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Abstract: Current status censoring (CSC) implies that there is no direct
access to the lifetime of an event of interest. Instead it is known if the event
already occurred or not at a random monitoring time. CSC is a simple
sampling procedure and in many cases the only possibility to assess the
lifetime of interest. At the same time, the absence of a direct measurement
of a lifetime of interest makes the problem of nonparametric distribution
estimation ill-posed. A simple, adaptive and sharp minimax estimator of the
density and cumulative distribution function is proposed. The simplicity of
estimator also allows us to relax assumptions. Practical examples illustrate
CSC problem and the proposed estimator.
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1. Introduction

Considered problem is a nonparametric data-driven and sharp minimax estima-
tion of the probability density and the cumulative distribution function (cdf) of
the lifetime of interest X (nonnegative random variable) which is not observed
directly. Instead, there is a possibility to check status of the event at some ran-
dom moment of time Z, called the monitoring time. Then the available current
status censoring (CSC) observation is a pair of random variables pZ,∆q where
Z is the monitoring time and ∆ :“ IpX ď Zq is the status of the event of inter-
est, namely the status (indicator) is equal to 1 if the event of interest already
occurred at moment Z and the status is 0 otherwise. Available data is a sample
of size n from pZ,∆q.

Current status censoring (CSC), also known as “case I” interval censoring, is
a classical problem in survival analysis, see a discussion in books [9,15,21,23,25,
32,36] and thorough reviews of CSC in papers [7,10,16,24,27,28,34] where fur-
ther references may be found. It is well known that the stated nonparametric
problem of density and cumulative distribution function estimation is ill-posed
with slower rates of risk convergence than for the case of direct observations.
Due to the slower rates of convergence, it is always important to study not only
rates but sharp (minimal) constants. Recently [16] established sharp minimax
lower bounds for the Mean Integrated Squared Error (MISE) convergence for
an oracle that knows CSC data, information about distribution of X, and den-
sity of monitoring time Z. The aim of this paper is to propose density and cdf
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estimators that match performance of the oracle and attain the sharp constant
and the rate of the MISE convergence.

The oracle lower bounds and proposed data-driven estimators matching the
oracle will be presented shortly, and now let us review the related nonparametric
literature. The literature is vast and primarily devoted to estimating the cdf.
Let us begin with [33] where it is established that, under a mild assumption
on differentiability of the cdf, it may be estimated pointwise with rate n´1{3

by a nonparametric maximum likelihood estimate (NPMLE). Minimal assump-
tions under which the rate is optimal can be found in [18]. Note that the rate is
dramatically slower than n´1{2 for the case of direct observations, and more dis-
cussion and a thorough review of previous results can be found in these papers.
Another seminal paper, devoted to estimation under minimal assumptions, is
[5] where a piecewise constant (histogram-type) estimator of cdf is proposed.
[37] studied locally linear smoothers. Spline methods were introduced in [26]. A
novel kernel method was proposed in [20]. In [8] a warped adaptation for a ker-
nel estimator was motivated by Goldenshluger- Lepskii procedure which yielded
the squared-bias and variance trade-off. Log-concave constraint was proposed in
[2]. Bootstrapped confidence bands are developed in [22]. A number of interest-
ing and thought-provoking papers are devoted to orthogonal series estimation.
In [7] a rigorous analysis of a so-called quotient estimator is performed. The
underlying idea is to write the cumulative distribution function of interest as a
ratio of two densities of directly observed random variables. Then each density is
estimated via a series projection estimator with cutoffs chosen via minimization
of a penalized contrast function. It is shown that the adaptive estimator attains
optimal nonparametric rates whenever smoothnesses of the two densities are the
same. A regression-type estimator was also explored. Further development and
literature review on series estimation can be found in [6] where both compact
and non compactly supported bases are considered. [29] used penalization for a
projection series estimator of a conditional cumulative distribution function.

Density estimation problem for CSC data is dramatically less explored. Let us
mention [3] where the authors consider a kernel density estimation via solving it-
erative equations, nonparametric maximum likelihood estimation, and also via a
local EM approach. The latter requires an explicit solution of the local likelihood
equations which is done via the symbolic Newton-Raphson algorithm. Conver-
gence of proposed algorithms is studied. In [4] data sharpening is proposed to
increase robustness of a kernel density estimator to bandwidth misspecification
and measurement errors. [19] used a maximum smoothed likelihood approach
and a smoothing the (discrete) MLE of the distribution function approach. In
particular, under assumption that the cumulative distribution function is three-
fold differentiable, the density is estimated with the rate n´4{7. Asymptotic
distribution of the estimate was further explored in [20]. In [34] a kernel es-
timator is proposed under an assumption that the density of interest is twice
differentiable and the density of monitoring time is three-fold differentiable. A
smart procedure of data transformation is used to convert the problem into
deconvolution. Then the optimal rate n´4{7 is achieved, and expansions of the
expectation and variance as well as asymptotic normality are derived. This pa-
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per also contains a nice literature review.
It is important to stress that current status sampling may be dramatically

simpler than direct sampling of a lifetime of interest, and in many cases it is
the only available option, see a discussion in [9,25,32]. At the same time, CSC
makes cdf and density estimation problems ill-posed. As a result, it is prudent
to develop a data-driven estimator that attains both the optimal rate and the
constant of a risk convergence, and does that without a requirement for the
density of monitoring time Z to have a smoothness matching smoothness of an
underlying cdf of the lifetime of interest X.

The paper proposes a simple adaptive and sharp-minimax estimator of the
density and cdf of a lifetime of interest. The simplicity allows us to prove robust-
ness of the estimator with respect to smoothness of the density of monitoring
time. In [16], where a sharp minimax lower bound for CSC is obtained, it is
assumed that the density of Z is as smooth as an estimated cdf of the lifetime
of interest, and this is a serious restriction because we never know how smooth
an underlying cdf of interest is. In this paper only a bounded derivative of the
density is assumed, and this makes the proposed estimator robust.

The context of the paper is as follows. Section 2 presents assumptions and
a known sharp lower bound. A proposed data-driven estimator for the cdf may
be found in Section 3. Density estimation is considered in Section 4. Practical
examples and a numerical study are presented in Section 5. Proofs are in Section
6. Conclusion and open problems are in Section 7.

Finally let us introduce several notations used in the paper. Sample size is
denoted as n, onp1q is a traditional notation for vanishing sequences in n,

s :“ sn :“ 3` rlnpn` 3qs (1.1)

and ras denotes the smallest integer larger or equal to a, IpAq is the indicator
of event A. The cosine basis on r0, 1s is

ϕ0pxq :“ 1, ϕjpxq :“ 21{2 cospπjxq, j “ 1, 2, . . . (1.2)

We also use notation gpαqpxq or pgpxqqpαq for the αth derivative of gpxq, while
gkpxq is a notation for rgpxqsk. In the paper specific sequences in n and constants
are primarily chosen to make an orthogonal series estimator feasible for small
samples. The interested reader is referred to book [13] where series estimation
for small samples is discussed in depth.

2. Lower Bound

This section is based on [16] and serves as a reference. Considered nonparametric
CSC model is as follows. There is an underlying and hidden sample X1, . . . , Xn

from a lifetime of interestX. There is also a sample Z1, . . . , Zn from a monitoring
variable Z. The available CSC sample is pZ1,∆1q, . . . , pZn,∆nq where ∆l :“
IpXl ď Zlq is the status. The aim is to estimate the cumulative distribution
function FXpxq :“ PpX ď xq and the density fXpxq :“ dFXpxq{dx of the
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lifetime of interest X under the mean integrated squared error (MISE) criterion.
We restrict our attention to bounded variables, and without loss of generality
may assume that they are supported on r0, 1s.

Let us formulate the main assumption.

Assumption 1. The lifetime of interest X and the monitoring time Z are
independent continuous random variables, PpX P r0, 1sq “ 1, a known density

fZpzq of the monitoring time has a bounded derivative on r0, 1s,
ş1

0
fZpzqdz “ 1,

and minzPr0,1s f
Zpzq ě c˚ ą 0.

Let us comment on the assumption. Given PpZ ď 1q “ 1, no consistent
estimation of the distribution of X is possible if PpX ą 1q ą 0. In other words,
for consistent estimation the support of X must be the subset of the support
of Z. Similarly, the assumed independence between X and Z is necessary for
consistent estimation, see a discussion in [16]. In the presented below lower
bound continuity of fZpzq is sufficient, but in upper bounds we will use the
differentiability. More comments can be found in Section 7.

Assumption 1 implies that the joint (mixed) density of pZ,∆q is

fZ,∆pz, δq “ fZpzqrFXpzqsδr1´ FXpzqqs1´δ, δ P t0, 1u. (2.1)

The formula sheds additional light on why for consistent estimation the support
of X must be a subset of the support of Z.

Now we introduce two function classes. The former is a classical global
Sobolev class (ellipsoid) of α-fold differentiable functions on r0, 1s

Fpα,Qq :“
!

g : gpαqpxq exists and finite on [0,1] and (2.2)

n
ÿ

j“1

pπjq2ακ2
j ď Q ă 8, κj “

ż 1

0

gpxqϕjpxqdx
)

. (2.3)

Note that in (2.3) κj are Fourier coefficients of the function g. Sobolev function
classes are traditionally considered in upper bounds, and this is what will be
done shortly.

The latter function class is a local one where considered functions are close
to a pivot in L8-norm. Let F0pxq be the cdf of a random variable (lifetime) sup-
ported on r0, 1s. Introduce a class of cumulative distribution functions supported
on r0, 1s and created by additive perturbations of F0,

FpF0, α,Q, c0, c1, ρq :“
!

F : F pxq “ F0pxq ` gpxqIp0 ď x ď 1q, F p1qpxq ě 0,

gp0q “ gp1q “ 0, g P Fpα,Qq, max
xPr0,1s

maxp|gpxq|, |gp1qpxq|q ď ρ,

min
xPr0,1s

F
p1q
0 pxq ě c0, max

xPr0,1s
F
p1q
0 pxq ď c1

)

. (2.4)

The local functional class (2.4) was introduced in [16], function F0pxq is
called the pivot, and parameter ρ defines the local nature of the class. Local
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function classes and a corresponding local minimax approach for establishing
lower bounds were pioneered in [17] for the case of direct observations, and for
CSC data in [18] for finding an optimal rate for cdf estimation.

Now we are in a position to present the lower bound of [16]. We are using
notation pFXpxqqpβq with β “ 0 and β “ 1 corresponding to the cdf and the
density, and in what follows the parameter β is used solely for this purpose.

Introduce a nonparametric Fisher information

J pα,Q, d, βq

:“
”

pQp2α` 1qq´
2β`1

2pα´βq p2β ` 1q
2α`1

2pα´βqπpα` 1` βqpα´ βq´1
ıα{pα´βq

{d, (2.5)

where

d :“

ż 1

0

FXpxqp1´ FXpxqq

fZpxq
dx (2.6)

is the so-called coefficient of difficulty of CSC. Note that the nonparametric
Fisher information (2.5) is a ratio. The numerator is defined by an underly-
ing class of estimated functions (by parameters α and Q) and by the estimand
specified by parameter β, and the denominator (coefficient of difficulty) cap-
tures the effect of an underlying distribution of interest (here cdf FX) and a
nuisance function (here density fZ of the monitoring time). One may think that
a nonparametric Fisher information is an analog of a classical parametric Fisher
information 1{σ2 in a problem of estimating the mean of a normal variable with
variance σ2, see [1]. Further, the coefficient of difficulty d is a nonparametric
analog of σ2 because, as we will see shortly, d is a factor in the asymptotic vari-
ance of an efficient Fourier estimator implying sharp minimax nonparametric
estimation. The larger the coefficient of difficulty, the more complex an esti-
mated nonparametric problem is, and this explains the “coefficient of difficulty”
terminology introduced in [13].

Theorem 2.1 (Lower Bound). Let Assumption 1 hold and α ě 2. Then
the following lower bound holds for estimation of pFXpxqqpβq based on an CSC
sample of size n,

inf
rΨβ

sup
FX

EFX
!

rnJ pα,Q, d, βqs2pα´βq{p2α`1q

ż 1

0

rrΨβpxq ´ pF
Xpxqqpβqs2dx

)

ě p1` onp1qq. (2.7)

Here parameter β is either 0 or 1 for the estimand being either the cdf or the
density, respectively, the supremum is over FX P FpF0, α,Q, 1{ lnplnpnqq,
rlnplnpnqqs1{2, 1{ lnplnpnqqq defined in (2.4), the infimum is taken over all possible

oracle-estimators rΨβ knowing the sample, density fZpxq of the monitoring time
Z and everything about the class (2.4), namely F0, α and Q.

In Theorem 2.1 parameter ρ “ 1{ lnplnpnqq “ onp1q, and accordingly (2.7)
is the lower bound for a shrinking local minimax which makes the bound more
challenging to match for an adaptive estimator and a global minimax.
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It follows from Theorem 2.1 that the classical rate n´1 for estimating cdf,
known for direct observations, slows down to n´2α{p2α`1q. This is why a CSC
sampling is called ill-posed with respect to direct sampling a lifetime of interest.
Further, nonparametric Fisher information (2.5) and coefficient of difficulty d
are important outcomes of the oracle’s lower bound. In particular, the coefficient
of difficulty captures the effect of the underlying distribution of interest and the
distribution of the monitoring time on the Fisher information and the MISE
convergence.

Let us comment on what is known about sharpness of the lower bound (2.7).
It is a lower bound for an oracle-estimator that knows data, smoothness of an
underlying cdf, and the nuisance density fZ of the monitoring time. The lower
bound is sharp and it is attained by an oracle-estimator for a local Sobolev class.
The estimator is too complicated to present here, it is motivated by a proof of
the lower bound and uses an aggregation of bases for subsets of the support of
X. In next two sections a simple data-driven and robust estimator is proposed
that attains the sharp lower bound for a global Sobolev class (2.2) with unknown
parameters α and Q. The simplicity will also allow us to relax assumptions of
[16] about smoothness of the nuisance density fZ of the monitoring time. In
other words, we will see shortly that it is possible to match performance of the
minimax oracle.

3. CDF Estimator

The aim of this section is to present a simple sharp-minimax cdf estimator
that adapts to smoothness of an underlying cdf and may be used for small
samples. Further, the estimator preserves its properties under a mild assumption
of differentiability of the density fZ of the monitoring time Z.

In what follows we first present the estimator and its properties, and then
explain the estimator and discuss the results.

Recall that we observe a sample pZ1,∆1q, . . . , pZn,∆nq from a CSC pair
pZ,∆q where Z is the monitoring time, ∆ :“ IpX ď Zq is the status, and X
is the unobserved lifetime of interest. The aim is to estimate an underlying cdf
FXpxq :“ PpX ď xq of X.

We begin with the case of a controlled CSC when density fZpzq of the moni-
toring time is known. Recall that sequence s :“ sn and elements of cosine basis
ϕjpxq, j “ 0, 1, . . . are defined in (1.1) and (1.2), respectively. Set

θj :“

ż 1

0

FXpxqϕjpxq, j “ 0, 1, . . . (3.1)

for Fourier coefficient of the cdf of interest FXpxq. Then (2.1) implies that a
pilot Fourier estimator

qθj :“ n´1
n
ÿ

l“1

∆lϕjpZlq

fZpZlq
(3.2)
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is unbiased estimator of θj , and accordingly set

qF´jpxq :“
ÿ

iPtt0,1,...,suztjuu

qθiϕipxqIpj ď sq `
s
ÿ

i“0

qθiϕipxqIpj ą sq (3.3)

for unbiased estimate of function

F´jpxq :“
ÿ

iPtt0,1,...,suztjuu

θiϕipxqIpj ď sq `
s
ÿ

i“1

θiϕipxqIpj ą sq. (3.4)

This function approximates FXpxq as both s and j increase to infinity, and

note that
ş1

0
F´jpxqϕjpxqdx “

ş1

0
qF´jpxqϕjpxqdx “ 0. In what follows qF´jpxq is

referred to as the pilot cdf estimator, and note that this estimator and F´jpxq
do not depend on j whenever j ą s.

