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Abstract: Current status censoring (CSC) implies that there is no direct
access to the lifetime of an event of interest. Instead it is known if the event
already occurred or not at a random monitoring time. CSC is a simple
sampling procedure and in many cases the only possibility to assess the
lifetime of interest. At the same time, the absence of a direct measurement
of a lifetime of interest makes the problem of nonparametric distribution
estimation ill-posed. A simple, adaptive and sharp minimax estimator of the
density and cumulative distribution function is proposed. The simplicity of
estimator also allows us to relax assumptions. Practical examples illustrate
CSC problem and the proposed estimator.
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1. Introduction

Considered problem is a nonparametric data-driven and sharp minimax estima-
tion of the probability density and the cumulative distribution function (cdf) of
the lifetime of interest X (nonnegative random variable) which is not observed
directly. Instead, there is a possibility to check status of the event at some ran-
dom moment of time Z, called the monitoring time. Then the available current
status censoring (CSC) observation is a pair of random variables (Z, A) where
Z is the monitoring time and A := I(X < Z) is the status of the event of inter-
est, namely the status (indicator) is equal to 1 if the event of interest already
occurred at moment Z and the status is 0 otherwise. Available data is a sample
of size n from (Z, A).

Current status censoring (CSC), also known as “case I” interval censoring, is
a classical problem in survival analysis, see a discussion in books [9,15,21,23,25,
32,36] and thorough reviews of CSC in papers [7,10,16,24,27,28,34] where fur-
ther references may be found. It is well known that the stated nonparametric
problem of density and cumulative distribution function estimation is ill-posed
with slower rates of risk convergence than for the case of direct observations.
Due to the slower rates of convergence, it is always important to study not only
rates but sharp (minimal) constants. Recently [16] established sharp minimax
lower bounds for the Mean Integrated Squared Error (MISE) convergence for
an oracle that knows CSC data, information about distribution of X, and den-
sity of monitoring time Z. The aim of this paper is to propose density and cdf
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estimators that match performance of the oracle and attain the sharp constant
and the rate of the MISE convergence.

The oracle lower bounds and proposed data-driven estimators matching the
oracle will be presented shortly, and now let us review the related nonparametric
literature. The literature is vast and primarily devoted to estimating the cdf.
Let us begin with [33] where it is established that, under a mild assumption
on differentiability of the cdf, it may be estimated pointwise with rate n~/3
by a nonparametric maximum likelihood estimate (NPMLE). Minimal assump-
tions under which the rate is optimal can be found in [18]. Note that the rate is
dramatically slower than n~/2 for the case of direct observations, and more dis-
cussion and a thorough review of previous results can be found in these papers.
Another seminal paper, devoted to estimation under minimal assumptions, is
[6] where a piecewise constant (histogram-type) estimator of cdf is proposed.
[37] studied locally linear smoothers. Spline methods were introduced in [26]. A
novel kernel method was proposed in [20]. In [8] a warped adaptation for a ker-
nel estimator was motivated by Goldenshluger- Lepskii procedure which yielded
the squared-bias and variance trade-off. Log-concave constraint was proposed in
[2]. Bootstrapped confidence bands are developed in [22]. A number of interest-
ing and thought-provoking papers are devoted to orthogonal series estimation.
In [7] a rigorous analysis of a so-called quotient estimator is performed. The
underlying idea is to write the cumulative distribution function of interest as a
ratio of two densities of directly observed random variables. Then each density is
estimated via a series projection estimator with cutoffs chosen via minimization
of a penalized contrast function. It is shown that the adaptive estimator attains
optimal nonparametric rates whenever smoothnesses of the two densities are the
same. A regression-type estimator was also explored. Further development and
literature review on series estimation can be found in [6] where both compact
and non compactly supported bases are considered. [29] used penalization for a
projection series estimator of a conditional cumulative distribution function.

Density estimation problem for CSC data is dramatically less explored. Let us
mention [3] where the authors consider a kernel density estimation via solving it-
erative equations, nonparametric maximum likelihood estimation, and also via a
local EM approach. The latter requires an explicit solution of the local likelihood
equations which is done via the symbolic Newton-Raphson algorithm. Conver-
gence of proposed algorithms is studied. In [4] data sharpening is proposed to
increase robustness of a kernel density estimator to bandwidth misspecification
and measurement errors. [19] used a maximum smoothed likelihood approach
and a smoothing the (discrete) MLE of the distribution function approach. In
particular, under assumption that the cumulative distribution function is three-
fold differentiable, the density is estimated with the rate n=%7. Asymptotic
distribution of the estimate was further explored in [20]. In [34] a kernel es-
timator is proposed under an assumption that the density of interest is twice
differentiable and the density of monitoring time is three-fold differentiable. A
smart procedure of data transformation is used to convert the problem into
deconvolution. Then the optimal rate n=%7 is achieved, and expansions of the
expectation and variance as well as asymptotic normality are derived. This pa-
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per also contains a nice literature review.

It is important to stress that current status sampling may be dramatically
simpler than direct sampling of a lifetime of interest, and in many cases it is
the only available option, see a discussion in [9,25,32]. At the same time, CSC
makes cdf and density estimation problems ill-posed. As a result, it is prudent
to develop a data-driven estimator that attains both the optimal rate and the
constant of a risk convergence, and does that without a requirement for the
density of monitoring time Z to have a smoothness matching smoothness of an
underlying cdf of the lifetime of interest X.

The paper proposes a simple adaptive and sharp-minimax estimator of the
density and cdf of a lifetime of interest. The simplicity allows us to prove robust-
ness of the estimator with respect to smoothness of the density of monitoring
time. In [16], where a sharp minimax lower bound for CSC is obtained, it is
assumed that the density of Z is as smooth as an estimated cdf of the lifetime
of interest, and this is a serious restriction because we never know how smooth
an underlying cdf of interest is. In this paper only a bounded derivative of the
density is assumed, and this makes the proposed estimator robust.

The context of the paper is as follows. Section 2 presents assumptions and
a known sharp lower bound. A proposed data-driven estimator for the cdf may
be found in Section 3. Density estimation is considered in Section 4. Practical
examples and a numerical study are presented in Section 5. Proofs are in Section
6. Conclusion and open problems are in Section 7.

Finally let us introduce several notations used in the paper. Sample size is
denoted as n, 0,(1) is a traditional notation for vanishing sequences in n,

s:= 8, =3+ [In(n + 3)] (1.1)

and [a] denotes the smallest integer larger or equal to a, I(A) is the indicator
of event A. The cosine basis on [0, 1] is

po(x) =1, @;(z):=2"%cos(mjz), j=1,2,... (1.2)

We also use notation g(®(z) or (g(x))(® for the ath derivative of g(x), while
g* () is a notation for [g(z)]*. In the paper specific sequences in n and constants
are primarily chosen to make an orthogonal series estimator feasible for small
samples. The interested reader is referred to book [13] where series estimation
for small samples is discussed in depth.

2. Lower Bound

This section is based on [16] and serves as a reference. Considered nonparametric
CSC model is as follows. There is an underlying and hidden sample X1, ..., X,
from a lifetime of interest X . There is also a sample Z1, ..., Z, from a monitoring
variable Z. The available CSC sample is (Z1,A1),...,(Z,,A,) where A, :=
I(X; < Z;) is the status. The aim is to estimate the cumulative distribution
function FX(x) := P(X < z) and the density fX(z) := dFX(z)/dz of the
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lifetime of interest X under the mean integrated squared error (MISE) criterion.
We restrict our attention to bounded variables, and without loss of generality
may assume that they are supported on [0, 1].

Let us formulate the main assumption.

Assumption 1. The lifetime of interest X and the monitoring time Z are
independent continuous random variables, P(X € [0,1]) = 1, a known density
fZ(2) of the monitoring time has a bounded derivative on [0, 1], Sé f2(2)dz =1,
and min,e(o 1] f2(2) = ¢y > 0.

Let us comment on the assumption. Given P(Z < 1) = 1, no consistent
estimation of the distribution of X is possible if P(X > 1) > 0. In other words,
for consistent estimation the support of X must be the subset of the support
of Z. Similarly, the assumed independence between X and Z is necessary for
consistent estimation, see a discussion in [16]. In the presented below lower
bound continuity of f#(z) is sufficient, but in upper bounds we will use the
differentiability. More comments can be found in Section 7.

Assumption 1 implies that the joint (mixed) density of (Z, A) is

F28(2,8) = FA(IFY ()PP [L - FX ()], de{0,1}. (2.1)

The formula sheds additional light on why for consistent estimation the support
of X must be a subset of the support of Z.

Now we introduce two function classes. The former is a classical global
Sobolev class (ellipsoid) of a-fold differentiable functions on [0, 1]

Fla, Q) := {g . ¢\ (z) exists and finite on [0,1] and (2.2)

1

n
E(Wj)zan? <Q <o, Kj= J
j=1

9(@); ()da . (2.3)
0

Note that in (2.3) x; are Fourier coefficients of the function g. Sobolev function
classes are traditionally considered in upper bounds, and this is what will be
done shortly.

The latter function class is a local one where considered functions are close
to a pivot in Ly-norm. Let Fy(z) be the cdf of a random variable (lifetime) sup-
ported on [0, 1]. Introduce a class of cumulative distribution functions supported
on [0, 1] and created by additive perturbations of Fy,

F(Fo, e, Q,co,c1,p) = {F : F(z) = Fo(z) + g(2)[(0 <z < 1), FO(z) >0,

9(0) = 9(1) = 0, g€ F(a,Q), max max(|g(z)], |g(2)]) < p,

z€[0,1]
. 1 1
AR = e e BV <a) 24

The local functional class (2.4) was introduced in [16], function Fy(z) is
called the pivot, and parameter p defines the local nature of the class. Local
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function classes and a corresponding local minimax approach for establishing
lower bounds were pioneered in [17] for the case of direct observations, and for
CSC data in [18] for finding an optimal rate for cdf estimation.

Now we are in a position to present the lower bound of [16]. We are using
notation (F¥X(z))®) with 8 = 0 and 8 = 1 corresponding to the cdf and the
density, and in what follows the parameter  is used solely for this purpose.

Introduce a nonparametric Fisher information

j(aaQ,da ﬁ)

- [Qea+ ) FH s+ )FE B+ 14 H@-5"" ", @)

where

d Jl FF(@)(1 - F¥(x)) |
= — x
0 f7(z)

is the so-called coefficient of difficulty of CSC. Note that the nonparametric
Fisher information (2.5) is a ratio. The numerator is defined by an underly-
ing class of estimated functions (by parameters o and @) and by the estimand
specified by parameter 3, and the denominator (coefficient of difficulty) cap-
tures the effect of an underlying distribution of interest (here cdf FX) and a
nuisance function (here density f# of the monitoring time). One may think that
a nonparametric Fisher information is an analog of a classical parametric Fisher
information 1/0% in a problem of estimating the mean of a normal variable with
variance o2, see [1]. Further, the coefficient of difficulty d is a nonparametric
analog of 02 because, as we will see shortly, d is a factor in the asymptotic vari-
ance of an efficient Fourier estimator implying sharp minimax nonparametric
estimation. The larger the coefficient of difficulty, the more complex an esti-
mated nonparametric problem is, and this explains the “coefficient of difficulty”
terminology introduced in [13].

(2.6)

Theorem 2.1 (Lower Bound). Let Assumption 1 hold and o > 2. Then
the following lower bound holds for estimation of (FX(x))®) based on an CSC
sample of size n,

1

inf supEpx {[nj(a, Q.d, ﬁ)]z(o‘_ﬁ)/(MH) J

[Bs(x) — (FX (2))P))2dz }
Vg FX 0

> (14 0,(1)). (2.7)

Here parameter 3 is either 0 or 1 for the estimand being either the cdf or the
density, respectively, the supremum is over FX € F(Fy, o, Q,1/In(In(n)),
[In(In(n))]"/2,1/In(In(n))) defined in (2.4), the infimum is taken over all possible

oracle-estimators W knowing the sample, density f#(z) of the monitoring time
Z and everything about the class (2.4), namely Fy, o and Q.

In Theorem 2.1 parameter p = 1/In(In(n)) = 0,(1), and accordingly (2.7)
is the lower bound for a shrinking local minimax which makes the bound more
challenging to match for an adaptive estimator and a global minimax.
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It follows from Theorem 2.1 that the classical rate n=! for estimating cdf,
known for direct observations, slows down to n=2%/(22+1)_ This is why a CSC
sampling is called ill-posed with respect to direct sampling a lifetime of interest.
Further, nonparametric Fisher information (2.5) and coefficient of difficulty d
are important outcomes of the oracle’s lower bound. In particular, the coefficient
of difficulty captures the effect of the underlying distribution of interest and the
distribution of the monitoring time on the Fisher information and the MISE
convergence.

Let us comment on what is known about sharpness of the lower bound (2.7).
It is a lower bound for an oracle-estimator that knows data, smoothness of an
underlying cdf, and the nuisance density f# of the monitoring time. The lower
bound is sharp and it is attained by an oracle-estimator for a local Sobolev class.
The estimator is too complicated to present here, it is motivated by a proof of
the lower bound and uses an aggregation of bases for subsets of the support of
X. In next two sections a simple data-driven and robust estimator is proposed
that attains the sharp lower bound for a global Sobolev class (2.2) with unknown
parameters o and (). The simplicity will also allow us to relax assumptions of
[16] about smoothness of the nuisance density fZ of the monitoring time. In
other words, we will see shortly that it is possible to match performance of the
minimax oracle.

3. CDF Estimator

The aim of this section is to present a simple sharp-minimax cdf estimator
that adapts to smoothness of an underlying cdf and may be used for small
samples. Further, the estimator preserves its properties under a mild assumption
of differentiability of the density fZ of the monitoring time Z.

In what follows we first present the estimator and its properties, and then
explain the estimator and discuss the results.

Recall that we observe a sample (Z1,Aq),...,(Z,,Ay) from a CSC pair
(Z,A) where Z is the monitoring time, A := I(X < Z) is the status, and X
is the unobserved lifetime of interest. The aim is to estimate an underlying cdf
FX(x) :=P(X <) of X.

We begin with the case of a controlled CSC when density fZ(z) of the moni-
toring time is known. Recall that sequence s := s,, and elements of cosine basis
@pj(x), j=0,1,... are defined in (1.1) and (1.2), respectively. Set

1
:LFX(;E)%(;U), i=01,... (3.1)

for Fourier coefficient of the cdf of interest FX(z). Then (2.1) implies that a
pilot Fourier estimator

] Ny (Z))
=n ! lSOJ l
- Z 772 (3.2
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is unbiased estimator of 0;, and accordingly set

F‘,J‘({L‘) = 2 02902 + 2 91301 j > S) (33)
i€{{0,1,....,s}\{5}}

for unbiased estimate of function

F_j(z):= 2 Oipi(x )+ 2 O:0i(x)I(j > s). (3.4)
i€{{0,1,....s}\{5}}

This function approximates FX(x) as both s and j increase to infinity, and
note that Sé F_j(z)pj(x)dz = Sé F_j(z)¢j(x)dz = 0. In what follows F_;(x) is
referred to as the pilot cdf estimator, and note that this estimator and F_;(z)
do not depend on j whenever j > s.

