 bound to other proteins and focusing on amino acid residues within
a 4A radius of the binding interfaces, we found diverse sets of native contacts across

PD-L1’s surface (Fig. 2A). This analysis highlights the complexity in defining the Af-



fibody binding epitope on PD-L1 (Fig. 1D), and shows PD-L1’s promiscuity and the
challenges faced by traditional blind-docking methods.

A potential alternative to traditional blind-docking approaches is provided by Al-
based modeling tools, such as AlphaFold2, specifically its Multimer version.3?:3! In
this study, we carried out a comparative analysis of PD-L1 binding orientations using
three distinct prediction methods: AlphaFold2 Multimer, ClusPro, and ZDock, with
ClusPro and ZDock utilizing existing structural data for binding space constraints and
AlphaFold2 Multimer operating in a ”blind-mode.” Additionally, we used the recently
launched AlphaFold3,%! also operating in this ”blind-mode.” With the exception of
AlphaFold3, the top three predicted structures (see Fig.2B) from each method re-
vealed two main binding orientations for the Affibody: a parallel and a perpendicular
orientation of Affibody relative to PD-L1’s beta sheets (Fig.2C). AlphaFold3 only pre-
sented an ensemble of conformations around the parallel orientation. Although dual

52,53 it is rather an

binding modes have been reported for certain receptor complexes,
exceptional case, and the parallel and perpendicular binding orientations for PD-L1
complexes were considered ostensible. It is important to note that what we describe
here as a parallel or perpendicular mode is actually an ensemble of conformations that
can be clustered into two main groups: one where the beta-sheets of PD-L1 are parallel
to the Affibody alpha-helix, and another where the beta-sheets of PD-L1 are perpen-
dicular to the Affibody alpha-helix, as illustrated in Fig.2C. Hence, our nomenclature
in this article. The results presented in Fig.2B show that the four static computational
methods could not confidently determine the binding epitope on PD-L1, prompting us
to further analyze the structures to determine which orientation is more probable.

To investigate the stability of the two potential PD-L1:Affibody binding orienta-
tions, we next conducted molecular dynamics (MD) simulations using GPU-resident
NAMD 3.0,%” running 16 independent 100 ns replicas for each orientation. Initial
visual assessments of the conformational clusters using VMD?®?* indicated greater sta-

bility in the perpendicular orientation (Fig. S1). For a more rigorous evaluation, we

analyzed the final 25 ns of each trajectory using three methods. Firstly, we measured



the root-mean-square deviation (RMSD) of the Affibody from its initial conformation,
finding similar mean RMSD values for both orientations but with larger fluctuations
in the parallel mode (Fig.2D). Secondly, the Molecular Mechanics Poisson-Boltzmann
Surface Area (MM-PBSA) method was used to calculate binding free energy, yielding
comparable results but greater variability for the parallel orientation (Fig.2E). Lastly,
leveraging a technique developed by our group we employed generalized-correlation-
based Dynamic Network Analysis?® to derive relative binding strengths.®® The results,
displayed in Fig.2F and Fig. S2, reveal the perpendicular mode as notably more stable.
To assess the reliability of the results, a bootstrap analysis with a sample size of 16
was conducted, resampling the data 1,000 times with replacement. The BCa method
was employed to construct 95% confidence intervals for the mean difference between
the perpendicular and parallel configurations. The analysis revealed a significant dif-
ference in the sum of correlations (see Fig. S3). These combined findings suggest
the perpendicular binding conformation as the most probable for the PD-L1:Affibody

interaction.

Experimental Validation of Predicted Epitope

To validate the predicted binding mode, we first used VMD?®* for visual inspection
and AlphaFold2 Multimer scores to identify mutations to PD-L1 that would poten-
tially disrupt Affibody binding. Ultimately, six point mutations were selected for both
computational and experimental testing: I54A, Q66D, V68Y, M115A, Y123D, and
R125E. These six amino acid residues were selected based on the following criteria:
two residues where contacts were shared by both orientations (V68Y, M115A), two
residues where contacts were predominantly found in the perpendicular orientation
(Y123D and R125E), forming relevant hydrogen bonds along the trajectory, and two
residues where contacts were predominantly found in the parallel orientation (I54A,
Q66D). Except for the mutations V68Y and M115A, which showed a smaller reduc-
tion of score for both the parallel and perpendicular binding modes, the other four

mutations caused AlphaFold2 to generate only one type of binding mode. Therefore,



from the computational results, I54A, Q66D, Y123D, and R125E were expected to be
central to the definition of the binding epitope (Fig. 3A,B).

One mutation, in particular, caught our attention due to the position of the amino
acid Q66 (see Fig.3D,E). The mutation Q66 lies on the C’ sheet and has rare contacts
with the Affibody in the perpendicular orientation during MD simulations (Fig.3D).
However, it is close enough to eventually form hydrogen bonds with the Affibody.
Meanwhile, in the parallel orientation, this residue is surrounded by many other amino
acids, forming contacts with at least three of them, as shown in Fig. 3E). We then
investigated the impact of Q66 mutations in more detail. A computational mutational
scanning analysis at position 66 showed that the original amino acid Gln (Q) favored
binding, while positively charged amino acids such as Arg (R) and His (H) were the
most detrimental (Fig. 3C). Interestingly, Ile (I) and Val (V), which are hydrophobic
amino acids, also impaired binding according to AlphaFold2.

