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It is well known that estimation of a bivariate cumulative distribution
function of a pair of right censored lifetimes presents challenges unparalleled
to the univariate case where a product-limit Kaplan-Meyer’s methodology
typically yields optimal estimation, and the literature on optimal estimation
of the joint probability density is next to none. The paper, for the first time
in the survival analysis literature, develops the theory and methodology of
sharp minimax and adaptive nonparametric estimation of the joint density
under the mean integrated squared error (MISE) criterion. The theory shows
how an underlying joint density, together with the bivariate distribution of
censoring variables, affect the estimation, and what and how may or may not
be estimated in the presence of censoring. Practical example illustrates the
problem.

1. Introduction. The problem of estimation of the distribution of a random variable
based on direct data is a classical one. For a sample X1, . . . ,Xn from a univariate random
variable X , the empirical cumulative distribution function F̌X(x) := n−1

∑n
l=1 I(Xl ≤ x)

is the classical estimator of the cumulative distribution function FX(x) := P(X ≤ x) =
E{I(X ≤ x)}. Here P(·), E{·} and I(·) are the probability, the expectation and the indicator
function, respectively. Note that the estimator is based on the idea of a sample mean (method
of moments) estimation which yields a bouquet of excellent statistical properties. The beauty
of the sample mean approach is that it is effortlessly extended to the case of a bivariate dis-
tribution. Indeed, if (X1, Y1), . . . , (XnYn) is a sample from a pair (X,Y ), then the empirical
joint cumulative distribution function F̌X,Y (x, y) := n−1

∑n
l=1 I(Xl ≤ x,Yl ≤ y) is again a

good estimator of the joint cumulative distribution function FX,Y (x, y) := P(X ≤ x,Y ≤ y).
Further, either smoothing of empirical distributions or again using a sample mean methodol-
ogy yields efficient estimation of the corresponding univariate fX and bivariate fX,Y den-
sities. In particular, let us recall that if joint density fX,Y of the pair (X,Y ) is mX -fold
differentiable in x and mY -fold differentiable in y, then based on a sample of size n it is
possible to estimate the bivariate density with the MISE (mean integrated squared error) de-
creasing with the optimal rate n−2β/(2β+1) where

(1.1) β :=mXmY /(mX +mY )

is the effective smoothness. More results for direct data may be found in books Efromovich
(1999,2018) and Wasserman (2006).

The situation changes rather dramatically if available observations are right censored. Be-
cause we are interested only in right censoring, in what follows we may simply say censoring
in place of right censoring. For a univariate censoring setting we observe a sample of size
n from a pair (V,∆) := (min(X,C), I(X ≤ C)), and in a bivariate censoring we observe a
sample of size n from a quartet

(1.2) (V,W,∆,Γ) := (min(X,C),min(Y,D), I(X ≤C), I(Y ≤D)).
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Here (C,D) is a pair of continuous random censoring lifetimes, and it is assumed that the
pair is independent of the lifetimes of interest (X,Y ).

There are many examples in survival analysis where bivariate estimation is explored under
censoring. In biomedical research, study subjects from the same cluster (e.g. family or twins)
share common genetic and/or environmental factors. Another example is the time to a dete-
rioration level or the time to reaction of a treatment in pairs of lungs, kidneys, eyes or ears
of humans, or time from initiation of treatment until first response in two successive courses
of a treatment in the same patient. Bivariate data are also recorded when two related diseases
happened in one patient or two recurrence times of a certain disease are encountered. In all
these studies the censoring may arise for a number of reasons including withdraw from the
study, a change of health status or contamination, or by death from a cause unrelated to the
study. In actuarial science an important example is the joint life annuities issued to married
couples who tend to be exposed to similar risks and likely to have the same living habits.
The insurance data is censored and the interest is in estimation of the joint distribution of
future lifetimes. A reliability example for anaerobic treatment of municipal wastewater will
be considered shortly in Section 5.

If we are interested in recovery of the cumulative distribution function FX of a censored
X , the underlying idea of the empirical cumulative distribution function is no longer applica-
ble, and instead a product-limit methodology is used. See the original paper Kaplan and Meier
(1958) and a discussion in books Moore (2016) and Efromovich (2018). Further, there is no
straightforward extension of the univariate product-limit methodology to the bivariate case.
Instead, a number of sophisticated and mathematically involved procedures, ranging from
EM, hazard gradient, partial differential equations and copula to nonparametric MLE and
solving an inhomogeneous Volterra equation via Peano series, have been proposed. The in-
terested reader can find an insightful discussion of this topic in Campbell (1981), Dabrowska
(1988), Oakes (1989), Prentice and Cai (1992), Pruitt (1993), Frees, Carriere and Valdez
(1995), Hougaard (2000), Akritas and Van Kellogom (2003), Collett (2003), Crowder (2012),
Lopez (2012), Li and Ma (2013), Prentice (2016), Prentice and Zhao (2018).

Nonparametric estimation of the joint probability density fX,Y in the presence of censor-
ing is less explored. The nonparametric literature is primarily devoted to differentiation of
known estimators of the cumulative distribution function, and there is no theory which sheds
light on optimal density estimation. See a discussion in Wells and Yeo (1996), Dabrowska,
Duffy and Zhang (1998), Kooperberg (1998), Crowder (2012), Seok, Tian and Wong (2014),
Ghosal and van der Vaart (2017).

The paper extends to censored data the classical sharp minimax theory and methodology of
estimation of a bivariate density under MISE criterion. Let us briefly explain an underlying
idea of the proposed joint density estimator that also sheds light on context of the paper.
The estimator is motivated by a sharp minimax lower bound for the MISE of an oracle-
estimator that knows the survival function S of censoring variables (C,D) and smoothness
of an estimated joint density f . The key oracle’s conclusion is that using only uncensored
pairs, when (V,W ) = (X,Y ), is sufficient for attaining the lower bound. Then the oracle
proposes a relatively simple series estimator based on the survival function S and unbiased
sample mean Fourier estimates. To mimic the oracle, the proposed data-driven estimator uses
the exponent of a negative sample mean estimate of the cumulative hazard function of (C,D)
in place of S.

The context of the paper reflects the above-explained motivation. Section 2 presents a
sharp lower bound for the oracle. Sharp-minimax oracle estimation is discussed in Section
3 which helps us to understand a proposed data-driven estimator of Section 4. Analysis of
a real censored data and simulated examples can be found in Section 5. Section 6 contains
proofs.
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Now let us introduce main notations and shortcuts used in the paper. In what follows we
distinguish between a function g and its value g(·). If no confusion can occur, we may write
f := fX,Y for the joint density of interest and S(x, y) := SC,D(x, y) := P(C > x,D > y) for
the value of joint survival function of the pair (C,D) of censoring lifetimes. Denote by fV,W

the joint density of (V,W ), and denote the mixed joint density of the quartet (V,W,∆,Γ) as

(1.3) p(v,w, δ, γ) := fV,W (v,w)P(∆ = δ,Γ = γ|V = v,W =w).

We may write Ef,S{·} or Ef{·} to stress that the expectation is taken given joint density f
and joint survival function S or given f , respectively.

Set q := qn := dln(n + 20)e for the minimal integer larger than or equal to ln(n + 20),
similarly s := sn := dln(qn)e. In what follows Q, a and b are positive constants, mX and
mY are positive integers,R := [0, a]× [0, b] is a rectangle,Rn :=

[
[3sn]−2, a(1− [3sn]−2)

]
×[

[3sn]−2, b(1− [3sn]−2)
]

is a smaller rectangle not including boundary strips, and we may
write

∫
R g(x, y)dxdy :=

∫ a
0

∫ b
0 g(x, y)dxdy. Set

(1.4) aij := aij(mX ,mY , a, b) := 1 + (πi/a)2mX + (πj/b)2mY .

The following functional will be referred to as the coefficient of difficulty,

(1.5) d := d(f,S, a, b) :=
1

ab

∫
R

f(x, y)

S(x, y)
dxdy.

Also introduce

(1.6) P := P (mX ,mY ,Q,a, b) :=
[ab
π2

]2β/(2β+1)[ Q

C1(mX ,mY )

]1/(2β+1)
C2(mX ,mY ).

Here for positive k and r,

(1.7) C1(k, r) :=

∫
{(u,v): u2k+v2r≤1; u,v≥0}

[(u2k + v2r)1/2 − (u2k + v2r)]dudv,

(1.8) C2(k, r) :=

∫
{(u,v): u2k+v2r≤1; u,v≥0}

[1− (u2k + v2r)1/2]dudv.

To honor the pioneering paper Pinsker (1980) on sharp minimax estimation, the P in (1.6)
will be referred to as the Pinsker constant.

For square-integrable functions on a rectangle R we will use a tensor-product cosine basis

(1.9) ϕi,j(x, y) := ϕij(x, y) := ϕi(x|a)ϕj(y|b), (x, y) ∈R, i, j = 0,1, . . .

where

ϕk(z|c) :=
1√
c

[
I(k = 0) +

√
2 cos

(πkz
c

)
I(k ≥ 1)

]
.

Finally, let us present an assumption that is used throughout the paper.

Assumption 1. Pair of continuous lifetimes of interest (X,Y ) is independent of pair of
continuous censoring lifetimes (C,D). The joint density f of the lifetimes of interest is es-
timated on a rectangle R = [0, a] × [0, b]. The joint survival function S of the censoring
lifetimes is positive on R, that is S(a, b)> 0. If S is unknown, then the joint survival function
of the lifetimes of interest is positive on R.

Note that the made assumption about a positive joint survival function is traditional. In-
deed, the rectangle R must be a subset of the support of (C,D) for consistent estimation of
the distribution of (X,Y ) on R. A similar conclusion holds for estimation of the distribution
of (C,D).
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2. Sharp-mimimax oracle’s lower bound. The aim is to estimate the joint density f
of a pair of continuos random lifetimes (X,Y ) over a rectangle R = [0, a] × [0, b] with a
minimal MISE. We observe the pair in the presence of right censoring, namely we observe
a sample of size n from the quartet (V,W∆,Γ) defined in (1.2). As we will see shortly, the
density of interest affects the MISE, and accordingly we consider a minimax approach over a
class of possible underlying densities shrinking, as n increases, toward a pivotal joint density
f0(x, y), (x, y) ∈ [0,∞)2. In what follows it is always assumed that f0 is continuous and
positive on R.