Now we can define a Fourier estimator

~ " (A = Fj(Z)e;(Z
im0 E) 69

Note how simple the estimator is, hardly more complicated than the pilot (3.2).

The proposed blockwise-shrinking cdf estimator is based in Fourier esti-
mates (3.5) and the following three statistics. Introduce blocks of positive inte-
gers/frequencies By := {0,1,...,s}, By := {0,1,...,s|1 + 1/In(s)|*}\ U*Z} B,,
k=1,2,..., and denote the length (cardinality) of By by L. Set

~ 2
Ok = Lyn(n—1)
(A i(20))ei(Z)(Av — F_j(Zv))p;(Zr)
g EB; — fZ(zl»fZ(zl/) | - GO
Op=L;' ) 62 (3.7)
JEB
and “ -
S -1 S F—s(Zl>(1_F—s(Zl))
d := min (38,’(1 lzzl (P20 ) (3.8)

Note that d is a bounded plug-in sample mean estimate of the coefficient of
difficulty (2.6).
The cdf estimator, based on an underlying density fZ(z), is defined as

FX(z, %) 2919 > 2dsn~ Yj(z)

7=0

+ Z min(1, 5 @k > 10s"'n"~ Z éjgaj(x). (3.9)

JEBK
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Here 7, is the largest integer 7 such that s|1 + 1/In(s)|” < In(s)n'/3/4. Note
that the number of blocks r,, is of order (In(n))2. Here and in what follows, all
specific constants allow us to use an estimator for small samples. The estimator
will be commented on shortly.

In the following proposition we use notations of Theorem 2.1 introduced in
Section 2.

Theorem 3.1 (Upper Bound for the MISE of FX(z, f?)). Let Assumption
1 hold. Then for a CSC sample of size n,

1 ~
sup  Epx{[ng(a,Q,d, ]/t f [FX (2, f7) = F¥()da}

FXeF(a,Q) 0
< (14 0,(1)). (3.10)
If fZ is unknown, then its estimation is based on available sample Z1, ..., Z,

from Z. Accordingly, define a bounded from below projection estimate

Jn n
F7(2) := max(ym, f?), where fZ(z):=n"" Z Z (Z1)pj(z (3.11)
j=01=1
and
Jn = |In(s)n3/2, 4, :=1/(31n(s)). (3.12)

Theorem 3.2 (Upper Bound for Plug-In Estimator FX(z, f%)). Let
Assumption 1 hold. Then the upper bound (3.10) holds for FX (x, f%).

Note that the plug-in estimator is completely data-driven and it adapts to
unknown smoothness of an underlying cdf of X. Important theoretical achieve-
ment of Theorem 3.2 is that only differentiability of f#(z) is assumed (versus
a-fold differentiability assumed in [16]).The improvement is due to the simpler
Fourier estimator (3.5) and a more advanced proof.

Now let us comment on the introduced estimator and statistics. It is worth-
while to begin with a brief introduction to series estimation.

Estimator (3.9) belongs to a class of orthogonal series estimators. A series
estimator employs a familiar from the function analysis result that a square in-
tegrable on [0, 1] function g(z) can be written as ¢(x) = Z;io kjj(x) whenever
{¢;j(z),7=0,1,...} is a basis on [0,1] and k; = So x);(x)dx are correspond-
ing Fourier coefﬁaents Then a traditional nonparametric rate-optimal estima-
tion paradigm, based on a sample of size n, is as follows. Find a Fourier estimator
#; whose mean squared error is of order n™!, that is E{(k; — r;)*} < Cn™L.
Then use a projection estimator g(z) = ij\inl Rjp;(x) where M, is called a
cutoff. A popular add-hoc choice of the cutoff is M,, = n'/> which yields rate-
optimal estimation for ¢(z) € F(2, Q). Indeed, the Parseval identity implies that
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the mean integrated squared error (MISE) of the estimator is

M,

E{J 0)% = Y E{(R; — k)% + D) k2 =:Va+ B, (3.13)

Jj=0 Jj>Mn

Here V,, is called the variance component of the MISE and it is proportional to
M,n~!, and B, is called the integrated squared bias (or simply bias) compo-
nent and it is proportional to M, *. This yields the optimal MISE convergence
of order n=%/5. Note that for ¢ € F(a, Q) the optimal cutoff is of order n!/(2a+1),
An interesting and practically important property of a rate-optimal projection
estimator using a trigonometric basis is that its derivative is elementary calcu-
lated and it is a rate-optimal estimate of the derivative of an estimated function.
This is due to the fact that the optimal cutoff is the same for a function and its
derivative, see [15]. Knowing this fact will be handy in understanding the next
Section 4.

In applications smoothness of ¢(z), defined by parameter «, is unknown and
then numerical procedures for data-driven (adaptive) choosing M,, are devel-
oped based on a variance-bias tradeoff. The main technical element here is
to note that due to the Parseval identity a bias in (3.13) can be written as

B, = So ¢*(x)dx — Z;VI% #7. Now note that So ¢*(x)dz does not depend on M,
and accordmgly the problem of finding a data- drlven cutoff is converted into
minimizing Zjﬂio[Eq{(Rj — k;)?} — 3] with respect to M. Another interesting
approach, popular for wavelet bases, is to use a thresholding like the one in the
first sum on the right side of (3.9). A thresholding may yield almost rate optimal
(within a logarithmic factor) estimation. The interested reader can find more
about rate-optimal estimation in books [13,35].

The problem becomes more complex if sharp-minimax is of interest when the
aim is to achieve both optimal rate and constant of the MISE convergence. For

a global Sobolev class F(a, Q) defined in (2.2), a linear Pinsker’s oracle

Jn(a,Q)

Z [1— /T, @) TR 0 () (3.14)

is sharp-minimax whenever the Fourier estimator &; is efficient, namely
E{(Rj — 1;)?} = d'n 1 + 0j(1) + 0, (1)]. (3.15)

Here J,(a, Q) is a special cutoff specific for an underlying Sobolev class, and
d' is a coefficient of difficulty specific for an underlying statistical problem. For
instance, for estimation of the density fX(z) based on direct observations of
X this coefficient is 1. Note that the linear oracle (3.14) “smooths” Fourier
estimates. While being very simple, the linear oracle has two drawbacks. The
former is that it is possible but extremely difficult to estimate the cutoff, the
latter is that derivative of the linear oracle is not a sharp-minimax estimate of
the derivative of ¢(x).
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Nonetheless, the Pinsker’s linear oracle has been a motivation for a blockwise-
shrinkage adaptation used by the proposed estimator (3.9). Let us explain the
underlying idea following [11] where the problem of density estimation based
on direct observations is considered. First, the Pinsker smoothing coefficient
(1= (j/Inl,Q))*) is dominated by an oracle-coefficient x3/[x% + d'n~"] where
d’ =1 is the coefficient of difficulty for the density estimation problem. Second,
we may estimate the oracle-coefficient but the accuracy is not sufficient for
its mimicking. Instead, using the fact that the Pinsker’s smoothing coefficients
with neighboring frequencies j are close to each other, we can propose a single
smoothing coefficient for a block of Fourier coefficients. Consider a block of
frequencies B which includes L frequencies, then the corresponding smoothing
blockwise oracle-coefficient is

L_l . 52,
w* 1= — ZJ‘;B I (3.16)
L=13epki+dn
Due to the averaging over the block, the Sobolev functional L= jeB /i? can be

estimated with a sufficient accuracy for sharp-minimax estimation. The oracle-
coefficient w* is convenient when the coefficient of difficulty is known as in the
density estimation for direct observations. Otherwise, it may be more convenient
to mimic a closely related, due to (3.15), an oracle-coefficient

Wa = LileEBK?
% o= T 57 -
L1 3 ep B{R}}

A nice feature of this oracle-coefficient is that no estimation of d’ is required,
and more discussion and specific results can be found in Section 6, see Lem-
mas 6.3-6.6. Further, it is established in [12] that derivative of a sharp-minimax
blockwise estimator is a sharp-minimax estimate of the derivative. This is an-
other attractive feature of a blockwise adaptive estimation that will be used
shortly in Section 4.

This ends our brief overview of orthogonal series estimation which sheds
light on the proposed methodology, and the interested reader can be find more
information in books [13,15,35].

Now let us comment on specifics of the proposed estimator (3.9). We are
explaining statistics in the order as they were introduced. The pilot Fourier
estimate (3.2) is a simple sample mean estimate based on the formula (2.1), its
properties are highlighted in Lemma 6.1 of Section 6. Using the terminology
of [24] we may say that the pilot estimate is based on “cases”. The pilot cdf
estimator (3.3) is the above-discussed projection series estimator with cutoff
s and “removed” frequency j < s. As a result, we have important relation
S(l) Z*Y’_j (x)@;(z)dx = 0forall j = 0,1,... Another property of the pilot estimator
is that it is unbiased estimate of F_;(x) defined in (3.4), and also see Corollary
6.1 in Section 6. Note that the mean squared error of the pilot Fourier estimate
is S(l) [FX(z)/f?(x)]dzn= (1 + 0;(1) + 0,(1)), while the mean squared error of
the proposed Fourier estimate (3.5) is dn™'(1+ 0j(1) 4+ 0,,(1)), see also Lemmas

(3.17)
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6.1 and 6.2. As a result, recalling (3.15) we may refer to the Fourier estimate
5]» as efficient. Note how subtracting the pilot cdf estimate from the status A in
(3.5) decreased the mean squared error. Now we are ready to look at the used
blockwise smoothing coefficients. If we replace in statistic (3.6) the pilot estimate
E _; by F_;, then this statistic becomes U-statistic and unbiased estimate of the
Sobolev functional Oy := L,;l ZjeBk 9?-, see a discussion in the proof of Lemma
6.6 in Section 6. This fact, together with the oracle’s smoothing coefficient (3.17),
explain the blockwise smoothing used in the second sum on the right side of
(3.9). Lemma 6.4 in Section 6 sheds light on relationship between statistics Oy
and (:)k, while Lemma 6.5 explains how well the blockwise shrinkage mimics a
blockwise oracle in La-norm. The used thresholding is necessary to attain sharp-
minimaxity as shown in [11]. The choice of 7, in (3.9) is such that the estimator
includes all frequencies that a sharp-minimax oracle does.

Now let us comment on the low-frequency component in (3.9). It is cre-
ated solely for small samples using recommendation of [13], and its effect on
the asymptotic MISE is negligible, see details in (6.27), (6.30) and Corollary
6.2 in Section 6. Further, thresholding I(gj2 > Zan_l) may be skipped or
replaced by I (5]2 > Csn~!) with no effect on the sharp-minimax. The used

estimate (3.8) may be replaced by others. For instance, note that E{af} =
dn71 + 0;(1) + 0,(1)], and hence using a sample mean or sample median of
{gjz, j=s+1,...,2s} is applicable. The reader familiar with wavelet estimators
may recall that the median approach is popular in wavelet statistical packages.
Overall, there is a large flexibility in choosing a lower frequency component of a
blockwise shrinkage estimator, and in (3.9) this component is chosen based on
recommendations of [13] and analysis of examples presented in Section 5. We
will continue the discussion in Section 7.

4. Density Estimation

There are two classical approaches to the problem of density estimation, and
we are considering them in turn. The former is to propose a smooth estimate of
cdf and then take derivative. This approach looks natural for CSC data due to
the underlying likelihood (2.1). An interesting example of using this approach
for CSC data is [19] where derivative of a maximum smoothed likelihood cdf
estimate is used to estimate the density. Under the assumption that the third
derivative of FX(z) is continuous, it is shown that the density estimate at-
tains the rate n=%7. The latter approach is to bypass estimation of the cdf
and consider density estimation as a self-defined nonparametric problem, recall
literature review in the Introduciton. We consider these approaches in turn.
Using estimates (3.9) and (3.11) we can define a density estimate

X () o {dﬁ“"(a F2)/dz it 7 is known,

~ — 4.1
dFX(x, f?)/dx otherwise. (41)

Next proposition follows from [12] and results of Section 3.
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Corollary 4.1 (Upper Bound for the MISE of Density Estimator (4.1)).
Let Assumption 1 hold and o = 2. Then

sup  Epx {[n (@, Q. d, 2) 71/ f [F¥ () = 1 (@))2da |

1
FXeF(a,Q) 0
< (1+0n(1)). (4.2)

This result presents good and bad news about density estimation for CSC
data. The good one is that adaptive sharp-minimax estimation is possible. The
bad one is that rate of the MISE convergence is dramatically slower than for
the case of a direct sampling from X. Indeed, recall that if density fX(z) has
v derivatives then based on a direct sample of size n it may be estimated with
the rate n=27/7*D In (4.2) « is the number of derivatives of FX(z), and
accordingly density f*(x) has v = a — 1 derivatives. Then Corollary 4.1 asserts
that the best rate of the MISE convergence for a CSC sample is n~27/(27+3)
According to [13], for a direct sample of size n from X this rate is the same as
for estimation of a trivariate density having « derivatives in each variable. Now
recall a familiar curse of multidimensionality in nonparametric estimation, see
a discussion in [35], and then Corollary 4.1 sheds a new light on complexity of
CSC data analysis. We will continue this discussion in Section 5.

Under the second approach, when estimation of cdf is bypassed, we estimate
density fX(z) directly. The proposed density estimator is again a blockwise-
shrinkage cosine series estimator discussed in Section 3, and we continue to use
notation of that section. Further, for the reader’s convenience we will compare
steps in construction of a blockwise density estimator with those for the cdf
estimator (3.9).

The main principal step is to understand how Fourier coeflicients

1
G = f fX(:v)cpj(x)dx (4.3)
0

of the density f¥ can be estimated. We know that ¢y = Sé fX(z)dz = 1 because
X is supported on [0, 1]. Accordingly, we need to propose a Fourier estimator
for j > 1, and from now on we are considering only j > 1. Using integration by
parts we can write,

1 1 1
G = j FX@)pj(@)de = [p;(1)FX (1) — ¢ (0)FX(0)] — f o (@) FX () da

0
(1
v, (2 _ ‘ b;(2)
— (1) ~Epx{A 0 b= o) + (WJ)EFX{AfZ(Z) |

In the last equality we used FX(0) = 0, F¥(1) = 1, and cpgl)(x) = (—mj)Y;(z).
Here
V;(x) = 2Y2sin(mjz), j=1,2,... (4.5)
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are elements of the classical sine basis on [0, 1]. Now note that the expectation
on the right side of (4.4) can be estimated by a sample mean estimate. This
yields a pilot Fourier estimator (compare with (3.2))

y A (Z)
&= o)+ 2 Z Jfszll . (4.6)

Note how similar pilot Fourier estimators (4.6) and (3.2) are despite different
estimands (; and 6;, respectively. They are both unbiased estimates of their
estimands, but a critical difference is in the factor 7j in (4.6) which yields an
increasing by factor (7)? mean squared error (MSE) of 5] while the MSE of 5j
is bounded.