Now we can define a Fourier estimator

pθj :“ n´1
n
ÿ

l“1

p∆l ´ qF´jpZlqqϕjpZlq

fZpZlq
. (3.5)

Note how simple the estimator is, hardly more complicated than the pilot (3.2).
The proposed blockwise-shrinking cdf estimator is based in Fourier esti-

mates (3.5) and the following three statistics. Introduce blocks of positive inte-
gers/frequencies B0 :“ t0, 1, . . . , su, Bk :“ t0, 1, . . . , st1` 1{ lnpsqukuz Yk´1

r“0 Br,
k “ 1, 2, . . ., and denote the length (cardinality) of Bk by Lk. Set

rΘk :“
2

Lknpn´ 1q

ˆ
ÿ

1ďlăl1ďn

ÿ

jPBk

p∆l ´ qF´jpZlqqϕjpZlqp∆l1 ´ qF´jpZl1qqϕjpZl1q

fZpZlqfZpZl1q
, (3.6)

pΘk :“ L´1
k

ÿ

jPBk

pθ2
j , (3.7)

and

rd :“ min
´

3s, n´1
n
ÿ

l“1

qF´spZlqp1´ qF´spZlqq

rfZpZlqs2

¯

. (3.8)

Note that rd is a bounded plug-in sample mean estimate of the coefficient of
difficulty (2.6).

The cdf estimator, based on an underlying density fZpzq, is defined as

rFXpx, fZq :“
s
ÿ

j“0

pθjIppθ
2
j ą 2rdsn´1qϕjpxq

`

rn
ÿ

k“1

minp1,
rΘk

pΘk

qIprΘk ą 10s´1n´1q
ÿ

jPBk

pθjϕjpxq. (3.9)
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Here rn is the largest integer r such that st1 ` 1{ lnpsqur ď lnpsqn1{3{4. Note
that the number of blocks rn is of order plnpnqq2. Here and in what follows, all
specific constants allow us to use an estimator for small samples. The estimator
will be commented on shortly.

In the following proposition we use notations of Theorem 2.1 introduced in
Section 2.

Theorem 3.1 (Upper Bound for the MISE of rFXpx, fZq). Let Assumption
1 hold. Then for a CSC sample of size n,

sup
FXPFpα,Qq

EFX
!

rnJ pα,Q, d, 1qs2α{p2α`1q

ż 1

0

r rFXpx, fZq ´ FXpxqs2dx
)

ď p1` onp1qq. (3.10)

If fZ is unknown, then its estimation is based on available sample Z1, . . . , Zn
from Z. Accordingly, define a bounded from below projection estimate

sfZpzq :“ maxpγn, qf
Zq, where qfZpzq :“ n´1

Jn
ÿ

j“0

n
ÿ

l“1

ϕjpZlqϕjpzq, (3.11)

and
Jn :“ tlnpsqn1{3{2u, γn :“ 1{p3 lnpsqq. (3.12)

Theorem 3.2 (Upper Bound for Plug-In Estimator rFXpx, sfZq). Let

Assumption 1 hold. Then the upper bound (3.10) holds for rFXpx, sfZq.

Note that the plug-in estimator is completely data-driven and it adapts to
unknown smoothness of an underlying cdf of X. Important theoretical achieve-
ment of Theorem 3.2 is that only differentiability of fZpzq is assumed (versus
α-fold differentiability assumed in [16]).The improvement is due to the simpler
Fourier estimator (3.5) and a more advanced proof.

Now let us comment on the introduced estimator and statistics. It is worth-
while to begin with a brief introduction to series estimation.

Estimator (3.9) belongs to a class of orthogonal series estimators. A series
estimator employs a familiar from the function analysis result that a square in-
tegrable on r0, 1s function qpxq can be written as qpxq “

ř8

j“0 κjϕjpxq whenever

tϕjpxq, j “ 0, 1, . . .u is a basis on r0, 1s and κj “
ş1

0
qpxqϕjpxqdx are correspond-

ing Fourier coefficients. Then a traditional nonparametric rate-optimal estima-
tion paradigm, based on a sample of size n, is as follows. Find a Fourier estimator
sκj whose mean squared error is of order n´1, that is Etpsκj ´ κjq

2u ď Cn´1.

Then use a projection estimator sqpxq “
řMn

j“1 sκjϕjpxq where Mn is called a

cutoff. A popular add-hoc choice of the cutoff is Mn “ n1{5 which yields rate-
optimal estimation for qpxq P Fp2, Qq. Indeed, the Parseval identity implies that
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the mean integrated squared error (MISE) of the estimator is

Et
ż 1

0

psqpxq ´ qpxqq2u “
Mn
ÿ

j“0

Etpsκj ´ κjq2u `
ÿ

jąMn

κ2
j “: Vn `Bn. (3.13)

Here Vn is called the variance component of the MISE and it is proportional to
Mnn

´1, and Bn is called the integrated squared bias (or simply bias) compo-
nent and it is proportional to M´4

n . This yields the optimal MISE convergence
of order n´4{5. Note that for q P Fpα,Qq the optimal cutoff is of order n1{p2α`1q.
An interesting and practically important property of a rate-optimal projection
estimator using a trigonometric basis is that its derivative is elementary calcu-
lated and it is a rate-optimal estimate of the derivative of an estimated function.
This is due to the fact that the optimal cutoff is the same for a function and its
derivative, see [15]. Knowing this fact will be handy in understanding the next
Section 4.

In applications smoothness of qpxq, defined by parameter α, is unknown and
then numerical procedures for data-driven (adaptive) choosing Mn are devel-
oped based on a variance-bias tradeoff. The main technical element here is
to note that due to the Parseval identity a bias in (3.13) can be written as

Bn “
ş1

0
q2pxqdx´

řMn

j“0 κ
2
j . Now note that

ş1

0
q2pxqdx does not depend on Mn,

and accordingly the problem of finding a data-driven cutoff is converted into
minimizing

řM
j“0rEqtpsκj ´ κjq

2u ´ κ2
j s with respect to M . Another interesting

approach, popular for wavelet bases, is to use a thresholding like the one in the
first sum on the right side of (3.9). A thresholding may yield almost rate optimal
(within a logarithmic factor) estimation. The interested reader can find more
about rate-optimal estimation in books [13,35].

The problem becomes more complex if sharp-minimax is of interest when the
aim is to achieve both optimal rate and constant of the MISE convergence. For
a global Sobolev class Fpα,Qq defined in (2.2), a linear Pinsker’s oracle

rq˚pxq :“

Jnpα,Qq
ÿ

j“0

r1´ pj{Jnpα,Qqq
αspκjϕjpxq (3.14)

is sharp-minimax whenever the Fourier estimator pκj is efficient, namely

Eqtppκj ´ κjq2u “ d1n´1r1` ojp1q ` onp1qs. (3.15)

Here Jnpα,Qq is a special cutoff specific for an underlying Sobolev class, and
d1 is a coefficient of difficulty specific for an underlying statistical problem. For
instance, for estimation of the density fXpxq based on direct observations of
X this coefficient is 1. Note that the linear oracle (3.14) “smooths” Fourier
estimates. While being very simple, the linear oracle has two drawbacks. The
former is that it is possible but extremely difficult to estimate the cutoff, the
latter is that derivative of the linear oracle is not a sharp-minimax estimate of
the derivative of qpxq.
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Nonetheless, the Pinsker’s linear oracle has been a motivation for a blockwise-
shrinkage adaptation used by the proposed estimator (3.9). Let us explain the
underlying idea following [11] where the problem of density estimation based
on direct observations is considered. First, the Pinsker smoothing coefficient
p1´ pj{Jnpα,Qqq

αq is dominated by an oracle-coefficient κ2
j{rκ

2
j ` d

1n´1s where
d1 “ 1 is the coefficient of difficulty for the density estimation problem. Second,
we may estimate the oracle-coefficient but the accuracy is not sufficient for
its mimicking. Instead, using the fact that the Pinsker’s smoothing coefficients
with neighboring frequencies j are close to each other, we can propose a single
smoothing coefficient for a block of Fourier coefficients. Consider a block of
frequencies B which includes L frequencies, then the corresponding smoothing
blockwise oracle-coefficient is

w˚ :“
L´1

ř

jPB κ
2
j

L´1
ř

jPB κ
2
j ` d

1n´1
. (3.16)

Due to the averaging over the block, the Sobolev functional L´1
ř

jPB κ
2
j can be

estimated with a sufficient accuracy for sharp-minimax estimation. The oracle-
coefficient w˚ is convenient when the coefficient of difficulty is known as in the
density estimation for direct observations. Otherwise, it may be more convenient
to mimic a closely related, due to (3.15), an oracle-coefficient

w˚ :“
L´1

ř

jPB κ
2
j

L´1
ř

jPB Etpκ2
ju
. (3.17)

A nice feature of this oracle-coefficient is that no estimation of d1 is required,
and more discussion and specific results can be found in Section 6, see Lem-
mas 6.3-6.6. Further, it is established in [12] that derivative of a sharp-minimax
blockwise estimator is a sharp-minimax estimate of the derivative. This is an-
other attractive feature of a blockwise adaptive estimation that will be used
shortly in Section 4.

This ends our brief overview of orthogonal series estimation which sheds
light on the proposed methodology, and the interested reader can be find more
information in books [13,15,35].

Now let us comment on specifics of the proposed estimator (3.9). We are
explaining statistics in the order as they were introduced. The pilot Fourier
estimate (3.2) is a simple sample mean estimate based on the formula (2.1), its
properties are highlighted in Lemma 6.1 of Section 6. Using the terminology
of [24] we may say that the pilot estimate is based on “cases”. The pilot cdf
estimator (3.3) is the above-discussed projection series estimator with cutoff
s and “removed” frequency j ď s. As a result, we have important relation
ş1

0
qF´jpxqϕjpxqdx “ 0 for all j “ 0, 1, . . . Another property of the pilot estimator

is that it is unbiased estimate of F´jpxq defined in (3.4), and also see Corollary
6.1 in Section 6. Note that the mean squared error of the pilot Fourier estimate

is
ş1

0
rFXpxq{fZpxqsdxn´1p1 ` ojp1q ` onp1qq, while the mean squared error of

the proposed Fourier estimate (3.5) is dn´1p1` ojp1q` onp1qq, see also Lemmas
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6.1 and 6.2. As a result, recalling (3.15) we may refer to the Fourier estimate
pθj as efficient. Note how subtracting the pilot cdf estimate from the status ∆ in
(3.5) decreased the mean squared error. Now we are ready to look at the used
blockwise smoothing coefficients. If we replace in statistic (3.6) the pilot estimate
qF´j by F´j , then this statistic becomes U-statistic and unbiased estimate of the
Sobolev functional Θk :“ L´1

k

ř

jPBk
θ2
j , see a discussion in the proof of Lemma

6.6 in Section 6. This fact, together with the oracle’s smoothing coefficient (3.17),
explain the blockwise smoothing used in the second sum on the right side of
(3.9). Lemma 6.4 in Section 6 sheds light on relationship between statistics pΘk

and rΘk, while Lemma 6.5 explains how well the blockwise shrinkage mimics a
blockwise oracle in L2-norm. The used thresholding is necessary to attain sharp-
minimaxity as shown in [11]. The choice of rn in (3.9) is such that the estimator
includes all frequencies that a sharp-minimax oracle does.

Now let us comment on the low-frequency component in (3.9). It is cre-
ated solely for small samples using recommendation of [13], and its effect on
the asymptotic MISE is negligible, see details in (6.27), (6.30) and Corollary

6.2 in Section 6. Further, thresholding Ippθ2
j ą 2rdsn´1q may be skipped or

replaced by Ippθ2
j ą Csn´1q with no effect on the sharp-minimax. The used

estimate (3.8) may be replaced by others. For instance, note that Etpθ2
j u “

dn´1r1 ` ojp1q ` onp1qs, and hence using a sample mean or sample median of

tpθ2
j , j “ s`1, . . . , 2su is applicable. The reader familiar with wavelet estimators

may recall that the median approach is popular in wavelet statistical packages.
Overall, there is a large flexibility in choosing a lower frequency component of a
blockwise shrinkage estimator, and in (3.9) this component is chosen based on
recommendations of [13] and analysis of examples presented in Section 5. We
will continue the discussion in Section 7.

4. Density Estimation

There are two classical approaches to the problem of density estimation, and
we are considering them in turn. The former is to propose a smooth estimate of
cdf and then take derivative. This approach looks natural for CSC data due to
the underlying likelihood (2.1). An interesting example of using this approach
for CSC data is [19] where derivative of a maximum smoothed likelihood cdf
estimate is used to estimate the density. Under the assumption that the third
derivative of FXpxq is continuous, it is shown that the density estimate at-
tains the rate n´4{7. The latter approach is to bypass estimation of the cdf
and consider density estimation as a self-defined nonparametric problem, recall
literature review in the Introduciton. We consider these approaches in turn.

Using estimates (3.9) and (3.11) we can define a density estimate

rfXpxq :“

#

d rFXpx, fZq{dx if fZ is known,

d rFXpx, sfZq{dx otherwise.
(4.1)

Next proposition follows from [12] and results of Section 3.
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Corollary 4.1 (Upper Bound for the MISE of Density Estimator (4.1)).
Let Assumption 1 hold and α ě 2. Then

sup
FXPFpα,Qq

EFX
!

rnJ pα,Q, d, 2qs2pα´1q{p2α`1q

ż 1

0

r rfXpxq ´ fXpxqs2dx
)

ď p1` onp1qq. (4.2)

This result presents good and bad news about density estimation for CSC
data. The good one is that adaptive sharp-minimax estimation is possible. The
bad one is that rate of the MISE convergence is dramatically slower than for
the case of a direct sampling from X. Indeed, recall that if density fXpxq has
γ derivatives then based on a direct sample of size n it may be estimated with
the rate n´2γ{p2γ`1q. In (4.2) α is the number of derivatives of FXpxq, and
accordingly density fXpxq has γ “ α´1 derivatives. Then Corollary 4.1 asserts
that the best rate of the MISE convergence for a CSC sample is n´2γ{p2γ`3q.
According to [13], for a direct sample of size n from X this rate is the same as
for estimation of a trivariate density having γ derivatives in each variable. Now
recall a familiar curse of multidimensionality in nonparametric estimation, see
a discussion in [35], and then Corollary 4.1 sheds a new light on complexity of
CSC data analysis. We will continue this discussion in Section 5.

Under the second approach, when estimation of cdf is bypassed, we estimate
density fXpxq directly. The proposed density estimator is again a blockwise-
shrinkage cosine series estimator discussed in Section 3, and we continue to use
notation of that section. Further, for the reader’s convenience we will compare
steps in construction of a blockwise density estimator with those for the cdf
estimator (3.9).

The main principal step is to understand how Fourier coefficients

ζj :“

ż 1

0

fXpxqϕjpxqdx (4.3)

of the density fX can be estimated. We know that ζ0 “
ş1

0
fXpxqdx “ 1 because

X is supported on r0, 1s. Accordingly, we need to propose a Fourier estimator
for j ě 1, and from now on we are considering only j ě 1. Using integration by
parts we can write,

ζj “

ż 1

0

fXpxqϕjpxqdx “ rϕjp1qF
Xp1q ´ ϕjp0qF

Xp0qs ´

ż 1

0

ϕ
p1q
j pxqF

Xpxqdx

“ ϕjp1q ´ EFX
!

∆
ϕ
p1q
j pZq

fZpZq

)

“ ϕjp1q ` pπjqEFX
!

∆
ψjpZq

fZpZq

)

. (4.4)

In the last equality we used FXp0q “ 0, FXp1q “ 1, and ϕ
p1q
j pxq “ p´πjqψjpxq.