These PD-L1 variants were recombinantly produced and their binding affinities were
evaluated using native poly(acrylamide) gel electrophoresis and single bead-based cy-
tometry (Fig.4A, S5, S6). The results indicated moderate binding loss for I54A, Q66D,
and M115A, and minimal change for R125E, suggesting the binding epitope is located
on the GFCC’ face of the IgV-like domain (Fig.4D). Notably, Y123D’s complete loss
of binding suggested the perpendicular binding mode compared to V68Y with mod-
erate affinity loss. Comparing the AlphaFold2 scores with the binding affinity data
(Fig.3A,B vs. Fig.4A, Fig. S6) revealed that while AlphaFold2 effectively captured
major affinity differences, it was less effective in detecting subtle variations. The ob-
served reduction in binding affinity caused by the Q66D mutation also supported the
perpendicular mode. As discussed previously, according to our MD simulations, mu-
tations at position Q66 could impact the perpendicular mode but are expected to be
more detrimental to the parallel mode.

Site-directed mutagenesis and affinity measurements indicated that the perpendicu-
lar binding mode was more likely to be the correct binding mode. However, the goal of

this study is to confirm the computational results with maximum confidence. Since the



site-directed mutagenesis results did not fully align with the AlphaFold2 predictions,
we considered them insufficient to definitively distinguish between the perpendicu-
lar and parallel binding modes. Therefore, we turned to crosslinking-coupled mass
spectrometry (XL-MS), which identifies the epitope by determining the proximity of
cross-linkable amino acid side chains within the complex. This technique involved ex-
posing a sample of the bound PD-L1 complex to a mass-labeled crosslinker, followed
by enzymatic fragmentation and MS/MS analysis to locate cross-linking sites. This
approach revealed both the epitope and the binding orientation.

The XL-MS analysis revealed ten different proximity-dependent crosslinks between
the Affibody and PD-L1, distributed across six PD-L1 amino acids: H69, Y81, K105,
Y112, R113, and Y123. These residues form a triangular shape on the GFCC’ face
of the IgV-like domain (Fig.4E; Blue). The amino acids within this triangle, includ-
ing 154, Y56, E58, D61, and others, were therefore implicated as being part of the
binding epitope by XL-MS, however again XL-MS alone was not capable of completely
excluding either parallel or perpendicular modes.

To provide even higher resolution for experimental epitope mapping, we next turned
to deep mutational scanning (DMS) with next-generation sequencing (NGS) by yeast
display. This offered a high-throughput approach to epitope mapping and involved dis-
playing a mutated PD-L1 variant library on the surface of yeast cells, and quantifying
both PD-L1 variant expression level and Affibody binding strength using fluorescent ac-
tivated single cell sorting (FACS)/flow cytometry coupled with high-throughput DNA
sequencing. The PD-L1 variant library contained all possible single amino acid sub-
stitutions within the PD-L1 sequence constructed as a scanning one codon-one amino
acid library (Fig. S7, S8). The FACS gating strategy is shown in (Fig.4B). Sorting
and deep-sequencing yeasts displaying PD-L1 variants that were highly expressed but
which exhibited reduced or no Affibody binding activity (Fig.4B, regions P1 and P2)
allowed us to identify the binding epitope with high resolution. The Illumina sequenc-
ing read counts of sorted PD-L1 variants were visualized as a heatmap (Fig.4C) and

included several surface-exposed residues along with others within the S-sandwich of



the IgV-like domain, potentially destabilizing PD-L1’s structure (Fig. S9, S10). The
binding epitope identified by DMS covering all possible single mutations, showed higher
precision compared to the other methods (Fig.4F).

When we compared the computationally suggested perpendicular and parallel modes
with the DMS data, both on the primary protein sequence of PD-L1 and its crys-
tal structure with PD-1%0 (Fig.4G-H), the implicated residue positions validated the
perpendicular binding mode, characterized by more significant involvement of the G
[B-strand and less of the BC loop, CC’ loop, C g-strand, and C’ S-strand. Our findings
for the experimental validation of binding epitope and orientation are summarized in
Figure 4I. Furthermore, in Fig. 4, we compared the binding epitopes determined by
deep mutational scanning (DMS) and next-generation sequencing (NGS) to those sug-
gested by AlphaFold2 and our correlation analysis. The results demonstrated a high

degree of similarity between the experimental and computational methods.

Discussion

Alternative binding scaffolds such as Affibodies are being explored for anti-(PD-L1)
therapies. In order to elicit an effective immune response, Affibody binding must target
the correct epitope on PD-L1, therefore correctly identifying binding epitopes and
providing high resolution methods to compare subtle differences in modes of binding
for different binders is crucial. Computational methods offer significant potential in
this regard, but frequently they provide ambiguous results.

Here we introduced a methodology combining computational techniques and ex-
perimental validation to predict and analyze the structure and interactions of a PD-
L1:Affibody complex. Through an integrated approach utilizing AlphaFold2, network
analysis of molecular dynamics simulations, and deep mutational scanning we were
able to understand and validate the critical interaction regions of a high affinity PD-
L1:Affibody complex.