Following (3.3), we use Fourier estimates (4.6) to construct a pilot cdf esti-
mator

Fa@= Y i ) + Z Cinhi(@)I(j > s). (4.7)
({1, s M}

Note that ﬁ'_j (z) is unbiased estimate of a function

F*x)= Y (il +Zm I1(j > s). (4.8)
ief{{1,....s\{5}}

This function mimics F_;(x) defined in (3.4) only here the sine basis is used
in place of the cosine basis. The sine basis is used because, due to using sines
in (4.6), the new pilot estimate and the approximation F*, of FX(z) have the
desired property

J }?Lj(as)l/Jj (z)dx = L F* (x)t;(x)dx = 0. (4.9)

0

Note that (4.9) matches the same property of }v?_j (x) and F_;(x) with respect
to ¢;(x), see the paragraph below line (3.4).
Following (3.5) we define a Fourier estimator

Cim o %Z (A — l;)%/]g(Zl)

Tt is easy to check that if in (4 10) the estimate F_J (Z1) is replaced by F*.(Z;),

then due to (4.9) estimate CJ becomes unbiased estimate of (;. Another impor-
tant property of the Fourier estimate will be presented shortly in Lemma 4.1,
and also see Lemmas 6.7 and 6.8 in Section 6. N

Now we introduce three new statistics. The first one is analog of Oy,

=1 (4.10)

F.__ 2 Y [y <wj><Az—ﬁ_j<Zz>>wj<zl>]

- = 7
Lyn(n — 1) 1<i<l'<n jeBy 1)
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() (Av — F(Zy))w;(Zr)
(1 . 4.11
x [is(1) + e ] (4.11)
The second statistic is analog of (:)k,
Zp =Lt Y ¢ (4.12)
JE€Bk
The third statistic is analog of J,
> . — - ﬁ—s(Zl)(l_ﬁ—s(Zl))
d:=min (3s,n~! . 4.13
(o B e ) (419)

Now we are in a position to introduce a blockwise density estimator that
mimics the cdf estimator (3.9),

P, f7) =1+ Y GIE > (nj)?2dsn™Y)p;(x)
J=1

Tn 2 ~ k ~
+ > min(1, 22, > 10[r Y L2 Y Goy(a). (4.14)
k=1 Z r=0 j€By

Finally, if f#(z) is unknown, then we use its estimate fZ#(z) defined in (3.11).

Theorem 4.1 (Upper Bound for the MISE of Density Estimator (4.14)).
Let Assumption 1 hold and o = 2. Set fX(z) = fX(x, f?) if f% is known and
fX(x) = fX(x, f?) otherwise. Then

sup Epx {[nj(a, Q.d, 2)]2((1—1)/(2a+1) J: [fX (.Z’) o fX (x)]de}

FXeF(a,Q)

< (1+ 0n(1)). (4.15)

We may conclude that the both methods (taking derivative of the blockwise
cdf estimate and a direct blockwise density estimation) lead to a sharp-minimax
estimation that matches performance of oracles. Overall the second method (di-
rect density estimation) is preferable because this technique is widely used and
many innovations are developed, see [13,15,35]. Another comment is that inte-
gration of the proposed density estimator yields a sharp-minimax cdf estimator.

Now let_us present a technical result which explains our choice of Fourier
estimator (; and sheds light on Theorem 4.1.

Lemma 4.1. Under assumption of Theorem 4.2 the mean squared error of
Fourier estimator (; satisfies

R i 2 1 X T _ X x
Eps{(G - )%} = i) [L = );12@5 =

dz + 0;(1) + on(l)]. (4.16)
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The interested reader may also compare statistical properties of the Fourier
estimates (; and (; using Lemmas 6.7 and 6.8 in Section 6.

Remark 4.1. Recall that d = Sé FX(z)(1 — FX(2))[f4(z)]"'dx is the co-
efficient of difficulty for cdf estimation defined in (2.6). On the right side of
(4.16) we see this coefficient of difficulty multiplied by factor (mj)? which is
due to S(l) [dp;(z)/dx])*dz = (7j)%. This observation explains similarity between
the two approaches for density estimation. Lemma 4.1 also helps us to under-
stand why for FX € F(a, Q) rate optimal cdf and density projection estima-
tors can use the same cutoff J, (). Indeed, let us make several simple calcula-
tions. The MISE of a projection cdf estimator F(x) := Zj:o éjgoj(x) is of order
Jn~' 4+ J722. The latter yields rate-optimal cutoff J,, (o) = J¥/(+1) and the
rate n~2%/(2a+1) for the MISE convergence. The MISE of a projection density
estimator f(x):=1+ ijl Cipj(z) is of order Zj=1(7rj)2n_1 + J~2(@=1) This
yields the same rate-optimal cutoff J,(a) = n!/2e+1) and the corresponding
rate n~2(@=1/(2a+1) for the MISE convergence. Note that the above-presented
rates of MISE convergence are optimal according to Theorem 2.1.

Let us finish our theoretical sections with a practical comment. In general a
series estimate may be non bona fide. If this is an issue, then an Lo-projection
on a corresponding bona fide class may be performed, see a discussion in book
[13] and use its R software.

5. Examples

The section sheds additional light on estimation for CSC data via analysis of
real and simulated data. We begin with real-data examples.

Environmental company BIFAR has been interested in exploring aerobic
treatment of municipal wastewater, see a discussion of the treatment and BI-
FAR’s CSC experiments in [16]. In one of the experiments, a random variable
of interest was time X when a chemical pollutant appears at a sludge tank.
Because it was impossible to observe the time directly, a CSC study was con-
ducted. BIFAR’s CSC observations (Z1, A1), ..., (Z,, A,) are shown in the top
diagram in Figure 1. Before proceeding to estimates, let us look at the data and
try to guess an underlying density. Recall that guessing an underlying density
is often possible for direct observations, and this is a recommended first step in
nonparametric estimation, see chapter 3 in [13]. In the diagram we can directly
observe monitoring times, and it is reasonable to assume that an underlying
density is uniform. The estimate fZ(z) (the solid line) supports the conclusion.

Now let us try to analyze the CSC data. Because A = I(X < Z) and all As
with Z > 0.65 are equal to 1, the CSC data, together with the uniform fZ, tells
us that an underlying density has a vanishing right tail. Next we note that As
with Z < 0.3 are zero and hence all corresponding underlying times of interest
satisfy X > Z. This points upon a vanishing left tail. Unfortunately, there is
nothing else that a visualization can produce. In particular, it is difficult to an-
swer questions about symmetry or multimodality. This complexity is explained
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CSC Aerobic Data, n= 83, N= 53

A, Density
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Fic 1. Analysis of BIFAR CSC aerobic data. Monitoring times are rescaled onto [0,1].
The top diagram shows CSC observations by the circles, n is the sample size, N :=
Doy Ay, the solid line shows the estimated density of the monitoring time Z. In the
middle and bottom diagrams a solid line is the proposed estimate and a dashed line is
the pilot estimate.

by formula (2.1) implying that to visualize an underlying density, one first need
to visualize an underlying cdf and then visualize its derivative. The derivative
step is too complicated for visual analysis. We may conclude that only statistical
estimators may help us to gain understanding of CSC data.

The middle and bottom diagrams exhibit pilot (the dashed line) and proposed
(the solid line) estimators of the density and cdf. Recall that all estimates are
series estimates and they are consistent, the proposed estimator is more accurate
while the pilot estimator is very simple. For the data at hand, based on the
estimated X and fZ, the ratio of the standard deviation of the pilot Fourier
estimator (3.2) to the standard deviation of the proposed Fourier estimator
(3.5) is 2.3. This sheds light on improvement in estimating Fourier coeflicients.
Further, let us look at the two density estimates. The pilot estimate is skewed to
the left and asymmetric. At the same time, the proposed estimate is unimodal
and symmetric. BIFAR concurred the symmetric and unimodal shape of an
underlying density of interest.
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CSC Time to Fatigue Data, n= 485, N = 282

0@ om onomD L e

A, Density

Fic 2. Analysis of time until “drowsy driving.” Monitoring times are rescaled onto [0,1].
The top diagram shows the CSC data by the circles, n is the sample size, N := >/ | Ay,
the solid line shows the estimated density of Z. In the middle and bottom diagrams a
solid line is the proposed estimate and a dashed line is the pilot estimate.
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Our second example is more interesting in terms of the shape of an underly-
ing distribution, and it involves a larger sample size. Operating a motor vehicle
while fatigued or sleepy is commonly referred to as “drowsy driving.” There is
an extensive literature devoted to the topic with a primary interest in under-
standing the drowsy driving, driver assistance technologies in vehicles, and the
driver’s fatigue detection by monitoring systems, see reviews and interesting
data in [31,38]. Here our aim is less ambitious, and we would like to evaluate
distribution of a driving time X until first yawning. This is a simple and in-
expensive CSC experiment which uses a call to a driver and a question about
yawning prior to the call. CSC data for n = 485 commercial drivers are shown
in the top diagram in Figure 2. The structure of Figure 2 is identical to Figure
1, and this allows us to compare the two CSC datasets. We again see vanish-
ing tails, but the difference is in asymmetry of the fatigue data. There are too
many observations to visualize an underlying density fZ, and the estimate f%
(the solid line) indicates an increasing density. Based on the top diagram, it is
difficult to add something else to these remarks.

Now let us look at the middle diagram. The left tail of the pilot estimate (the
dashed line) looks strange, there is no reason to believe that it is correct. The
more accurate proposed density estimate (the solid line) tells us an interesting
story about the data. It reveals two modes in the lifetime of interest X. A
reasonable explanation is that the left and right modes are created by driving
at night and daytime, correspondingly. The bimodal density is also supported by
a known fact (see the above-mentioned literature) that a driver three times more
likely to have a fatal accident at night than during the day. Let us also note that
the pilot estimate is a smoothed version of the proposed estimate. The bottom
diagram shows us estimates of cdf. Here the ratio of the standard deviation of
the pilot Fourier estimator to the standard deviation of the proposed Fourier
estimator is 2.2.

Now let us present results of a numerical study when we know an underlying
model. We would like to understand how CSC effects density estimation and
relative performance of the proposed CSC density estimator. Figure 3 exhibits
two simulations with underlying densities shown by the solid lines in the bot-
tom diagrams. In the left diagram the density is unimodal and in the right it is
bimodal. In both experiments the monitoring time is uniform. Considered esti-
mates are: (i) Estimate of [13] based on an underlying sample from X. Recall
that we are dealing with simulated CSC and hence know underlying lifetimes of
interest. Let us refer to this estimate as an oracle. The oracle is shown by the
dashed line; (ii) Proposed estimate. The estimate is shown by the dotted line;
(iii) Aggregated estimate of [15 ]. This estimate aggregates two series estimates
based on observations with A = 1 and A = 0, respectively, and this is a reliable
rate optimal CSC density estimate supported by the software [15].

Now we repeat a simulation 5000 times, for each simulation and each estimate
calculate an integrated squared error (ISE), calculate ratio A of ISE of the
proposed estimate to ISE of the oracle, calculate ratio B of ISE of the aggregated
estimate to ISE of the oracle, and then calculate sample means A and B of the
ratios over 5000 simulations. Results are shown in Table 1, and the underlying
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CSC Data, n= 100, N= 44

A, Density
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CSC Data, n= 200, N= 91
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Density Estimates

Fic 3. Two simulated CSC examples. A top diagram shows CSC data by the circles, n
is the sample size, N := ' | Ay, the solid line shows the estimated density of Z. A
bottom diagram shows by the solid, dashed, dotted and dot-dashed lines an underlying
density of interest fX, the oracle (density estimate of [13]) based on an underlying
sample from X, the proposed estimate, and aggregated estimate of [15], respectively.
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models are as follows. Model 1 is for the unimodal underlying density, and
the left column in Figure 3 exhibits a particular simulation. Model 2 is for
the bimodal underlying density, and the right column in Figure 3 exhibits a
particular simulation. Models 3 and 4 use a new density for the monitoring time
Z which is a mixture with weight 0.3 of the uniform density and with weight
0.7 of the unimodal density shown by the solid line in the left bottom diagram
in Figure 3. Then model 3 in Table 1 corresponds to the unimodal underlying
density of interest, and model 4 to the bimodal underlying density of interest
shown by solid lines in the bottom diagrams of Figure 3, respectively. Let us
look at the presented results. As we already know from the theory, small samples
may present only onset of ill-posedness, and the results support this possibility.
For larger samples CSC creates more dramatic complications with respect to
direct observations. Relative performance of the two CSC density estimators
becomes worse with increased sample size, and this outcome coincides with
the theory. Recall that asymptotically CSC density estimation is equivalent to
estimating a trivariate density, and the results reflect this. On a positive note,
the study shows that the used series density estimator is robust toward an
underlying density of the monitoring time, and there is only a minor bump in
performance of the estimator when the density of monitoring time changes from
the uniform to the unimodal. To see the latter, compare outcomes for odd and
even models. Another interesting observation is that the relative performance
of the CSC estimates is better for the bimodal underlying density than for
the uniform underlying density. The latter is due to the fact that even for the
oracle estimation of the bimodal density is a notoriously complicated task, see
a discussion in [13].

TABLE 1
Results of a numerical study of two density estimates with respect to an oracle that knows
underlying direct observations of the lifetime of interest. Each entry shows A/B explained in
the text.

Model n
100 200 300 400 500
7.4/8.2 | 12.3/14.7 | 26.5/28.6 43.1/50.5 | 56.9/67.3
4.3/5.3 | 7.3/10.2. 11.8/15.2. | 14.4/17.8 | 18.4/23.0.
8.7/9.4 | 12.8/15.2 | 27.3/29.2 44.7/51.6 | 57.3/67.7
5.1/6.2 | 7.6/10.6 12.7/15.6 15.9/18.1 | 19.3/23.8

LS

In conclusion, the examples show that estimation based on CSC data is a
feasible but ill-posed task. Fortunately, the ill-posedness is relatively mild for
small samples. Accordingly practitioners should not shine from employing CSC
experiments and nonparametric analysis of CSC data because visualization of
nonparametric density estimates may shed a useful light on the lifetime of in-
terest.
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6. Proofs

In what follows C's are generic finite constants, d is the coefficient of difficulty
CSC defined in (2.6), Epx{-} and Vx () denote the expectation and the vari-
ance given the underlying cdf F'X whenever we would like to stress an underlying
cdf, and we continue using notations introduced at the end of the Introduction.