Here
ψjpxq :“ 21{2 sinpπjxq, j “ 1, 2, . . . (4.5)
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are elements of the classical sine basis on r0, 1s. Now note that the expectation
on the right side of (4.4) can be estimated by a sample mean estimate. This
yields a pilot Fourier estimator (compare with (3.2))

qζj :“ ϕjp1q `
πj

n

n
ÿ

l“1

∆lψjpZlq

fZpZlq
. (4.6)

Note how similar pilot Fourier estimators (4.6) and (3.2) are despite different
estimands ζj and θj , respectively. They are both unbiased estimates of their
estimands, but a critical difference is in the factor πj in (4.6) which yields an

increasing by factor pπjq2 mean squared error (MSE) of qζj while the MSE of qθj
is bounded.

Following (3.3), we use Fourier estimates (4.6) to construct a pilot cdf esti-
mator

pF´jpxq :“
ÿ

iPtt1,...,suztjuu

qζiψipxqIpj ď sq `
s
ÿ

i“1

qζiψipxqIpj ą sq. (4.7)

Note that pF´jpxq is unbiased estimate of a function

F˚´jpxq “
ÿ

iPtt1,...,suztjuu

ζiψipxqIpj ď sq `
s
ÿ

i“1

ζiψipxqIpj ą sq. (4.8)

This function mimics F´jpxq defined in (3.4) only here the sine basis is used
in place of the cosine basis. The sine basis is used because, due to using sines
in (4.6), the new pilot estimate and the approximation F˚´j of FXpxq have the
desired property

ż 1

0

pF´jpxqψjpxqdx “

ż 1

0

F˚´jpxqψjpxqdx “ 0. (4.9)

Note that (4.9) matches the same property of qF´jpxq and F´jpxq with respect
to ϕjpxq, see the paragraph below line (3.4).

Following (3.5) we define a Fourier estimator

pζj :“ ϕjp1q `
πj

n

n
ÿ

l“1

p∆l ´ pF´jpZlqqψjpZlq

fZpZlq
, j ě 1. (4.10)

It is easy to check that if in (4.10) the estimate pF´jpZlq is replaced by F˚´jpZlq,

then due to (4.9) estimate pζj becomes unbiased estimate of ζj . Another impor-
tant property of the Fourier estimate will be presented shortly in Lemma 4.1,
and also see Lemmas 6.7 and 6.8 in Section 6.

Now we introduce three new statistics. The first one is analog of rΘk,

rZ :“
2

Lknpn´ 1q

ÿ

1ďlăl1ďn

ÿ

jPBk

”

ϕjp1q `
pπjqp∆l ´ pF´jpZlqqψjpZlq

fZpZlq

ı
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ˆ

”

ϕjp1q `
pπjqp∆l1 ´ pF´jpZl1qqψjpZl1q

fZpZl1q

ı

. (4.11)

The second statistic is analog of pΘk,

pZk :“ L´1
k

ÿ

jPBk

pζ2
j . (4.12)

The third statistic is analog of rd,

pd :“ min
´

3s, n´1
n
ÿ

l“1

pF´spZlqp1´ pF´spZlqq

rfZpZlqs2

¯

. (4.13)

Now we are in a position to introduce a blockwise density estimator that
mimics the cdf estimator (3.9),

pfXpx, fZq :“ 1`
s
ÿ

j“1

pζjIppζ
2
j ą pπjq

22pdsn´1qϕjpxq

`

rn
ÿ

k“1

minp1,
rZk
pZk
qIp rZk ą 10rπ

k
ÿ

r“0

Lrs
2s´1n´1q

ÿ

jPBk

pζjϕjpxq. (4.14)

Finally, if fZpzq is unknown, then we use its estimate sfZpzq defined in (3.11).

Theorem 4.1 (Upper Bound for the MISE of Density Estimator (4.14)).

Let Assumption 1 hold and α ě 2. Set pfXpxq “ pfXpx, fZq if fZ is known and
pfXpxq “ pfXpx, sfZq otherwise. Then

sup
FXPFpα,Qq

EFX
!

rnJ pα,Q, d, 2qs2pα´1q{p2α`1q

ż 1

0

r pfXpxq ´ fXpxqs2dx
)

ď p1` onp1qq. (4.15)

We may conclude that the both methods (taking derivative of the blockwise
cdf estimate and a direct blockwise density estimation) lead to a sharp-minimax
estimation that matches performance of oracles. Overall the second method (di-
rect density estimation) is preferable because this technique is widely used and
many innovations are developed, see [13,15,35]. Another comment is that inte-
gration of the proposed density estimator yields a sharp-minimax cdf estimator.

Now let us present a technical result which explains our choice of Fourier
estimator pζj and sheds light on Theorem 4.1.

Lemma 4.1. Under assumption of Theorem 4.2 the mean squared error of
Fourier estimator pζj satisfies

EFX tppζj ´ ζjq2u “
pπjq2

n

”

ż 1

0

FXpxqp1´ FXpxqq

fZpxq
dx` ojp1q ` onp1q

ı

. (4.16)
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The interested reader may also compare statistical properties of the Fourier
estimates qζj and pζl using Lemmas 6.7 and 6.8 in Section 6.

Remark 4.1. Recall that d “
ş1

0
FXpxqp1 ´ FXpxqqrfZpxqs´1dx is the co-

efficient of difficulty for cdf estimation defined in (2.6). On the right side of
(4.16) we see this coefficient of difficulty multiplied by factor pπjq2 which is

due to
ş1

0
rdϕjpxq{dxs

2dx “ pπjq2. This observation explains similarity between
the two approaches for density estimation. Lemma 4.1 also helps us to under-
stand why for FX P Fpα,Qq rate optimal cdf and density projection estima-
tors can use the same cutoff Jnpαq. Indeed, let us make several simple calcula-

tions. The MISE of a projection cdf estimator sF pxq :“
řJ
j“0

pθjϕjpxq is of order

Jn´1 ` J´2α. The latter yields rate-optimal cutoff Jnpαq “ J1{p2α`1q and the
rate n´2α{p2α`1q for the MISE convergence. The MISE of a projection density
estimator sfpxq :“ 1`

řJ
j“1

pζjϕjpxq is of order
řJ
j“1pπjq

2n´1 ` J´2pα´1q. This

yields the same rate-optimal cutoff Jnpαq “ n1{p2α`1q and the corresponding
rate n´2pα´1q{p2α`1q for the MISE convergence. Note that the above-presented
rates of MISE convergence are optimal according to Theorem 2.1.

Let us finish our theoretical sections with a practical comment. In general a
series estimate may be non bona fide. If this is an issue, then an L2-projection
on a corresponding bona fide class may be performed, see a discussion in book
[13] and use its R software.

5. Examples

The section sheds additional light on estimation for CSC data via analysis of
real and simulated data. We begin with real-data examples.

Environmental company BIFAR has been interested in exploring aerobic
treatment of municipal wastewater, see a discussion of the treatment and BI-
FAR’s CSC experiments in [16]. In one of the experiments, a random variable
of interest was time X when a chemical pollutant appears at a sludge tank.
Because it was impossible to observe the time directly, a CSC study was con-
ducted. BIFAR’s CSC observations pZ1,∆1q, . . . , pZn,∆nq are shown in the top
diagram in Figure 1. Before proceeding to estimates, let us look at the data and
try to guess an underlying density. Recall that guessing an underlying density
is often possible for direct observations, and this is a recommended first step in
nonparametric estimation, see chapter 3 in [13]. In the diagram we can directly
observe monitoring times, and it is reasonable to assume that an underlying
density is uniform. The estimate sfZpzq (the solid line) supports the conclusion.

Now let us try to analyze the CSC data. Because ∆ “ IpX ď Zq and all ∆s
with Z ą 0.65 are equal to 1, the CSC data, together with the uniform sfZ , tells
us that an underlying density has a vanishing right tail. Next we note that ∆s
with Z ă 0.3 are zero and hence all corresponding underlying times of interest
satisfy X ą Z. This points upon a vanishing left tail. Unfortunately, there is
nothing else that a visualization can produce. In particular, it is difficult to an-
swer questions about symmetry or multimodality. This complexity is explained
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Fig 1. Analysis of BIFAR CSC aerobic data. Monitoring times are rescaled onto [0,1].
The top diagram shows CSC observations by the circles, n is the sample size, N :“
řn

l“1 ∆l, the solid line shows the estimated density of the monitoring time Z. In the
middle and bottom diagrams a solid line is the proposed estimate and a dashed line is
the pilot estimate.

by formula (2.1) implying that to visualize an underlying density, one first need
to visualize an underlying cdf and then visualize its derivative. The derivative
step is too complicated for visual analysis. We may conclude that only statistical
estimators may help us to gain understanding of CSC data.

The middle and bottom diagrams exhibit pilot (the dashed line) and proposed
(the solid line) estimators of the density and cdf. Recall that all estimates are
series estimates and they are consistent, the proposed estimator is more accurate
while the pilot estimator is very simple. For the data at hand, based on the
estimated FX and fZ , the ratio of the standard deviation of the pilot Fourier
estimator (3.2) to the standard deviation of the proposed Fourier estimator
(3.5) is 2.3. This sheds light on improvement in estimating Fourier coefficients.
Further, let us look at the two density estimates. The pilot estimate is skewed to
the left and asymmetric. At the same time, the proposed estimate is unimodal
and symmetric. BIFAR concurred the symmetric and unimodal shape of an
underlying density of interest.
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Fig 2. Analysis of time until “drowsy driving.” Monitoring times are rescaled onto [0,1].
The top diagram shows the CSC data by the circles, n is the sample size, N :“

řn
l“1 ∆l,

the solid line shows the estimated density of Z. In the middle and bottom diagrams a
solid line is the proposed estimate and a dashed line is the pilot estimate.
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Our second example is more interesting in terms of the shape of an underly-
ing distribution, and it involves a larger sample size. Operating a motor vehicle
while fatigued or sleepy is commonly referred to as “drowsy driving.” There is
an extensive literature devoted to the topic with a primary interest in under-
standing the drowsy driving, driver assistance technologies in vehicles, and the
driver’s fatigue detection by monitoring systems, see reviews and interesting
data in [31,38]. Here our aim is less ambitious, and we would like to evaluate
distribution of a driving time X until first yawning. This is a simple and in-
expensive CSC experiment which uses a call to a driver and a question about
yawning prior to the call. CSC data for n “ 485 commercial drivers are shown
in the top diagram in Figure 2. The structure of Figure 2 is identical to Figure
1, and this allows us to compare the two CSC datasets. We again see vanish-
ing tails, but the difference is in asymmetry of the fatigue data. There are too
many observations to visualize an underlying density fZ , and the estimate sfZ

(the solid line) indicates an increasing density. Based on the top diagram, it is
difficult to add something else to these remarks.

Now let us look at the middle diagram. The left tail of the pilot estimate (the
dashed line) looks strange, there is no reason to believe that it is correct. The
more accurate proposed density estimate (the solid line) tells us an interesting
story about the data. It reveals two modes in the lifetime of interest X. A
reasonable explanation is that the left and right modes are created by driving
at night and daytime, correspondingly. The bimodal density is also supported by
a known fact (see the above-mentioned literature) that a driver three times more
likely to have a fatal accident at night than during the day. Let us also note that
the pilot estimate is a smoothed version of the proposed estimate. The bottom
diagram shows us estimates of cdf. Here the ratio of the standard deviation of
the pilot Fourier estimator to the standard deviation of the proposed Fourier
estimator is 2.2.

Now let us present results of a numerical study when we know an underlying
model. We would like to understand how CSC effects density estimation and
relative performance of the proposed CSC density estimator. Figure 3 exhibits
two simulations with underlying densities shown by the solid lines in the bot-
tom diagrams. In the left diagram the density is unimodal and in the right it is
bimodal. In both experiments the monitoring time is uniform. Considered esti-
mates are: (i) Estimate of [13] based on an underlying sample from X. Recall
that we are dealing with simulated CSC and hence know underlying lifetimes of
interest. Let us refer to this estimate as an oracle. The oracle is shown by the
dashed line; (ii) Proposed estimate. The estimate is shown by the dotted line;
(iii) Aggregated estimate of [15 ]. This estimate aggregates two series estimates
based on observations with ∆ “ 1 and ∆ “ 0, respectively, and this is a reliable
rate optimal CSC density estimate supported by the software [15].

Now we repeat a simulation 5000 times, for each simulation and each estimate
calculate an integrated squared error (ISE), calculate ratio A of ISE of the
proposed estimate to ISE of the oracle, calculate ratio B of ISE of the aggregated
estimate to ISE of the oracle, and then calculate sample means sA and sB of the
ratios over 5000 simulations. Results are shown in Table 1, and the underlying



/Current status censoring 19

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CSC Data,  n =  100 ,  N =  44

Z

Δ
 , 

 D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Density Estimates

z

0.0 0.2 0.4 0.6 0.8 1.0
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CSC Data,  n =  200 ,  N =  91

Z

Δ
 , 

 D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Density Estimates

z

Fig 3. Two simulated CSC examples. A top diagram shows CSC data by the circles, n
is the sample size, N :“

řn
l“1 ∆l, the solid line shows the estimated density of Z. A

bottom diagram shows by the solid, dashed, dotted and dot-dashed lines an underlying
density of interest fX , the oracle (density estimate of [13]) based on an underlying
sample from X, the proposed estimate, and aggregated estimate of [15], respectively.
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models are as follows. Model 1 is for the unimodal underlying density, and
the left column in Figure 3 exhibits a particular simulation. Model 2 is for
the bimodal underlying density, and the right column in Figure 3 exhibits a
particular simulation. Models 3 and 4 use a new density for the monitoring time
Z which is a mixture with weight 0.3 of the uniform density and with weight
0.7 of the unimodal density shown by the solid line in the left bottom diagram
in Figure 3. Then model 3 in Table 1 corresponds to the unimodal underlying
density of interest, and model 4 to the bimodal underlying density of interest
shown by solid lines in the bottom diagrams of Figure 3, respectively. Let us
look at the presented results. As we already know from the theory, small samples
may present only onset of ill-posedness, and the results support this possibility.
For larger samples CSC creates more dramatic complications with respect to
direct observations. Relative performance of the two CSC density estimators
becomes worse with increased sample size, and this outcome coincides with
the theory. Recall that asymptotically CSC density estimation is equivalent to
estimating a trivariate density, and the results reflect this. On a positive note,
the study shows that the used series density estimator is robust toward an
underlying density of the monitoring time, and there is only a minor bump in
performance of the estimator when the density of monitoring time changes from
the uniform to the unimodal. To see the latter, compare outcomes for odd and
even models. Another interesting observation is that the relative performance
of the CSC estimates is better for the bimodal underlying density than for
the uniform underlying density. The latter is due to the fact that even for the
oracle estimation of the bimodal density is a notoriously complicated task, see
a discussion in [13].

Table 1
Results of a numerical study of two density estimates with respect to an oracle that knows
underlying direct observations of the lifetime of interest. Each entry shows sA{ sB explained in

the text.

Model n
100 200 300 400 500

1 7.4/8.2 12.3/14.7 26.5/28.6 43.1/50.5 56.9/67.3
2 4.3/5.3 7.3/10.2. 11.8/15.2. 14.4/17.8 18.4/23.0.
3 8.7/9.4 12.8/15.2 27.3/29.2 44.7/51.6 57.3/67.7
4 5.1/6.2 7.6/10.6 12.7/15.6 15.9/18.1 19.3/23.8

In conclusion, the examples show that estimation based on CSC data is a
feasible but ill-posed task. Fortunately, the ill-posedness is relatively mild for
small samples. Accordingly practitioners should not shine from employing CSC
experiments and nonparametric analysis of CSC data because visualization of
nonparametric density estimates may shed a useful light on the lifetime of in-
terest.
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6. Proofs

In what follows Cs are generic finite constants, d is the coefficient of difficulty
CSC defined in (2.6), EFX t¨u and VFX p¨q denote the expectation and the vari-
ance given the underlying cdf FX whenever we would like to stress an underlying
cdf, and we continue using notations introduced at the end of the Introduction.