Our findings indicated that AlphaFold2 Multimer, ClusPro, and ZDock yield anal-



ogous results, and suggested two potential binding modes referred to as parallel and
perpendicular (Fig. 2B,C). We subjected the structures of both modes to MD simu-
lations and used Dynamic Network Analysis of the trajectories to discover that the
perpendicular mode exhibited higher stability (Fig. 2F, Fig. S2). Notably, traditional
MD trajectory analyses such as RMSD and MM-PBSA struggled to distinguish the
binding differences between the two modes (Fig. 2D,E). The advantage of the network
analysis lies in its foundation on the generalized correlation of atomic motions, making
it more adept than standard chemical descriptors in predicting interface interactions.?”

While conducting in silico targeted mutations for epitope mapping, we observed
that AlphaFold2 adeptly captured experimentally measured trends in affinity of mu-
tants versus the WT, but failed with small affinity variations (Fig. 3A,B, Fig.S6). These
results highlight the important role MD simulations can play in successfully refining
the AlphaFold2 predictions and elevating the perpendicular binding mode as the most
probable predicted mode. Further experimental validation by high-resolution cross-
linking mass spectrometry and deep mutational scanning confirmed the perpendicular
mode as the accurate binding conformation (Fig. 4). Notably, using just AlphaFold2
scoring, less favorable structural conformations, such as the parallel binding mode, still
garnered relatively high prediction scores.

During the review process of this work, AlphaFold3°! was released as a web server,
promising significant improvements in prediction accuracy. As shown in Fig.2B, we
explored its capabilities and found that AlphaFold3 predicted only an ensemble of
conformations around the parallel orientation. This prediction conflicted with our
molecular dynamics-based results and did not align with the experimental validation
presented here. Given this discrepancy, we limited the use of AlphaFold3 to this initial
search of conformations presented in Fig.2B and did not use these structures for further
refinement using molecular dynamics simulations. We also did not employ AlphaFold3
for the mutational scanning presented in Fig. 3. We believe that AlphaFold3 predictions
in our comparison would not contribute substantively to the findings presented in this

study and could actually be misleading. Instead, we have focused on validating our
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experimental results with orthogonal techniques and believe they provide a robust basis
for the conclusions drawn.

As discussed in this work, various experimental methods for binding epitope deter-
mination exist, but they are typically low throughput and cost-intensive. Our approach
demonstrates the efficacy of combining AlphaFold2 with MD simulations and Dynamic
Network Analysis to characterize binding interfaces efficiently. The throughput of this
computational methodology is generally higher than experimental approaches, though
it varies based on system preparation, MD simulation time, and computational re-
sources. For example, the PD-L1 system can be analyzed using AlphaFold Multimer 2.3
in under 3 hours per run on Nvidia DGX-A100 hardware. Concurrent execution of dif-
ferent mutations enhances throughput, allowing deep mutational scanning within the
same 3-hour timeframe. MD simulations require careful setup and equilibration, but a
100-nanosecond simulation on modern graphical processing units (GPUs), such as the
Nvidia H100, takes less than 5 hours, compared to 15 hours on older GPUs (Nvidia
V100). Larger systems with more complex interactions may require more extensive
computational resources and time. This highlights the impact of hardware advance-
ments on improving throughput.

The low throughput in this work was primarily due to the experimental techniques
used for validation. Our goal was to employ advanced experimental methods to val-
idate our computational methodology, which involved complex and time-consuming
techniques. However, our approach can be adapted to require less experimental vali-
dation — as discussed, the binding affinities analyzed by flow cytometry were mostly
sufficient — or to use advanced experiments in combination with simulations for a
feedback loop between computational and experimental work. For instance, the results
presented in Fig. 4 could serve as constraints in the simulations, providing a more ac-
curate depiction of the interface. This iterative approach could potentially aid in the
development of better binders.

In summary, our approach demonstrates the efficacy of combining AlphaFold2 with

MD simulations and Dynamic Network Analysis in characterizing binding interfaces.
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The PD-L1:Affibody complex serves as an illustrative case study, especially considering
the multitude of binding regions identified for PD-L1 binders (Fig. 2A). Our compu-
tational approach proved robust and was corroborated by an array of experimental
techniques. The methodology holds promise for exploring other bimolecular interac-
tions, as it can be easily implemented for other binding interfaces. Moreover, within
cancer therapeutics, our technique marks a significant step towards correct epitope

targeting for the design of enhanced cancer treatments.

Methods

In summary, here we employed AlphaFold2 Multimer3%3! to predict the structure of
the PD-L1:Affibody complex. To investigate the most probable conformation from
the AlphaFold2 predictions, we prepared molecular dynamics (MD) simulations using
QwikMD?® and carried them out using the GPU-resident version of NAMD 3.0.47
Metrics including RMSD, MM-PBSA, and Dynamic Network Analysis*® were applied
to evaluate the stability of the Affibody:PD-L1 complex structure.