Proof of Theorem 3.1. The proof is structured via a sequence of technical
lemmas. This simplifies understanding main steps in the proof. We begin with
evaluation of the mean and variance of the pilot estimator 6; of Fourier coeffi-
cient 6; defined in (3.2) and (3.1), respectively.

Lemma 6.1. Let Assumption 1 hold. Then the pilot estimator éj of 0; is unbi-
ased and rate optimal, namely

Epx{0;} = 0;, (6.1)

and
1

Vpx (6;) = nflL FX(@)[f7 ()] [ (@)]*dz < Cn7". (6.2)

Proof of Lemma 6.1. For the expectation we write using (2.1),

Epx{0;} = Epx {Ap; (2)[f4(2)] ")

1
0

- | PP @@l i - | PR @) -0,

This verifies unbiasedness of the pilot Fourier estimator éj. Variance of the pilot
Fourier estimator is

Vs (B) = n7Vex (85 (2)[14(2)] )
— 0 Epx (A%G2(2)[f7(2)] %) - 63]

1
= [ FYEe P @) e < on
0
We conclude that the pilot Fourier estimator is unbiased and rate optimal.
Lemma 6.1 is verified.

Now let us consider Fourier estimator é\j defined in (3.5). Next proposition
sheds light on why this estimator may be referred to as efficient for the consid-
ered nonparametric problem of the cdf estimation.

Lemma 6.2. Let Assumption 1 hold and FX € F(a, Q). Then

[Epx {85} — 6;] < Con™, (6.3)
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and
Epx{(0; —0,)%} <dn '[1+C(G+1)"2+s1)]. (6.4)

Here d = S(l) FX(z)(1 — FX(2))[f?(x)]"'dz is the coefficient of difficulty CSC
introduced in (2.6).

Remark 6.1. In what follows it is sufficient to have dn™*[1+ 0;(1) + 0,,(1)] on
the right side of (6.4)

Proof of Lemma 6.2. Recall statistic f'_j (x) is defined in line (3.3) and used
to estimate function F_;(x) which approximates FX () and is defined in (3.4).
Write,

>

5 o (A - F(Z)ei(Z)
Z fZ(Zl)

J
=1

F4(Z)

Let us evaluate mean and mean squared error (MSE) of the two terms in
turn. Using (2.1) and a straightforward calculation we get for the mean,

T i (Fj(Z) = F_y(20))¢;(%) _ i, +6sy. (6.5)
=1

Epx iy} = f [FX (@) — F_j(x)]ip; (x)da = f FX(2)p;(x)dx = 0, (6.6)

We conclude that §1j is unbiased estimate of §;. Using (2.1) and A} = A; we
write for MSE,

EFX{(élj - Oj)2} = nfl[IEFX{<(Al — F—j(Zl))@j(Zz)[fZ(Zl)]*l)Q} B 6]2]
= 0 [Epx {(AF - 28,F () + F2(2) 2 (@) 4(Z0) 2} - 2]

1
[ j [FX (2) — 2P (2)F_;(z) + 2, (2)]2 (@) [fZ ()] *dax — 0]

Now we write F_;(x) as FX(z) + [F_;(z) — F¥X(x)] and continue

1

Eps {(B1; — 0,2} <n~! f [FX(@)(1 — FX ()] (@) ()] e

+n7| L [—2F% ()(F-;(x) — F¥ (2))]9} (@) [f7 (2)] " d|

1
T n_lL [F2,(2) — (FX (@)1 () [f2(@)]) ' = vy + v + 05, (6.7)
To evaluate v; we use trigonometric formula 2cos?(y) = 1 + cos(2y) which

implies
90?(:1:) =1+ 2_1/2@2j(x). (6.8)
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We also use differentiability of both FX(z) and f#(z), and relation (2.2.5) in
[13]. We get

o0
vy <n d+c;(j+1)7Y], where 2 (6.9)
Note that we need only ¢ < C' to verify (6.4).
To evaluate vy we first note that
FX (@)~ F_y(2) = 0;05(x )+ Y brpra (6.10)
r>8

Second we make several preliminary calculations. We begin with

1
0 [ FY @ @@l @) el < )

1
=65 [ FX@I @) os(o) + oy(2)2 P @)del (G < 9
0
=: Hjmjl(j < S) (6.11)
To evaluate the right side of (6.11) we use ¢;(z)pa;() = 272 [p;(x) + @3 ()]
and inequality (2.2.8) in [13]. We get
03w,/ < 5) < CG + 1)1 < 9).

Our next preliminary calculation is for the second term on the right side of
(6.10). Write,

29 J FX(x)pp(z <pj( o) [fZ (x)] e =: 29 V. (6.12)

r>8 r>s

Using Cauchy-Schwarz inequality and FX € F(a, Q) we evaluate the right side

of (6.12) by
> O] <D 21D VP < Cs7h (6.13)

r>Ss r>Ss r>S8

Now we have all technical relations needed for the analysis vo. Using (6.10)-
(6.13) yields
vy <On G+ 1)2+s71. (6.14)

The last term to evaluate on the right side of (6.7) is vs. Note that

F2(x) = [F¥ (2)] = 2F¥ (2)[0;0 () + ) 0rpr(a

r>Ss

0505 () I(G < 8) + Y Oror(@)]

]
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This yields that

vy < Cfoa t f (05 (x )+ 3 o @)@ @] dz |
<Clea+ 621G <)+ [ 16,[FF] < ClG+ 12 + 057, (6.15)

Combining (6.9), (6.14) and (6.15) on the right side of (6.7) we get

Epx{(01; — 0;)*} <n~'d

0
+ Cn_l[cj(j + )P+ (G +1)72+ 571, where Z c? < C. (6.16)
j=0
This ends our analysis of 51j. Now we are evaluating the mean and MSE of

é\gj defined in (6.5). First of all a comment is due. This is not a simple task to
evaluate this statistic with the required accuracy. On one hand, we have a plain
and very strong property

EFX{E(J?_J—() F(z } ZE{G <Csn”l,  (6.17)

which holds due to the Parceval identity and Lemma 6.1. On the other hand,
this result alone is not sufficient for verification of Lemma 6.2 and making a
conclusion that term 65; is negligible with respect to the main term 6, in (6.5).
To simplify formulas for analysis of §2j7 we need several new notations. Set
S_j = {0,1,...,s}\{j} for j < s and S_; := {0,1,...,s} for j > s, and
={1,...,n}\{l}. Using these notations we may rewrite i'_j(Zl),

F_j(Z) = Z AR[f2(Ze)] ! Z i(Zr)pi(Z1)
keN_, 1€S_;
+n T A2 Z ©(2) = F\(2Z) + Fa(2)). (6.18)
iGSfj

Using orthogonality of elements {p;(z),7 = 0,1,...} of the cosine basis we get

Epx{[F_;(Z1) = F(Z)I[FZ(Z0)] 0 (Z){( Dk, Z1), ke N} = 0. (6.19)

Further, using Assumption 1 we get
B px {F2(20) 05 (Z0) [ (Z0)] 7}

= Epx {A[FZ(Z)]72 Y. 0} (Z)pi(Z)} < Csn™h. (6.20)
1€S_;
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Combining the obtained results yields
‘EFX {é\gj}‘ < Csn~t

This and (6.6) yields (6.3).
Now we are evaluating the second moment of 05;. First we note that

Epx(F_j(Z) — Fy(Z))? < Csn™ 1. (6.21)
Second we have

Epx{(n” i Bze (207 (@) f<en2 (622

Third, using notation (6.8) for Z; and Z,, where I # m and I,m € {1,2,...,n},
we write -
[F_j(Z0) = F 3 (Z)IF-(Zm) = F_j(Zm)]

= [F_;(Z) — F\(Z) — B (Z))[F-j(Zm) — Fy(Zm) — Fa(Z0)]
= [Fj(Z) = FU(ZD)[F-(Zin) = F1(Zin)] = [F-j(Z1) = FyA(Z0)] Fo(Zin)
— By (Z)[F-§(Zm) = Fi(Zm)] + Fo(Z1) Fa(Zn)
= A+ Ay + Ay + Ay (6.23)
This expansion and (6.17) allows us to write for any 1 <1 < m < n,

Epx {03} < n \CEpx {(F_;(Z) — F_;(Z))%}

+CEFX{[A/1 + 12{2 + 121/3 + A/4]§0j(Zl)} < Csn™2
+ CEp A[AL + As + As + Adloi(Z2) 0 (Zn) [FZ(Z20) f2(Zm)] ). (6.24)

We need an extra notation to analyze the last expectation in (6.24). Following
(6.18) we set

~

F‘l(Zl» —m) := Fy(Z) = n A (Zm)] 7! Z @3 (Zm)

ieS,j

=: F\(Z) — Fy(Z;,m). (6.25)

The reason for this new decomposition of Fy(Z;) is that ﬁ’l(Zl, —m) does not
depend on (A, Zi, Ay, Zm) and |F1(Z;,m)| < Csn™! almost sure. Using this

notation we write,
A = Bpx {A1p;(Z0 05 (Za) [ (Z0) 7 (Zim)] '}

= ]EFX{[F—j(Zl) *ﬁl(zh *m) *ﬁ‘l(zlvm)][F—j(Zm) 7F’1(Zm’ *l) *}‘Y’l (Znu l)]
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Xsoj<Zz>soj<Zm>[fZ<Zl>fZ(Zm>r1}.

To continue evaluation of A} we need several technical relations. Using (6.19)
we can write,

~

Epy {[Ffj(Zl) — B (Z1, ~m)[F-j(Zn) — Fy(Zi, 1))

X<Pj(Zz)%‘(Zm)[fZ(Zz)fZ(Zm)]’l} =0.

Recall the rough inequality \[ﬁl (Z;,m)| < Csn~!, and using the Cauchy-Schwarz
inequality together with (6.21) we get

[Er A[F-;(Z) — Fi(Z1,~m)|Fy (Zin, )}

< [Ep{[F-5(Z) = F1(Z0, =m) P} Epx {[F1 (Zin, DY
< C[(sn~Y(s*n2)V2 < 0632732,

We conclude that A} < Cs3?n=3/2. Analysis of A/Q is similar. Using the
Cauchy-Schwarz inequality we get

Epx {|Aal} < [Erg {(F_;(Z) = FI(Z0)*YEpx {[Fo(Zn)]P}]? < Cs™n =372,

Due to symmetry the same inequality holds for As. Finally, we have Epx {|A4 I} <
Cs*n~2. Combining the above-presented relations we get

Epx {533} < Cs*n=32,

As we see, the component §2j is indeed negligible with respect to §1j.
Lemma 6.2 is proved.

Corollary 6.1. There are three technical conclusions from the above—presegted
proof The first one is that according to (6.5) we have a representation 6;
9J1 + QJQ where the second term is negligible and may be sklpped Usmg (6.19),
a similar conclusion can be made for the pilot cdf estimate F_; i(Z) = F(Z) +
ﬁg(Zl) where the second term FQ(Z[) is negligible. Further, note that the pivotal
estimate is based on at most s estimated Fourier coefficients, and then for any
integer k we have the following directly verified rough inequality

sup  Epx{[F_;(Z) — F_;(Z)]**} < Cps®*n~*, Cy < 0. (6.26)
FXeF(a,Q

The reader, who wants to understand the following proof without going into
detailed analysis of negligible terms, may replace 6; by 91j and F- X by F- X
Finally, in Lemma 6.2 the upper bound (6.4) may be replaced by the rlght
side of (6.16). While we do not need that accuracy, it is an interesting upper
bound that sheds light on the Fourier estimator which yields sharp minimax
cdf estimation. Recall that in nonparametric curve estimation literature such a
Fourier estimator is called efficient.
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Now we are ready to begin analysis of the MISE of ﬁx(x, f?). Using the
Parseval identity we can write,

1

Bex{ | (PG %)= PX(@) e}

_ ;) Ejox {(@-I(@? > 2dsn~1) — ej)2}

+ rzn Z EFx{(min(l,(:)k.C:);l)I((:)k > 103711171)534 - 9]‘)2}
k=1 jeBy

+ 31 Li®g =1 Ay (FX) + Ay(FX) + Ag(FY). (6.27)

k>r,

The three terms on the right side of (6.27) correspond to the MISE compo-
nents on low, middle and high frequencies, and they are explored in turn. Using
d < 3s and Lemma 6.2 we get for a jth term in A, (FX),

EFX {[@I(é\f > 2678’)7,_1) — 0j]2}

< ]EFX{(é\j — 9]_)2} + Q?PFX é\? < 2587171)

<Cn '+ G?PFX (@2 < 652n71) <COn~t 41252071

+ 02Ppx (02 < 652071, 02 > 125%7). (6.28)
Let us consider the last term on the right side of (6.18). Using the Chebyshev
inequality and Lemma 6.2 we get,

03P (02 < 65", 62 > 12°0 7))
< Q?PFX (QJQ - é\? > 9?/2,9? > 1232n_1)
< 6;Ppx (|9j —0,1(216,)) > 6/2,6; > 123%*1)

Er, {(6, — 0,)%)

<Co; i <Cn ™t (6.29)
J
Using (6.29) in (6.28) we conclude that
A (FX) < Cs®n~t = 0, (1)n =20/t (6.30)

Corollary 6.2. As we see, the MISE of the low-frequency part of the proposed
cdf estimator is negligible with respect to the verified rate n=2%/(22+1)  Another
important conclusion is that there is a wide choice of thresholds and a bound-
ary frequency (which is currently s) between the low and middle frequency
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components of a blockwise estimator that yield sharp-minimax estimation. The
currently used boundary frequency s is chosen based on recommendation of [13],
because of its simplicity, and using a numerical study of experiments similar to
those in Section 5. Discussion of more complicated procedures can be found in
[13].

Now we turn our attention to the second term As(F*X) in (6.27). This term

is the MISE of the block-shrinkage part of the proposed cdf estimator.
Lemma 6.3. Let Assumption 1 hold. Then

sup {[nj(a, Q. d, 1)]2a/<2a+1>A2(FX)} < (1+o0n(1)). (6.31)
FXeF(a,Q)

Proof of Lemma 6.3. We begin with a remark that the studied risk Ag(FX)
is the MISE of a blockwise estimator

d(z) = Y min(1,0,0;1)1(6r > 105071, () (6.32)
k=1 jeBy
which estimates a function

Tn

d(a) =D Y Op5(x). (6.33)

k=1 jeBy

Note that (6.33) is the intermediate frequency component of an underlying cdf
FX(x).