To define a shrinking minimax approach, we introduce a class of additive perturbations of
the pivot f0 on the rectangle R. Recall notation (1.4) for aij , and following Nikolskii (1975)
and Hoffmann and Lepski (2002), we begin with a classical anisotropic global Sobolev class
ofmX -fold differentiable in x andmY -fold differentiable in y bivariate functions on [0,∞)2,

(2.1) G(mX ,mY ,Q,a, b) := {g : g(x, y) =

∞∑
i,j=0

θijϕij(x, y),

∞∑
i,j=0

aijθ
2
ij ≤Q}.

Recall that sequence qn and rectanglesR andRn are defined at the end of the Introduction,
and set IR := I((x, y) ∈ R). Introduce a shrinking local Sobolev class of joint densities for
two lifetimes,

(2.2) Fn :=Fn(f0,mX ,mY ,Q,a, b)

:=
{
f : f(x, y) = f0(x, y) + g(x, y)IR, (x, y) ∈ [0,∞)2,

g ∈ G(mX ,mY ,Q,a, b), max
(x,y)∈R

|g(x, y)| ≤ min
(x,y)∈R

f0(x, y)/qn,

g(x, y) = 0 whenever(x, y) 6∈Rn,
∫ a

0
g(x, y)dx=

∫ b

0
g(x, y)dy = 0

}
.

Let us comment on the shrinking local Sobolev class (2.2). The second from the top line
defines an underlying joint density f as an additive perturbation of f0 on the rectangle R.
The third line states that a perturbation g must belong to the Sobolev class, and that consid-
ered densities f shrink in L∞-norm toward the pivotal density f0 as n increases. The first
requirement on g in the bottom line allows us to preserve smoothness of f near boundaries
of R. The second requirement in the bottom line, together with the third line, imply that all
functions f are bona fide densities on [0,∞)2. In short, the pivotal density is preserved be-
yond the smaller rectangle Rn, within Rn it is additively perturbated by shrinking Sobolev
functions, and all perturbations are bona fide densities on [0,∞)2.

Theorem 1 (Oracle’s Lower Bound). The problem is to estimate a joint density f of life-
times of interest (X,Y ) by an oracle-estimator f̃∗ on a rectangle R= [0, a]× [0, b]. Suppose
that the survival function S of censoring lifetimes (C,D) is known, Assumption 1 holds, and
f belongs to a shrinking local Sobolev class Fn defined in (2.2) where the pivotal density
f0 is continuous and positive on R. The oracle knows a censored sample (Vl,Wl,∆l,Γl),
l = 1,2, . . . , n from the quartet (1.2) and everything about the class Fn. Then the following
lower bound for minimax MISE holds,

(2.3) inf
f̃∗

sup
f∈Fn

[n/d]2β/(2β+1)Ef,S{
∫
R

(f̃∗(x, y)− f(x, y))2dxdy} ≤ P (1 + on(1)).
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Here the effective smoothness β, the coefficient of difficulty d and the Pinsker constant P are
defined in (1.1), (1.5) and (1.6), respectively. Further, the Pinsker constant does not increase
if only a subsample of uncensored observations with ∆lΓl = 1 is used.

It will be proved shortly that the oracle’s lower bound (2.3) is sharp, meaning that an
oracle-estimator and a data-driven estimator attain it. Note that the rate n−2β/(2β+1) is the
same as for direct data, and the coefficient of difficulty indicates that the MISE is affected by
the ratio f/S. Further, if the survival function S is known, then only uncensored observations
may be used for sharp estimation. As we will see shortly in Section 3, the latter yields a rel-
atively simple series oracle-estimator based on an unbiased sample mean estimate of Fourier
coefficients.

3. Sharp minimax oracle-estimator. This section explains, with the help of a friendly
oracle, how a sample mean methodology, so efficiently used for direct data, may be also
utilized for estimating a bivariate density in the presence of censoring. Further, to help us
with finding a feasible data-driven estimator, the oracle will step-by-step remove facts known
only to the oracle. At the end of this section the oracle will use only a triplet (mX ,mY ,Q),
and then the case of an unknown triplet will be addressed in the next section.

We are interested in estimation of a joint density f of (X,Y ) on a rectangle R= [0, a]×
[0, b]. It is assumed that f is square integrable on R, and recall notation (1.9) for the tensor-
product cosine basis ϕij(x, y) on R. Then for (x, y) ∈ R a density f can be written as a
Fourier series via its Fourier coefficients θij ,

(3.1) f(x, y) =

∞∑
i,j=0

θijϕij(x, y), θij :=

∫
R
f(x, y)ϕij(x, y)dxdy.

Our aim is to suggest a series sharp-minimax oracle-estimator of f whose MISE attains
the lower bound of Theorem 1. We also are going to use the hint of Theorem 1 that an oracle
may use only uncensored observations. Using notation (1.3) for the mixed joint density p of
the quartet (V,W,∆,Γ) defined in (1.2), we can write

(3.2) p(x, y,1,1) = f(x, y)S(x, y).

This relation and (3.1) yield

(3.3) θij =

∫
R

p(x, y,1,1)ϕij(x, y)

S(x, y)
dxdy = E

{∆Γϕij(V,W )I((V,W ) ∈R)

S(V,W )

}
.

The oracle knows the joint survival function S, and we get the following sample mean
Fourier estimate based solely on uncensored observations,

(3.4) θ̂∗ij := n−1
n∑
l=1

∆lΓlϕij(Vl,Wl)I((Vl,Wl) ∈R)

S(Vl,Wl)
.

If the oracle does not want to use S, then the following estimate may be plugged in (3.4),

(3.5) Ŝ(Vl,Wl) := n−1 + exp
{
−

n∑
k=1

[(1−∆k)I(Vk ≤ Vl)∑n
r=1 I(Vr ≥ Vk)

]

−
n∑
k=1

[ (1− Γk)I(Vk > Vl)I(Wk ≤Wl)

1 +
∑n

r=1 I(Vr ≥ Vl)I(Wr ≥Wk)

]}
, (Vl,Wl) ∈R.

We postpone discussion of this estimator until the end of this section.
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Now we plug Ŝ in (3.4) and get a Fourier estimator

(3.6) θ̂ij := n−1
n∑
l=1

∆lΓl ϕij(Vl,Wl)I((Vl,Wl) ∈R)

Ŝ(Vl,Wl)
.

Note that this Fourier estimator uses all available observations.
To define a series oracle-estimator of f we need several new notations. Set

(3.7) an := an(Q) :=
[ π2Q

abC1(mX ,mY )

n

d

]2β/(2β+1)
,

where C1(mX ,mY ) is defined in (1.7) and the coefficient of difficulty d in (1.5). Recall
that the coefficient of difficulty depends on both f and S. Because both these functions may
be unknown and d is used in the denominator of (3.7), the oracle proposes to evaluate the
coefficient of difficulty by a truncated from below sample mean estimate

(3.8) d̂ := d̂(a, b) := max
(
q−1
n , d̃(a, b)

)
, d̃(a, b) :=

1

n

n∑
l=1

∆lΓlI((Vl,Wl) ∈R)

ab[Ŝ(Vl,Wl)]2
.

Recall that sequence qn is defined in the Introduction. Then we plug d̂ in (3.7) and get

(3.9) ân :=
[ π2Q

abC1(mX ,mY )

n

d̂

]2β/(2β+1)
.

Now we are ready to present our first oracle-estimator of density f based on censored data
and parameters (mX ,mY ,Q) of an underlying functional class. The oracle-estimator is

(3.10) f̃∗(x, y) :=
∑
i,j≥0

λij θ̂ijϕij(x, y),

where the shrinkage coefficients are

(3.11) λij := I(i≤ qn)I(j ≤ qn) + [1− (aij/ân)1/2]I(max(i, j)> qn)I(aij ≤ ân).

Note that, to help the statistician, the oracle does not use the pivotal density f0 which
was used in establishing the lower bound. To offset this knowledge in establishing an upper
bound, it will be assumed that on the rectanleR the pivot is smoother than a perturbation. The
latter is a traditional assumption in the local minimax literature that goes back to Golubev
(1991). Recall that Fn and P are defined in (2.2) and (1.6), respectively.

Theorem 2 (Oracle’s upper bound). Let Assumption 1 hold and f0 ∈ G(mX + 1,mY +
1,Q′, a, b). Then the MISE of oracle-estimator (3.10) attains the lower bound (2.3) and

(3.12) sup
f∈Fn

[n/d]2β/(2β+1) Ef,S
{∫

R
(f̃∗(x, y)− f(x, y))2dxdy

}
= P (1 + on(1)).

This result proves that the oracle’s lower bound (2.3) is sharp and attainable by an oracle-
estimator that knows data and smoothness of density f . The next section explains how to
develop a data-driven estimator that adapts to the smoothness.

We are finishing this section by commenting upon estimate (3.5) of the joint survival func-
tion S of censoring lifetimes (C,D). Let c∗, c∗k, k = 0,1, . . . denote generic positive con-
stants that may depend on SV,W (a, b). The following lemma sheds light on basic properties
of Ŝ(Vl,Wl) used in the denominator of (3.6).

Lemma 1. Let S be unknown and Assumption 1 hold. Consider (x, y) ∈ R, Z1 :=
(V1,W1,∆1,Γ1), z := (x, y, δ, γ). Then

(3.13) |Ef,S{[Ŝ(V1,W1)− S(V1,W1)]|Z1 = z}| ≤ c∗0n−1,
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for a positive integer k

(3.14) Ef,S{[Ŝ(V1,W1)} − S(V1,W1)]2k|Z1 = z} ≤ c∗k n−k,

and for ε > 0

(3.15) Pf,S(|Ŝ(V1,W1)− S(V1,W1)| ≥ ε|Z1 = z)≤ c∗n2e−nε
2/c∗ .