To further confirm the correct conformation, we once more employed AlphaFold2
Multimer for a in silico mutational scanning. For native PAGE, bead-based cytometry
and XL-MS analysis, we produced Affibody and PD-L1 variants in E. coli. For DMS,
a scanning NNK codon library covering the entire length of PD-L1 was displayed in
EBY100 yeast through an Aga2p anchor system. NGS was carried out using paired
end 300 bp reads on an Illumina NextSeq2000.

A detailed exploration of the methodologies is presented below.

PD-L1:Affibody AlphaFold models

The aminoacid sequences for the mature domain of PD-L1 (UniProt QINZQ7, 18-234)
and the Affibody®® (1-60) were used as a single FASTA input. The models for the
PD-L1:Affibody complex were predicted using AlphaFold-Multimer3?3! version 2.3.2,

using all 5 available v3 multimer parameter sets, to generate 5 models each, resulting
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in a total of 25 predictions per sequence pair. The QwikFold VMD’s?* plugin was
used to set the experiments and post-process the results, and calculations were run

using the Cybershuttle® Research Environment deployed at the SDSC Expanse©°

su-
percomputer. QwikFold was used to align the models for visual inspection, addressing
per-residue confidence as measured by pLDDT.%! The predicted aligned error (PAE)

matrices were additionally inspected to assess the confidence in the relative position

and orientation of the two major binding conformations: perpendicular or parallel.

Using AlphaFold for epitope mapping

For in silico mutagenesis aimed at epitope mapping the PD-L1:Affibody complex by
mutating the PD-L1 sequence, the selected mutations [54A;, V68Y, M115A, Y123D,
R125E were used following the same procedure as above. Position Q66 was further
scanned for all the twenty common amino acids. The iptm-+ptm score for the best
ranking model for the perpendicular orientation was plotted as bar graph (Fig. 3A-
B) The predicted template modelling (pTM)3? score and the interface predicted tem-
plate modelling (ipTM)3! score are extensions of the template modelling (TM)%? score,
which evaluates the accuracy of a protein’s global structure, minimizing the impact of
localized inaccuracies. % Both provide valuable insights, the ipTM score is particularly
useful for evaluating the relative positions of subunits within a complex. High ipTM
scores generally correlate with accurate predictions of the entire complex. The pTM
score estimates how accurately AlphaFold-Multimer predicts the overall structure of
a protein complex. It is calculated by comparing the predicted structure with the
hypothetical true structure. A pTM score above 0.5 indicates that the predicted fold
might resemble the true structure, whereas a score below 0.5 suggests that the pre-
dicted structure is likely incorrect. On the other hand, the ipTM score focuses on the
accuracy of the predicted relative positions of the subunits within the protein complex.
This metric is crucial for assessing the interactions between proteins in a complex. An
ipTM score above 0.8 signifies a confident, high-quality prediction, while a score below

0.6 indicates a likely failed prediction. Scores between 0.6 and 0.8 fall into a grey zone
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where predictions might be accurate or erroneous. %

Molecular Dynamics Simulations

The perpendicular and parallel AlphaFold2 predicted models for the PD-L1 complex,
with PD-L1 trimmed to its IgV domain (residues 18-115), were subjected to refine-
ment and conformational sampling by molecular dynamics (MD) simulations following
standard protocols. % The CHARMMS36 force field 566 and TIP3P water model®” were
used for all systems, with sodium ions as counter-ions randomly arranged in the sol-
vent. Each system comprised approximately 40,000 atoms. All MD simulations were
performed using the GPU-accelerated NAMD 3 package,” assuming periodic bound-
ary conditions in the NpT ensemble. Temperature was maintained at 300 K using
Langevin dynamics, and pressure was kept at 1 bar using the Langevin piston method.
A cut-off distance of 12.0 Awas applied to short-range, non-bonded interactions, and
long-range electrostatic interactions were treated using the particle-mesh Ewald (PME)
method. % The equations of motion were integrated using the r-RESPA multiple time
step scheme, % updating Lennard-Jones interactions every step and electrostatic inter-
actions every two steps, with a time step of 2 fs for all simulations. The first 2 ns of
each simulation were used for system equilibration, followed by 100 ns production runs

performed in 16 replicas.

Molecular Dynamics Simulations Analysis

All analyses of MD trajectories were carried out employing VMD,?* its plugins and

TCL scripts,” unless stated differently. Analysis outputs were post-processed to

73,74

generate graphs using Python3”' libraries, including Matplotlib,”? Pandas, and

Seaborn, ”® unless stated differently. Contacts were calculated using PyContact ™ us-

ing a protocol adapted from previous work. "8
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Binding Affinity Prediction