Proof of Theorem 3.1. The proof is structured via a sequence of technical
lemmas. This simplifies understanding main steps in the proof. We begin with
evaluation of the mean and variance of the pilot estimator qθj of Fourier coeffi-
cient θj defined in (3.2) and (3.1), respectively.

Lemma 6.1. Let Assumption 1 hold. Then the pilot estimator qθj of θj is unbi-
ased and rate optimal, namely

EFX tqθju “ θj , (6.1)

and

VFX pqθjq “ n´1

ż 1

0

FXpxqrfZpxqs´1rϕjpxqs
2dx ď Cn´1. (6.2)

Proof of Lemma 6.1. For the expectation we write using (2.1),

EFX tqθju “ EFX t∆ϕjpZqrfZpZqs´1u

“

ż 1

0

rfZpzqFXpzq{fZpzqsϕjpzqdz “

ż 1

0

FXpzqϕjpzqdz “ θj .

This verifies unbiasedness of the pilot Fourier estimator qθj . Variance of the pilot
Fourier estimator is

VFX pqθjq “ n´1VFX
´

∆ϕjpZqrf
ZpZqs´1

¯

“ n´1rEFX t∆2ϕ2
j pZqrf

ZpZqs´2u ´ θ2
j s

“ n´1

ż 1

0

FXpzqrϕjpzqs
2rfZpzqs´1dz ď Cn´1.

We conclude that the pilot Fourier estimator is unbiased and rate optimal.
Lemma 6.1 is verified.

Now let us consider Fourier estimator pθj defined in (3.5). Next proposition
sheds light on why this estimator may be referred to as efficient for the consid-
ered nonparametric problem of the cdf estimation.

Lemma 6.2. Let Assumption 1 hold and FX P Fpα,Qq. Then

|EFX tpθju ´ θj | ď Csn´1, (6.3)
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and
EFX tppθj ´ θjq2u ď dn´1r1` Cppj ` 1q´2 ` s´1qs. (6.4)

Here d “
ş1

0
FXpxqp1 ´ FXpxqqrfZpxqs´1dx is the coefficient of difficulty CSC

introduced in (2.6).

Remark 6.1. In what follows it is sufficient to have dn´1r1` ojp1q ` onp1qs on
the right side of (6.4)

Proof of Lemma 6.2. Recall statistic qF´jpxq is defined in line (3.3) and used
to estimate function F´jpxq which approximates FXpxq and is defined in (3.4).
Write,

pθj “ n´1
n
ÿ

l“1

p∆l ´ F´jpZlqqϕjpZlq

fZpZlq

` n´1
n
ÿ

l“1

pF´jpZlq ´ qF´jpZlqqϕjpZlq

fZpZlq
“: pθ1j ` pθ2j . (6.5)

Let us evaluate mean and mean squared error (MSE) of the two terms in
turn. Using (2.1) and a straightforward calculation we get for the mean,

EFX tpθ1ju “

ż 1

0

rFXpxq ´ F´jpxqsϕjpxqdx “

ż 1

0

FXpxqϕjpxqdx “ θj . (6.6)

We conclude that pθ1j is unbiased estimate of θj . Using (2.1) and ∆2
l “ ∆l we

write for MSE,

EFX tppθ1j ´ θjq
2u “ n´1

”

EFX
!´

p∆l ´ F´jpZlqqϕjpZlqrf
ZpZlqs

´1
¯2)

´ θ2
j

ı

“ n´1
”

EFX
!

p∆2
l ´ 2∆jF´jpZlq ` F

2
´jpZlqqϕ

2
j pZlqrf

ZpZlqs
´2

)

´ θ2
j

ı

“ n´1r

ż 1

0

rFXpxq ´ 2FXpxqF´jpxq ` F
2
´jpxqsϕ

2
j pxqrf

Zpxqs´1dx´ θ2
j s

Now we write F´jpxq as FXpxq ` rF´jpxq ´ F
Xpxqs and continue

EFX tppθ1j ´ θjq
2u ď n´1

ż 1

0

rFXpxqp1´ FXpxqqsϕ2
j pxqrf

Zpxqs´1dx

`n´1|

ż 1

0

r´2FXpxqpF´jpxq ´ F
Xpxqqsϕ2

j pxqrf
Zpxqs´1dx|

` n´1

ż 1

0

rF 2
´jpxq ´ pF

Xpxqq2sϕ2
j pxqrf

Zpxqs´1dx “: v1 ` v2 ` v3. (6.7)

To evaluate v1 we use trigonometric formula 2 cos2pγq “ 1 ` cosp2γq which
implies

ϕ2
j pxq “ 1` 2´1{2ϕ2jpxq. (6.8)
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We also use differentiability of both FXpxq and fZpxq, and relation (2.2.5) in
[13]. We get

v1 ď n´1rd` cjpj ` 1q´1s, where
8
ÿ

j“0

c2j ă C. (6.9)

Note that we need only c2j ă C to verify (6.4).
To evaluate v2 we first note that

FXpxq ´ F´jpxq “ θjϕjpxqIpj ď sq `
ÿ

rąs

θrϕrpxq. (6.10)

Second we make several preliminary calculations. We begin with

θj

ż 1

0

FXpxqϕjpxqϕ
2
j pxqrf

Zpxqs´1dxIpj ď sq

“ θj

ż 1

0

FXpxqrfZpxqs´1rϕjpxq ` ϕjpxq2
´1{2ϕ2jpxqsdxIpj ď sq

“: θjκjIpj ď sq. (6.11)

To evaluate the right side of (6.11) we use ϕipxqϕ2jpxq “ 2´1{2rϕjpxq `ϕ3jpxqs
and inequality (2.2.8) in [13]. We get

|θjκj |Ipj ď sq ď Cpj ` 1q´2Ipj ď sq.

Our next preliminary calculation is for the second term on the right side of
(6.10). Write,

ÿ

rąs

θr

ż 1

0

FXpxqϕrpxqϕ
2
j pxqrf

Zpxqs´1dx “:
ÿ

rąs

θrνr. (6.12)

Using Cauchy-Schwarz inequality and FX P Fpα,Qq we evaluate the right side
of (6.12) by

|
ÿ

rąs

θrνr| ď r
ÿ

rąs

θ2
r s

1{2r
ÿ

rąs

ν2
r s

1{2 ď Cs´1. (6.13)

Now we have all technical relations needed for the analysis v2. Using (6.10)-
(6.13) yields

v2 ď Cn´1rpj ` 1q´2 ` s´1s. (6.14)

The last term to evaluate on the right side of (6.7) is v3. Note that

F 2
´jpxq “ rF

Xpxqs2 ´ 2FXpxqrθjϕjpxqIpj ď sq `
ÿ

rąs

θrϕrpxqs

`rθjϕjpxqIpj ď sq `
ÿ

rąs

θrϕrpxqs
2.
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This yields that

v3 ď C
”

v2 `

ż 1

0

rθjϕjpxqIpj ď sq `
ÿ

rąs

θrϕrpxqs
2ϕ2

j pxqrf
Zpxqs´1dx

ı

ď C
”

v2 ` θ
2
j Ipj ď sq ` r

ÿ

rąs

|θr|s
2
ı

ď Crpj ` 1q´2 ` Cs´1s. (6.15)

Combining (6.9), (6.14) and (6.15) on the right side of (6.7) we get

EFX tppθ1j ´ θjq
2u ď n´1d

` Cn´1rcjpj ` 1q´1 ` pj ` 1q´2 ` s´1s, where
8
ÿ

j“0

c2j ă C. (6.16)

This ends our analysis of pθ1j . Now we are evaluating the mean and MSE of
pθ2j defined in (6.5). First of all a comment is due. This is not a simple task to
evaluate this statistic with the required accuracy. On one hand, we have a plain
and very strong property

EFX
!

ż 1

0

p qF´jpzq ´ F´jpzqq
2dz

)

ď

s
ÿ

j“0

Etqθj ´ θjq2u ď Csn´1, (6.17)

which holds due to the Parceval identity and Lemma 6.1. On the other hand,
this result alone is not sufficient for verification of Lemma 6.2 and making a
conclusion that term pθ2j is negligible with respect to the main term pθ1j in (6.5).

To simplify formulas for analysis of pθ2j , we need several new notations. Set
S´j :“ t0, 1, . . . , suztju for j ď s and S´j :“ t0, 1, . . . , su for j ą s, and

N´l :“ t1, . . . , nuztlu. Using these notations we may rewrite qF´jpZlq,

qF´jpZlq “ n´1
ÿ

kPN´l

∆krf
ZpZkqs

´1
ÿ

iPS´j

ϕipZkqϕipZlq

` n´1∆lrf
ZpZlqs

´1
ÿ

iPS´j

ϕ2
i pZlq “: qF1pZlq ` qF2pZlq. (6.18)

Using orthogonality of elements tϕjpxq, j “ 0, 1, . . .u of the cosine basis we get

EFX trF´jpZlq ´ qF1pZlqsrf
ZpZlqs

´1ϕjpZlq|tp∆k, Zkq, k P N´luu “ 0. (6.19)

Further, using Assumption 1 we get

|EFX t qF2pZlqϕjpZlqrf
ZpZlqqs

´1u|

“ n´1|EFX t∆lrf
ZpZlqs

´2
ÿ

iPS´j

ϕ2
i pZlqϕjpZlqu| ď Csn´1. (6.20)
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Combining the obtained results yields

|EFX tpθ2ju| ď Csn´1.

This and (6.6) yields (6.3).

Now we are evaluating the second moment of pθ2j . First we note that

EFX pF´jpZlq ´ qF1pZlqq
2 ď Csn´1. (6.21)

Second we have

EFX
!´

n´1
n
ÿ

l“1

qF2pZlqϕjpZlqrf
ZpZlqs

´1
¯2)

ď Cn´2s2. (6.22)

Third, using notation (6.8) for Zl and Zm where l ‰ m and l,m P t1, 2, . . . , nu,
we write

rF´jpZlq ´ qF´jpZlqsrF´jpZmq ´ qF´jpZmqs

“ rF´jpZlq ´ qF1pZlq ´ qF2pZlqsrF´jpZmq ´ qF1pZmq ´ qF2pZmqs

“ rF´jpZlq ´ qF1pZlqsrF´jpZmq ´ qF1pZmqs ´ rF´jpZlq ´ qF1pZlqs qF2pZmq

´ qF2pZlqrF´jpZmq ´ qF1pZmqs ` qF2pZlq qF2pZmq

“: qA1 ` qA2 ` qA3 ` qA4. (6.23)

This expansion and (6.17) allows us to write for any 1 ď l ă m ď n,

EFX tpθ2
2ju ď n´1CEFX tpF´jpZlq ´ qF´jpZlqq

2u

`CEFX tr qA1 ` qA2 ` qA3 ` qA4sϕjpZlqu ď Csn´2

` CEFX tr qA1 ` qA2 ` qA3 ` qA4sϕjpZlqϕjpZmqrf
ZpZlqf

ZpZmqs
´1u. (6.24)

We need an extra notation to analyze the last expectation in (6.24). Following
(6.18) we set

qF1pZl,´mq :“ qF1pZlq ´ n
´1∆mrf

ZpZmqs
´1

ÿ

iPS´j

ϕ2
i pZmq

“: qF1pZlq ´ qF1pZl,mq. (6.25)

The reason for this new decomposition of qF1pZlq is that qF1pZl,´mq does not

depend on p∆l, Zl,∆m, Zmq and | qF1pZl,mq| ď Csn´1 almost sure. Using this
notation we write,

A11 :“ EFX t qA1ϕjpZlqϕjpZmqrf
ZpZlqf

ZpZmqs
´1u

“ EFX
!

rF´jpZlq´ qF1pZl,´mq´ qF1pZl,mqsrF´jpZmq´ qF1pZm,´lq´ qF1pZm, lqs
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ˆϕjpZlqϕjpZmqrf
ZpZlqf

ZpZmqs
´1

)

.

To continue evaluation of A11 we need several technical relations. Using (6.19)
we can write,

EFX
!

rF´jpZlq ´ qF1pZl,´mqsrF´jpZmq ´ qF1pZm,´lqs

ˆϕjpZlqϕjpZmqrf
ZpZlqf

ZpZmqs
´1

)

“ 0.

Recall the rough inequality |r qF1pZl,mq| ď Csn´1, and using the Cauchy-Schwarz
inequality together with (6.21) we get

|EFX trF´jpZlq ´ qF1pZl,´mqs qF1pZm, lqu|

ď rEFX trF´jpZlq ´ qF1pZl,´mqs
2uEFX tr qF1pZm, lqs

2us1{2

ď Crpsn´1ps2n´2s1{2 ď Cs3{2n´3{2.

We conclude that A11 ď Cs3{2n´3{2. Analysis of qA2 is similar. Using the
Cauchy-Schwarz inequality we get

EFX t| qA2|u ď rEFX tpF´jpZlq ´ qF1pZlqq
2uEFX tr qF2pZmqs

2us1{2 ď Cs2n´3{2.

Due to symmetry the same inequality holds for qA3. Finally, we have EFX t| qA4|u ď

Cs2n´2. Combining the above-presented relations we get

EFX tpθ2
2ju ď Cs2n´3{2.

As we see, the component pθ2j is indeed negligible with respect to pθ1j .
Lemma 6.2 is proved.

Corollary 6.1. There are three technical conclusions from the above-presented
proof. The first one is that according to (6.5) we have a representation pθj “
pθj1` pθj2 where the second term is negligible and may be skipped. Using (6.19),

a similar conclusion can be made for the pilot cdf estimate qF´jpZlq “ qF1pZlq `
qF2pZlq where the second term qF2pZlq is negligible. Further, note that the pivotal
estimate is based on at most s estimated Fourier coefficients, and then for any
integer k we have the following directly verified rough inequality

sup
FXPFpα,Q

EFX tr qF´jpZlq ´ F´jpZlqs2ku ď Cks
2kn´k, Ck ă 8. (6.26)

The reader, who wants to understand the following proof without going into
detailed analysis of negligible terms, may replace pθj by pθ1j and qFX´j by FX´j .
Finally, in Lemma 6.2 the upper bound (6.4) may be replaced by the right
side of (6.16). While we do not need that accuracy, it is an interesting upper
bound that sheds light on the Fourier estimator which yields sharp minimax
cdf estimation. Recall that in nonparametric curve estimation literature such a
Fourier estimator is called efficient.
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Now we are ready to begin analysis of the MISE of rFXpx, fZq. Using the
Parseval identity we can write,

EFX
!

ż 1

0

p rF px, fZq ´ FXpxqq2dx
)

“

s
ÿ

j“0

EFX
!

ppθjIppθ
2
j ą 2rdsn´1q ´ θjq

2
)

`

rn
ÿ

k“1

ÿ

jPBk

EFX
!´

minp1, rΘk
pΘ´1
k qIp

rΘk ą 10s´1n´1qpθj ´ θj

¯2)

`
ÿ

kąrn

LkΘk “: A1pF
Xq `A2pF

Xq `A3pF
Xq. (6.27)

The three terms on the right side of (6.27) correspond to the MISE compo-
nents on low, middle and high frequencies, and they are explored in turn. Using
rd ď 3s and Lemma 6.2 we get for a jth term in A1pF

Xq,

EFX
!

rpθjIppθ
2
j ą 2rdsn´1q ´ θjs

2
)

ď EFX
!

ppθj ´ θjq
2
)

` θ2
jPFX

´

pθ2
j ď 2rdsn´1

¯

ď Cn´1 ` θ2
jPFX

´

pθ2
j ď 6s2n´1

¯

ď Cn´1 ` 12s2n´1

` θ2
jPFX

´

pθ2
j ď 6s2n´1, θ2

j ą 12s2n´1
¯

. (6.28)

Let us consider the last term on the right side of (6.18). Using the Chebyshev
inequality and Lemma 6.2 we get,

θ2
jPFX

´

pθ2
j ď 6s2n´1, θ2

j ą 12s2n´1
¯

ď θ2
jPFX

´

θ2
j ´

pθ2
j ą θ2

j {2, θ
2
j ą 12s2n´1

¯

ď θ2
jPFX

´

|θj ´ pθj |p2|θj |q ą θ2
j {2, θ

2
j ą 12s2n´1

¯

ď Cθ2
j

EFX tpθj ´ pθjq
2u

θ2
j

ď Cn´1. (6.29)

Using (6.29) in (6.28) we conclude that

A1pF
Xq ă Cs3n´1 “ onp1qn

´2α{p2α`1q. (6.30)

Corollary 6.2. As we see, the MISE of the low-frequency part of the proposed
cdf estimator is negligible with respect to the verified rate n´2α{p2α`1q. Another
important conclusion is that there is a wide choice of thresholds and a bound-
ary frequency (which is currently s) between the low and middle frequency
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components of a blockwise estimator that yield sharp-minimax estimation. The
currently used boundary frequency s is chosen based on recommendation of [13],
because of its simplicity, and using a numerical study of experiments similar to
those in Section 5. Discussion of more complicated procedures can be found in
[13].