Several more comments about Ŝ are due. First, we add n−1 in (3.5) to make the estimate
bounded below from zero, and this choice is explained by the fact that bias of the exponential
part is of order n−1, see (3.13). Second, we may write (3.5) as Ŝ(x, y) =: n−1 + e−Ĥ(x,y).
Here Ĥ is a sample mean estimate of the cumulative hazardH :=− ln(S). Third, the denom-
inators in (3.5) are at least 1. Finally, (3.15) implies that if (Vl,Wl) ∈R then the probability
that Ŝ(Vl,Wl)<S(a, b)/2 is exponentially small in n.

4. Data-driven estimation. To understand how to construct a data-driven sharp min-
imax estimator, we again begin with an oracle-estimator that instead of an unknown triplet
(mX ,mY ,Q) uses a functional of an underlying bivariate density of interest f . As we will see
shortly, this approach will lead us to a relatively simple data-driven estimator that mimics the
oracle and does not require solving numerical optimization problems. Recall our notations
q = qn and s = sn defined at the end of the Introduction and introduce an increasing se-
quence of integers b1 = 0, b2 = b1 + 1, . . . , bq = bq−1 + 1, and bq+k = bq+k−1 + d(1 + 1/s)ke
for k = 1,2, . . . Set Lk := bk+1 − bk and define K := Kn as the smallest integer such that∑K

k=1Lk > n1/4s. Next, for positive integers k and τ introduce blocks of nonnegative in-
tegers Bkτ := {(i, j) : bk ≤ i < bk+1, bτ ≤ j < bτ+1}, denote the cardinality (number of
elements) of Bkτ as Lkτ := LkLτ , and set tkτ := 1/ ln(ln((k+ 20)(τ + 20))).

An oracle-estimator, that does not use the triplet (mX ,mY ,Q), is defined as

(4.1) f̂∗(x, y) :=

K∑
k,τ=1

Λkτ
∑

(i,j)∈Bkτ

θ̂ijϕij(x, y).

Here

(4.2) Λkτ := I(k ≤ q, τ ≤ q) +
Θkτ

Θkτ + d̂n−1
I(Θkτ > tkτ d̂n

−1)I(max(k, τ)> q)

are smoothing weights and

(4.3) Θkτ := L−1
kτ

∑
i,j∈Bkτ

θ2
ij

are classical Sobolev functionals. The estimates θ̂ij are defined in (3.6) and d̂ in (3.8). Also
recall that Fn and P are defined in (2.2) and (1.6), respectively.

Theorem 3 (Oracle’s upper bound). Let assumptions of Theorem 2 hold. Then the oracle-
estimator (4.1) is sharp-minimax and

(4.4) sup
f∈Fn

[n/d]2β/(2β+1) Ef,S{
∫
R

(f̂∗(x, y)− f(x, y))2dxdy} ≤ P (1 + on(1)).

To mimic the oracle-estimator, one only needs to estimate the Sobolev functionals (4.3).
This is done by an asymptotically unbiased estimator

(4.5) Θ̂kτ := L−1
kτ

∑
(i,j)∈Bkτ

θ̂2
ij − d̂n−1.
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Then the recommended data-driven estimator is

(4.6) f̂(x, y) :=

K∑
k,τ=1

Λ̂kτ
∑

(i,j)∈Bkτ

θ̂ijϕij(x, y),

where

(4.7) Λ̂kτ := I(k ≤ q, τ ≤ q) +
Θ̂kτ

Θ̂kτ + d̂n−1
I(Θ̂kτ > tkτ d̂n

−1)I(max(k, τ)> q).

Theorem 4 (Sharp minimax data-driven estimator). Under assumptions of Theorem 2,
the MISE of data-driven estimator (4.6) satisfies

(4.8) sup
f∈Fn

[n/d]2β/(2β+1) Ef,S{
∫
R

(f̂(x, y)− f(x, y))2dxdy} ≤ P (1 + on(1)).

This implies that the estimator is sharp-minimax and adapts to unknown smoothness of an
underlying joint density of interest f and an unknown nuisance joint survival function S.

Note how simple the adaptive density estimator (4.6) is and that it does not require solving
optimization problems traditionally used for adaptation, see Wassermann (2006).

Remark 1. In (4.6) the unit weights Λ̂kτ = 1, used for low frequencies i, j ≤ q, may be
replaced by classical hard thresholds I(θ̂2

ij > 2qd̂n−1). It will be shown in Section 6 that the
replacement does not change (4.8), and it is recommended in Efromovich (1999) for small
samples. Also, if a density estimate takes on negative values, then its bona fide projection is
used, see Efromovich (1999). This modification is used in the next section.

5. Practical example and simulations. Aeration is an essential process in the majority
of wastewater treatment plants, see a discussion in Rosso et al. (2008) and Albu et al. (2021).
Aeration introduces air into a wastewater, providing an aerobic environment for microbial
degradation of organic matter. The purpose of aeration is to supply the required oxygen to
the metabolizing microorganisms and to provide mixing so that microorganisms come into
contact with the dissolved and suspended organic matter. For now the most common aera-
tion system introduces air by fine pore diffusers submerged in the wastewater. The diffusers
produce very small bubbles, and smaller bubbles result in more bubble surface area per unit
volume and greater oxygen transfer efficiency. On the other hand, the diffusers are susceptible
to chemical and biological fouling, and as a result require routine cleaning/replacement.

The environmental company BIFAR was interested in comparing lifetimes of two types
of diffusers. Let us refer to these two types as X-diffusers and Y-diffusers. In an experiment,
BIFAR studied the diffusers in pairs under the same wastewater characteristics and quality
of maintenance. Accordingly, in the experiment lifetimes X and Y of the diffusers may be
dependent. A serious complication of the BIFAR’s experiment is that lifetime of a diffuser is
comparable with lifetimes of other parts of an aeration system. Accordingly, in the BIFAR
experiment lifetimes (X,Y ) may be right censored by censoring lifetimes (C,D) of the
aeration system.

The top diagram in Figure 1 shows the BIFAR data, and the caption explains all four differ-
ent types of observations available for a pair of censored variables. Let us look at the diagram.
Probably the first what catches the eye is the straight line of crosses and that other crosses are
above the line. A cross corresponds to a pair of diffusers whose lifetimes are censored, that is
∆ = Γ = 0. This particular pattern of crosses points upon a possibility that C = min(D,ξ),
and indeed the latter is the case due to using an additional pressure intensifier for X-diffusers.
Another interesting observation is that overall an aeration equipment may fail much earlier
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FIG 1. Bivariate density estimation based on BIFAR aeration diffusers data. Data are rescaled onto the unit
square. The left-top diagram exhibits censored data. The circles show uncensored observations (X,Y ) corre-
sponding to ∆Γ = 1. The crosses, triangles and rhombuses show pairs (V,W ) with (∆,Γ) equal to (0,0), (1,0)
and (0,1), respectively. Further, the diagram indicates the total sample size n = 248 and sizes of the above-
mentioned four subsamples as NXY, NCD, NXD and NCY, respectively. In particular, NXY :=

∑n
l=1 ∆lΓl is the

number of uncensored pairs while NCD :=
∑n
l=1(1 − ∆l)(1 − Γl) is the number of pairs where the both life-

times of interest are censored. The left-bottom diagram shows an estimated coefficient of difficulty. The proposed
bivariate density estimate is shown in the right-top diagram. Slices of that bivariate estimate are shown by the
short-dashed, dotted, short-dashed-dotted, long-dashed and long-dashed-dotted lines for x equal to 0.25, 0.5,
0.625, 0.7 and 0.75, respectively.

than a diffuser. The left-bottom diagram shows us an estimated coefficient of difficulty d̂(a, b)
defined in (3.8). We see a sharply increasing function in a and b. Accordingly, the bivariate
density is estimated on the square [0,0.8]2, and the estimate is shown in the right-top dia-
gram. The right-bottom diagram sheds light on the bivariate density via its slices for fixed
values of x, and explanation of the slices can be found in the figure’s caption. As it could be
expected, an increase in the lifetime X implies an increase in the lifetime Y but the growth
slows down as we may notice from the modes of slices. After this remark we may return to
the right-top diagram of the joint density and recognize this interesting feature of the lifetime
of diffusers. BIFAR has found these results and the density shape reasonable and insightful.

Now let us present a numerical study that sheds additional light on the problem. Our aim
is to understand how the plug-in estimate Ŝ of the nuisance survival function S performs
and how censoring affects estimation of the joint density f . Accordingly, we study the pro-
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posed data-driven estimator, the same estimator only based on a known survival function S,
and estimator of Efromovich (1999) based on underlying sample from (X,Y ). We denote
considered models as (k, r), where k = 1,2 and r = 1,2,3,4 define two estimated joint den-
sities f and four nuisance joint survival function S, respectively. k denotes density number
k shown and defined in Figure 6.3 of Efromovich (1999), the both densities are supported on
[0,1] and will be estimated on [0, .8]2. Distributions of censoring (C,D) are denoted as: r = 1
for uniform distribution on [0,1]2; r = 2 for independent exponential with rate 1; r = 3 for in-
dependent exponential with rate 0.5; r = 4 for S(x, y) = (1 + y)−1e−(1+y)xI(x > 0, y > 0).
For each model and a sample size n= 100,200,300,400 we repeat a simulation 1000 times,
and for tth simulation calculate integrated squared errors ISE1t, ISE2t and ISE3t of the
proposed estimator, the proposed estimator with known survival function, and the estima-
tor based on a sample from (X,Y ). Then an entry in Table 1 is written as A/B where
A = (1000)−1

∑1000
t=1 ISE1t/ISE2t and B = (1000)−1

∑1000
t=1 ISE1t/ISE3t. The coeffi-

cient of difficulty is also shown.