MM-PBSA is a computationally efficient method for estimating the binding free en-
ergy (AGbind) of protein-protein complexes. " 8! Here, to characterize PD-L1:Affibody
coupling, we performed the effective free energy (AGeff, neglecting the configurational
entropic contribution) binding affinity prediction by MM-PBSA using the CaFE plu-
gin.®? Molecular Mechanics (MM) was computed with NAMD3,47 Solvent accessible

area with VMD,%* and Poisson-Boltzmann term was computed with APBS.®3

Dynamic Network Analysis

The dynamical network analysis python package?® was used to extract correlations of
motion from PD-L1:Affibody simulations. A network was defined as a set of nodes, all
Ca, with connecting edges.®* Edges connect pairs of nodes if corresponding monomers
are in contact, and 2 nonconsecutive monomers are said to be in contact if they fulfill
a proximity criterion, namely any heavy atoms (non-hydrogen) from the 2 monomers
are within 4.5A of each other for at least 75% of the frames analyzed.®® Following
previously defined protocols, the dynamical networks were constructed from 20 ns

windows of the total trajectories sampled every 200 ps.86-88

Cluster analysis

Clustering analysis was performed using the unsupervised k-means algorithm as im-
plemented in CPPTRAJ,® with the parameters “randompoint maxit” set to 500 and
“sieving” set to 10. The distance metric utilized for clustering was the RMSD of the
complex C, N, O, Ca and Cf8 atoms, and the clustering process concluded when the
number of clusters reached 5. The analysis was applied to the last quarter of each of
the 16 replica trajectories for each orientation (perpendicular and parallel), after fitting

to the complex backbone, excluding the 5 residues from both Affibody’s termini.
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Native contacts for PDB structures

To reveal insights into the PD-L1:Affibody complex assembly we performed an analysis
of PD-L1 (UniProt QINZQT7) structures found in the Protein Data Bank (PDB), with
interactions with other proteins.”® The native contacts identified after superposition of
available structures, with contacts defined by amino acid residues within a 4A radius of
the PD-L1. Residues with contacts are highlighted in Fig.2. The structures considered
were: 3BIK, 3FN3, 3SBW, 4718, 4Z2QK, 5GGT, 5GRJ, 5IUS, 5J89, 5J80, 5JDR,
5JDS, 5N2D, 5N2F, 5NIU, 5045, 504Y, 5X8L, 5X8M, 5XXY, 6NM7, 6NMS, 6NNV,
6NOJ, 6NOS, 6PV9, 6R3K, 6RPG, 6VQN, 6YCR, 7TBEA, 7C88, 7CZD, 7TDY7, 7TNLD,
7TOUN, 75JQ, 7TPS.

Plasmids available on addgene:

Addgene plasmid #157674: pET28a-ybbR-His-ELP(MV7E2)3-FLN-SpyCatcher.

Cloning of PD-L1-HIS and PD-L1-HIS-SpyTag

The DNA sequence of the extracellular domain of human PD-L1 was chemically syn-
thesized with optimal codons for production in E. coli (GeneArt, Thermo Fisher Sci-
entific) and introduced into a pET28a vector via Ndel and Xhol restriction sites to
generating a new vector pET28a-PD-L1-HIS. The plasmid contents were confirmed by
further Sanger DNA sequencing analysis. A SpyTag was further introduced at the C-
terminus of PD-L1 by PCR using primers #1 and #2 (Table S2) based on the plasmid
pET28a-PD-L1-HIS and following Gibson assembly with master mix (NEB) generating
a new vector pET28a-PD-L1-ECD-HIS-SpyTag, which was confirmed by further DNA

sequencing analysis.

Cloning of PD-L1-HIS-SpyTag Mutants

For the mutational analysis, six point-mutations (I54A, Q66D, V68Y, M115A, Y123D

and R125E) were designed and incorporated by site directed mutagenesis using the

16



Q5@®) Site-Directed Mutagenesis kit (NEB) with primers #3 and #4 for I54A, #5
and #6 for Q66D, #6 and #7 for V68Y, #8 and #9 for M115A, #10 and #11 for
Y123D, and #11 and #12 for R125E (Table S2), generating new plasmids pET28-
PD-L1-SpyTag-I54A, -Q66D, -V68Y, -M115A, -Y123D and -R125E, which was

confirmed by further DNA sequencing analysis.

Expression, Refolding, and Purification of PD-L1 Variants

The plasmid with the sequence of the PD-L1 variant was introduced into competent E.
coli BL21(DE3) strain. Recombinant cells were cultured in 5 ml of Luria-Bertani (LB)
medium with 50 ug ml~! kanamycin at 37 °C overnight. The culture was transferred to
50 mL of Terrific broth (TB) medium with 50 pg ml~! kanamycin and cultivated at 37
°C and 200 rpm until an optical density at 600 nm (OD600) of 0.8-1.0 was reached. The
expression of recombinant protein was induced by the addition of 1.0 mM isopropyl-3-
D-thio-galactopyranoside (IPTG) and the culture was further incubated at 37 °C and
200 rpm for 9 hrs. The cells were harvested by centrifugation at 4,000 g for 20 min
at 4 °C. The harvested cell pellet was resuspended in a denaturing lysis buffer (10 mM
Tris-Cl, and 8M urea; pH 8). Resuspended cells were placed on ice and disrupted for 15
min using a sonic dismembrator using a 3 s on: 5 s off pattern to allow cooling between
each pulse. The lysate was centrifuged at 14,000 g for 20 min at 4 °C. The supernatant
was collected and incubated with Ni-NTA resin for 30 min at room temperature to
allow the His6-tagged proteins to bind to the Ni-NTA resin. Then, the mixture was
loaded onto a column. The resin was washed with 10-20 resin volumes of wash buffer
(20 mM imidazole, 10 mM Tris-Cl, and 8M urea; pH 8). Recombinant proteins were
eluted in the elution buffer (500 mM imidazole, 10 mM Tris-Cl, and 8M urea; pH 8).
The eluted protein solution was serially dialyzed to 8 M, 4 M, 2 M, and 0 M Urea with
5% glycerol, 5% sucrose, 1% arginine, 0.5 mM NaCl in 20 mM Tris-Cl (pH 7.4), and
finally to 1x PBS buffer. Precipitation during dialysis was removed by centrifugation

at 14,000 g for 20 min at 4 °C and supernatant was further purified by SEC column.
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Cloning of AFF-HIS and ybbR-HIS-ELP-FLN-Anti-PD-
L1-AFF (L-AFF)