Now we turn our attention to the second term A2pF
Xq in (6.27). This term

is the MISE of the block-shrinkage part of the proposed cdf estimator.

Lemma 6.3. Let Assumption 1 hold. Then

sup
FXPFpα,Qq

!

rnJ pα,Q, d, 1qs2α{p2α`1qA2pF
Xq

)

ď p1` onp1qq. (6.31)

Proof of Lemma 6.3. We begin with a remark that the studied risk A2pF
Xq

is the MISE of a blockwise estimator

rψpxq :“
rn
ÿ

k“1

ÿ

jPBk

minp1, rΘk
pΘ´1
k qIp

rΘk ą 10s´1n´1qpθjϕjpxq (6.32)

which estimates a function

ψpxq :“
rn
ÿ

k“1

ÿ

jPBk

θjϕjpxq. (6.33)

Note that (6.33) is the intermediate frequency component of an underlying cdf
FXpxq.

Analysis of the MISE of rψpxq includes several steps. The first step is to
evaluate MISE of an oracle-estimator

pψ˚pxq :“
rn
ÿ

k“1

ÿ

jPBk

µkpθjϕjpxq, (6.34)

where

µk “
Θk

Θk ` dn´1
(6.35)

is oracle’s smoothing coefficient,

Θk :“ L´1
k

ÿ

jPBk

θ2
j (6.36)

is the Sobolev statistic introduced in Section 3, and d is the coefficient of diffi-
culty (2.6). The Parseval identity allows us to express the oracle’s MISE as

Et

ż 1

0

p pψ˚pxq ´ ψpxqq2dxu “
rn
ÿ

k“1

ÿ

jPBk

Etpµkpθj ´ θjq
2u
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“

K
ÿ

k“1

ÿ

jPBk

rµ2
kEtp

pθj ´ θjq
2u ` pµk ´ 1q2θ2

j ´ 2µkp1´ µkqθjEtpθj ´ θjus. (6.37)

Using Lemma 6.2 we evaluate terms in (6.37). Write,

Et

ż 1

0

p pψ˚pxq ´ ψpxqq2dxu ď
”

rn
ÿ

k“1

Lkrµ
2
kdn

´1 `
d2n´2Θk

pΘk ` dn´1q2
s

ı

`

”

rn
ÿ

k“1

µ2
kdn

´1
ÿ

jPBk

Crpj ` 1q´1 ` s´1s

ı

`

”

2|
rn
ÿ

k“1

µkdn
´1pΘk ` dn

´1q´1
ÿ

jPBk

θjEtpθj ´ θju|
ı

“: T1 ` T2 ` T3. (6.38)

We are considering the three terms on the right side of (6.38) in turn. The
first term is simplified into

T1 “

rn
ÿ

k“1

Lkrµ
2
kdn

´1 `
d2n´2Θk

pΘk ` dn´1q2
s “

rn
ÿ

k“1

Lkµkdn
´1.

What we see is the MISE of a classical blockwise oracle studied in [11]. Line
(3.1) of that paper yields

sup
FXPFpα,Qq

´

rnJ pα,Q, d, 1qs2α{p2α`1q T1

¯

“ sup
FXPFpα,Qq

´

rnJ pα,Q, d, 1qs2α{p2α`1q
rn
ÿ

k“1

Lkµkdn
´1

¯

ď 1` onp1qq. (6.39)

To consider T2 we note that µk ď 1. This, together with pj ` 1q´1 ď s´1 for
j P Bk and (6.39), yield that T2 ď Cs´1n´2α{p2α`1q “ onp1qn

´2α{p2α`1q.
The third term T3 is far from being simple for evaluation because of the

factor pΘk ` dn´1q´1 which may be of order n. The idea of evaluating T3 is
to correctly bound the sum in j. To do that we use Lemma 6.2 and Cauchy
inequality. Write,

|
ÿ

jPBk

θjEtpθj ´ θju| ď s´1
ÿ

jPBk

θ2
j ` s

ÿ

jPBk

rEtpθj ´ θjus2

ď Lkrs
´1Θk ` Cs

3n´2s.

Now note that

max
´ dn´1

Θk ` dn´1
,

Θk

Θk ` dn´1

¯

ď 1.

Using this inequality and (6.39) we write,

sup
FXPFpα,Qq

T3 “ sup
FXPFpα,Qq

2|
rn
ÿ

k“1

µkdn
´1pΘk ` dn

´1q´1
ÿ

jPBk

θjEtpθj ´ θju|
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ď 2 sup
FXPFpα,Qq

”

s´1
rn
ÿ

k“1

Lkµkdn
´1 Θk

Θk ` dn´1

`Cs3n´1
rn
ÿ

k“1

Lkµkn
´1 dn´1

Θk ` dn´1

ı

“ onp1qn
´2α{p2α`1q. (6.40)

Combining the bounds for T1, T2 and T3 in (6.38) we conclude that the oracle
pψ˚pxq is sharp-minimax. This ends step 1 of the analysis of A2pF

Xq.

Step 2 is to introduce a new oracle-estimator rψ˚pxq which is more convenient

for studying the blockwise-shrinkage estimate rψpxq defined in (6.32) and which
sheds light on the chosen blockwise smoothing. Set

rψ˚pxq :“
r
ÿ

k“1

ÿ

jPBk

λkpθjϕjpxq, λk :“
Θk

EtpΘku
. (6.41)

Here pΘk “ L´1
k

ř

jPBk
pθ2
j was introduced in (3.7), and recall that it is used in

the denominator of the smoothing ratio rΘk{pΘk of the proposed estimate (3.9).
To analyze MISE of the new oracle, the Parseval identity allows us to consider
a particular block Bk. Write for any constant λ P r0, 1s,

ÿ

jPBk

Etpλpθj ´ θjq2u “
ÿ

jPBk

Etλ2
pθ2
j ´ 2λpθjθj ` θ

2
j u.

Using Lemma 6.2 we continue,
ÿ

jPBk

Etpλpθj ´ θjq2u

“ λ2LkEtpΘku ´ p2λ´ 1qLkΘk ´ 2λ
ÿ

jPBk

θjc
1
j , |c

1
j | ď Csn´1. (6.42)

We begin with evaluating the last sum on the right side of (6.32). For FX P

Fpα,Qq we can write using the Cauchy-Schwarz inequality,

rn
ÿ

k“1

|2λ
ÿ

jPBk

θjc
1
j | ď

rn
ÿ

k“1

2λ
ÿ

jPBk

|θjc
1
j | ď Csn´1

rn
ÿ

k“1

ÿ

jPBk

|θj |

ď Csn´1
”

ÿ

jąs

j2αθ2
j

ÿ

jąs

j´2α
ı1{2

ď Cn´1.

For the first two terms on the right side of (6.42) we note that λ˚ that mini-

mizes λ2LkEtpΘku´ p2λ´ 1qLkΘk is λ˚ “ Θk{EtpΘku. Thus λ˚ “ λk introduced

in (6.41). This and sharp minimaxity of the oracle pψ˚pxq yields that

sup
FXPFpα,Qq

J pα,Q, d, 1qEFX t
ż 1

0

p rψ˚pxq ´ ψpxqq2dxu ď p1` onp1qq. (6.43)
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We conclude that the oracle rψ˚pxq is sharp-minimax.
To continue evaluation of the term A2pF

Xq on the right side of (6.27) we
need several more technical lemmas. These lemmas are also of interest on their
own because they shed light on the Sobolev statistics introduced in Section 3
and also on blockwise oracles.

Lemma 6.4. Statistics rΘk and pΘk, defined in (3.6) and (3.7), satisfy the fol-
lowing relation

pΘk “ rΘkp1´ n
´1q ` n´1

!

L´1
k

ÿ

jPBk

”

n´1
n
ÿ

l“1

p∆l ´ qF´jpZlqq
2ϕ2

j pZlq

pfZpZlqq2

ı)

“: rΘkp1´ n
´1q ` n´1

rdk. (6.44)

If Assumption 1 holds and FX P Fpα,Qq then

|EFX trdku ´ d| ď Cs´1 (6.45)

and
EFX tprdk ´ dq2u “ onp1qs

´1, (6.46)

where d is the CSC coefficient of difficulty (2.6).

Proof of Lemma 6.4. We begin with verification of (6.44). Using (3.6) and
(3.7) we write,

pΘk “ L´1
k

ÿ

jPBk

n´2
n
ÿ

l,l1“1

p∆l ´ qF´jpZlqqϕjpZlqp∆l1 ´ qF´jpZl1qqϕjpZl1q

fZpXlqfZpXl1q

“ rΘkp1´ n
´1q ` n´1L´1

k

ÿ

jPBk

”

n´1
n
ÿ

l“1

p∆l ´ qF´jpZlqq
2ϕ2

j pZlq

pfZpZlqq2

ı

.

This proves (6.34).
The verified inequalities are rough but sufficient for our purposes. We begin

with (6.45). Write,

Etrdku “ L´1
k

ÿ

jPBk

E
! p∆l ´ qF´jpZlqq

2ϕ2
j pZlq

pfZpZlqq2

)

“ L´1
k

ÿ

jPBk

E
! p∆l ´ F´jpZlq ` F´jpZlq ´ qF´jpZlqq

2ϕ2
j pZlq

pfZpZlqq2

)

“ L´1
k

ÿ

jPBk

”

E
! p∆l ´ F´jpZlqq

2ϕ2
j pZlq

pfZpZlqq2

)

` E
! pF´jpZlq ´ qF´jpZlqq

2ϕ2
j pZlq

pfZpZlqq2

)

`2E
! p∆l ´ F´jpZlqqpF´jpZlq ´ qF´jpZlqqϕ

2
j pZlq

pfZpZlqq2

)ı
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“ L´1
k

ÿ

jPBk

ra1j ` a2j ` a3js.

The term a1j was already studied as a component of EFX ppθ1j ´ θjq
2u, see the

line below (6.6) and then (6.16). Using notation of (6.16) we can write that

L´1
k

ÿ

jPBk

a1j ď CrL´1
k

ÿ

jPBk

rcjj
´1 ` j´2 ` s´1s ă Cs´1.

The last inequality is valid because cj ă C and j ą s whenever j P Bk. Inequal-
ity (6.26) implies that L´1

k

ř

jPBk
a2j ď Cs2n´1, and similarly L´1

k

ř

jPBk
|a3| ď

Csn´1{2. Inequality (6.45) is verified.
Now let us check inequality (6.46). Write using (6.45),

EFX tprdk ´ dq2u “ EFX trrdk ´ EFX trdku ` EFX trdku ´ ds2u

ď 2EFX tprdk ´ EFX trdkuq2u ` onp1qs´1.

To evaluate the expectation we use the expansion

qF´jpZlq “ F´jpZlq ` p qF´jpZlq ´ F´jpZlqq,

which allows us to write for a factor in rdk,

r∆l ´ qF´jpZlqs
2 “ r∆l ´ F´jpZlqs

2

´ tp qF´jpZlq ´ F´jpZlqqr2p∆l ´ qF´jpZlqq ´ p qF´jpZlq ´ F´jpZlqqsu. (6.47)

Let us look at terms on the right side of (6.47). The term r∆l´F´jpZlqs
2 depends

only on pair p∆l, Zlq, and hence the central second moment of a sample mean

n´1
n
ÿ

l“1

”

L´1
k

ÿ

jPBk

p∆l ´ F´jpZlqq
2ϕ2

j pZlq

pfZpZlqq2

ı

is proportional to n´1. Further, the term in curly brackets in (6.47) is negligibly

small with respect to s´1 due to inequality EFX tp qF´jpZlq ´ F´jpZlqq
2ku ď

Cs2kn´k, see (6.16). Inequality (6.36) is verified. Lemma 6.4 is proved.

Lemma 6.5. Let Assumption 1 hold. Recall notations

rψpxq :“
rn
ÿ

k“1

minp1,
rΘk

pΘk

qIprΘk ą 10s´1n´1q
ÿ

jPBk

pθjϕjpxq, (6.48)

and

pψ˚pxq :“
rn
ÿ

k“1

Θk

Θk ` dn´1

ÿ

jPBk

pθjϕjpxq, Θk :“ L´1
k

ÿ

jPBk

θ2
j . (6.49)
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Then

sup
FXPFpα,Qq

Et
ż 1

0

p rψpxq ´ pψ˚pxqq2dxu “ onp1qn
´2α{p2α`1q. (6.50)

Proof of Lemma 6.5. The Parseval identity yields,

ż 1

0

p rψpxq ´ pψ˚pxqq2dx

“

rn
ÿ

k“1

´

minp1,
rΘk

pΘk

qIprΘk ą 10s´1n´1q ´
Θk

Θk ` dn´1

¯2 ÿ

jPBk

pθ2
j

“

rn
ÿ

k“1

´

minp1,
rΘk

pΘk

q ´
Θk

Θk ` dn´1

¯2 ÿ

jPBk

pθ2
j Ip

rΘk ą 10s´1n´1q

`

rn
ÿ

k“1

´ Θk

Θk ` dn´1

¯2 ÿ

jPBk

pθ2
j Ip

rΘk ď 10s´1n´1q.

Now note that Θk{pΘk ` dn
´1q ă 1 and

ř

jPBk
pθ2
j “ Lk pΘk. Using these facts

we continue,
ż 1

0

p rψpxq ´ pψ˚pxqq2dx

ď

rn
ÿ

k“1

´

rΘk

pΘk

´
Θk

Θk ` dn´1

¯2

Lk pΘkIprΘk ą 10s´1n´1q

`

rn
ÿ

k“1

´ Θk

Θk ` dn´1

¯2

Lk pΘkIprΘk ď 10s´1n´1q

“: D1 `D2. (6.51)

We begin with analysis of D1. Using Lemma 6.4 we may write,

D1 “

rn
ÿ

k“1

LkprΘkdn
´1 ´Θrdkn

´1q2

pΘkpΘk ` dn´1q2
IprΘk ą 10s´1n´1q

“

rn
ÿ

k“1

LkrprΘk ´Θkqdn
´1 `Θkpd´ rdkqn

´1s2

prΘkp1´ n´1q ` rdrn´1qpΘk ` dn´1q2
IprΘk ą 10s´1n´1q

ď C
rn
ÿ

k“1

sLkn
´2prΘk ´Θkq

2

n´1pΘk ` dn´1q2
IprΘk ą s´1n´1q

` C
rn
ÿ

k“1

sLkΘ2
kn
´2pd´ rdkq

2

n´1pΘk ` dn´1q2
IprΘk ą s´1n´1q. (6.52)
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Now we evaluate expectations of terms on the right side of (6.52). To do that
we need the following technical result that will be proved later.