TABLE 1
Numerical study

Model n d

100 200 300 400
(1,1) 1.15/5.7 1.11/5.4 1.06/5.3 1.04/5.3 10.3
(1,2) 1.11/4.9 1.05/4.5 1.03/3.8 1.02/3.8 6.0
(1,3) 1.12/3.4 1.08/2.9 1.04/2.3 1.02/2.2 3.6
(1,4) 1.14/5.4 1.09/4.9 1.06/4.4 1.03/4.2 7.1
(2,1) 1.12/2.9 1.09/3.5 1.05/4.1 1.02/4.4 13.1
(2,2) 1.10/1.7 1.07/2.2 1.04/2.7 1.02/2.9 6.4
(2,3) 1.11/1.3 1.08/1.7 1.04/2.1 1.02/2.4 3.7
(2,4) 1.12/1.9 1.07/2.5 1.05/3.0 1.03/3.5 7.8

Let us look at the results. First of all, we note that the use of estimated joint survival func-
tion Ŝ in place of an unknown joint survival function S is a feasible approach in the joint
density estimation. The data also highlight the dramatic effect of censoring on density esti-
mation, especially for the first density which, according to Efromovich (1999), is estimated
very well for uncensored (X,Y ) and small samples. Finally, note that despite the asymptotic-
theoretical nature of the coefficient of difficulty d, it sheds light on complexity of estimating
a particular density.

6. Proofs. In this section we continue to use notations introduced in the Introduction.
In particular, recall notation q := qn, s := sn, ϕij(x, y) and ϕi(z|c). Sequence aij is defined
in (1.4), an := an(Q) in (3.7), and bk, Lk, Bkr and tkr are introduced in Section 4. In what
follows c and ck are generic positive constants whose value is not of interest to us, and
ok(1)→ 0 as k→∞.

Proof of Theorem 1. We are considering a sequence in n of classes of additive perturbations
of the pivot. Namely, we are considering perturbations on an increasing (as n→∞) number
of subrectangles of the rectangle R := [0, a]× [0, b]. These subrectangles are created by di-
viding the rectangle R into s2 subrectangles of sizes (a/s)× (b/s). To satisfy the restriction
g(x, y) = 0 for (x, y) 6∈ Rn in the bottom line of definition (2.2) of Fn, no perturbation is
done for boundary subrectangles. Now we introduce several new notations. We begin with a
sequence of function classes on [0,∞)2,

(6.1) Hs =
{
f : f = f0 + IR

s−2∑
k,r=1

[f(kr) −Af(kr)], f(kr) ∈Hskr, f ≥ 0
}
,
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where Ah(x, y) := a−1
∫ a

0 h(u, y)du+ b−1
∫ b

0 h(x, v)dv− (ab)−1
∫
R h(u, v)dudv. The func-

tion classesHskr in (6.1) are defined as follows. Let φ̃(x) := φ(n,x) be a sequence of flattop
nonnegative kernels defined on the real line such that for a given n: the kernel is zero beyond
(0,1), it is mX -fold continuously differentiable on (−∞,∞), 0 ≤ φ̃(x) ≤ 1, φ̃(x) = 1 for
2/q2 ≤ x ≤ 1− 2/q2, and its lth derivative satisfies maxx |φ̃(l)(x)| ≤ Cq2l, l = 1, . . . ,mX .
For instance, such a kernel may be constructed using so-called mollifiers discussed in Efro-
movich (1999). Then set φ̃sk(x) := φ̃(sa−1x− k). Absolutely similarly define φ̂sr(y) only
with mX being replaced by mY and a by b. Set ϕ∗ski(x) := ϕi(x−ka/s|a/s) and ϕ′srj(y) :=
ϕj(y−rb/s|b/s). For a (k, r)th subrectangleRskr := [ak/s, a(k+1)/s]× [br/s, b(r+1)/s]
(as we will see shortly, common boundaries are irrelevant for the proof and simplify formu-
lae), 1≤ k, r ≤ s− 2, set φskr(x, y) := φ̃sk(x)φ̂sr(y), ϕskrij(x, y) := ϕ∗ski(x)ϕ′srj(y), and

(6.2) f[kr](x, y) :=
∑

(i,j)∈T (s,k,r)

νskrijϕskrij(x, y), f(kr)(x, y) := f[kr](x, y)φskr(x, y).

Here the set T (s, k, r) := {(i, j) : min(i, j)> qs, nβ/(2β+1)s−4 ≤ aij ≤ an(Qskr)}, Qskr :=

Q(1 − 1/s)(I−1
s Iskr)

−1, Iskr := S(ak/s, br/s)/f0(ak/s, br/s), I−1
s =

∑s−2
k,r=1(1/Iskr).

Note via analysis of (6.1) and (6.2) how flattop kernels φskr “sew" together and smooth
additive perturbations on R, and that f = f0 on the boundary subrectangles.

Using the above-introduced notations we can define function classes used in (6.1) as

(6.3) Hskr :=
{
f(kr) :

∑
(i,j)∈T (s,k,r)

aijν
2
skrij ≤Qskr,

s−1 < nν2
skrij ≤ s, max

(x,y)∈Rskr
|f[kr](x, y)|2 ≤ s4qn−2β/(2β+1)

}
.

Here aij are defined in (1.4), and deterministic ν2
skrij satisfying (6.3) will be defined shortly.

Let us verify that for sufficiently large n we have Hs ⊂ Fn. Definition of the flattop ker-
nel implies that for (x, y) ∈ R the difference f(x, y) − f0(x, y) is mX -fold differentiable
with respect to x and mY -fold differentiable with respect to y. Second, let us verify that for
f ∈ Hs this difference belongs to G(mX ,mY ,Q,a, b). Set m = mX , begin with the differ-
entiation with respect to x, and we will use notation ψ(l)(x, y) := ∂lψ(x, y)/∂xl for the
lth derivative in several following lines. By the Leibniz rule (f[kr](x, y)φskr(x, y))(m) =∑m

l=0 C
m
l f

(m−l)
[kr] (x, y)φ

(l)
skr(x, y) where Cm

l := m!/((m − l)!l!). For 0 < l ≤ m we have

(φ
(l)
skr(y,x))2 ≤C(s(ln(n))2)2l, and for f(kr) ∈Hskr

(6.4)
∫
R

[f
(m−l)
[kr] (x, y)φ

(l)
skr(x, y)]2dxdy ≤ cs2lq4l

∫
Rskr

[f
(m−l)
[kr] (x, y)]2dxdy

≤ cs2lq4l
∑

(i,j)∈T (s,k,r)

i2(m−l)ν2
skrij ≤ cq4m+1 max

(i,j)∈T (s,k,r)

i2(m−l)

aij
Qsrk = on(1)q−2Qskr.

In the last equality we used definition of aij and inequality i > qs which holds for (i, j) ∈
T (s, k, r). Differentials with respect to y yield the same result, and using the Parseval identity
we get for f(kr) ∈Hskr

(6.5)
∫
R

[
f2

[kr](x, y) + (∂mXf[kr](x, y)/∂xmX )2
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+(∂mY f[kr](x, y)/∂ymY )2
]
φ2
skr(x, y)dxdy ≤

∑
(i,j)∈T (s,k,r)

aijν
2
skrij ≤Qskr.

This inequality, the fact that the function
∑s−1

k,r=1 f(kr) and its corresponding derivatives are
zero at the boundary of R, Proposition 1 of Efromovich (2001), and

∑s−2
k,r=1Qskr =Q(1−

s−1) yield
∑s−2

k,r=1 f(kr) ∈ G(mX ,mY ,Q(1− s−1), a, b). The last step in checking the new
function class is to verify (recall (6.1)) that

(6.6) gs := IR

s−2∑
k,r=1

Af(sk)

belongs to G(mX ,mY , on(1)s−1, a, b). This result follows from definition (6.2) of f(kr)(x, y),

relation
∫ a(k+1)/s
ak/s f[kr](x, y)dx =

∫ b(r+1)/s
br/s f[kr](x, y)dy = 0, and definition of the flattop

kernel φskr(x, y). The relation Hs ⊂ Fn is verified for all sufficiently large n. In what fol-
lows we use Hs to establish the lower bound of Theorem 1.

Set f̂ =: f0 + f̃ , recall notation (6.6), and write for f ∈Hs,∫
Rskr

(f̂(x, y)− f(x, y))2dxdy =

∫
Rskr

(f̃(x, y)− f(kr)(x, y) + gs(x, y))2dxdy

≥ (1− s−1)

∫
Rskr

(f̃(x, y)− f[kr](x, y))2dxdy

−s
∫
Rskr

[f[kr](x, y)(1− φskr(x, y)) + gs(x, y)]2dxdy

= (1− s−1)

∫
Rskr

(f̃(x, y)− f[kr](x, y))2dxdy+ on(1)sq−1/2n−2β/(2β+1).

This and notation ν̃skrij :=
∫
Rskr

f̃(x, y)ϕskrij(x, y)dxdy allow us to write,

(6.7) sup
f∈Fn

Ef,S
{∫

R
(f̂(x, y)− f(x, y))2dxdy

}

≥ sup
f∈Hs

Ef,S
{∫

R
(f̂(x, y)− f(x, y))2dxdy

}

= sup
f∈Hs

s−2∑
k,r=1

Ef,S
{∫

Rskr

(f̂(x, y)− f(x, y))2dxdy

}

≥ (1− s−1)

s−2∑
k,r=1

sup
f∈Hskr

∑
(i,j)∈T (s,k,r)

Ef,S
{

(ν̃skrij − νskrij)2
}

+ on(1)n−2β/(2β+1)

=: (1− s−1)

s−2∑
k,r=1

Akr + on(1)n−2β/(2β+1).

Now we need to establish a lower bound for a term Akr corresponding to the (k, r)th sub-
rectangle. The rational of converting the original nonparametric MISE into the local mean
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squared error (MSE) is that: (i) Due to Assumption 1 the pivot f0 and the joint survival func-
tion S are almost “constant" on a subrectangle; (ii) The nonparametric setting is converted
into a multivariate parametric setting.

The above-made remark explains our next steps in obtaining a lower minimax bound for
the parametric model. Introduce an array of independent normal random variables ζskrij with
zero mean and variance (1−γn)ν2

skrij where the positive sequence γn tends to zero as slowly
as desired. Using these variables we introduce a stochastic process f̄∗(x, y), (x, y) ∈ [0,∞)2,
defined as the studied f ∈ Hs but with random ζskrij used in place of deterministic νskrij .
The idea of considering such a stochastic process goes back to Pinsker (1980) and specifically
for density estimation to Efromovich and Pinsker (1982), and the rest of the proof is based on
using steps of those papers. First, we choose deterministic ν2

skrij as explained in Efromovich
and Pinsker (1982). Second, following along lines of establishing (A.18) in Pinsker (1980)
we get

(6.8) P
(

(f̄∗ − f0) ∈ G(mY ,mX ,Q,a, b)
)
≥ 1− |on(1)|.