Analysis of the MISE of (z) includes several steps. The first step is to
evaluate MISE of an oracle-estimator

Tn

D) =0 e (x), (6.34)

k=1jeBy
where o
k
= — 6.35
a O + dn~! ( )
is oracle’s smoothing coefficient,
Op = L' > 03 (6.36)
JEBk

is the Sobolev statistic introduced in Section 3, and d is the coefficient of diffi-
culty (2.6). The Parseval identity allows us to express the oracle’s MISE as

Tn

By f @ (@) — vy = S S B{(ud; - 0,)%)

k=1 jeBy
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K
=0 D RE{O; - 0)*} + (i — 1)262 — 20k (1 — )0, {0, — 0,}]. (6.37)
k=1 jeBy

Using Lemma 6.2 we evaluate terms in (6.37). Write,

1 Tn -
(@) ()} < [kZ Lulpan™ + g = 5]

[ D ppant Y Cl+ ) 57|
k=1 j€By
+ [2| 3 prdn ™ (O +dn~) 1 D 0,E{0; — 9j}|] =T+ Ty +Ts. (6.38)
k=1 j€By
We are considering the three terms on the right side of (6.38) in turn. The
first term is simplified into

N 25 —1 d’n—?0), N -1
k=1 k=1

What we see is the MISE of a classical blockwise oracle studied in [11]. Line
(3.1) of that paper yields

s ([T (0, Q. d, /G0 1)
FXeF(a,Q)

=  sup ([nj(a,Q,d, 1)/ o) A Lkukdrfl) <1+o0,(1). (6.39)
FXeF(a,Q) k=1

To consider Ty we note that gy < 1. This, together with (j + 1)7! < s7! for
j € By and (6.39), yield that Ty < Cs~'n=2¢/Catl) = o (1)p—2e/(2a+1),

The third term T3 is far from being simple for evaluation because of the
factor (O + dn~1)~! which may be of order n. The idea of evaluating T3 is
to correctly bound the sum in j. To do that we use Lemma 6.2 and Cauchy
inequality. Write,

| D OEG -0} <57 Y 62+ s D) [E{D; — 0]

JEB JEBk JE€Bk

< Li[s71Or + Cs®n 2.
Now note that

dn=! O ) <
O + dn~1 ’ O + dn~!
Using this inequality and (6.39) we write,

max <

Tn

sup T3= sup 2 Z prdn™ (O +dn~ )7t Z F)jE{éj —0,}]
FXeF(a,Q) FXeF(a,Q) 1 jE€By
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Th @k
<2 sup [3_1 Lyppdn™ !t ——— —
FXeF(a,Q) kZ::1 O +dn~!
, < dn—!
Cs*n-1S' I ~1 ]
= 0, (1)n =20/ (Za+D), (6.40)

Combining the bounds for T}, T and T3 in (6.38) we conclude that the oracle
1*(x) is sharp-minimax. This ends step 1 of the analysis of Ag(FX).
Step 2 is to introduce a new oracle-estimator ¢* (z) which is more convenient

for studying the blockwise-shrinkage estimate 1; (2) defined in (6.32) and which
sheds light on the chosen blockwise smoothing. Set

~ : ~ Oy
1/1*(x) = )\kej@j(l'), Ak = —.

(6.41)

62 was introduced in (3.7), and recall that it is used in

Q, — 71
Here ©x = L; > cp, 05

the denominator of the smoothing ratio ék/(:)k of the proposed estimate (3.9).

To analyze MISE of the new oracle, the Parseval identity allows us to consider
a particular block By. Write for any constant A € [0, 1],

DTUE{(M; —0;)%) = D] E{A20? — 20,0, + 63}
JEBk jE€B

Using Lemma 6.2 we continue,

D E{(A; - 0,)%)

JEBk

= NLE{O)} — (22 — L0y — 2X Y 056}, || < Csn™t (6.42)
JEBy

We begin with evaluating the last sum on the right side of (6.32). For FX €
F(a, Q) we can write using the Cauchy-Schwarz inequality,

Tn

S A Y i< Y Y g <ot Y Y o)
k=1

jE€Bg k=1  jeBy k=1 jeBy

1/2
< Csnil[z jzo‘ﬂjz Z j72°‘] <Cnt
Jj>s Jj>s
For the first two terms on the right side of (6.42) we note that A\* that mini-
mizes 2L, E{O} — (2A — 1) L1,0}, is A* = ©4/E{O}. Thus \* = )\ introduced
in (6.41). This and sharp minimaxity of the oracle 1*(z) yields that

sup J(a,Q,d, 1)EFX{L (% (2) = ¥(2))*da} < (1+04(1).  (6.43)

FXeF(a,Q)
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We conclude that the oracle ¢*(x) is sharp-minimax.

To continue evaluation of the term As(F¥) on the right side of (6.27) we
need several more technical lemmas. These lemmas are also of interest on their
own because they shed light on the Sobolev statistics introduced in Section 3
and also on blockwise oracles.

Lemma 6.4. Statistics O}, and Oy, defined in (3.6) and (3.7), satisfy the fol-
lowing relation

Or=0p1—n"Y+ nfl{Lgl Z [n’l i (& - ﬁj(Zz))ng?(Zl)]}

AT @)
= 0,1 —n"Y) +nld. (6.44)
If Assumption 1 holds and FX € F(a, Q) then
|Epx{dp} —d| < Cs™! (6.45)
and N
Epx{(dy —d)*} = 0,(1)s7 1, (6.46)

where d is the CSC coefficient of difficulty (2.6).

Proof of Lemma 6.4. We begin with verification of (6.44). Using (3.6) and
(3.7) we write,

LY FL (20 () A0 — F3(Z0)ps(Z0)
O - K JEZB;C ll’Zl F2(X)f%(Xy)
=Bt —n ) +n Lt Y [ Z F_J liig%(zl)].

This proves (6.34).
The verified inequalities are rough but sufficient for our purposes. We begin
with (6.45). Write,

Bl = it Y e ST )y

=@ (f2(Z1))?
. (A~ F_j(Z) + F_j(Z)) — F_j(Z))*¢%(21)
- o' % B T2 j

JEBkK

_ (A1 — F_j(Z1))%¢3 (Z1) (F_;(Z) — F_j(2))*02(Z)
BRI Y e 7 B S V)

{<Az — F_{(Z))(F_j(Z) — F_;(Z1))p2(2)) }]

2k 2 (@)
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= L;l Z [alj + ag; + agj].
JEB

The term aq; was already studied as a component of Epx (§1j —6;)%}, see the
line below (6.6) and then (6.16). Using notation of (6.16) we can write that

L' Y ay <Ot D i+ 2 +s7 < Cs™!

JEBy jEBy

The last inequality is valid because ¢; < C' and j > s whenever j € By. Inequal-
ity (6.26) implies that L;’' 3,5 as; < Cs>n~", and similarly Lt Yen, las| <
Csn~1/2. Inequality (6.45) is verified.

Now let us check inequality (6.46). Write using (6.45),

Epx{(dx — d)*} = Epx{[dx — Epx {dy} + Epx {di} — d]}
< 2B px {(di — Epx {di})?} + 0n(1)s™.
To evaluate the expectation we use the expansion
F_j(Z) = F_j(%) + (F-5(Z)) = F-5(Z)),
which allows us to write for a factor in Jk,
[Ar = Fj(Z)])? = [A — F_j(Z4))?

—{(F_j(Z)) = F;(Z))[2(A) — F_j(2))) — (F_j(Z) — F;(Z)]}. (6.47)

Let us look at terms on the right side of (6.47). The term [A;—F_;(Z;)]? depends
only on pair (A, Z;), and hence the central second moment of a sample mean

- — F_(Z))*35(Z1)
Z [ 3, = )

JEB

is proportional to n~=!. Further, the term in curly brackets in (6.47) is negligibly
small with respect to s™! due to inequality Epx{(F_;(Z)) — F_;(Z)))**} <
Cs?tn=F see (6.16). Inequality (6.36) is verified. Lemma 6.4 is proved.

Lemma 6.5. Let Assumption 1 hold. Recall notations

Z min(1, 5, I(6r > 10s7'n7") ) B;05(), (6.48)
JEBk
and
n . _1 2
Z Oy +dn—1 Z Oips(@), Oni= L Pt (6.49)

JE€BK
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Then

sup E{f (D) — % (2))2d} = on(1)n~20/@a+D),
FXeF(a,Q)

Proof of Lemma 6.5. The Parseval identity yields,

1 ~
f ((z) — *(2))*de

0

~

& . Ok _ Ok 2 ~
= min(1, =— ) (O >10s'n 1) — —5 0%
l;l ( Oy ®k +dn 1) j;k J
IR @ 6 2 RS 11
_ ];1 (mln(l, ék) o +dn_1) szl 21(6), > 10s"'n 1)

Tn @ ) R _ _
+,§1(ek+2w) >, 1@, <105 0.
- JEBk

33

(6.50)

Now note that O /(O +dn~1) < 1 and 2jeB, @2 — L,0y. Using these facts

we continue,

+ Zn (@7’%)2%@1(@ <10s~'n 1)

=: Dy + Ds.

We begin with analysis of D;. Using Lemma 6.4 we may write,

= i Lk((:)kdn_l — @Jkn_l)2

~ I1(6) > 10s~'n 1)
1 @k(@k + dn*1)2

T _ _a\n-112 0 o
Z k~ @k @k)dn + @k(d dk)n ] I(@k = 108_1n_1)
k=1

(Or(1 = n=1) + dyn=1) (O + dn—1)2

C Z SLk’rL @k — @k)

Q) -1, -1
(@ +dn2 (O

SLk@ 7(’12)2 1 -1
C’Z 1 (0r +dn‘1) 10 > s~ n ).

(6.51)

(6.52)
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Now we evaluate expectations of terms on the right side of (6.52). To do that
we need the following technical result that will be proved later.

Lemma 6.6. Let Assumption 1 hold and FX € F(a, Q). Then

Epx{(Or — 01)%} < CL'n 2(6) +nY). (6.53)

Using (6.46) and (6.53) to evaluate expectation of the right side of (6.52) we
get,

CZ SLk’rL EFX{(@k *@k) }

EpxiDi) n1(Or +dn~1)?

SLk@ 2]EFX{(d dk) }
+c Z n—1 ®k + dn‘l)

<CZ": sLn 2L 'Y (O) + nt)
= = _1(®k+dn_1)

o ss’lLk62n72
*on(l) Z n=1 (O +dn=1)2

k=1
—1
< Csrpn™ 4 op(1 Z ey dn—l]
= 0, (1)n =20/ (2a+1), (6.54)

In the last line we used sr, < Cs* and (6.39).
Now we are estimating the expectation of Dy. Write using (6.44),

Tn @k 2 -~ - B B B
IEFX {DQ} = Z (W) LkEFX{(@kt =+ dk;n 1)I(®k < 103 1n 1)}
k=1

Tn ®k
<10s71n7t Ly———
s ];1 k@k +dn—1

-1 Z mEFX {I(@k < 1057177/71)}

Tn

—1
3, by e,
Using Lemma 6.4 and (6.39) we get,

sup  Epx{Da} = 0, (1)n~2/20+D)
FXeF(,Q)
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Z WEFX{I(ék <10s~'n7 1)} (6.55)

To evaluate the expectation on the right side of (6.55) we use the Chebyshev
inequality and Lemma 6.6. Write,

Epx {I(Of < 10s 'n"1)}

< Epx{I(0f > 205 'n " NI(O) <10s 'n"")} + I(6) <205 'n 1)
Li'n (O +n7t)
[©k/2]2

Now note that z/(x + dn~!) is increasing function in z > 0. Using this
observation and (6.56) in (6.55) we conclude that

<C I(©r >20s"'n™ 1) + I(©) <205 'n7!).  (6.56)

Epx{Da} < 0, (1)n =20/t

-1 s_ln_l

—1 —1
n gl@k—kdn*l Z @k—l—dnl(sl—i—d)nl

= 0, (1)n =20/ (a+1), (6.57)

In the last relation we used the earlier mentioned inequality 7, < C's®.
Using (6.54) and (6.57) in (6.51) verifies Lemma 6.5 given validity of Lemma
6.6.

Proof of Lemma 6.6. Consider a fixed k € {1,2,...,r,} and introduce an
oracle
~ 2
- Lyn(n—1)
— F_(Z1)p;i (Z)(Ar — F—j(Zv))p;(Zr)
x . (658)
1<l<2l’<n j;k fZ(Zl)fZ(Zl/)

This oracle is a U-statistic which is unbiased estimate of ©; and a benchmark
for the studied statistic

~ 2
M Tl
(A= FLj(Z)) i (Z)(Av — F-j(Zv))¢;(Zv)
X 1<l;<n jEZB:k F2(Z) f%(Z) (6.59)

While it is possible to analyze variance of ﬁk directly following [11], it is
faster and simpler to follow a standard methodology of calculating moments of
a U-statistic. To do that, for the reader’s convenience we will use terminology,
notation and results of the book [30]. First of all, note that the U-statistic Uy
is based on a symmetric kernel

hi((Ar, Z1), (Av, Z1r))
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iy, O P AN A ) (o

A relation between the studied statistic and the oracle is straightforward,

JE€Bk

8y, = U,
4 (A — F_y(Z0))es(Z)(F—(Zr) = F-5(Zv))¢; (Z)
Tam-DLs Kl;gm;k 2(Z) f%(Zr)

L2

n(n — 1)Ly
y (F_j(Z1) = F_j(Z0)),(Z)(F—;(Zv) = F—(Z1))p;(Zr)
e P2 )
= Up+ Ty + T (6.61)

Recall that for considered j € By, neither F_;(Z) nor F_j(Z) depend on j, but
the notation is still useful because it reminds us that

fo F(2)p;(2)dz — L Fi(2)ps(2)dz = 0. (6.62)

Note that Ep, {Uyx} = O, and accordingly our first step is to estimate vari-

ance of Uy. In [30] there is an explicit formula for the variance, and to introduce
it we need several more notations of [30]. Set X := (A, Z), X; := (A, Z)),

(A—F_;(2))pi(2)

Vi(X) = , 6.63
g1(X) = Lt D) Vi(X)0; - Oy, (6.64)
JEB
gg(Xl,Xg) = hk(Xl,XQ) — gl(Xl) - gQ(XQ) — @k~ (665)
Using new notations we can write,
hi(X1, X3) = Lt 3 Vi(X)V;(Xa), (6.66)
JEB
Epx{V;(X)} = 6, (6.67)
Erx{g1(X)} =0, (6.68)
Epx{g2(X1, X2)| X2 = 22} = 0. (6.69)
The Hoeffding lemma (section 5.1.4 in [30]) gives us a representation
U, @—zi (X)+L > (X1, X1,) (6.70)
n k = nl gl ! n(n_l) g2 l17 l2 . .
=1 I<hi<la<n
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We need to introduce several more notations. Set