Lemma 6.6. Let Assumption 1 hold and FX P Fpα,Qq. Then

EFX tprΘk ´Θkq
2u ď CL´1

k n´2pΘk ` n
´1q. (6.53)

Using (6.46) and (6.53) to evaluate expectation of the right side of (6.52) we
get,

EFX tD1u ď C
rn
ÿ

k“1

sLkn
´2EFX tprΘk ´Θkq

2u

n´1pΘk ` dn´1q2

`C
rn
ÿ

k“1

sLkΘ2
kn
´2EFX tpd´ rdkq

2u

n´1pΘk ` dn´1q2

ď C
rn
ÿ

k“1

sLkn
´2L´1

k n´1pΘk ` n
´1q

n´1pΘk ` dn´1q2

`onp1q
rn
ÿ

k“1

ss´1LkΘ2
kn
´2

n´1pΘk ` dn´1q2

ď Csrnn
´1 ` onp1qrn

´1
n
ÿ

k“1

Lk
Θk

Θk ` dn´1
s

“ onp1qn
´2α{p2α`1q. (6.54)

In the last line we used srn ď Cs4 and (6.39).
Now we are estimating the expectation of D2. Write using (6.44),

EFX tD2u “

rn
ÿ

k“1

´ Θk

Θk ` dn´1

¯2

LkEFX tprΘk ` rdkn
´1qIprΘk ď 10s´1n´1qu

ď 10s´1n´1
rn
ÿ

k“1

Lk
Θk

Θk ` dn´1

`dn´1
rn
ÿ

k“1

Lk
Θ2
k

pΘk ` dn´1q2
EFX tIprΘk ď 10s´1n´1qu

`n´1
rn
ÿ

k“1

Lk
Θk

Θk ` dn´1
EFX t|rdk ´ d|u.

Using Lemma 6.4 and (6.39) we get,

sup
FXPFpα,Qq

EFX tD2u “ onp1qn
´2α{p2α`1q
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` dn´1
rn
ÿ

k“1

Lk
Θ2
k

pΘk ` dn´1q2
EFX tIprΘk ď 10s´1n´1qu. (6.55)

To evaluate the expectation on the right side of (6.55) we use the Chebyshev
inequality and Lemma 6.6. Write,

EFX tIprΘk ď 10s´1n´1qu

ď EFX tIpΘk ą 20s´1n´1qIprΘk ď 10s´1n´1qu ` IpΘk ď 20s´1n´1q

ď C
L´1
k n´1pΘk ` n

´1q

rΘk{2s2
IpΘk ą 20s´1n´1q ` IpΘk ď 20s´1n´1q. (6.56)

Now note that x{px ` dn´1q is increasing function in x ą 0. Using this
observation and (6.56) in (6.55) we conclude that

EFX tD2u ď onp1qn
´2α{p2α`1

`Cn´1
rn
ÿ

k“1

n´1

Θk ` dn´1
` Cn´1

rn
ÿ

k“1

Lk
Θk

Θk ` dn´1

s´1n´1

ps´1 ` dqn´1

“ onp1qn
´2α{p2α`1q. (6.57)

In the last relation we used the earlier mentioned inequality rn ă Cs2.
Using (6.54) and (6.57) in (6.51) verifies Lemma 6.5 given validity of Lemma

6.6.

Proof of Lemma 6.6. Consider a fixed k P t1, 2, . . . , rnu and introduce an
oracle

rUk :“
2

Lknpn´ 1q

ˆ
ÿ

1ďlăl1ďn

ÿ

jPBk

p∆l ´ F´jpZlqqϕjpZlqp∆l1 ´ F´jpZl1qqϕjpZl1q

fZpZlqfZpZl1q
. (6.58)

This oracle is a U-statistic which is unbiased estimate of Θk and a benchmark
for the studied statistic

rΘk :“
2

Lknpn´ 1q

ˆ
ÿ

1ďlăl1ďn

ÿ

jPBk

p∆l ´ qF´jpZlqqϕjpZlqp∆l1 ´ qF´jpZl1qqϕjpZl1q

fZpZlqfZpZl1q
. (6.59)

While it is possible to analyze variance of rUk directly following [11], it is
faster and simpler to follow a standard methodology of calculating moments of
a U -statistic. To do that, for the reader’s convenience we will use terminology,
notation and results of the book [30]. First of all, note that the U-statistic rUk
is based on a symmetric kernel

hkpp∆l, Zlq, p∆l1 , Zl1qq
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:“ L´1
k

ÿ

jPBk

p∆l ´ F´jpZlqqϕjpZlqp∆l1 ´ F´jpZl1qqϕjpZl1q

fZpZlqfZpZl1q
. (6.60)

A relation between the studied statistic and the oracle is straightforward,

rΘk “ rUk

`
4

npn´ 1qLk

ÿ

1ďlăl1ďn

ÿ

jPBk

p∆l ´ F´jpZlqqϕjpZlqpF´jpZl1q ´ qF´jpZl1qqϕjpZl1q

fZpZlqfZpZl1q

`
2

npn´ 1qLk

ˆ
ÿ

1ďlăl1ďn

ÿ

jPBk

pF´jpZlq ´ qF´jpZlqqϕjpZlqpF´jpZl1q ´ qF´jpZl1qqϕjpZl1q

fZpZlqfZpZl1q

“: rUk ` T1 ` T2. (6.61)

Recall that for considered j P Bk neither F´jpZq nor qF´jpZq depend on j, but
the notation is still useful because it reminds us that

ż 1

0

F´jpzqϕjpzqdz “

ż 1

0

qF´jpzqϕjpzqdz “ 0. (6.62)

Note that EFX trUku “ Θk, and accordingly our first step is to estimate vari-

ance of rUk. In [30] there is an explicit formula for the variance, and to introduce
it we need several more notations of [30]. Set X :“ p∆, Zq, Xl :“ p∆l, Zlq,

VjpXq :“
p∆´ F´jpZqqϕjpZq

fZpZq
, (6.63)

g1pXq :“ L´1
k

ÿ

jPBk

VjpXqθj ´Θk, (6.64)

g2pX1, X2q :“ hkpX1, X2q ´ g1pX1q ´ g2pX2q ´Θk. (6.65)

Using new notations we can write,

hkpX1, X2q “ L´1
k

ÿ

jPBk

VjpX1qVjpX2q, (6.66)

EFX tVjpXqu “ θj , (6.67)

EFX tg1pXqu “ 0, (6.68)

EFX tg2pX1, X2q|X2 “ x2u “ 0. (6.69)

The Hoeffding lemma (section 5.1.4 in [30]) gives us a representation

rUn ´Θk “
2

n

n
ÿ

l“1

g1pXlq `
2

npn´ 1q

ÿ

1ďl1ăl2ďn

g2pXl1 , Xl2q. (6.70)



/Current status censoring 37

We need to introduce several more notations. Set

ζ1 :“ EFX tg2
1pXqu “ L´2

k

ÿ

j,iPBk

EFX tVjpX1qVipX1quθjθi ´Θ2
k. (6.71)

Using trigonometric formula

ϕjpzqϕipzq “ 2´1{2rϕj´ipzq ` ϕj`ipzqs, (6.72)

we continue simplification of the expression for ζ1,

ζ1 “ 2´1{2L´2
k

ÿ

j,iPBk

EFX
!

p∆1 ´ F´jpZ1qq
2rϕj`ipZ2q ` ϕj´ipZ2qs

rfZpZ1qs
2

)

θjθi

´Θ2
k. (6.73)

Here we used the fact that F´jpxq “ F´ipxq for the considered i and j from Bk.
Similarly set

ζ2 :“ EFX trhpX1, X2q ´Θks
2u

“ L´2
k EFX t

ÿ

j,iPBk

VjpX1qVipX1qVjpX2qVipX2qu ´Θ2
k

“ 2´1L´2
k

ÿ

j,iPBk

EFX
!

p∆1 ´ F´jpZ1qqp∆1 ´ F´ipZ1qqrϕj´ipZ1q ` ϕj`ipZ1qs

rfZpZ1qs
2

)

ˆEFX
!

p∆2 ´ F´jpZ2qqp∆2 ´ F´ipZ2qqrϕj´ipZ2q ` ϕj`ipZ2qs

rfZpZ2qs
2

)

´Θ2
k. (6.74)

The Hoeffding formula (Lemma A in section 5.2.1 of [30]) yields that

VFX prUkq “
2

npn´ 1q
r2pn´ 2qζ1 ` ζ2s. (6.75)

This is an exact formula, and while we can use it for calculating the variance,
here we need only a rough upper bound. Note that a function

EFX t
p∆´ F´jpZqq

2

rfZpZqs2
|Z “ zu “

FXpzq ´ 2FXpzqF´jpzq ` F
2
´jpzq

rfZpzqs2
(6.76)

has a bounded derivative whenever z P r0, 1s. This yields that Fourier coefficients
of the function are absolutely summable, and the reader may recall that this
property is the Bernstein inequality, see [13]. This fact, together with inequality
2|θjθi| ď θ2

j ` θ
2
i , yield a rough inequality

ζ1 ď CL´1
k Θk. (6.77)

Similarly we conclude that
ζ2 ď CL´1

k . (6.78)
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Combining the results in (6.75) we get

VFX pUnq ď CrL´1
k Θkn

´1 ` L´1
k n´2s “ CL´1

k n´1rΘk ` n
´1s. (6.79)

We proved that the U-statistic rUk satisfies the verified inequality for the
variance of rΘk. Further, this is the main term in the expansion (6.61) as we
will see shortly. The interested reader may note that [30] gives a simple upper
bound C˚n

´1 for the variance, but the issue is that we need to get a specific
constant C˚ for the considered U-statistic which is CL´1

k rΘk ` n´1s. This is
why all these lengthy calculations are presented.

Now we are evaluating the second moment of the term T1 on the right side of
(6.61). This is not a U-statistic and we need to evaluate it directly. Nonetheless,
similarly to analysis of a U-statistic the main tools are combinatoric and com-
bining similar terms in a few groups. Several new notations are needed. Instead
of a summation over l ă l1, we consider the summation over l1 ă l2, and when
T 2

1 is considered we use a double sum over l1 ă l2 and l3 ă l4. Second, recall
notation (6.18) and write,

qF´jpZlq “
n
ÿ

t“1

rn´1
s
ÿ

r“0

∆tϕrpZtqpf
ZpZtqq

´1ϕrpZlqs

“
ÿ

tPt1,2,...,nuztlu

rn´1
s
ÿ

r“0

∆tϕrpZtqpf
ZpZtqq

´1ϕrpZlqs

`n´1∆lpf
ZpZlqq

´1
s
ÿ

r“0

ϕ2
rpZlq

“: qF1pZlq ` qF2pZlq. (6.80)

Let us comment on (6.80). First of all, for the considered j P Bk neither qF1pZlq

nor qF2pZlq depend on j. Second, EFX t qF1pZlqu “ 0. Finally, qF2pZlq depends
only on p∆l, Zlq and not on any other observation p∆t, Ztq with t ‰ l, and also

| qF2pZlq| ď Csn´1 almost sure. These facts will help us to analyze the second
moment of T1.

When we square T1, we get

T 2
1 “

16

n2pn´ 1q2
L´2
k

ÿ

1ďl1ăl2ďn

ÿ

1ďl3ăl4ďn

T1pl1, l2, l3, l4q, (6.81)

where

T1pl1, l2, l3, l4q :“
ÿ

j,iPBk

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

ˆ
rF´jpZl2q ´

řn
t“1 n

´1
řs
r“0 ∆tϕrpZtqpf

ZpZtqq
´1ϕrpZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l3 ´ F´ipZl3qsϕipZl3q

fZpZl3q
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ˆ
rF´ipZl4q ´

řn
t“1 n

´1
řs
r“0 ∆tϕrpZtqpf

ZpZtqq
´1ϕrpZl4qsϕipZl4q

fZpZl4q
. (6.82)

We can also rewrite (6.82) in a more compact form,

T1pl1, l2, l3, l4q

:“
ÿ

j,iPBk

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

rF´jpZl2q ´
qF1pZl2q ´

qF2pZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l3 ´ F´ipZl3qsϕipZl3q

fZpZl3q

rF´jpZl4q ´
qF1pZl4q ´

qF2pZl4qsϕipZl4q

fZpZl4q
. (6.83)

What we want to show is that

EFX tT 2
1 u “

16

n2pn´ 1q2
L´2
k

ÿ

1ďl1ăl2ďn

ÿ

1ďl3ăl4ďn

EFX tT1pl1, l2, l3, l4qu

ď CL´1
k n´1rΘk ` n

´1s. (6.84)

Similarly to analysis of a U-statistic, while there are of order n4 terms
EtT1pl1, l2, l3, l4qu in the sum (6.84), they may be grouped in 4 categories that
we are considering in turn. The first one is when l1 ‰ l2 ‰ l3 ‰ l4, and recall
that always l1 ă l2 and l3 ă l4. This is the largest category that contains of
order n4 terms. We want to show that each term from this category satisfies

EtT1pl1, l2, l3, l4qu ď CLkn
´1pΘk ` n

´1q, l1 ‰ l2 ‰ l3 ‰ l4. (6.85)

Let us explain why such a term satisfies (6.85). The analysis is primarily based
on two facts. The former is that

EFX
!

rF´jpZlq ´ qF´jpZlqsϕjpZlq

fZpZlq

)

“ 0. (6.86)

The latter is that

E
!

r∆l ´ F´jpZlqsϕjpZlq

fZpZlq

)

“ θj . (6.87)

Now we can analyze a term. In (6.83) we have L2
k terms that include a factor

rF´jpZl2q ´
qF1pZl2qs and L2

k terms that include a factor qF2pZl2q. Consider the
first type of terms. Such a term is not zero due to (6.86) if there is no extra
factor containing Zl2 . This implies that the only possible nonzero term is

T12 :“ E
!

ÿ

j,iPBk

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

rF´jpZl2q ´
qF1pZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l3 ´ F´ipZl3qsϕipZl3q

fZpZl3q
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ˆ
r´n´1

řs
r“0 ∆l2ϕrpZl2qϕrpZl4qpf

ZpZl2qq
´1sϕipZl4q

fZpZl4q

)

. (6.88)

Repeating the same argument of using (6.86), only now with Zl4 , the term
T12 is simplified into

T12 “ E
!

ÿ

j,iPBk

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

r∆l3 ´ F´ipZl3qsϕipZl3q

fZpZl3q

ˆ
r´n´1

řs
r“0 ∆l4ϕrpZl4qϕrpZl2qpf

ZpZl4qq
´1sϕjpZl2q

fZpZl2q

ˆ
r´n´1

řs
r“0 ∆l2ϕrpZl2qϕrpZl4qpf

ZpZl2qq
´1sϕipZl4q

fZpZl4q

)

. (6.89)

Using (6.87) we simplify (6.89) into

T12 “
ÿ

j,iPBk

θjθi

ˆEFX
!

r´n´1
řs
r“0 F

XpZl4qϕrpZl4qϕrpZl2qpf
ZpZl4qq

´1sϕjpZl2q

fZpZl2q

ˆ
rn´1

řs
r“0 F

XpZl2qϕrpZl2qϕrpZl4qpf
ZpZl2qq

´1sϕipZl4q

fZpZl4q

)

. (6.90)

Now we use a rough inequality

sup
FXPFpα,Qq

T12 ď sup
FXPFpα,Qq

ÿ

j,iPBk

rθ2
j ` θ

2
i sCn

´2s2 ď Cn´2Lks
´2αs2. (6.91)

We conclude that the first type of terms in T 2
1 satisfies (6.85). Let us also note

that using a more thorough analysis of the expectation in (6.90) as a Fourier
coefficient, inequality (6.91) can be improved in order.

Now consider expectation of the second type with the factor ´ qF2pZl2q,

EFX tT 112u :“
ÿ

j,iPBk

EFX
!