Using ν2
skrij ≤ sn−1 and that T (s, k, r) has the cardinality of order n1/(2β+1) we get∑

(i,j)∈T (s,k,r)

sup
(x,y)∈Rskr

[νskrijϕskrij(x, y)]2 ≤ cs3n−2β/(2β+1).

Further, introducing a similarly defined stochastic process f̄∗[kr], and using the above-
presented calculations together with Theorem 6.2.3 in Kahane (1985) we get

P
(

sup
(x,y)∈R

|f̄∗[kr](x, y)|2 ≤ s4qn−2β/(2β+1)
)
≥ 1− |on(1)|s−2.

Our next step is to compute local parametric Fisher informations for f ∈Hs. We calculate
them for the quartet (V,W,∆,Γ) via considering its additive components corresponding to
different values of pair (∆,Γ). We begin with the case ∆Γ = 1 when both X and Y are
observed directly. As we will see shortly, this is the main case. Using (1.3) we get

(6.9) p(x, y,1,1) = f(x, y)S(x, y).

Note that an observation of (X,Y ) is biased by S(X,Y ). The corresponding to (6.9) com-
ponent of a local Fisher information that the observation carries about parameter νskrij is

(6.10) Iskrij11 := Ef∗S{∆Γ[∂ ln(p(X,Y,1,1))/∂νskrij ]
2}

= Ef∗S{∆Γ[∂ ln(f(X,Y ))/∂νskrij ]
2}.

Here f∗ is an underlying f where we set νskrij = 0. Let us consider the derivative on the right
side of (6.10),

(6.11)
∂ ln(f(x, y))

∂νskrij
=
∂ ln

(
f0(x, y) + IR

∑s−2
k′,r′=1[f(k′r′)(x, y)−Af(k′r′)]

)
∂νskrij

.

Now recall that

(6.12) f(kr)(x, y) := f[kr](x, y)φskr(x, y)I((x, y) ∈Rskr),

∂f[kr](x, y)/∂νskrij = ϕskrij(x, y), φskr(x, y) is a flattop kernel described in the beginning
of the proof, ϕskrij(x, y) are elements of the tensor-product cosine basis on the (k, r)th
subrectangle and accordingly

∫ a(k+1)/s
ak/s ϕskrij(x, y)dx= 0 and

∫ b(r+1)/s
br/s ϕskrij(x, y)dy = 0.
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Also recall that on the subrectangle functions f0 and S are continuous and |f − f0| ≤ 1/q.
Using these remarks and a straightforward calculation we continue (6.10) and get,

(6.13) Iskrij11 :=
S(ak/s, br/s)

f0(ak/s, br/s)
(1 + on(1)) = Iskr(1 + on(1)).

Here on(1)→ 0 as n→∞ uniformly over considered (s, k, r, i, j).
Now consider the case when ∆ = 1 and Γ = 0. Using(1.3) we can write,

(6.14) p(x, y,1,0) = fX,Y >y(x)fC>x,D(y).

Here we use new notations fX,Y >y(x) :=
∫∞
y f(x, z)dz, fC>x,D(y) :=

∫∞
x fC,D(z, y)dz

and fC,D(x, y) is the joint density of (C,D). Also recall that f∗ is an underlying f with
νskrij = 0. Then the corresponding component of Fisher information is

(6.15) Iskrij10 := Ef∗S{∆(1− Γ)[∂ ln(p(X,Y,1,0))/∂νskrij ]
2}

= Ef∗S
{

∆(1− Γ)
[∂fX,Y >Y (X,Y )/∂νskrij ]

2

[fX,Y >Y (X,Y )]2

}
.

To evaluate the derivative on the right side of (6.15), we begin with analysis of fX,Y >y(x, y).
Using notation (6.6) and that f(kr) is supported on Rskr we may write,

(6.16) fX,Y >y(x) = fX,Y >y0 (x) + [

s−2∑
k,r=1

∫ b

y
f(kr)(x, z)dz −

∫ b

y
gs(x, z)dz]I(0≤ y ≤ b).

This expression, together with f(kr)(x, y) = f[kr](x, y)φskr(x, y), ∂f[k,r](x, y)/∂νskrij =
ϕskrij(x, y) and recalling that min(i, j) > qs, allow us to write via integration by parts for
y ∈ [0, b],

(6.17)
∂
∑s−2

k,r=1

∫ b
y f(kr)(x, z)dz

∂νskrij
=

∫ b

y
ϕskrij(x, z)φskr(x, z)dz

=

√
2s

b

b

πjs
ϕ∗ski(x) sin(πjb−1(sz − br))φskr(x, z)

∣∣∣z=b
z=y
−
√

2s

b

b

πjs

×
∫ b

y
ϕ∗ski(x) sin(πjb−1(sz − br))[∂φskr(x, z)/dz]dz =On(1)q−sI(y ≤ b(1− s−1)).

In a similar manner we establish that |∂
∑s−2
k,r=1

∫ b
y
gs(x,z)dz

∂νskrij
|=On(1)q−sI(y ≤ b(1− s−1)).

Now we need to bound from below the denominator inside the expectation on the right
side of (6.15). The following remarks are due. First, we consider r < s− 1 and thus exclude
all boundary subrectangles Rsk(s−1) where we have f = f∗ = f0. As a result, we need to
consider only y ∈ [0, b(1 − s−1)]. Second, recall that min(x,y)∈R f0(x, y) =: c∗ > 0 due to
Assumption 1. Using these remarks and (2.2) we can write for (x, y) ∈ [0, a]× [0, b(1−s−1)],∫ ∞

y
f(x, z)dz ≥

∫ b

b(1−s−1)
f0(x, z)dz ≥ c∗bs−1.

Using the obtained relations in (6.15) we conclude that uniformly over considered
(s, k, r, i, j)

(6.18) Iskrij10 := on(1).
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Absolutely similarly we establish that Iskrij01 and Iskrij00 vanish as n→∞. Combining
the obtained results we conclude that a local Fisher information contained in the quartet
(V,W,∆,Γ) about parameter νskrij is

(6.19) Iskrij := Ef∗S{[∂ ln(p(V,W,∆,Γ))/∂νskrij ]
2}

= Iskrij11 + Iskrij10 + Iskrij01 + Iskrij00 = Iskr(1 + on(1)).

Here on(1)→ 0 as n→∞ uniformly over considered (s, k, r, i, j).

Remark 2. The above-presented calculation of Fisher information indicates that estima-
tion of parameters νskrij based on observations from (V,W,∆,Γ) with ∆Γ = 0, that is when
at least one of X or Y is censored, yields an ill-posed problem with a slower rate of conver-
gence. As we will see shortly, this conclusion also verifies the assertion of Theorem 1 about
sufficiency of using uncensored observations.

Now we need to establish several technical results. Recall notations (1.1), (1.4), (1.7), (1.8)
and (3.7). Consider an equation

∑
{i,j: 0<aij≤a∗n}[(aija

∗
n)1/2 − aij ] = Qd−1n. The sum can

be approximated for large n by the integral

(6.20) Mn :=

∫
{(x,y): 1+(πx/a)2mX+(πy/b)2mY ≤a∗n; x,y>0}

(
[(πx/a)2mX + (πy/b)2mY ]1/2

×[a∗n]1/2 − [(πx/a)2mX + (πy/b)2mY ]
)
dxdy.

Using the change of variables v = πxa−1[a∗n]−1/(2mX) and u= πyb−1[a∗n]−1/(2mY ) we con-
tinue,

Mn = [ab/π2][a∗n]
1

2mX
+ 1

2mY
+1

×
∫
{(v,u): v2mX+u2mY ≤1−1/a∗n; v,u>0}

([v2mX + u2mY ]1/2 − [v2mX + u2mY ])dvdu.

These calculations yield a∗n = an(1 + on(1)) where an is defined in (3.7).
A similar calculation, when we approximate a sum by an appropriate integral, yields

(6.21)
∑

{i,j: 0<aij≤a∗n}

[1− (aij/a
∗
n)1/2]

= P (mX ,mY ,1, a, b)Q
1/(2β+1)(n/d)1/(2β+1)(1 + on(1)).

These are technical results that allow us to proceed along lines of the proof of Theorem 1
in Efromovich (1989) and evaluate from below terms Akr introduced in (6.7). Namely, we
get that uniformly over k, r ∈ {1, . . . , s− 2}

(6.22) infAkr ≥ (s−4βQskr)
1/(2β+1)(nIskr)

−2β/(2β+1)P (mX ,mY ,1, a, b)(1 + on(1)).

Here the infimum is over all possible nonparametric oracle-estimates of f considered in The-
orem 1. Now we plug in values of Qskr introduced at the beginning of the proof and get

(6.23) inf

s−2∑
k,r=1

Akr ≥ P (mX ,mY ,1, a, b)Q
1/(2β+1)n−2β/(2β+1)s−4β/(2β+1)
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×
[ s−2∑
k,r=1

(I−1
s Iskr)

−1/(2β+1)I
−2β/(2β+1)
skr

]
(1 + on(1)).

For the sum on the right side of (6.23) we may write,

(6.24)
s−2∑
k,r=1

(I−1
s Iskr)

−1/(2β+1)I
−2β/(2β+1)
skr = (I−1

s )−1/(2β+1)
s−2∑
k,r=0

I−1
skr

= (I−1
s )2β/(2β+1) =

[ s−2∑
k,r=1

f0(ka/s, br/s)

S(ak/s, br/s)

]2β/(2β+1)
.

Recall that the pivotal joint density and the joint survival function of the censoring variables
are continuous on R, and write

s−4β/(2β+1)
[ s−2∑
k,r=1

f0(ka/s, rb/s)

S(ak/s, br/s)

]2β/(2β+1)

=
[
s−2

s−2∑
k,r=1

f0(ak/s, rb/s)

S(ak/s, br/sr)

]2β/(2β+1)
=
[ 1

ab

∫
R

f0(x, y)

S(x, y)
dxdy

]2β/(2β+1)
(1 + on(1)).