G = Epx {0} = L;2 Y Er (V(XOVi(X)}00 ~ 3. (6.71)

j,iEBk
Using trigonometric formula
i (2)pi(2) = 272 [pj-i(2) + @i4i(2)], (6.72)
we continue simplification of the expression for (7,

(A1 = Fj(Z1)?[9j+i(Z2) + pj-i(Za)]\ ) ,
[FZ(20) joss

Cl _ 2—1/2[/};2 Z EFX{
7,i€By
- 3. (6.73)

Here we used the fact that F_;(x) = F_;(x) for the considered i and j from By,.
Similarly set

G = Epx{[A(X1, X2) — O4]°}
= L' Bpx{ 3 Vi(X)Vi(X1)V5(X2)Vi(Xa)} - OF

j,i€ B,

12 (A — F_j(Z1)) (A1 — F_i(Z1))[j—i(Z1) + @j+i(Z1)]
) e [FZ(Z0)] }
B { (Ag — F_j(Z))(Ag — FLi(Z2))[pj—i(Z2) + <Pj+z’(Z2)]}

[f7(Z2)]?
— 3. (6.74)
The Hoeffding formula (Lemma A in section 5.2.1 of [30]) yields that
Ve (0) = e =206+ Gl (6.75)

This is an exact formula, and while we can use it for calculating the variance,
here we need only a rough upper bound. Note that a function

BEJDF ;T2 P
[f2(2))? [f7(2)]?

has a bounded derivative whenever z € [0, 1]. This yields that Fourier coefficients
of the function are absolutely summable, and the reader may recall that this
property is the Bernstein inequality, see [13]. This fact, together with inequality
200;6;] < 9]2 + 02, yield a rough inequality

(6.76)

G < CL,'Oy. (6.77)

Similarly we conclude that
G < CL . (6.78)
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Combining the results in (6.75) we get
Vex (Un) < C[L;'On™ + L 'n™2] = CL; 'n ' [0 + n 1. (6.79)

We proved that the U-statistic l?'k satisfies the verified inequality for the
variance of ©y. Further, this is the main term in the expansion (6.61) as we
will see shortly. The interested reader may note that [30] gives a simple upper
bound Cyn~' for the variance, but the issue is that we need to get a specific
constant Cy for the considered U-statistic which is C’L;l[@k + n~1]. This is
why all these lengthy calculations are presented.

Now we are evaluating the second moment of the term 77 on the right side of
(6.61). This is not a U-statistic and we need to evaluate it directly. Nonetheless,
similarly to analysis of a U-statistic the main tools are combinatoric and com-
bining similar terms in a few groups. Several new notations are needed. Instead
of a summation over [ < I’, we consider the summation over I; < I, and when
T12 is considered we use a double sum over I; < Iy and I3 < l4. Second, recall
notation (6.18) and write,

Fyz) = Y 2 Avr(Z0) (F7(Z0)) " o0 (2)]

= 2 [nil Z Atﬁpr(Zt)(fZ(Zt))ﬂSOr(Zz)]

te{l,2, a1} =0
+n_1Al fZ Zl Z (pr Zl

=: Fl(Zl) +F2(Zl). (680)

Let us comment on (6.80). First of all, for the considered j € By neither }\sl(Zl)
nor F5(Z;) depend on j. Second, Epx{Fi(Z;)} = 0. Finally, F5(Z;) depends
only on (A, Z;) and not on any other observation (A, Z;) with ¢ # [, and also

|F5(Z;)| < Csn! almost sure. These facts will help us to analyze the second
moment of 77.
When we square T, we get

) 16

—2
7 = n2(n — 1)2Lk Z Z Ti(li, o, 13, 1a), (6.81)
I<li<lo<n I<iz<ly<n
where (A, — F5(Z0)1¢5(Z0)
1 B —7 1 90] l1
Ti(l, 1o, 13, 1) = Z : 22
§,i€By, f#(Z,)
LFi(Z) = 3 =t Yo Avpr (Z2) (FP(Z0) " or(Z1,)] 0 (Z,)
fZ(Zl2)

x [Als — F—i(le,)](pi(Zlg)
fZ(le)
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[F—i(Zl4) B Z?:l n_l Zj:() At‘Pr(Zt)(fZ(Zt))_lgpr(le;)]Soi(ZM)
f2(2.,) '

We can also rewrite (6.82) in a more compact form,

X (6.82)

Ti(ly, 2,13, 14)

-y (A1, = F(Z0,))es (%) [F-3(Z1) — F1(Z1,) — Fa(Z0,)]¢5(Z1,)

j.i€Br fZ(Zl1) fZ(le)
% [Als — F*i(le)]QDi(Zh) [F*j(Zl4) — Fl(Zl4) - FQ(ZM)]QDi(ZM) ) (683)
fZ(le) fZ(Zl4)
What we want to show is that
16
2y _ -2
Epx{T7} = mlf}g >, Y, Epx{Ti(llals, 1)}
1<l <los<n I<iz<ly<n
<CL'n 'O +n7']. (6.84)
Similarly to analysis of a U-statistic, while there are of order n* terms

E{T1(l1,12,13,14)} in the sum (6.84), they may be grouped in 4 categories that
we are considering in turn. The first one is when [ # ls # I3 # l4, and recall
that always l; < ls and [3 < l4. This is the largest category that contains of
order n* terms. We want to show that each term from this category satisfies

B{T\(l1,l2,13,14)} S CLin (O +n 1), Iy # 1o # 13 # ly. (6.85)

Let us explain why such a term satisfies (6.85). The analysis is primarily based
on two facts. The former is that

~

[F_;(Z)) — F_;(Z)]e;(Z0)
EFX{ l 12(21) | | }* ' o
The latter is that (A — F_i(Z)]e;(Z))
L= P \L)pilZ) _ 5
B 2 (Z) f=o o

Now we can analyze a term. In (6.83) we have L? terms that include a factor

[F_j(Z1,) — F1(Z.,)] and L3 terms that include a factor Fy(Z,,). Consider the
first type of terms. Such a term is not zero due to (6.86) if there is no extra
factor containing Z;,. This implies that the only possible nonzero term is

o (A, = F_j(Zu))ei(Z1) [F-3(Z,) — FA(Z,))e(Zy)
Tizi= By ), (%) 777,

j i€ By,

« [Als - F—i(le)]QDi(le)
fZ<le)
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[_n_l Zi:o AlzgoT(le)QOT(ZM)(fZ(ZlQ))_1]4101'(Zl4) }
fZ(Zl4)
Repeating the same argument of using (6.86), only now with Z;,, the term

T} is simplified into

Ty =E Z [All — F—j(le )]@J(Zh) [AIS - F—i(Zla)]gpi(le)

N (6.88)

i€ Bs, fZ(le) fZ(le)
§ [—n ' 30 0 Anwr(Zi)er(Z1,) (17 (Z1)) M ei(Ziy)
4(Z,)
% [_n_l Zi:o Alz@T(ZIQ)WT(ZM)(fZ(ZlQ))_1]<pi(Zl4)
Using (6.87) we simplify (6.89) into
Tia= ) 0;6;
§,i€B
«Eorx { [~ 300 Y (Z1)er(Z1) e (Z1,) (F7 (Z0,) e (Z1,)
F fZ(le)
[0 3000 FX(Z1)er (Z1)er (Z1,) (F7(Z1,) i Z1,)
x 0 i } (6.90)

Now we use a rough inequality

sup T2 < sup Z [0]2 +07]Cn~2s* < Cn 2Lys2*s%.  (6.91)
FXEJ:((X,Q) FXEJ:(Q,Q) j,i€ By,

We conclude that the first type of terms in T? satisfies (6.85). Let us also note
that using a more thorough analysis of the expectation in (6.90) as a Fourier
coefficient, inequality (6.91) can be improved in order.

Now consider expectation of the second type with the factor —ljﬂg(le)7

(A, — F_(Zi)]ei(Z1) |- Fa(Z,)e;(Z1,)

Epx{T{,} = Z EFX{

j,i€ By fZ(le) fZ(le)
[Als — F*Z(le)](:ol(zlz) [F*j(ZM) — ﬁl(Zl4) - ﬁ2(Zl4)]90i(Zl4)
(2, 7 (Z) oo

Recall that F(Zy,) is a function only in (Ay,, Z;,), and then (6.86) used for
[ =14 yields that

(A, = Fj(Zi)]ei(Z1) [ Fa(Z1,)] 0 (Z1,)
fZ(Zh) fZ(le)

Erx{Tia} = Y, Epx{

J,1€Bg

Jmfﬁg%mﬁﬁgké%m%@n}
fZ(le) fZ(Zl4)
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Fy(Z1,)0i(Z1,) Fol(Z1)0i(Z1,
= Z GjaiEFx{ (le()Zz() ) (flz()glf) ! )} (6.93)

Then identically to (6.91) we get the wished upper bound for Tj,. This and
(6.91) yield the wished (6.85) for the first category of indexes where [y # Iy #
ls # l4. Note that we can improve in order the upper bound by considering the
expectations on the right side of (6.90) and (6.93) as Fourier coefficients, but
the obtained rough inequalities are sufficient for our purposes.

Now we are considering terms in (6.81) from the second group where 1 <
lo =13 <lgorly =l4andly # l3. We present analysis of the former case because
the latter is analyzed similarly. There are of order n? such terms, accordingly it
is sufficient to show that the expectation of a particular term Tj(I1,1ls,l2,14) is
bounded by CL (0 + n~1). Using (6.83) we can write that

J,21EBy

EFX {Tl (lla l2,l2a l4)}

— Z Eox { (A, — F_;(Z,))pi(Z1) [F-j(Z1,) — ﬁl(Zb) — F'Q(ZZQ)]gpj(Zb)
j,i€By ! 1%(2n) f%(Z1,)

[AIZ - F—i(ZIQ)](Pi(le) [F—j(Zl4) — ﬁl(Zl4) — F‘Q(lex)]@i(zh)
T P (2, oo

Using (6.87) and (6.86) with [ = l4 we simplify the last expectation into

EFX {Tl (lla l2,l2a l4)}

. Gj]EFx{ [-n=' 3o FX(Z1) e (Ziy) o0 (Z1)(F7 (Z1)) i (Z1)

j,i€Br, fZ(Zl2>
% [Ab — F*i(Zl'z)](pi(ZlQ) [F*j(ZM) — F‘l(ZM)]SDi(ZM)}
fZ(le) fZ(Zl4)
(A, = F_(Zi)]ei(Z) [F-j(Z1,) — Fi(Zh,) — Fo(Z0,))e;(Z,)
+j,ék EFX{ fZ(le) fZ(ZIQ)
[Ay, — F_i(Z,)lei(Z1,) [~ Fa(Z0)ei(Z1,)
" 7(Z,) iz ) (6.95)

To evaluate the first sum on the right side of (6.95) we use a relation following
from the Cauchy-Schwarz inequality,

sup > 161

FXEJ:(OL,Q) jEBk

< sup [Z j2a0]2 Z jf2a]1/2 < Cs(f2oz+1)/2’ (696)
FXE_F(O&,Q) jeBy jeBy
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and following from (6.26)

1
sup E{f |Fj(2) — Fi(2)|dz} < Csn™Y2, (6.97)
FXeF(a,Q) 0

The inequalities imply the wished upper bound. Similarly, we use the previous
inequality and |Fy(2)| < Csn™! to get the wished upper bound for the second
sum in (6.95). This ends evaluation of a term from the second category. Note
that we have established a stronger in order inequality than needed.

The third category of terms is when l; = I3, 1 < lo, I3 < 4 and Iy # 4.
Similarly to the second category, there are of order n? terms in the category,
and we need to verify the same upper bound for a term. Write for such a term,

EFX {Tl (l17 12>l17 14)}

— Z E X{[All — F—j(le)]cpj(le) I:F_j(ZlQ) - ﬁl(ZZQ) - ﬁg(zb)]gﬁj(zb)
b F2(2,) F2(Z1,)

(A, — FLi(Z,)pi(Z1,) [F-j(Z1,) — F1(Z1,) — Fa(Z1)]ei(Z1,) } (6.98)
fZ(Zl2> fZ<Zl4) ' '
Here we simply repeat analysis of a term from the first category, namely we get
(6.89) and (6.92) only now with I; = I3, and this yields the wished upper bound.
The final fourth category is when {1 = I and Iy = l4. There are of order n =2
terms in this category. For a particular term we have

EFX {T1<l17 I2, 11, 12)}

- Y E X{[AhF—j(Zzl)]w(Zzl)[F—j(ZlZ)E(ZZQ)E(ZZQ)]%(ZZQ)
4B " 7 (Z) 17(Z1,)

(A, = Foi(Z)pi(Z1,) [F-3(Z1,) — Fi(Zh,) — Fa(Z1))ei(Z1,)

fZ(le) fZ(Zl2)

The wished upper bound follows immediately from (6.26).
Combing the upper bounds for the four categories of terms we verify that

}. (6.99)

sup  Ep T2} < CL;'n (O +n71). (6.100)
FXeF(a,Q)

We are left with evaluating the second moment of T3 defined in (6.61). We
need to show that

sup  Epx{T3} = ﬁLZZ > > X

FXeF(a,Q) 1<ty <la<n 1<ls<la<n j,i€Bx

~ ~

(Fj(Z1,) = F_j(Z1,)pi(Z1,) (F—j(Z1,) — F-j(Z1,))pi(Z1,)
fZ(Zh) fZ(le)

X]EFX{
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, EilZiy) — F_i(Z,))pi(Z1y) (F_i(Z1,) — ﬁ—i(Zu))soi(Zu)}
fZ(Zl3) fZ(Zl4>
<CL'n YO +n71). (6.101)

First of all, let us note that using (6.26) we get Ep, {T3} < Cs*n~2 which is
close to what we want. To get (6.101), we use (6.86) and follow our analysis of
Ty» which gives us a very rough but sufficient upper bound Cn=5/2s*. This and
s*L,, 0 = 0,(1)n'/? prove (6.101).

Using (6.79), (6.100) and (6.101) in (6.61) verifies Lemma 6.6.

Theorem 3.1 is proved.

Proof of Theorem 3.2. The assertion of Theorem 3.2 is not obvious and in-
triguing because according to (2.1) the joint density f%*(z,6) of observed pair
(Z,A) is equal to the product of an unknown density f%(z) and [FX(2)]°[1 —
FX(2)]*7%. Accordingly, it is natural to conjecture that, for efficient estima-
tion of F*(z), an unknown density fZ(z) of the monitoring time should be as
smooth as the cdf of interest FX(z) because the smaller smoothness defines the
smoothness of f%2(z,§) in z. Fortunately, as we will establish shortly, the latter
is not the case and it suffices for the density fZ(z) to be differentiable regardless
of how smooth the cdf is. This is a remarkable outcome in comparison with [16],
and it will be explained why this is the case.