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

r´ qF2pZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l3 ´ F´ipZl3qsϕipZl3q

fZpZl3q

rF´jpZl4q ´
qF1pZl4q ´

qF2pZl4qsϕipZl4q

fZpZl4q

)

. (6.92)

Recall that qF2pZl2q is a function only in p∆l2 , Zl2q, and then (6.86) used for
l “ l4 yields that

EFX tT 112u “
ÿ

j,iPBk

EFX
!

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

r´ qF2pZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l3 ´ F´ipZl3qsϕipZl3q

fZpZl3q

r´ qF2pZl4qsϕipZl4q

fZpZl4q

)
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“
ÿ

j,iPBk

θjθiEFX
!

qF2pZl2qϕjpZl2q

fZpZl2q

qF2pZl4qϕipZl4q

fZpZl4q

)

(6.93)

Then identically to (6.91) we get the wished upper bound for T 112. This and
(6.91) yield the wished (6.85) for the first category of indexes where l1 ‰ l2 ‰
l3 ‰ l4. Note that we can improve in order the upper bound by considering the
expectations on the right side of (6.90) and (6.93) as Fourier coefficients, but
the obtained rough inequalities are sufficient for our purposes.

Now we are considering terms in (6.81) from the second group where l1 ă
l2 “ l3 ă l4 or l1 “ l4 and l2 ‰ l3. We present analysis of the former case because
the latter is analyzed similarly. There are of order n3 such terms, accordingly it
is sufficient to show that the expectation of a particular term T1pl1, l2, l2, l4q is
bounded by CLkpΘk ` n

´1q. Using (6.83) we can write that

EFX tT1pl1, l2, l2, l4qu

“
ÿ

j,iPBk

EFX
!

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

rF´jpZl2q ´
qF1pZl2q ´

qF2pZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l2 ´ F´ipZl2qsϕipZl2q

fZpZl2q

rF´jpZl4q ´
qF1pZl4q ´

qF2pZl4qsϕipZl4q

fZpZl4q

)

. (6.94)

Using (6.87) and (6.86) with l “ l4 we simplify the last expectation into

EFX tT1pl1, l2, l2, l4qu

“
ÿ

j,iPBk

θjEFX
!

r´n´1
řs
r“0 F

XpZl4qϕrpZl4qϕrpZl2qpf
ZpZl4qq

´1sϕjpZl2q

fZpZl2q

ˆ
r∆l2 ´ F´ipZl2qsϕipZl2q

fZpZl2q

rF´jpZl4q ´
qF1pZl4qsϕipZl4q

fZpZl4q

)

`
ÿ

j,iPBk

EFX
!

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

rF´jpZl2q ´
qF1pZl2q ´

qF2pZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l2 ´ F´ipZl2qsϕipZl2q

fZpZl2q

r´ qF2pZl4qsϕipZl4q

fZpZl4q

)

. (6.95)

To evaluate the first sum on the right side of (6.95) we use a relation following
from the Cauchy-Schwarz inequality,

sup
FXPFpα,Qq

ÿ

jPBk

|θj |

ď sup
FXPFpα,Qq

r
ÿ

jPBk

j2αθ2
j

ÿ

jPBk

j´2αs1{2 ď Csp´2α`1q{2, (6.96)
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and following from (6.26)

sup
FXPFpα,Qq

Et
ż 1

0

|Fjpzq ´ qF1pzq|dzu ď Csn´1{2. (6.97)

The inequalities imply the wished upper bound. Similarly, we use the previous
inequality and | qF2pzq| ď Csn´1 to get the wished upper bound for the second
sum in (6.95). This ends evaluation of a term from the second category. Note
that we have established a stronger in order inequality than needed.

The third category of terms is when l1 “ l3, l1 ă l2, l3 ă l4 and l2 ‰ l4.
Similarly to the second category, there are of order n3 terms in the category,
and we need to verify the same upper bound for a term. Write for such a term,

EFX tT1pl1, l2, l1, l4qu

“
ÿ

j,iPBk

EFX
!

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

rF´jpZl2q ´
qF1pZl2q ´

qF2pZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l1 ´ F´ipZl1qsϕipZl2q

fZpZl2q

rF´jpZl4q ´
qF1pZl4q ´

qF2pZl4qsϕipZl4q

fZpZl4q

)

. (6.98)

Here we simply repeat analysis of a term from the first category, namely we get
(6.89) and (6.92) only now with l1 “ l3, and this yields the wished upper bound.

The final fourth category is when l1 “ l3 and l2 “ l4. There are of order n´2

terms in this category. For a particular term we have

EFX tT1pl1, l2, l1, l2qu

“
ÿ

j,iPBk

EFX
!

r∆l1 ´ F´jpZl1qsϕjpZl1q

fZpZl1q

rF´jpZl2q ´
qF1pZl2q ´

qF2pZl2qsϕjpZl2q

fZpZl2q

ˆ
r∆l1 ´ F´ipZl1qsϕipZl2q

fZpZl2q

rF´jpZl2q ´
qF1pZl2q ´

qF2pZl2qsϕipZl2q

fZpZl2q

)

. (6.99)

The wished upper bound follows immediately from (6.26).
Combing the upper bounds for the four categories of terms we verify that

sup
FXPFpα,Qq

EFX tT 2
1 u ď CL´1

k n´1pΘk ` n
´1q. (6.100)

We are left with evaluating the second moment of T2 defined in (6.61). We
need to show that

sup
FXPFpα,Qq

EFX tT 2
2 u “

4

n2pn´ 1q2
L´2
k

ÿ

1ďl1ăl2ďn

ÿ

1ďl3ăl4ďn

ÿ

j,iPBk

ˆEFX
!

pF´jpZl1q ´
qF´jpZl1qqϕjpZl1q

fZpZl1q

pF´jpZl2q ´
qF´jpZl2qqϕjpZl2q

fZpZl2q
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ˆ
pF´ipZl3q ´

qF´ipZl3qqϕipZl3q

fZpZl3q

pF´ipZl4q ´
qF´ipZl4qqϕipZl4q

fZpZl4q

)

ď CL´1
k n´1pΘk ` n

´1q. (6.101)

First of all, let us note that using (6.26) we get EFX tT 2
2 u ă Cs2n´2 which is

close to what we want. To get (6.101), we use (6.86) and follow our analysis of
T12 which gives us a very rough but sufficient upper bound Cn´5{2s4. This and
s4Lrn0 “ onp1qn

1{2 prove (6.101).
Using (6.79), (6.100) and (6.101) in (6.61) verifies Lemma 6.6.
Theorem 3.1 is proved.

Proof of Theorem 3.2. The assertion of Theorem 3.2 is not obvious and in-
triguing because according to (2.1) the joint density fZ,∆pz, δq of observed pair
pZ,∆q is equal to the product of an unknown density fZpzq and rFXpzqsδr1´
FXpzqs1´δ. Accordingly, it is natural to conjecture that, for efficient estima-
tion of FXpzq, an unknown density fZpzq of the monitoring time should be as
smooth as the cdf of interest FXpzq because the smaller smoothness defines the
smoothness of fZ,∆pz, δq in z. Fortunately, as we will establish shortly, the latter
is not the case and it suffices for the density fZpzq to be differentiable regardless
of how smooth the cdf is. This is a remarkable outcome in comparison with [16],
and it will be explained why this is the case.

We begin with recalling Lemma 1 in [14] which allows us to evaluate quality

of estimators sfZpzq and qfZpzq for any positive integer t,

max
´

max
zPr0,1s

EfZ tp sfZpzq ´ fZpzqq2tu, max
zPr0,1s

EfZ tp qfZpzq ´ fZpzqq2tu
¯

“ onp1qs
4t`2n´2t{3. (6.102)

Because the density estimator is plugged in denominator, we use an expansion
that will allow us to utilize (6.102),

1
sfZpzq

“
1

fZpzq
`
fZpzq ´ sfZpzq

rfZpzqs2
`
pfZpzq ´ sfZpzqq2

sfZpzqrfZpzqs2
. (6.103)

We begin our analysis with the plugged-in pilot Fourier estimator. Using
(6.103) we write,

qθ˚j :“ n´1
n
ÿ

l“1

∆lϕjpZlq
sfZpZlq

“ n´1
n
ÿ

l“1

∆lϕjpZlq

fZpZlq
` n´1

n
ÿ

l“1

∆lϕjpZlqpf
ZpZlq ´ sfZpZlqq

rfZpZlqs2

` n´1
n
ÿ

l“1

∆lϕjpZlq
pfZpZlq ´ sfZpZlqq

2

sfZpZlqrfZpZlqs2
“: qθj `Aj1 `Aj2. (6.104)

Here qθj is the estimate based on the underlying fZ and studied in the proof of
Theorem 3.1, see Lemma 6.1.
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It is simple to evaluate Aj2 using (6.102),

EfZ tA2
j2u ď Cn´1,

Jn
ÿ

j“0

EfZ tA2
j2u “ onp1qs

11n´1. (6.105)

Our next step is to evaluate the second moment of the term Aj1 in (6.104).
Write,

EtA2
j1u ď 2n´2EfZ

!”

n
ÿ

l“1

∆lϕjpZlqpf
ZpZlq ´ qfZpZlqq

rfZpZlqs2

ı2)

` 2n´2EfZ
!”

n
ÿ

l“1

∆lϕjpZlqp qf
ZpZlq ´ sfZpZlqq

rfZpZlqs2

ı2)

“: 2Bj1 ` 2Bj2. (6.106)

According to Assumption 1, density fZpzq is bounded below from zero, and
sfZpzq ‰ qfZpzq only if qfZpzq ă γn. These facts and (6.102) yield

Jn
ÿ

j“0

Bj2 “ onp1qn
´1. (6.107)

Evaluation of Bj1 is more involved because we only assume that the density
fZpzq is differentiable. Write,

Bj1 “ n´1EfZ
!

r∆1ϕjpZ1qpf
ZpZ1q ´ qfZpZ1qqs

2

rfZpZlqs4

)

`n´2npn´1qEfZ
!

n
ź

l“n´1

∆lϕjpZlqpf
ZpZlq ´ qfZpZlqq

rfZpZlqs2

)

“: Bj11`Bj12. (6.108)

Using (6.102) we get that Bj11 is bounded by onp1qn
´3{2. To estimate Bj12

we begin with definition of qfZpzq and write

qfZpzq “ n´1
Jn
ÿ

j“0

n´2
ÿ

l“1

ϕjpZlqϕjpzq

` n´1
Jn
ÿ

j“0

n
ÿ

l“n´1

ϕjpZlqϕjpzq “: rh1pzq ` rh2pzq. (6.109)

This implies

fZpzq ´ qfZpzq “ rpn´ 2qn´1fZpzq ´ rh1pzqs ` r2n´1fZpzq ´ rh2pzqs.

Using this representation we can rewrite Bj12 as

Bj12 “ n´1pn´ 1qEfZ
!

n
ź

l“n´1

∆lϕjpZlq

rfZpZlqs2
rpn´ 2qn´1fZpZlq ´ rh1pZlqq
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`p2n´1fZpZlq ´ rh2pZlqqs
)

“
pn´ 1q

n
EfZ

!

n
ź

l“n´1

∆lϕjpZlq

rfZpZlqs2
rpn´ 2qn´1fZpZlq ´ rh1pZlqs

)

`
2pn´ 1q

n
EfZ

!”

n
ź

l“n´1

∆lϕjpZlq

rfZpZlqs2

ı

ˆrpn´ 2qn´1fZpZn´1q ´ rh1pZn´1qsrp2n
´1fZpZnq ´ rh2pZnqqs

)

`
pn´ 1q

n
EfZ

!

n
ź

l“n´1

∆lϕjpZlq

rfZpZlqs2
r2n´1fZpZlq ´ rh2pZlqs

)

“:
pn´ 1q

n
Dj1 `

2pn´ 1q

n
Dj2 `Dj3. (6.110)

Inequality |2n´1fZpzq ´ rh2pzq| ď C lnpsqn´2{3 yields

Jn
ÿ

j“0

Dj3 “ onp1qrlnpsqs
3n´1.

Next we consider Dj1,

Dj1 “ EfZ
!

n
ź

l“n´1

∆lϕjpZlq

rfZpZlqs2
rpn´ 2qn´1fZpZlq ´ rh1pZlqs

)

“ EfZ
!”

ż 1

0

FXpzqϕjpzqrf
Zpzqs´1rpn´ 2qn´1fZpzq ´ rh1pzqsdz

ı2)

. (6.111)

Set

rκi :“ pn´ 2q´1
n´2
ÿ

l“1

ϕipZlq, κi :“

ż 1

0

fZpzqϕipzqdz “ EfZ tϕipZqu. (6.112)

Then rh1pzq “ pn´ 2qn´1
řJn
i“1 rκiϕipzq, and for the difference in (6.111) we get

n´ 2

n
fZpzq ´ rh1pzq “

n´ 2

n

Jn
ÿ

i“1

pκi ´ rκiqϕipzq `
n´ 2

n

ÿ

iąJn

κiϕipzq. (6.113)

Substituting (6.113) in (6.111) and then using the Cauchy inequality we continue
(6.111),

Dj1 “
pn´ 2q2

n2

ˆEfZ
!”

ż 1

0

FXpzqrfZpzqs´1ϕjpzqr
Jn
ÿ

i“1

pκi ´ rκiqϕipzq `
ÿ

iąJn

κiϕipzqsdz
ı2)
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ď 2EfZ
!”

Jn
ÿ

i“1

pκi ´ rκiq

ż 1

0

FXpzqϕjpzqϕipzq

fZpzq
dz
ı2)

`2
”

ÿ

iąJn

κi

ż 1

0

FXpzqϕjpzqϕipzq

fZpzq
dz
ı2

“: 2Dj11 ` 2Dj12. (6.114)

To evaluate the first term, recall a familiar trigonometric formula ϕjpzqϕipzq “
2´1{2rϕj´ipzq ` ϕj`ipzqs, definitions (6.112), and write for the expectation,

Etpκi ´ rκiqpκt ´ rκtqu

“ pn´ 2q´2Et
n´2
ÿ

l,m“1

pκi ´ ϕipZlqqpκt ´ ϕtpZmqqu

“ pn´ 2q´1r2´1{2pκi´t ` κi`tq ´ κiκts. (6.115)

Now we can finish evaluation of Dj11. Set, with the use of the above-presented
trigonometric formula,

ż 1

0

FXpzqϕjpzqϕipzq

fZpzq
dz “ 2´1{2rbj´i ` bj`is, (6.116)

where

bi :“

ż 1

0

FXpzqϕipzq

fZpzq
dz.

Using (6.115) and (6.116) we get

Dj11 “ pn´ 2q´1
Jn
ÿ

i,t“1

r2´1{2pκi´t ` κi`tq ´ κiκts

ˆ r2´1pbj´i ` bj`iqpbj´t ` bj`tqs ď Cn´1. (6.117)

The last inequality holds due to the famous Bernstein inequality which states
that Fourier coefficients of differentiable functions are absolutely summable.
Furthermore, Lipschitz functions of order larger than 1/2 can be considered as
well, see [13].

Now consider Dj12. Using (6.116) and the Cauchy-Schwarz inequality yields

Dj12 “

”

ÿ

iąJn

κi

ż 1

0

FXpzqϕjpzqϕipzq

fZpzq
dz
ı2

ď
ÿ

iąJn

κ2
i

ÿ

iąJn

rb2j´i ` b
2
j`is

ď CJ´2
n pJn ´ jq

´2 ď Crlnpsqs´4n´4{3. (6.118)

Using the obtained results in (6.114) we conclude that

Dj1 ď Cn´1. (6.119)
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As we will see shortly, this is the dominant term in Aj1.
We are left with evaluation of the cross-product term Dj2 defined in (6.110).