Using these calculations, together with (1.6), in (6.23) yield

inf

s−2∑
k,r=1

Akr ≥ P
[
n−1 1

ab

∫
R

f0(x, y)

S(x, y)
dxdy

]2β/(2β+1)
(1 + on(1)).

This lower bound, together with (1.6), (2.2) and (6.7), verify Theorem 1.

In what follows we may write E{·} := EfS{·} whenever no confusion occurs. Also recall
that i and j are nonnegative integers.

Proof of Theorem 2. We begin with the following proposition which is of interest on its
own whenever the bivariate survival function S of censoring lifetimes is known.

Lemma 2. Let S be known and the assumption of Theorem 2 holds. Consider an oracle-
estimator

(6.25) f̄∗(x, y) :=
∑
i,j≥0

λ∗ij θ̂
∗
ijϕij(x, y),

where λ∗ij is defined as in (3.11) only with ân being replaced by an defined in (3.7), and θ̂∗ij
is defined in (3.4). Then the MISE of f̄∗ satisfies (3.12) and the oracle-estimator is sharp
minimax.

Proof of Lemma 2. Using the Parseval identity we can write

(6.26) E
{∫

R
(f̄∗(x, y)− f(x, y))2dxdy

}
=
∑
i,j≤q

E{(θ̂∗ij − θij)2}

+
∑

{i,j:max(i,j)>q,aij≤an}

E{[(1−
[aij
an

]1/2
)θ̂∗ij − θij ]2}+

∑
aij>an

θ2
ij =

∑
i,j≤q

E{(θ̂∗ij − θij)2}

+
∑

{i,j: max(i,j)>q,aij≤an}

E{[(1−
[aij
an

]1/2
)(θ̂∗ij − θij)− [

aij
an

]1/2θij ]
2}+

∑
aij>an

θ2
ij .
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Now we need to study moments of Fourier estimator θ̂∗ij . Write

(6.27) E{θ̂∗ij}= E
{∆Γϕij(V,W )I((V,W ) ∈R)

S(V,W )

}

=

∫
R
f(x, y)S(x, y)ϕij(x, y)[S(x, y)]−1dxdy =

∫
R
f(x, y)ϕij(x, y)dxdy = θij .

We conclude that the Fourier estimator is unbiased. For the MSE we write,

(6.28) nE{(θ̂∗ij − θij)2}= E
{[∆Γϕij(V,W )I((V,W ) ∈R)

S(V,W )

]2}
− θ2

ij

=

∫
R

f(x, y)S(x, y)[ϕij(x, y)]2

[S(x, y)]2
dxdy− θ2

ij =

∫
R

f(x, y)[ϕij(x, y)]2

S(x, y)
dxdy− θ2

ij .

Introduce notation i∧ j := min(i, j). Our next step is to show that (6.28) implies

(6.29) sup
f∈F
|nE{(θ̂∗ij − θij)2} − d|= oi∧j(1).

The verification is based on using several classical trigonometric formulas. First, recall that

ϕij(x, y) = a−1/2[I(i= 0) + 21/2 cos(πix/a)I(i > 0)]

×b−1/2[I(j = 0) + 21/2 cos(πjy/b)I(j > 0)],

and then using cos2(x) = [1 + cos(2x)]/2 we get

(6.30) ϕ2
ij(x, y) = (ab)−1

+(2ab)−1/2[ϕ2i,0(x, y)I(i > 0) +ϕ0,2j(x, y)I(j > 0) + 2−1/2ϕ2i,2j(x, y)I(ij > 0)].

Second, set κi,j :=
∫
R[f(x, y)/S(x, y)]ϕij(x, y)dxdy, and then (6.30) implies

(6.31)
∫
R

f(x, y)[ϕij(x, y)]2

S(x, y)
dxdy

= d+ (2ab)−1/2[κ2i,0I(i > 0) + κ0,2jI(j > 0) + 2−1/2κ2i,2jI(ij > 0)].

Let us show that supf∈Fn |κij | = oi∧j(1), and then this, (6.31) and supf∈Fn θ
2
ij = oi∧j(1)

will imply the verified (6.29). Recall that f(x, y) =
∑∞

k,r=0 θkrϕkr(x, y), (x, y) ∈ R, c de-
notes generic positive constants, and set νi,j :=

∫
R[S(x, y)]−1ϕij(x, y)dxdy. Using Cauchy-

Schwarz inequality and cos(α) cos(β) = [cos(α+ β) + cos(α− β)]/2 we may write,

(6.32) |κij |= |
∞∑

k,r=0

θkr

∫
R

[S(x, y)]−1ϕkr(x, y)ϕij(x, y)dxdy|

≤ c
∞∑

k,r=0

|θkr|[|νi−k,j−r|+ |νi−k,j+r|+ |νi+k,j−r|+ |νi+k,j+r|]

≤ c[
∑

{k>i/2}∪{r>j/2}

θ2
kr]

1/2 + c
[ ∑

0≤k≤i/2,0≤r≤j/2

[ν2
i−k,j−r + ν2

i−k,j+r
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+ν2
i+k,j−r + ν2

i+k,j+r]
]1/2
≤ c[

∑
{k>i/2}∪{r>j/2}

θ2
kr]

1/2 + c[
∑

k≥i/2,r≥j/2

ν2
k,r]

1/2.

The first term on the right side of (6.32) is oi∧j(1) uniformly over f ∈ Fn, and the second
term is also oi∧j(1) because S−1 is square-integrable on R. Relation (6.29) is verified.

Now recall that q := qn is of order ln(n), and using (6.27) and (6.29) we continue (6.26),

(6.33) E
{∫

R
(f̄∗(x, y)− f(x, y))2dxdy

}
≤

∑
{i,j:min(i,j)≤q,aij≤an}

E{(θ̂∗ij − θij)2}

+
∑

{i,j: min(i,j)>q, aij≤an}

(1− (aij/an)1/2)2n−1[d+ oi,j(1)] + a−1
n

∑
max(i,j)>q

aijθ
2
ij

≤ on(1)n−2β/(2β+1) +
∑
aij≤an

(1− (aij/an)1/2)2n−1[d+ on(1)] + a−1
n

∞∑
max(i,j)>q

aijθ
2
ij .

Let us evaluate the second sum on the right side of (6.33). According to (2.2) and the
assumption about the pivot f0, an underlying function f has Fourier coefficients θij = θ0ij +
νij where

(6.34)
∑
i,j≥0

[1 + (πi/a)2mX+1 + (πj/b)2mY +1]θ2
0ij ≤Q′,

∑
i,j≥0

aijν
2
ij ≤Q.

Here, recalling notation f = f0 + gIR introduced in (2.2), θ0ij are Fourier coefficients of
the pivot f0 and νij are Fourier coefficients of a perturbation g. For a pair (i, j) such that
max(i, j)> q we may write for some absolute positive constant c∗ := c∗(a, b,mX ,mY ),

[1 + (πi/a)2mX+1 + (πj/b)2mY +1]≥ c∗q[1 + (πi/a)2mX + (πj/b)2mY ] = c∗qaij .

Using this relation and the Cauchy inequality we get∑
max(i,j)>q

aijθ
2
ij ≤

∑
max(i,j)>q

aij [(1 + q1/2)θ2
0ij + (1 + q−1/2)ν2

ij ]

≤ (c∗q)
−1(1 + q1/2)

∑
max(i,j)>q

[1 + (πi/a)2mX+1 + (πj/b)2mY +1]θ2
0ij

+(1 + q−1/2)
∑

max(i,j)>q

a2
ijν

2
ij .

The last inequality and (6.34) yield

(6.35)
∑

max(i,j)>q

aijθ
2
ij ≤Q(1 + on(1)).

Using (6.35) in (6.33) we conclude that

(6.36) E{
∫
R

(f̄∗(x, y)− f(x, y))2dxdy}

≤ [
∑
aij≤an

(1− (aij/an)1/2)2n−1d+ a−1
n Q](1 + on(1)).
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The final step is a straightforward calculation, based on approximation of the sum by a double
integral, and it is performed similarly to calculations (6.20)–(6.21). Lemma 2 is proved.

Now we are considering cases of unknown S and d in turn. Suppose that Lemma 1 is valid
and also

(6.37)
∣∣E{ 2∏

t=1

[Ŝ(xt, yt)− S(xt, yt)]|Z1 = z1,Z2 = z2

}∣∣≤ c∗n−1.

In (6.37) the notation Zt := (Vt,Wt,∆t,Γt) and zt := (xt, yt, δt, γt) of Lemma 1 is used.
Formula

(6.38)
1

v
=

1

w
+
w− v
w2

+
(w− v)2

w2v
where wv 6= 0,

and notation Il := I((Vl,Wl) ∈R) allow us to write for Fourier estimate (3.6),

(6.39) θ̂ij = n−1
n∑
l=1

∆lΓlϕij(Vl,Wl)Il

Ŝ(Vl,Wl)
= n−1

n∑
l=1

∆lΓlϕij(Vl,Wl)Il
S(Vl,Wl)

+n−1
n∑
l=1

∆lΓlϕij(Vl,Wl)Il[S(Vl,Wl)− Ŝ(Vl,Wl)]

[S(Vl,Wl)]2

+n−1
n∑
l=1

∆lΓlϕij(Vl,Wl)Il[S(Vl,Wl)− Ŝ(Vl,Wl)]
2

[S(Vl,Wl)]2Ŝ(Vl,Wl)
=: θ̂∗ij +A1 +A2.

Here θ̂∗ij is the oracle’s Fourier estimator (3.4) that has been already studied in (6.27) and
(6.29). Let us evaluate second moments of A1 and A2 in turn. Write,

(6.40) n2E{A2
1}= E

{[ n∑
l=1

∆lΓlϕij(Vl,Wl)Il[S(Vl,Wl)− Ŝ(Vl,Wl)]

[S(Vl,Wl)]2

]2}

= nE
{[∆1Γ1ϕij(V1,W1)I1[S(V1,W1)− Ŝ(V1,W1)]

[S(V1,W1)]2

]2}

+n(n− 1)E
{ 2∏
l=1

∆lΓlϕij(Vl,Wl)Il
[S(Vl,Wl)]2

[S(Vl,Wl)− Ŝ(Vl,Wl)]
}
.