DNA sequence of Anti-PD-L1 Affibody (AFF) was chemically synthesized based on
the codon usage of E. coli (GeneArt, Thermo Fisher Scientific) and introduced into
pET28a vector via Ndel and Xhol restriction sites generating a new vector pET28a-
Anti-PD-L1-AFF-HIS (for preparation of AFF-HIS), which was confirmed by further
DNA sequencing analysis. To immobilize AFF on the PS beads for flow cytometry
analysis, ybbR tag and linker was introduced at the N-terminus of AFF (for preparation
of L-AFF) by PCR using primers #13 and #14 based on the plasmid pET28a-Anti-PD-
L1-AFF-HIS and using primers #15 and #16 based on the plasmid #157674 (Addgene)
(Table S2). Two PCR products were assembled into a new vector pET28a-ybbR-HIS-
ELP-FLN-Anti-PD-L1-AFF by Gibson assembly with master mix (NEB), which was

confirmed by further DNA sequencing analysis.

Expression and Purification of AFF-His and L-AFF

The plasmid with the sequence of AFF-His or L-AFF was introduced into competent E.
coli BL21(DE3) strain. Recombinant cells were cultured in 5 ml of Luria-Bertani (LB)
medium with 50 pgg ml~! kanamycin at 37 °C overnight. The culture was transferred
to 50 mL of Terrific broth (TB) medium with 50 g ml~! kanamycin and cultivated at
37 °C and 200 rpm until an optical density at 600 nm (OD600) of 0.8-1.0 was reached.
The expression of recombinant protein was induced by the addition of 0.5 mM IPTG
and the culture was further incubated at 20 °C and 200 rpm for 9 hrs. The cells were
harvested by centrifugation at 4,000 g for 20 min at 4 °C. The cells were harvested by
centrifugation at 4,000 g for 20 min at 4 °C. The harvested cell pellet was resuspended
in lysis buffer (50 mM Tris, 50 mM NaCl, 0.1% Triton X-100, 5 mM MgCl2; pH 8.0),
and disrupted with a sonic dismembrator. The lysate was centrifuged at 14,000 g for 20
min at 4 °C. The supernatant was collected and incubated with Ni-NTA resin, loaded

onto a column, washed with wash buffer (1x PBS with 20 mM imidazole; pH 7.4), and
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eluted in elution buffer (1x PBS with 500 mM imidazole; pH 7.4). The eluted protein

solution was further purified by SEC column.

Native-PAGE Analysis

Binding behavior between AFF and PD-L1 mutants (WT, I54A, Q66D, V68Y, M115A,
Y123D and R125E) were screened by Native-PAGE. 5 uL of 10 uM L-AFF was mixed
with 5 pL of each 10 uM PD-L1 mutants, incubated several hours at RT, and then
total solution was run in Native-PAGE. Protein bands were visualized by Coomassie
staining. Bound and unbound fraction of PD-L1 were calculated based on the intensity

of stained protein bands.

Flow Cytometry Analysis

The binding affinity between Anti-(PD-L1)-AFF and PD-L1 mutants was analyzed us-
ing the Attune NxT (Thermo Fisher Scientific) flow cytometer equipped with a 488 nm
and a 561 nm laser. L-AFF was immobilized onto the surface of amine-functionalized
PS beads via ybbR Tag. The amine groups reacted to a NHS group from sulfos-
uccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC; Thermo
Fischer Scientific) in 50 mM HEPES buffer pH 7.5 for 30 min. The thiol group from
Coenzyme A (CoA, 200 uM) reacted to a maleimide group from sulfo-SMCC in cou-
pling buffer (50 mM sodium phosphate, 50 mM NaCl, 10 mM EDTA, pH 7.2) for 2
hrs. Finally, the ybbR-tagged protein L-AFF was immobilized onto the surface using
SFP-mediated ligation to CoA in Mg2+ supplemented 1x PBS buffer. This resulted in
covalent immobilization of AFF to PS beads. Protein-immobilized beads were exten-
sively washed and kept in 1x PBS buffer prior to immediate use. GFP-labeled PD-L1
mutants were prepared by conjugating SpyTag of PD-L1 mutants to GFP-SpyCatcher.
L-AFF immobilized beads were incubated in GFP-labeled PD-L1 mutants’ solution
with different concentrations ranging from 0.008 nM to 625 nM for 1-2 hrs at RT.

After washing, shift of fluorescence from GFP was recorded and plotted against the
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concentration of PD-L1 mutants to derive the dissociation constant between PD-L1

mutants and L-AFF.