We begin with recalling Lemma 1 in [14] which allows us to evaluate quality
of estimators f%(z) and fZ (z) for any positive integer t,

max (| max By {(F7(2) = £7(2)}, max Epa{(F%(2) - /%(2))"})

2€[0,1] [0,1]

= 0,(1)s* 2723, (6.102)

Because the density estimator is plugged in denominator, we use an expansion
that will allow us to utilize (6.102),

1L AR (PR) - fPR)?
f2(z) 17(2) L7 (2)]? OISO

We begin our analysis with the plugged-in pilot Fourier estimator. Using
(6.103) we write,

(6.103)

7 - g1 N Aui(Z)
J Z fZ Zl

N Awi(Z) o A (Z0(F2(Z) — FA(Z)
Z 72z " ) (2P

N B 07
> 806,(2) ez T A A (6100

Here 5]- is the estimate based on the underlying f# and studied in the proof of
Theorem 3.1, see Lemma 6.1.
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It is simple to evaluate Ajs using (6.102),

In
Epz{AL}<Cn™', Y Espz{A%} = on(1)s''n". (6.105)
j=0

Our next step is to evaluate the second moment of the term A;; in (6.104).

Write,
> N Dy (20 (12 (2) — T2 (20) 12
E{A%} < 2n?E;z {[1—21 l l[fZ(le)]2 : ]}
+ 2n2Efz{[l=i1 Al%(zl)[(;zz((g))]z fZ(Zl))]Q} —:2B;1 +2Bj5.  (6.106)

Accordlng to Assumption 1, density fZ(z) is bounded below from zero, and
F2(2) # f2(2) only if f4(2) < . These facts and (6.102) yield

J’VL
> Bja = on(I)n . (6.107)

Evaluation of Bj; is more involved because we only assume that the density
f?(2) is differentiable. Write,

Bj = nflEfZ{ [A1p;(Z1)(f7(Z1) — f7(21))]? }

L7 (Z)]*
n ) z _ 7z
+n2n(n—1)Efz{l_H1 Al(p] (Zl)[(;z((gll))]2 f (Zl))} = lel +Bj12. (6108)

Using (6.102) we get that Bj11 is bounded by on(l)n*3/2. To estimate Bjio
we begin with definition of f#(z) and write

Jn n—2
@) =130 Y ei(Z0es(2)
j=01=1
Jn n N N
T D) el Zes(z) = W () + R (2). (6.109)

j=0l=n—-1

This implies

F2:) = FA(2) = =27 7 () = B (2)] + [2071 7 (2) = B (2)]):

Using this representation we can rewrite Bj2 as

Bis=n - DB { [] S 1 oyt 22 ()
[f%(Z)]
l=n—1
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+n 2 (2) - T (Z)])

Dj> + Djs. (6.110)

Inequality |2n~1fZ(2) — h"(2)| < C'ln(s)n~2/3 yields

In
Y Djs = on(1)[In(s)’n .
3=0

Next we consider Dy,

Dy =Bpe{ [ G820 -2y s%(2) - (20}
l=n—1

_Efz{”:FX() S (=20 2 (2) — E’(z)]dzr}. (6.111)

Set
n—2 1
—2)7! 2 0i(Z1), Ki:= L fZ(2)pi(z)dz = Erz{pi(Z)}. (6.112)
=1

Then /(z) = (n — 2)n~"! S7n Rigi(2), and for the difference in (6.111) we get

J’!‘L

(z) — W(z) = n-2 ki — Ei)pi(z) + ”;2 > kigi(z). (6.113)

n ‘
=1 i>Jn

Substituting (6.113) in (6.111) and then using the Cauchy inequality we continue
(6.111),

(n—2)?

2

Dj =
J n

X]Efz{[JOl FX)[f Z i — Ri)pi(z 2 Hi(pi(z)]dZ]Q}

i=1 i>Jy

K‘
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In 1 (o2 2
<K, {[Z (51— F) fo Fx(z)fcpzj((z))wz( ) dz] }
+2 Z Iilf FX 216 )dz]2

i>Jn

—:2Dj11 + 2D (6.114)

To evaluate the first term, recall a familiar trigonometric formula ¢, (2)p;(z) =
2712[p;_i(2) + ¢j+i(2)], definitions (6.112), and write for the expectation,

E{(ki — Ri) (ke — Re)}

= (n—2)"2E{ Z = @ilZ0) (ke = @i(Zm))}
l,m=1
= (n—2) T 272 kit + Kise) — Kikir. (6.115)

Now we can finish evaluation of D;i1. Set, with the use of the above-presented
trigonometric formula,

[ Eelgnt,,
0

fZ(Z) 271/2[173'_7; + bj+i]a (6116)

where

[FEe0),
him |, g

Using (6.115) and (6.116) we get

Jn
Djj1=n—-2)"" Z [27Y2(Kizt + Kit) — Rikit]
1,t=1
X [271(()]'_1' + bj+i)(bj_t + bj+t)] < Cn L. (6117)

The last inequality holds due to the famous Bernstein inequality which states
that Fourier coefficients of differentiable functions are absolutely summable.
Furthermore, Lipschitz functions of order larger than 1/2 can be considered as
well, see [13].

Now consider Dj12. Using (6.116) and the Cauchy-Schwarz inequality yields

Daa= [ 3w [ FEBEAE L L 3 e S )

i>Jy i>Jp, i>Jy

< CJ72(J, —§)72 < Clln(s)] " 4n=43, (6.118)
Using the obtained results in (6.114) we conclude that

1< Cnt (6.119)
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As we will see shortly, this is the dominant term in A;;.

We are left with evaluation of the cross-product term D;s defined in (6.110).
Write,
An—lﬁaj(zn—l) n—2

Z 7
2P ! (o) = W]

Djz =B+ {

Ani(Zn) o 1 1 & —1 & 2
Xw[% fA(Zn) —n ;‘)%(Zn—ﬂwi(Zn)—n ;%(Zn)]}

1 (z) 2n — 7
_f FRR)0i(2) 20 =2 2y piiv )

a 0 fZ(2) n

X (2)p;(x)
o A=)

1 In [ FX(2)p(z) ;n—2
n = [
i—0Jo f7(z)
1 X
P2 (z)p;(x)
x | —— 2 (x)dz. (6.120)
o [f)
Several remarks about terms in (6.120) are due. Using (6.113) and the pre-
viously introduced notation we conclude that

X

Jn
(207 [P (z) =07t Y @ (a))de
i=0

F2(2) = E{R (2)Y]pi(2)dz

n

=220 B (2)) = " - 2 S wigil2): (6.121)

n
i>J,

Further, we have n=1|2f%(z) — Z;’;O ©02(2)] < CJ,n~'. Using (6.116), Cauchy-
Schwarz and Bessel inequalities yield

! X z i\2)pil2 2

0 f%(2) el

Z n
t>Jp, t>Jp, 0 f (Z)

Combining the results in (6.120) we conclude that
Djs = o,(1)n~". (6.123)

As we have verified, the dominant term in Aj; is Dji.

Using the obtained results in (6.110) yields Bj12 < Cn™!, and together with
already evaluated Bj1; = 0,(1)n~%2 and (6.108) we get Bj; < Cn~'. Using this
inequality and (6.107) in (6.106), and the obtained result, (6.104) and (6.105)
we conclude that uniformly over all considered cumulative distribution functions
of interest F'X and densities f# of the monitoring time we have

Epx g2 {(0F —6;)°} <Cn™". (6.124)



/Current status censoring 48

This inequality yields that a projection estimate of an underlying cdf FX(z),
based on either 5;" or gj yields the same rate of the MISE convergence. Also note
that in (6.124) the subscript emphasizes that both FX and fZ must be known
to calculate the expectation, and the constant C is the same for all considered
FX,

Now we are considering the data-driven Fourier estimate éj, defined in (3.5)

and where in place of f#(z) we use f#(z). Namely, we are exploring the data-
driven Fourier estimator

=1

Here l?’,j (z) is defined in (3.3), and it estimates a function F_; (z)vdeﬁned in
(3.4). The difference between the already studied Fourier estimator 6% and the
new Fourier estimator 9* (compare (6.104) and (6.125)) is that in 0F the factor
Ay is replaced by A;— F_;(Z;). The underlying idea is that with the help of this

replacement the second moment inequality (6.124) for 5;‘ — éj can be replaced
by
Epx p2{(0F —0;)%} = on(L)n"'I(j > s) (6.126)
and A
Epx pz{(0F — 6;)*} < Cn 'I(j < s). (6.127)

This result is the key in proving the sharp minimax assertion of Theorem 3.2.
A comment is due. Inequality (6.127) states that 6F mimics 6; with the MSE
of order n~!, and this result is well expected. A challenging part is the case
j > sin (6.126). It follows from the above-presented proof of (6.124) that the
term that prevented us from establishing (6.126) is D;; which is of order n1,
while all other terms are of the wished order o,(1)n~!. Accordingly, we are

considering

n

D} :—Efz{lﬂl S 7z Zl))p%( )[(”TZQfZ(Zz)—%/(Zz)]} (6.128)

and would like to show that

L < Cn (G < s) +on(W)nHI(G > s). (6.129)
To verify (6.129), we rewrite the new factor as
Ar = Foj(Z) = [ = Fy(Z0) + [F(2) = By (Z0)
=W (Al, Zl) + WQ(Z[). (6.130)
For Ws(Z;) we have

Wa(Z) = F_j(Z) = Fj(Z1) = ), (6: = 67 )¢i(20), (6.131)

ieS,j
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where S_; = {0,1,...,s}\{j} if j < sand S_; = {0,1,..., s} otherwise. Then,
with the help of (2.1), Lemma 6.1 and (6.124) we get a rough but sufficient for

our task inequality,
Epx pz{[W2(Z))]"} < Cn=2s". (6.132)

Now we are ready to evaluate term D7, defined in (6.128). Using notation
(6.130) we write,

P s e LR
l=n—1

_Efz{ ﬁ (Wi(A1, Zy) ;;VQ(ZJ))%(Zz)[(nn— 2fZ(Zl)_7y(Zl)]}. (6.133)
l=n—1 f ( l)]

We begin with considering a term with W1 (A, _1, Z,—1)W1(A,, Z,). Write

*
D7,

ﬁ WAL, Z)e;(Z1) [(n -2

[fZ(Zl)]2 fZ(Zl) _ﬁ/(Zl)]}
l=n—1

1= Efz

n

(A — 2))pi(Zy) ((n—2 ., T
‘Efz{lnl R ) - R

~E{ J (FX(2) = F_y(2))py () [ ()]

- 2
% [(n—2)n~LfZ(2) — h’(z)]dz] } (6.134)
Using (6.112), (6.113) and the Cauchy inequality we continue (6.134),

D = e [ [ (X6 - E Dl )

2

In
X[ (i = Ro)e() + 3 mapi()]dz] |
i=1 >,
T
(FX(2) = F_j(2))pi(2)pi(2) | 12
<2Efz{[;l i — R f =) a:|'}
[ EXR) ~ F(2)ei()eilz) ;2
+2[i>Jn HZL FZ(2) dz]
=: 2Bj11 + 2Bj12 (6135)
To evaluate Bj1; we recall ;(2)@i(2) = 272[p;_i(2) + ¢;+:(2)] and write,

[ O LD 1, gy () 40600, (6130
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Here

! X Z)—r_jlz i\ 2
bi(j, s) :=L L7 (2) f5<zﬂ)( Jeiz) ., (6.137)

Let us comment on terms b;(j,s). Consider j > s, recall that 6; are Fourier
coefficients of an underlying FX, and write,

bi(j, 8) _ JO [Zt>s et@t(z)]wi('z)

dz = 0u[vei + vigal,

f7(2) =
1
where v; ::J [£Z(2)] Y pi(2)dz. (6.138)
0
Thus, using the above-mentioned Bernstein inequality we get for j > s
a0 o0
Do i)l < D106 Y [vemil + lasl]
i=—00 t>s i=—00
SO 0 < CD 2P %072 < Cs7 2, (6.139)
t>s t>s t>s

Using the obtained relations, together with (6.112) and (6.115), we get for
j>s
In
lel = n — 2 -1 1/2 lil_t + Iﬁ?i_;,_t) — Ifilit]
'L,t=1

x [2_1(bj*i(j7 S) + bj+i(j7 S))(bjft(ja 3) + bj+t(j7 S))] = on(l)n_l. (6140)

Now consider Bj12 and write,

B = 2 ”Zf (FX(z fZ(z))ng( )¢i(2)dz]2

z>J (Z)

< D5 w0 e) + 0406 8)]

i>Jy i>Jn
< CJ73(Jn — §)72 < Clin(s)] " *n =45, (6.141)
Using obtained results in (6.135) we conclude that

D¥, <Cn (< s)+o0,(1)n M (j > ). (6.142)

Now let us consider a term with Wo(Z,,_1)W2(Z,,) in (6.133). Using (6.132)
and that &'(z) is a projection estimate of fZ(z) with the bias (6.121), we get
with the help of Cauchy and Cauchy-Schwarz inequalities,

1 Wa(Z)i(Z) ((n —2) -
Efz{z_lll EfZZ(Zl)]Ql[ n fZ(Zl)_h(Zl)]}
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1/2

< C’[Efz{[WQ(ZI)]4}E{[nT_2fZ(Zl) ~ W@ =oa(nt (6.143)

Finally, we need to consider a cross-product term with Wy (A, _1, Z,_1)Wa(Z,),

(Anfl - Ffj(anl))‘»"j(anl)[nT_QfZ(anl) - E/<anl)]
[f%(Zp]?
Wo(Zn)); (Za) "2 £7(Z,) — W (Z2)]
« IO } (6.144)

Using Cauchy-Schwarz inequality, (6.102) and (6.132), we get a rough but
sufficient relation

Djlg = Efz{

Dy < OBy (Wa(Z)PYEs A1 | (P22 700) =R el

0 n

= o, (1)n"2 (6.145)

Combining obtained results we verify (6.129), and then validity of Theorem
3.2 follows from the above-presented proof of Theorem 3.1. Let us also note that
the presented proof justifies using a plug-in density estimate.

Proof of Corollary 4.1. The verified assertion follows from [12] and the al-
ready proved sharp-minimaxity of the blockwise-shrinkage estimator (3.9). The
interested reader may also follow lines in the proofs of Theorems 3.1 and 3.2,
and establish validity of Corollary 4.1 directly without reference on [12].