Set S∗ := P(V > a,W > b). Recall that S∗ > 0 due to Assumption 1, and c∗ are generic
positive constants that may depend on S∗. The first expectation on the right side of
(6.40) is bounded by c∗n−1 due to (3.14). To evaluate the second expectation, note that
ϕij(x1, y1)ϕij(x2, y2) are elements of a cosine tensor-product basis on R2. These remarks
and (6.37) imply that E{A2

1} ≤ c∗n−1[on(1) + oi∧j(1)]. Now we evaluate A2. Let us make a
remark that simplifies the proof and formulas. Exponential inequality (3.15) yields

(6.41) P
( n⋃
l=1

{Ŝ(Vl,Wl)<S(a, b)/2, (Vl,Wl) ∈R}
)
≤ c∗n3e−n/c

∗
.

The exponential inequality (6.41), together with Ŝ(x, y)≥ n−1, imply that in the proofs we
can restrict our attention to the case

(6.42) Ŝ(Vl,Wl)>S(a, b)/2 whenever (Vl,Wl) ∈R.
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This and (3.14) yield E{A2
2} ≤ c∗n−2. Combining the obtained results in (6.39) we get

(6.43) sup
f∈Fn

|nE{(θ̂ij − θij)2} − d|= on(1) + oi∧j(1).

Further, Lemma 1, (6.41) and (6.42) allow us to conclude that E{(d̂− d)2} ≤ c∗n−1. This
and a straightforward algebra, identical to Efromovich and Pinsker (1982), verify Theorem 2
if Lemma 1 and (6.37) are valid.

Proof of Lemma 1 and (6.37). Recall notation S(x, y) := P(C > x,D > y) and the
assumed SV,W (a, b) = SX,Y (a, b)S(a, b) =: S∗ > 0. In what follows we are considering
(x, y) ∈ R because we need to estimate S(Vl,Wl) only for (Vl,Wl) ∈ R. Further, note that
the probability in (3.15) is zero whenever ε > 1+n−1, and accordingly we will consider only
0< ε≤ 1 + n−1.

We begin with explanation of the underlying idea of the estimate Ŝ. Introduce a bivariate
cumulative hazard

(6.44) H(x, y) :=− ln(S(x, y)).

Using notation fC>x,D(t2) := dP(C > x,D ≤ t2)/dt2 and a line integration we write,

(6.45) H(x, y) =

∫ x

0

[ ∂
∂t1

H(t1,0)
]
dt1 +

∫ y

0

[ ∂
∂t2

H(x, t2)
]
dt2

=

∫ x

0

fC(t1)

SC(t1)
dt1 +

∫ y

0

fC>x,D(t2)

S(x, t2)
dt2 =:H1(x) +H2(x, y).

The two integrals can be estimated by method of moments. We begin with H1(x). Using
SV (x) = SC(x)SX(x) we write,

(6.46) fV,∆(x,0) = fC(x)SX(x) =
fC(x)SV (x)

SC(x)
.

This formula implies that the integrand in H1(x) may be written as

(6.47)
fC(x)

SC(x)
=
fV,∆(x,0)

SV (x)
.

In its turn, the last relation yields for H1(x),

(6.48) H1(x) =

∫ x

0

fC(t)

SC(t)
dt=

∫ x

0

fV,∆(t,0)

SV (t)
dt= E

{(1−∆)I(V ≤ x)

SV (V )

}
.

We do not know the univariate survival function SV (x), but because V is directly observed
we estimate it by an empirical survival function

(6.49) ŜV (x) := n−1
n∑
l=1

I(Vl ≥ x).

To analyze ŜV , let us mention several classical results that may be found in Efromovich
(2018). First, the Hoeffding inequality states that if η1, η2, . . . , ηm are independent mean zero
random variables with bounded ranges, that is, P(ηi ∈ [ai, bi]) = 1, −∞ < ai < bi <∞,
i= 1,2, . . . ,m, then for any ε > 0

(6.50) P(

m∑
i=1

ηi ≥ ε)≤ e−2ε2/
∑m
i=1(bi−ai)2 .
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Second, for independent and mean zero random variables ζ1, . . . , ζm

(6.51) E{|m−1
m∑
i=1

ζi|p} ≤ c′pm−p/2−1
m∑
i=1

E{|ζi|p}, p≥ 2,

where c′p is a finite absolute constant depending only on p. Third,

(6.52) |
n∑
i=1

ξi|p ≤ np−1
n∑
i=1

|ξi|p, p≥ 1.

Now we are ready to formulate properties of ŜV (V1). First of all, ŜV (V1) is not smaller
than n−1, and accordingly may be used in a denominator. Second, using (6.51) implies

(6.53) E{ŜV (V1)|V1}= SV (V1)(1−n−1)+n−1, E{(ŜV (V1)−SV (V1))2k|V1} ≤ ckn−k,

Using (6.50) we get for any ε > 2n−1

(6.54) P(|ŜV (V1)− SV (V1)|> ε|V1)≤ 2e−nε
2/2.

These results and (6.48) yield feasibility of the following sample mean estimate of H1,

(6.55) Ĥ1(x) := n−1
n∑
l=1

(1−∆l)I(Vl ≤ x)

ŜV (Vl)
=

n∑
l=1

(1−∆l)I(Vl ≤ x)∑n
r=1 I(Vr ≥ Vl)

.

Now we are considering estimation of H2(x, y) defined in (6.45). Write,

(6.56) P(V > x,W ≤ y,Γ = 0) =

∫ y

0
fV >x,W,Γ(t,0)dt

=

∫ y

0
SX,Y (x, t)fC>x,D(t)dt=

∫ y

0

SV,W (x, t)fC>x,D(t)

S(x, t)
dt.

Relation (6.56) implies that

(6.57) fV >x,W,Γ(y,0) =
SV,W (x, y)fC>x,D(y)

S(x, y)
.

Using (6.57) and definition (6.45) of the integral H2 yield

(6.58) H2(x, y) =

∫ y

0

fV >x,W,Γ(t,0)

SV,W (x, t)
dt= E

{(1− Γ)I(V > x)I(W ≤ y)

SV,W (x,W )

}
.

To use (6.58) for sample mean estimation we need to propose an estimate of SV,W . Set

(6.59) ŜV,W (x, y) := n−1
[
1 +

n∑
r=1

I(Vr ≥ x)I(Wr ≥ y)
]
.

Note that ŜV,W (V1,W2)≥ n−1, and hence it may be used in a denominator. Further, similarly
to (6.53) and (6.54) we have for (t, r) ∈ {1,2}2 that almost sure,

(6.60) |E{(ŜV,W (Vt,Wr)− SV,W (Vt,Wr))|Vt,Wt, Vr,Wr}| ≤ 5n−1,

(6.61) E{(ŜV,W (Vt,Wr)− SV,W (Vt,Wr))
2k|Vt,Wt, Vr,Wr} ≤ ckn−k,

and for ε > 10n−1

(6.62) P(|ŜV,W (Vt,Wr)− SV,W (Vt,Wr)|> ε|Vt,Wt, Vr,Wr)≤ 2e−nε
2/2.
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Recall our notation S∗ := SV,W (a, b) and that S∗ > 0 according to Assumption 1. There
is a useful corollary from (6.54) and (6.62) which states that for n > 20/S∗ we have

(6.63)
n∑

t,r=1

P({ŜV,W (Vt,Wr)<S∗/2} ∩ {(Vt,Wr) ∈R})

+

n∑
t=1

P({ŜV (Vt)<S∗/2} ∩ {Vt ≤ a})≤ 2n(n+ 1)e−2nS2
∗ .

Due to (6.63) and because the survival density estimates are at least n−1, in the following
proof we may assume that

(6.64) min
(
ŜV (Vt), Ŝ

V,W (Vt,Wr)
)
>S∗/2 for (Vt,Wr) ∈R, (t, r) ∈ {1, . . . , n}2.

Recall (6.58) and (6.59), and we are in a position to introduce a sample mean estimate of
H2,

(6.65) Ĥ2(x, y) := n−1
n∑
l=1

(1− Γl)I(Vl > x)I(Wl ≤ y)

ŜV,W (x,Wl)

=

n∑
l=1

(1− Γl)I(Vl > x)I(Wl ≤ y)

1 +
∑n

r=1 I(Vr ≥ x)I(Wr ≥Wl)
, (x, y) ∈R.

This estimate, together with (6.55) and the above-presented properties of ŜV and ŜV,W ,
shed light on the estimate Ŝ defined in (3.5) and whose properties we are verifying. Using a
Taylor formula we may write for (x, y) ∈R,

(6.66) Ŝ(x, y)− S(x, y) = e−Ĥ1(x)−Ĥ2(x,y) − e−H1(x)−H2(x,y)

=M(x, y)S(x, y) + (1/2)M2(x, y)S(x, y) + ρ(x, y).

Here |ρ(x, y)| ≤ |M(x, y)|3 and

(6.67) M(x, y) :=M1(x) +M2(x, y) := [H1(x)− Ĥ1(x)] + [H2(x, y)− Ĥ2(x, y)].

We are evaluating M1 and M2 in turn. Using (6.48), (6.55) and (6.38) we can write,

(6.68) M1(x) = E{(1−∆)I(V ≤ x)

SV (V )
} − n−1

n∑
l=1

(1−∆l)I(Vl ≤ x)

ŜV (Vl)

=
[
E{(1−∆)I(V ≤ x)

SV (V )
} − n−1

n∑
l=1

(1−∆l)I(Vl ≤ x)

SV (Vl)

]

−n−1
n∑
l=1

(1−∆l)I(Vl ≤ x)[SV (Vl)− n−1
∑n

r=1 I(Vr ≥ Vl)]
[SV (Vl]2

−n−1
n∑
l=1

(1−∆l)I(Vl ≤ x)[SV (Vl)− n−1
∑n

r=1 I(Vr ≥ Vl)]2

[SV (Vl]2ŜV (Vl)

=:M11(x)−M12(x)−M13(x).
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Evaluating of M11 is straightforward,

(6.69) |E{M11(x1)|Z1 = z1}|= |E{
1−∆)I(V ≤ x1)

SV (V )
}

−n−1(n− 1)E{1−∆)I(V ≤ x1)

SV (V )
} − n−1 (1− δ1)I(V1 ≤ x1)

SV (x1)
}| ≤ n−1/S∗.