XL-MS Epitope Mapping

The conformational epitope mapping for PD-L1 and Anti-PD-L1-AFF was performed
by chemical cross-linking and high-resolution mass spectrometry (XL-MS; CovalX,
Switzerland). 10 pL of PD-L1 (6 puM) was mixed with 10 puL of AFF (6 puM) to
obtain PD-L1/AFF mix with a final concentration of 3 uM. Then, 2 uL of deuter-
ated cross-linker disuccinimidyl suberate (DSS d0/d12, 2 mg/mL in DMF) was added
to the protein mixture and the solution was incubated for 180 min at RT to com-
plete the cross-linking reaction. After cross-linking the reaction was stopped with 20
mM ammonium bicarbonate, the samples were submitted to reduction, alkylation, and
proteolysis with five different enzymes (trypsin, chymotrypsin, ASP-N, elastase, and
thermolysin). After enrichment of the cross-linked peptides, the samples were ana-
lyzed by high-resolution mass spectrometry (nLC-Q-Exactive Orbitrap MS). The NHS
groups of DSS reacts only with positively charged amino groups or hydroxyl groups
including Arg, His, Lys, Ser, Thr, and Tyr. Specific amino acid residues that were
cross-linked were identified by tandem MS/MS analysis. Based on these cross-linked

amino acids and the crystal structure of PD-L1, possible binding epitope was proposed.

Cloning for Yeast Surface Display of PD-L1

For the mutational analysis, PD-L1 sequence was amplified by PCR using primers
#17 and #18 (Table S2) based on the plasmid pET28a-PD-L1-ECD-HIS and intro-
duced via Nhel and BamHI restriction site into the yeast plasmid pYD1 for surface
display (Addgene plasmid #73447) generating a new vector pCHA-HA-PD-L1-ECD-

HIS-Xpress-Aga2p, which was confirmed by further DNA sequencing analysis.
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Site-Saturation PD-L1 Libraries

Sequence of PD-L1-ECD was divided into two regions; IgV-like domain (F19 to A132;
114 aa) and IgC-like domain (P133 to R238; 106 aa). Site-saturation mutagenesis
libraries spanning all 114 positions for IgV-like domain (Library A) and for all 106
positions for IgC-like domain (Library B) encoding all the 19 possible amino acid mu-
tations were produced by Twist Bioscience. The backbone template was prepared by
digestion of plasmid pCHA-HA-PD-L1-ECD-HIS-Xpress-Aga2p with Nhel and BamHI.
After agarose gel electrophoresis, purified backbone template was mixed with each of
synthesized PD-L1 Library A and B with a ratio of 1:10. Then, the mixture was
directly transformed into Saccharomyces cerevisiae EBY 100 following a typical lithium
acetate transformation procedure for introducing site=saturation mutagenesis library
into backbone template via endogenous homologous recombination. Right after trans-
formation, serial dilutions were plated on synthetic defined (SD) agar 2% (w/v) glucose
plates lacking tryptophan (-Trp) to count the number of transformants. Remaining
transformation reaction solution was further grown in liquid SD glucose -Trp medium
for 48 h at 30 °C with continuous shaking at 200 rpm. Then, cultured yeast library was

harvested, prepared as 50% glycerol stock and stored at -80 °C for further analysis.

Yeast Surface Display

Saccharomyces cerevisiae EBY100 transformants harboring the plasmid pCHA-HA-
PD-L1-ECD-HIS-Xpress-Aga2p or PD-L1 yeast library A and B were cultivated in
SD-TRP liquid medium with 2% glucose for 24 h at 30 °C with continuous shaking
at 200 rpm. Protein expression and protein display were then induced by transferring
the culture to a fresh pH-buffered liquid medium (0.1 M Potassium phosphate pH 7.0)
lacking tryptophan containing 0.2% (w/v) glucose and 1.8% (w/v) galactose and by
shaking for 24 h at 30 °C.
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Cell Sorting with Dual Labelling

PD-L1 libraries are displayed with N-terminal HA tag. Therefore, the expression of
PD-L1 was labelled via HA-tag and the binding of AFF-HIS was labelled via HIS-tag.
Yeast cells displaying the PD-L1 libraries were incubated with 4 nM of AFF-HIS in
1x PBS containing 0.1% BSA for > 1 h at RT with shaking. After washing with 1x
PBS containing 0.1% BSA, cells were incubated with a mixture of primary antibodies,
HA tag recombinant rabbit monoclonal antibody (RM305; Thermo) and 6x-His tag
monoclonal antibody (HIS.H8; Sigma) in 1x PBS containing 0.1% BSA for 1 h at RT.
After washing, cells were further incubated with a mixture of secondary antibodies,
Goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, alexa Fluor™ 488
(Thermo) and Goat anti-Mouse IgG (H+L) highly cross-adsorbed secondary antibody,
Alexa Fluor™ 594 (Thermo) in 1x PBS containing 0.1% BSA for 1 h on ice. Finally,
dually labelled cells were washed with ice-cold 1x PBS containing 0.1% BSA for further
analysis. Cells were sorted by FACSMelody™ Cell Sorter (BD Bioscience). Cells with
high expression level with decreased or no binding were sorted, transferred to SD -TRP
liquid medium with 2% glucose and 50 pug ml-1 ampicillin, cultivated for 48 h at 30 °C,

harvested, and prepared as 15% glycerol stock and stored at -80 °C for further analysis.