Proof of Theorem 4.1. Let us begin with a general remark. The proposed
density estimator is “identical” to the cdf estimator apart of: (i) Using the sine
basis for calculating statistics Zj, 2, and d; (ii) The new Fourier estimates EJ
and EJ To address the first issue, let us present classical formulas for elements
@j(x) of the cosine basis (1.2) used in the proofs of Theorems 3.1 and 3.2,
and then complement them by corresponding formulas for elements v;(x) :=
212 sin(mjx) of the sine basis. We have

ei(@)pi(x) = 272 _i(2) + ¢j1i(2)] (6.146)
b (@)i(x) = 272 _s(x) — @j4i(2)], (6.147)
and
03 (@) = 1+ 2720y (2) (6.148)
Versus
V3 (x) = 1 - 2720y (2). (6.149)

Another useful trigonometric formula is

bj(@)pi(x) = 272 i(x) + ()] (6.150)
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In what follows we also will need an analog of relation (2.2.5) in [13] which was
used in the proof of Theorem 3.1. Let g(z), = € [0, 1] be a function with bounded
derivative, then

| atay@anl < i (6.151)

The inequality is proved via integration by parts.

The new estimators of the density Fourier coefficients (; are analyzed in the
presented below two lemmas. We begin with a proposition which is similar to
Lemma 6.1.

Lemma 6.7. Let Assumption 1 hold. Then
Erx{G} = ¢ (6.152)

and

1

Vpx (§) = 0 (m))? j FX(@)[f%(@)] 3 (0)de < Ot (6.153)

Note how (6.152) and (6.153) mimic results (6.1) and (6.2) of Lemma 6.1.
Proof of Lemma 6.7. For the expectation we write using (4.4),

. A (Z
Erx{¢;} = E{p;(1) + (77) fﬁ(;))}
| (2
= 0i(1) + (r)Brx (ATHT = G

This verifies (6.152) and tells us that Zj is unbiased estimate of (;. For the
variance we get using (2.1),

Viex (§) = (1)) 2 Epx {[Av;(2)/ F2(2)]%)

— 0 () f FX ()2 (2)] 102 (2)de

0

This and Assumption 1 verify (6.153). Lemma 6.7 is proved.
Our next proposition is analog of Lemma 6.2.

Lemma 6.8. Let assumption of Theorem 4.1 hold and FX € F(a, Q). Then
Epx(} — ¢l < Cjsnt, (6.154)

and
Epx{((; — ()%} < (m))2d[1+ C(5~" + s~ 1)) (6.155)

Here d = S(l) FX(2)(1 — FX(2)[f?(2)]"'dx is the coefficient of difficulty (2.6).
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Proof of Lemma 6.8. In the proof we are following steps of the proof of Lemma
6.2 to highlight similarity between analysis of the two Fourier estimates. This
also will allow us to highlight differences between the proofs.

Using the fact that statistic £ ;(z) is used to estimate function F™*(z), which

in its turn approximates FX (), we write,

- ) s (D= F*(20))p;(Z)
G = |+ N A J
n(FEA(Z) - Foj(2))Wi(Z) -

mj * .
+ ; Pt J fZ(Zl) =. Clj + <2]. (6156)

We are considering the two terms on the right side of (6.156) in turn. Using
(2.1), (4.4) and a straightforward calculation we get,

1

Epx{Gij} = 0;(1) + (Wj)f [F¥ (@) = FZ;(2) ]y (x)da

0

= ;1) + (Wj)f FX(2))(z)dz = (. (6.157)

Thus 61;‘ is unbiased estimate of ¢;. Using (2.1) and A? = A; we can bound
from above MSE of ¢,

Een (G - 0% < Pm e { (- P 200y (201201}

= (Wi)zﬂ‘lm {(Az2 —20;F* (7)) + [Ffj(Zl)]Q)wJQ-(Zl)[fZ(Zl)]*Q}

a2 [
- (m5) J [FX(CE) — QFX(:E)Ff]-(x) + [ng(x)]2]¢]2($)[fz(:v)]_1dx (6.158)

nJo
Using F*(z) = FX(x) + [F*;(z) — F¥(z)] we may continue,
Erxl(Gy - 6% < T [ (¥ - PR @@L @] i
)2, [t
0 [ 2P @)% ()~ PR @)@ @) dal
T [~ (P )P @IS @ e =+ s s, (6159)
" . —j f tUp 2 3. .

We are evaluating the three terms on the right side of (6.159) in turn. Using
(6.149), differentiability of both FX(z) and f#(z), and relation (2.2.5) in [13],

we get

(mj)?

n

o
[d+c;j~"], where ) ¢ <C. (6.160)

j=1

U1<
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Now we evaluate us using several technical relations. First,

FX(2) = F*(2) = G (@)1( < 8) + ) Gor() (6.161)

r>8

Second, using (6.149) we write

cjjo FX () ()02 () [ (2)] eI (G < )

=CjLFX($)[fZ(x)]1[%(36)—%(3?) V0 (@)]del (j < 5)

To continue evaluation of the right side of (6.162) we use (6.150) and note that
according to that formula we get v (x)p2;(z) = 27/2[¢)3;(x) —1;(z)]. This and
(6.151) yield |Gy [I(j < s) < C(H+1)721(j < s).

Third, using the Cauchy-Schwarz inequality and the assumption of Lemma
6.8 we get,

N f )6, ()02 (@) 7 ()] Hda] < [Y] V2

1 1/2
X [Z[L FX(x)¢r(:v)1/1]2(z)[fZ(x)]’ldx]z] ! < Cs L. (6.163)

Using these results we establish
2
ug < C%[(j +1)72+ 571 (6.164)

To evaluate ug we begin with based on (6.161) relation

[F*,(2)]? = [FX(2)]? — 2FX (2)[¢05 (a + 3 G (
[CJ ¢J Z CT wr

Using it we obtain the following upper bound,

us < Clus + f (o + 3 G @)U )7 @) de]

r>S8

<Clu+¢r + Y6 <clG+ D72+ o5 (6.165)

r>s

Now we can use the obtained upper bounds for uq, us and ug in (6.159) and
get

Epx{(Cj — ()%} <
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N2 o0
+ C(Wi) [+ 1)+ (G +1)2+ 571, where Y. 2 <C.  (6.166)
j=0
This ends our analysis of &j.
Now we analyze two moments of statistic (»; introduced in (6.156). Our

aim is to show that this statistic is negligible with respect to (i;. Again we
begin with several technical results. Set S_; := {1,...,s}\{j} for j < s and
S_j:=A{1,...,s} for j > s, and N_;:= {1,...,n}\{l}. First, using the Parseval
identity, definition of f'_j and F*,, and Lemma 6.7 we can write

1

EFX{J (F_j(2) — F*,(2)) } N E(G-G)P <Ol (6.167)

0 i€S_;

Second, introduce a decomposition

Foj(Z)=n"" Y M[fZ(Z)]7" D) ei(Z)vi(Z)
kENl ZGS,]'
+n A2 D) (4 = Fi(Z) + Fa(2). (6.168)
€S_;

Then using orthogonality of elements of the sine basis we can write for ﬁ'l(Zl),
Epx{[F*;(Z1) = FU(Z01FA(Z0] 5 (Z0)1{(Ak, Zi), ke Noi}} = 0. (6.169)
Third, Assumption 1 allows us to write
[Erx {Fa(Z0)8; (2017 (Z0)]) )

=n T Epx {A[fZ(Z)] 72 ) R (Z0)i(Z)} < Csn™ (6.170)
i€S_j

Combining the obtained results yields
Epx{Coj}| < Cjsn™!

This and (6.157) verify (6.154).
We are left with evaluating the second moment of (2;. We again do that via
establishing several technical results. First,

Epx (F*;(2) — Fi(Z))? < Csn™™. (6.171)
Second,
n 2
EFX{( Z (Z)w; (2 [fZ(Zl)]*l) } < On~2s2. (6.172)
Third, consider two integers [ and m such that | # m and I,m € {1,2,...,n},
and write,

[F*(Z1) — F_j(Z)I[F*;(Zim) — F_j(Zum)]
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= [F*(Z1) — Fi(Z) — Fa(Z))[F*{(Zm) — Fy(Zm) — Fa(Zun)]
= [F*(Z1) — FU(Z)F*{(Zm) — F1(Zin)] = [F*(Z1) — FL(Z0)]Fa(Z0m)
~Ey(2)[F*y(Zn) ~ Fy(Zi)] + Fo(2) F>(Z)
= Wi+ Wy + W3+ W, (6173)
Using these notations we can write for any 1 <1 <m < n,
Epx{C;} < Ci*n'Epx{(F*;(Z) — F_;(Z)))?}

+ CEp {[Wh + Wa + W + Walthy (Z0)0(Zn)[ 7 (Z0) 7 (Zn)] 71} (6.174)

The first term on the right side of (6.174) is at most Cj2sn~2 due to (6.171).
To evaluate the second term set

Fi(Zi,—m) = Fy(Z) = n A [f2(Zn)] 70 Y. 62 (Zim)

iES,]-
= F\(Z) — Fy\(Z,m). (6.175)

Note that ﬁ'l(Zl, —m) does not depend on (A, Z;, A, Z,,) and |ﬁ1(Zl,m)\ <
Csn~' almost sure. Write,

Vi =FEpx {Wll/)j(Zl)¢j(Zm>[fZ(Zl)fZ(Zm)]_1}
— B {[F*,(Z) = By (20, =m) = By (o, m)[F*(Zon) = Fy (Zin, =0) = B (Zin, D)

x i (2005 (Zw)[F7(Z0) 7 (Zm)]) " }

To continue we need several relations. First, using (6.169) allows us to write,

Ery {[F*,(20) = Py(Z,=m)][F%(Z) = B (Zon, ~1)]

ij<Zz>wj(Zm>[fZ<zl>fZ<zm>r1} —0.

Second, note that |[F;(Z;, m)| < Csn~' almost sure. Third, the Cauchy-Schwarz
inequality allows us to write,

A~

EpA[F*(Z) — Fi(Z1, ~m)|F (Zim, 1)}

< [Er{[F*(Z1) — F1(Z1, —m)} Epx {[F1 (Zin, D]2}]Y2
< C[(sn~H(s*>n 2|2 < 0s*?n =32,

These relations allow us to conclude that |V| < Cs%/2n=3/2,
Next, using the Cauchy-Schwarz inequality we get

Epx {|Wal} < [Er {(F*;(Z1) — FU(Z)) ) Epx {[F2(Zn)2}]/? < Cs*n= %2,
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Due to symmetry the same inequality holds for W3, and Epx {|W,]} < Cs*n=2.
Combining the above-presented relations we get

Epx{C3;} < Cj2s*n™2. (6.176)

Lemma 6.8 is proved.

We have established that the considered Fourier estimates EJ and EJ satisfy
the desired statistical properties mimicking properties outlined in Lemmas 6.1
and 6.2 for Fourier estimates of cdf Fourier coefficients. The rest of the proof of
Theorem 4.1 follows the same steps as in the proof of Theorems 3.1 and 3.2, the
steps are based on using relations (6.146)—(6.151) for sines in place of cosines,
and finishing the proof presents no new technical complications. Theorem 4.1 is
verified.

Proof of Lemma 4.1. Using (6.156) we can write,

Ery {(G—¢)?} = Epx {(Ciy — ¢5)% + 2Epy {(C1j — §)Coj} + Epy {G3;). (6.177)

Now we are evaluating the expectations on the right side of (6.177) in turn.
Formulas (6.158) and (6.159) yield

~ 2 1
i@ - 6% - T [ PR @0 - PR @
<up+ug+ ¢ (6.178)
Using (6.149) and (6.151) we conclude that

f FX(2)(1 - FX (2)02(2) [f%(2)]\de

0

1
—d | PX@) - X @) @02 P (a)de = d+ o;(1).
0
Combining this relation with upper bound (6.164) for us and upper bound
(6.165) for uz we get

B (G~ = ldn s o, o) 0179

Further, it is established in (6.176) that Epx {ZQQJ} < Cj2s°n~32 = 0,(1)5%n" 1.
Using this, (6.179) and the Cauchy-Schwarz inequality on the right side of
(6.177) proves Lemma 4.1.

7. Conclusion and further research

Current Status Censoring (CSC) is a familiar sampling procedure when instead
of observing a lifetime of interest X only its status A = I(X < Z) is available
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at a monitoring time Z. In other words, in place of a classical sample of direct
observations from X, under CSC a sample from (A, Z) is available. CSC sam-
pling is a popular technique due to its simplicity, and in many applications it is
the only possibility to get information about an underlying lifetime of interest.
It is also well known that CSC makes estimation of the density and cdf ill-posed
and dramatically slows down rate of a risk convergence.

Whenever a problem is ill-posed, it is important to investigate not only the
rate but also a minimal constant of a risk convergence. The latter is due to
the fact that this constant sheds light on an ill-posed problem and because for
small samples we may see only the onset of ill-posedness. Recently [16] obtained
sharp-minimax lower bounds for density and cdf oracle-estimators, and this
paper proposed a data-driven and robust sharp-minimax estimator that attains
the oracle’s lower bound. Further, the estimator may be used for small samples
and it is tested on real and simulated examples.

There are many interesting and practically important extensions of the con-
sidered CSC setting. Missing is a typical complications in data analysis, and
then approaches of book [15] may be tested. Estimation of joint and conditional
densities is another important topic to consider. CSC regression, including a
functional regression, is another important applied topic to consider. Let us
also mention a research devoted to more general cases of interval censoring.
Here no results on sharp minimax estimation are known even for the interval
censoring case II when one observes a triplet (L,U,A) where L < U are two
monitoring times and the status A = -1 if X < L, A=0if L < X < U, and
A = 1 otherwise, see [5,6,18]. It is an interesting, challenging and open prob-
lem to expand the obtained CSC sharp-minimax results to a general interval
censoring data.

Now let us formulate several open problems for the considered CSC setting
and make several last remarks. (i) The coefficient of difficulty (2.6) indicates that
there is a serious issue when the integral §j(1 — F¥ (u))[f#(u)]*du diverges
as x increases due to a light tail of fZ(u). This issue is paramount to address
for extending the developed theory to unbounded support of X. While cases
of unbounded lifetimes are rare in practical applications, they are of a great
theoretical interest. (ii) In Assumption 1 the equality Sé fZ(2)dz = 1 can be
relaxed and the support of Z may be larger than [0,1]. This case does not
present a theoretical complication and the results still hold only now we are
estimating fZ#(z) over interval [0,1] using Z; € [0,1], see the corresponding
density estimate in [13 ]. What is of interest here is to estimate the support
of X. (iii) The case when the support of X is larger than the support of Z
yields inconsistent estimation, but a sharp estimation over the support of Z is
still possible. (iv) An interesting and complicated setting is when X and Z are
unbounded. No sharp-minimax theory is known for this case. (v) An important
applied task is to create a user-friendly R package for CSC density and cdf
estimation.
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