Similarly we conclude that |E{M12(x1)|Z1 = z1}| ≤ cn−1/S2
∗ , and using (6.64) we get

|E{M13(x1)|Z1 = z1}| ≤ cn−1/S3
∗ . Combining the results yields (compare with the verified

(3.13))

(6.70) |E{M1(x1)|Z1 = z1}| ≤ c∗n−1.

Further, using (6.53) and (6.64) we conclude (compare with the verifies (3.14)) that

(6.71) E{[M1(x1)]2k|Z1 = z1} ≤ c∗kn−1.

Using (6.50) to evaluate M11 and (6.54) to evaluate M12 and M13 we get

(6.72) P(|M1(x1)|> ε|Z1 = z)≤ c∗ne−nε2/c∗ .

Now consider the term M2(x, y) defined in (6.67). Using (6.38), (6.45) and (6.65) we may
write,

M2(x, y) = E{(1− Γ)I(V > x)I(W ≤ y)

SV,W (x,W )
} − n−1

n∑
l=1

(1− Γl)I(Vl > x)I(Wl ≤ y)

ŜV,W (x,Wl)

= [E{(1− Γ)I(V > x)I(W ≤ y)

SV,W (x,W )
} − n−1

n∑
l=1

(1− Γl)I(Vl > x)I(Wl ≤ y)

SV,W (x,Wl)
]

−n−1
n∑
l=1

(1− Γl)I(Vl > x)I(Wl ≤ y)[SV,W (x,Wl)− ŜV,W (x,Wl)]

[SV,W (x,Wl)]2

−n−1
n∑
l=1

(1− Γl)I(Vl > x)I(Wl ≤ y)[SV,W (x,Wl)− ŜV,W (x,Wl)]
2

[SV,W (x,Wl)]2ŜV,W (x,Wl)

(6.73) =:M21(x, y)−M22(x, y)−M23(x, y).

We begin our analysis with conditional expectation of M2. For M21 we have

(6.74) |E{M21(x1, y1)|Z1 = z1}|

= |n−1E{(1− Γ)I(V > x1)I(W ≤ y1)

SV,W (x1,W )
} − (1− γ1)I(V1 > x1)I(W1 ≤ y1)

SV,W (x1,W1)
| ≤ 1

nS∗
.

Now compare this inequality with (6.69) and realize the similarity between analysis of M1

and M2. Then following the analysis of M1 we conclude that

(6.75) E{|M2(x1, y1)|2k|Z1 = z1} ≤ c∗n−1, E{|M2(x1, y1)|2k|Z1 = z1} ≤ c∗kn−k,

and due to (6.62) we get a rough but sufficient for our purpose inequality

(6.76) P(|M2(x1, y1)|> ε|Z1 = z1)≤ c∗n2e−nε
2/c∗ .
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Combining the above-obtained results in (6.66), together with a simple calculation, verifies
Lemma 1. To verify (6.37) we are using the Cauchy-Schwarz inequality and write,

E
{

[Ŝ(x1, y1)− S(x1, y1)][Ŝ(x2, y2)− S(x2, y2)]|Z1 = z1,Z2 = z2

}

≤
2∏
t=1

[
E
{

[Ŝ(xt, yt)− S(xt, yt)]
2|Z1 = z1,Z2 = z2

}]1/2
≤ c∗n−1.

The last inequality is established identically to (3.14) with k = 1. What was wished to prove.

The assertion of Theorem 3 follows from Efromovich and Pinsker (1982). Proof of Theo-
rem 4 follows along lines of Efromovich (1985) with the use of Lemma 6.2.

Proof of Remark 1 in Section 4. Write for MSE of a low-frequency thresholded Fourier
estimate,

(6.77) E{(I(θ̂2
ij > 2qd̂n−1)θ̂ij − θij)2} ≤ E{(θ̂ij − θij)2}+ θ2

ijE{I(θ̂2
ij ≤ 2qd̂n−1)}

≤ cn−1 + θ2
ijE{I(θ2

ij < 8qd̂n−1)}+ θ2
ijE{I(|θij − θ̂ij |> |θij |/2}

≤Cn−1 + 8qn−1E{d̂}+ θ2
ij4E{(θ̂ij − θij)2}/θ2

ij ≤ cqn−1.

Here we used the already proved inequalities E{(θ̂ij − θij)2} ≤ cn−1 and E{d̂}< c. Further,
recall that only (1+q)2 low-frequency Fourier coefficient estimates θ̂ij are hard-thresholded.
This and (6.77) prove the remark. Note that (6.77) points upon a large choice of feasible low-
frequency estimates.

Acknowledgements. The research is supported in part by NSF Grant DMS-1915845 and
Grants from CAS and BIFAR. Valuable comments of reviewers, the associate editor and the
editor are greatly appreciated.

REFERENCES

[1] Akritas, M. and Van Kellogom, I. (2003). Estimation of Bivariate and Marginal Distribution with Censored
Data. Journal of Royal Statistical Society Ser. B 65 457-471.

[2] Albu, N., Barani, N. and Constantin, M. (2021). Choosing an Economical Solution for Water Aeration. Hy-
draulica 145 32-37.

[3] Campbell, G. (1981). Nonparametric Bivariate Estimation with Randomly Censored Data. Biometrika 68
417-422.

[4] Collett, D. (2003). Modelling Survival Data in Medical Research. Chapman and Hall, Boca Raton.
[5] Crowder, M. (2012). Multivariate Survival Analysis and Competing Risks. CRC Press, Boca Raton.
[6] Dabrowska, D. (1988). Kaplan-Meier estimate on the plane The Annals of Statistics 16 1475-1489.
[7] Dabrowska, D., Duffy, D. and Zhang, Z. (1998). Hazard and Density Estimation from Bivariate Censored

Data, Journal of Nonparametric Statistics 10 67-93.
[8] Efromovich, S. and Pinsker, M. (1982). Estimation of a square integrable probability density of a random

variable. Problems of Information Transmission 18 19-38.
[9] Efromovich, S. (1985). Adaptive estimation of a density with unknown smoothness. Theory of Probability

and its Applications 30 557-568.
[10] Efromovich, S. (1989). On sequential nonparametric estimation of a density. Theory Probab. Applications

34 228–239.
[11] Efromovich, S. (1999). Nonparametric Curve Estimation: Methods, Theory and Applications. Springer,

New York.
[12] Efromovich, S. (2001). Density estimation under random censorship and order restrictions: from asymptotic

to small samples. JASA 96 667-684.
[13] Efromovich, S. (2018). Missing and Modified Data in Nonparametric Estimation. Chapman & Hall, Boca

Raton.



CENSORED LIFETIMES 25

[14] Frees, E., Carriere, J. and Valdez, E. (1995). Annuity Valuation with Dependent Mortality. Actuarial Re-
search Clearing House 2 31-80.

[15] Ghosal, S. and van der Vaart, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cambridge
Univ. Press, Cambridge.

[16] Golubev, G.K. (1991). LAN in problems of non-parametric estimation of functions and lower bounds for
quadratic risks. Problems of Information Transmission 36 152-157.

[17] Hoffmann, M. and Lepski, O. (2002). Random rates in anisotropic regression. Annals of Statistics 30 325-
396.

[18] Hougaard, P. (2000). Analysis of Multivariate Survival Data, Springer: New York.
[19] Kaplan, E. and Meier, P. (1958). Nonparametric estimation from incomplete observations, JASA 53 457-481.
[20] Kooperberg, C. (1998). Bivariate Density Estimation With an Application to Survival Analysis. Journal of

Computational and Graphical Statistics, 7, 322-341.
[21] Li, J. and Ma, S. (2013). Survival Analysis in Medicine and Genetics. CRC Press, Boca Raton.
[22] Lopez, O. (2012). A generalization of Kaplan-Meier estimator for analyzing bivariate mortality under right-

censoring and left-truncation with applications to model-checking for survival copula models. Insur-
ance: Mathematics and Economics 51 505-516.

[23] Moore, D. (2016). Applied Survival Analysis Using R. Springer, New York.
[24] Nikolskii, S. M. (1975). Approximation of Functions of Several Variables and Imbedding Theorems.

Springer, Berlin.
[25] Pinsker, M. (1980). Optimal filtration of functions from L2 in Gaussian noise. Problems of Information

Transmission 16 970-983.
[26] Prentice, R. and Cai, J. (1992). Covariance and survival function estimation using censored multivariate

failure time data. Biometrika 79 495-512.
[27] Prentice R. (2016). Higher dimensional Clayton–Oakes models for multivariate failure time data. Biometrika

103 231-236
[28] Prentice, R. and Zhao, S. (2018). Nonparametric estimation of the multivariate survivor function: the multi-

variate Kaplan–Meier estimator, Lifetime Data Analysis 24 3-27.
[29] Pruitt, R. (1993). Identifiability of bivariate survival curves from censored data. JASA 88 573-579.
[30] Rosso, D., Larson, L. and Stenstrom, M. (2008). Aeration of large-scale municipal wastewater treatment

plants: state of the art. Water Science and Technology 57 973-978.
[31] Tsai, W., Leurgans, S. and Crowley, J. (1986). Nonparametric Estimation of a Bivariate Survival Function

in the Presence of Censoring. Ann. Statist. 14 1351-1365.
[32] Saraiva, E., Suzuki, A., and Milan, L. (2018). Bayesian computational methods for sampling from the pos-

terior distribution of a bivariate survival model, based on AMH copula in the presence of right-censored
data. Entropy, 20 642-654.

[33] Seok, J., Tian, L. and Wong, W. (2014). Density estimation on multivariate censored data with optional
Polya tree. Biostatistics, 15, 182-195.

[34] Oakes, D. (1989). Bivariate survival models induced by frailties. JASA 84 487-493.
[35] Wang, W. and Wells, M. (1997). Nonparametric estimators of the bivariate survival function under simplified

censoring conditions Biometrika 84 863-880.
[36] Wasserman, L. (2006). All About Nonparametric Statistics. Springer, New York.
[37] Wells, M. and Yeo, K. (1996). Density estimation with bivariate censored data. JASA 91 1566-1574.