INlumina Sequencing and Data Analysis

Plasmids were extracted from the sorted cells using zymolyase (Zymo Research, Irvine,
USA) and GeneJET Plasmid Miniprep Kit (Thermo Scientific). Regions of the PD-L1
IgV- and IgC-like domain were amplified by the first PCR step and then indexes and
adapters were added for Illumina sequencing by the second PCR step with the primer
sets from IDT for Illumina-DNA/RNA UD Indexes Plate A and NEBNext@®) Ultra™ II
Q5@®) Master Mix (NEB). Final products were purified using AMPure XP beads (Beck-
man Coulter) and Illumina sequencing was performed with the Illumina NextSeq2000
for paired end 300 bp (PE 2x 300 bp, 600 cycles) (Functional Genomics Center Zurich).

The following data analyses were performed at sciCORE (http://scicore.unibas.ch/)
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scientific computing center at University of Basel. Briefly, sequencing results from
the paired end were combined after trimming reads presenting a quality under 20 and
translated into amino acid sequences. Each of identical amino acid sequences only
with one mutation (or wild type) were grouped and counted to calculate the ratio in
the sorted population (high expression with low/no binding) compared to the initial

population.
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Figure 1: Overview of PD-L1 cancer targeting and lack of reliability of blind docking. A)
(Left) By binding to PD-1, tumor cells overexpressing PD-L1 are able to inhibit T-cell
activation, thereby avoiding clearance. (Right) Interfering with PD-L1 interactions using
an immune checkpoint inhibitor (e.g., anti-(PD-L1) or anti-(PD-1) antibody) empowers T-
cells to effectively eliminate tumor cells. B) Structure of PD-L1 (UniProt: QINZQT) with
its two domains: IgV-like (white) and IgC-like (yellow). C) Cartoon representation of the
3-helix bundle Affibody. D) Blind docking predictions for the complex using ClusPro 2.0
server 19993 show a diverse set well ranked solutions.
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Figure 2: Results of structural predictions of the PD-L1:Affibody complex. A)
Native contacts of PD-L1 complexes found in the PDB highlighted in red B) Comparative
Analysis of PD-L1 and Affibody Binding Orientations: Alphafold2 Multimer, Alphafold3
ClusPro, and ZDock Predictions. The top 3 ranked structures from each prediction method
depict the binding orientations of PD-L1 and Affibody. Two dominant orientations were
consistent across all predictions: one parallel to the beta sheet and another perpendicular
to it. This highlights the convergence of computational approaches in capturing putative
binding modes of this complex. C) Illustration of the two proposed orientations. D-F)
Boxplots for independent properties obtained from sixteen 100-nanosecond all atom MD
simulation replicates of the parallel and perpendicular orientations. D) Affibody RMSD af-
ter fitting to PD-L1. E) Estimation of binding free energy using the Molecular Mechanics
Poisson-Boltzmann Surface Area (MM-PBSA) method. F) Sum of the correlation of inter-
facing residues normalized by the perpendicular average. The combined analysis of these
MD-based metrics strongly supports the perpendicular binding mode between PD-L1 and
Affibody as the most probable configuration, underscoring the robustness and consensus of
computational assessment methods. The * indicates a significant difference between the per-
pendicular and parallel configurations in the total correlation, as determined by bootstrap
analysis.
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Figure 3: In silico site-specific mutagenesis to find PD-L1 residues involved in each of the
binding modes. A-C) AlphaFold2’s iptm+ptm score for the best ranking model of the
complex. A-B) Screening of selected PD-L1 mutations within the predicted binding interface:
I54A, Q66D, V68Y, M115A, Y123D, and R125E. C) Computational mutational scanning for
PD-L1 at position 66 for the perpendicular mode. D-E) Wild type model for the two major
orientations displaying position of residues selected for mutations. PD-L1 residues are showed
as dark gray sticks while Affibody as silver sticks. Q66 is represented as ball-and-stick. For
the perpendicular binding mode the nearest affibody residue to Q66 is N25, while for the
parallel form Q66 is surrounded Y15, L18, and Y19.
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Figure 4: Experimental validation of binding epitope and perpendicular orientation. A) Site-
specific PD-L1 mutagenesis and quantification of relative binding activity by flow cytometry
and Native-PAGE. B) Cell labelling and sorting for strategy for epitope mapping by deep
mutational scanning using a yeast display PD-L1 variant library. C) Heatmap of positions
found among PD-L1 variants with reduced/no binding activity. D-G) Epitope mapping
analysis results mapped onto the crystal structure of PD-L1. Labels are color coded to
match the property analyzed, and indicated along the sequence in I. D) [-sheet labels.
E) Binding epitope determined by XIL-MS analysis (possible epitope in cyan, crosslinked
residues in blue). F) Binding epitope determined by DMS and NGS (red). G) Analysis
of binding orientation for the perpendicular orientation (green) H) Analysis of binding for
the parallel orientation (violet). I) PD-L1 sequence with markings in correponding colors to
figures D-H.
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