Write,

Dj2 “ EfZ
!∆n´1ϕjpZn´1q

rfZpZn´1s
2
r
n´ 2

n
fZpZn´1q ´ rh1pZn´1s

ˆ
∆nϕjpZnq

fZpZnqs2
r2n´1fZpZnq ´ n

´1
Jn
ÿ

i“0

ϕipZn´1qϕipZnq ´ n
´1

Jn
ÿ

i“0

ϕ2
i pZnqs

)

“

ż 1

0

FXpzqϕjpzq

fZpzq
r
2n´ 2

n
fZpzq ´ Etrh1pzqusdz

ˆ

ż 1

0

FXpxqϕjpxq

fZpxq
r2n´1fZpxq ´ n´1

Jn
ÿ

i“0

ϕ2
i pxqsdx

´n´1
Jn
ÿ

i“0

ż 1

0

FXpzqϕjpzq

fZpzq
r
n´ 2

n
fZpzq ´ Etrh1pzqusϕipzqdz

ˆ

ż 1

0

FXpxqϕjpxq

fZpxq
ϕipxqdx. (6.120)

Several remarks about terms in (6.120) are due. Using (6.113) and the pre-
viously introduced notation we conclude that

n´ 2

n
fZpzq ´ Etrh1pzqu “

n´ 2

n

ÿ

iąJn

κiϕipzq. (6.121)

Further, we have n´1|2fZpzq ´
řJn
i“0 ϕ

2
i pzq| ď CJnn

´1. Using (6.116), Cauchy-
Schwarz and Bessel inequalities yield

r

ż 1

0

FXpzqϕjpzqϕipzq

fZpzq

ÿ

tąJn

κtϕtpzqdzs
2

ď r
ÿ

tąJn

κ2
t sr

ÿ

tąJn

p

ż 1

0

FXpzqϕjpzqϕipzqϕtpzq

fZpzq
dzq2s ď CJ´1

n . (6.122)

Combining the results in (6.120) we conclude that

Dj2 “ onp1qn
´1. (6.123)

As we have verified, the dominant term in Aj1 is Dj1.
Using the obtained results in (6.110) yields Bj12 ď Cn´1, and together with

already evaluated Bj11 “ onp1qn
´3{2 and (6.108) we get Bj1 ď Cn´1. Using this

inequality and (6.107) in (6.106), and the obtained result, (6.104) and (6.105)
we conclude that uniformly over all considered cumulative distribution functions
of interest FX and densities fZ of the monitoring time we have

EFX ,fZ tpqθ˚j ´ qθjq
2u ď Cn´1. (6.124)
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This inequality yields that a projection estimate of an underlying cdf FXpxq,

based on either rθ˚j or rθj yields the same rate of the MISE convergence. Also note

that in (6.124) the subscript emphasizes that both FX and fZ must be known
to calculate the expectation, and the constant C is the same for all considered
FX .

Now we are considering the data-driven Fourier estimate pθj , defined in (3.5)
and where in place of fZpzq we use sfZpzq. Namely, we are exploring the data-
driven Fourier estimator

pθ˚j :“ n´1
n
ÿ

l“1

p∆l ´ qF´jpZlqqϕjpZlq
sfZpZlq

. (6.125)

Here qF´jpzq is defined in (3.3), and it estimates a function F´jpzq defined in

(3.4). The difference between the already studied Fourier estimator qθ˚j and the

new Fourier estimator pθ˚j (compare (6.104) and (6.125)) is that in pθ˚j the factor

∆l is replaced by ∆l´ qF´jpZlq. The underlying idea is that with the help of this

replacement the second moment inequality (6.124) for qθ˚j ´
qθj can be replaced

by
EFX ,fZ tppθ˚j ´ pθjq

2u “ onp1qn
´1Ipj ą sq (6.126)

and
EFX ,fZ tppθ˚j ´ pθjq

2u ď Cn´1Ipj ď sq. (6.127)

This result is the key in proving the sharp minimax assertion of Theorem 3.2.
A comment is due. Inequality (6.127) states that pθ˚j mimics pθj with the MSE

of order n´1, and this result is well expected. A challenging part is the case
j ą s in (6.126). It follows from the above-presented proof of (6.124) that the
term that prevented us from establishing (6.126) is Dj1 which is of order n´1,
while all other terms are of the wished order onp1qn

´1. Accordingly, we are
considering

D˚j1 :“ EfZ
!

n
ź

l“n´1

p∆l ´ qF´jpZlqqϕjpZlq

rfZpZlqs2
r
pn´ 2

n
fZpZlq ´ rh1pZlqs

)

(6.128)

and would like to show that

D˚j1 ď Cn´1Ipj ď sq ` onp1qn
´1Ipj ą sq. (6.129)

To verify (6.129), we rewrite the new factor as

∆l ´ qF´jpZlq “ r∆l ´ F´jpZlqs ` rF´jpZlq ´ qF´jpZlqs

“: W1p∆l, Zlq `W2pZlq. (6.130)

For W2pZlq we have

W2pZlq “ F´jpZlq ´ qF´jpZlq “
ÿ

iPS´j

pθi ´ qθ˚i qϕipZlq, (6.131)
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where S´j “ t0, 1, . . . , suztju if j ď s and S´j “ t0, 1, . . . , su otherwise. Then,
with the help of (2.1), Lemma 6.1 and (6.124) we get a rough but sufficient for
our task inequality,

EFX ,fZ trW2pZlqs
4u ď Cn´2s4. (6.132)

Now we are ready to evaluate term D˚j1 defined in (6.128). Using notation
(6.130) we write,

D˚j1 :“ EfZ
!

n
ź

l“n´1

p∆l ´ qF´jpZlqqϕjpZlq

rfZpZlqs2
r
pn´ 2

n
fZpZlq ´ rh1pZlqs

)

“ EfZ
!

n
ź

l“n´1

pW1p∆l, Zlq `W2pZlqqϕjpZlq

rfZpZlqs2
r
pn´ 2

n
fZpZlq´rh

1pZlqs
)

. (6.133)

We begin with considering a term with W1p∆n´1, Zn´1qW1p∆n, Znq. Write

D˚j11 :“ EfZ
!

n
ź

l“n´1

W1p∆l, ZlqϕjpZlq

rfZpZlqs2
r
pn´ 2

n
fZpZlq ´ rh1pZlqs

)

“ EfZ
!

n
ź

l“n´1

p∆l ´ F´jpZlqqϕjpZlq

rfZpZlqs2
r
pn´ 2

n
fZpZlq ´ rh1pZlqs

)

“ EfZ
!”

ż 1

0

pFXpzq ´ F´jpzqqϕjpzqrf
Zpzqs´1

ˆ rpn´ 2qn´1fZpzq ´ rh1pzqsdz
ı2)

. (6.134)

Using (6.112), (6.113) and the Cauchy inequality we continue (6.134),

D˚j11 “
pn´ 2q2

n2
EfZ

!”

ż 1

0

pFXpzq ´ F´jpzqqrf
Zpzqs´1ϕjpzq

ˆr

Jn
ÿ

i“1

pκi ´ rκiqϕipzq `
ÿ

iąJn

κiϕipzqsdz
ı2)

ď 2EfZ
!”

Jn
ÿ

i“1

pκi ´ rκiq

ż 1

0

pFXpzq ´ F´jpzqqϕjpzqϕipzq

fZpzq
dz
ı2)

`2
”

ÿ

iąJn

κi

ż 1

0

pFXpzq ´ F´jpzqqϕjpzqϕipzq

fZpzq
dz
ı2

“: 2Bj11 ` 2Bj12. (6.135)

To evaluate Bj11 we recall ϕjpzqϕipzq “ 2´1{2rϕj´ipzq ` ϕj`ipzqs and write,

ż 1

0

pFXpzq ´ F´jpzqqϕjpzqϕipzq

fZpzq
dz “ 2´1{2rbj´ipj, sq ` bj`ipj, sqs. (6.136)
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Here

bipj, sq :“

ż 1

0

rFXpzq ´ F´jpzqsϕipzq

fZpzq
dz. (6.137)

Let us comment on terms bipj, sq. Consider j ą s, recall that θi are Fourier
coefficients of an underlying FX , and write,

bipj, sq “

ż 1

0

r
ř

tąs θtϕtpzqsϕipzq

fZpzq
dz “

ÿ

tąs

θtrνt´i ` νt`is,

where νi :“

ż 1

0

rfZpzqs´1ϕipzqdz. (6.138)

Thus, using the above-mentioned Bernstein inequality we get for j ą s

8
ÿ

i“´8

|bipj, sq| ď
ÿ

tąs

|θt|
8
ÿ

i“´8

r|νt´i| ` |νt`i|s

ď C
ÿ

tąs

|θt| ď Cr
ÿ

tąs

t´2s1{2r
ÿ

tąs

t2θ2
t s

1{2 ď Cs´1{2. (6.139)

Using the obtained relations, together with (6.112) and (6.115), we get for
j ą s

Bj11 “ pn´ 2q´1
Jn
ÿ

i,t“1

r2´1{2pκi´t ` κi`tq ´ κiκts

ˆ r2´1pbj´ipj, sq ` bj`ipj, sqqpbj´tpj, sq ` bj`tpj, sqqs “ onp1qn
´1. (6.140)

Now consider Bj12 and write,

Bj12 “

”

ÿ

iąJn

κi

ż 1

0

pFXpzq ´ F´jpzqqϕjpzqϕipzq

fZpzq
dz
ı2

ď
ÿ

iąJn

κ2
i

ÿ

iąJn

rb2j´ipj, sq ` b
2
j`ipj, sqs

ď CJ´2
n pJn ´ jq

´2 ď Crlnpsqs´4n´4{3. (6.141)

Using obtained results in (6.135) we conclude that

D˚j11 ď Cn´1Ipj ď sq ` onp1qn
´1Ipj ą sq. (6.142)

Now let us consider a term with W2pZn´1qW2pZnq in (6.133). Using (6.132)

and that rh1pzq is a projection estimate of fZpzq with the bias (6.121), we get
with the help of Cauchy and Cauchy-Schwarz inequalities,

EfZ
!

n
ź

l“n´1

W2pZlqϕjpZlq

rfZpZlqs2
r
pn´ 2q

n
fZpZlq ´ rh1pZlqs

)
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ď C
”

EfZ trW2pZlqs
4uEtr

n´ 2

n
fZpZlq ´ rh1pZlqs

4u

ı1{2

“ onp1qn
´1. (6.143)

Finally, we need to consider a cross-product term withW1p∆n´1, Zn´1qW2pZnq,

Dj13 :“ EfZ
! p∆n´1 ´ F´jpZn´1qqϕjpZn´1qr

n´2
n fZpZn´1q ´ rh1pZn´1qs

rfZpZn´1s
2

ˆ
W2pZnqqϕjpZnqr

pn´2q
n fZpZnq ´ rh1pZnqs

rfZpZnqs2

)

. (6.144)

Using Cauchy-Schwarz inequality, (6.102) and (6.132), we get a rough but
sufficient relation

D2
j13 ď CEfZ trW2pZnqs

2uEfZ tr
ż 1

0

p
pn´ 2q

n
fZpzq ´ rh1pzqq2dzs2u

“ onp1qn
´2 (6.145)

Combining obtained results we verify (6.129), and then validity of Theorem
3.2 follows from the above-presented proof of Theorem 3.1. Let us also note that
the presented proof justifies using a plug-in density estimate.

Proof of Corollary 4.1. The verified assertion follows from [12] and the al-
ready proved sharp-minimaxity of the blockwise-shrinkage estimator (3.9). The
interested reader may also follow lines in the proofs of Theorems 3.1 and 3.2,
and establish validity of Corollary 4.1 directly without reference on [12].

Proof of Theorem 4.1. Let us begin with a general remark. The proposed
density estimator is “identical” to the cdf estimator apart of: (i) Using the sine

basis for calculating statistics rZk, pZk and pd; (ii) The new Fourier estimates qζj
and pζj . To address the first issue, let us present classical formulas for elements
ϕjpxq of the cosine basis (1.2) used in the proofs of Theorems 3.1 and 3.2,
and then complement them by corresponding formulas for elements ψjpxq :“
21{2 sinpπjxq of the sine basis. We have

ϕjpxqϕipxq “ 2´1{2rϕj´ipxq ` ϕj`ipxqs (6.146)

versus
ψjpxqψipxq “ 2´1{2rϕj´ipxq ´ ϕj`ipxqs, (6.147)

and
ϕ2
j pxq “ 1` 2´1{2ϕ2jpxq (6.148)

versus
ψ2
j pxq “ 1´ 2´1{2ϕ2jpxq. (6.149)

Another useful trigonometric formula is

ψjpxqϕipxq “ 2´1{2rψj´ipxq ` ψj`ipxqs. (6.150)
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In what follows we also will need an analog of relation (2.2.5) in [13] which was
used in the proof of Theorem 3.1. Let gpxq, x P r0, 1s be a function with bounded
derivative, then

|

ż 1

0

gpxqψjpxqdx| ď Cj´1. (6.151)

The inequality is proved via integration by parts.
The new estimators of the density Fourier coefficients ζj are analyzed in the

presented below two lemmas. We begin with a proposition which is similar to
Lemma 6.1.

Lemma 6.7. Let Assumption 1 hold. Then

EFX tqζju “ ζj , (6.152)

and

VFX pqζjq “ n´1pπjq2
ż 1

0

FXpxqrfZpxqs´1ψ2
j pxqdx ď Cj2n´1. (6.153)

Note how (6.152) and (6.153) mimic results (6.1) and (6.2) of Lemma 6.1.
Proof of Lemma 6.7. For the expectation we write using (4.4),

EFX tqζju “ Etϕjp1q ` pπjq
∆ψjpZq

fZpZq
u

“ ϕjp1q ` pπjqEFX t∆
ψjpZq

fZpZq
u “ ζj .

This verifies (6.152) and tells us that qζj is unbiased estimate of ζj . For the
variance we get using (2.1),

VFX pqζjq “ n´1pπjq2EFX tr∆ψjpZq{fZpZqs2u

“ n´1pπjq2
ż 1

0

FXpxqrfZpxqs´1ψ2
j pxqdx.

This and Assumption 1 verify (6.153). Lemma 6.7 is proved.
Our next proposition is analog of Lemma 6.2.

Lemma 6.8. Let assumption of Theorem 4.1 hold and FX P Fpα,Qq. Then

|EFX pζju ´ ζj | ď Cjsn´1, (6.154)

and
EFX tppζj ´ ζjq2u ď pπjq2dr1` Cpj´1 ` s´1qs. (6.155)

Here d “
ş1

0
FXpxqp1´ FXpxqrfZpzqs´1dx is the coefficient of difficulty (2.6).
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Proof of Lemma 6.8. In the proof we are following steps of the proof of Lemma
6.2 to highlight similarity between analysis of the two Fourier estimates. This
also will allow us to highlight differences between the proofs.

Using the fact that statistic pF´jpxq is used to estimate function F˚´jpxq, which

in its turn approximates FXpxq, we write,

pζj “
”

ϕjp1q `
πj

n

n
ÿ

l“1

p∆l ´ F
˚
´jpZlqqϕjpZlq

fZpZlq

ı

`
πj

n

n
ÿ

l“1

pF˚´jpZlq ´
pF´jpZlqqψjpZlq

fZpZlq
“: pζ1j ` pζ2j . (6.156)

We are considering the two terms on the right side of (6.156) in turn. Using
(2.1), (4.4) and a straightforward calculation we get,

EFX tpζ1ju “ ϕjp1q ` pπjq

ż 1

0

rFXpxq ´ F˚´jpxqsψjpxqdx

“ ϕjp1q ` pπjq

ż 1

0

FXpxqψjpxqdx “ ζj . (6.157)

Thus pζ1j is unbiased estimate of ζj . Using (2.1) and ∆2
l “ ∆l we can bound

from above MSE of pζ1j ,

EFX tppζ1j ´ ζjq2u ď
pπjq2

n
EFX

!´

p∆l ´ F
˚
´jpZlqqψjpZlqrf

ZpZlqs
´1

¯2)

“
pπjq2

n
EFX

!

p∆2
l ´ 2∆jF

˚
´jpZlq ` rF

˚
´jpZlqs

2qψ2
j pZlqrf

ZpZlqs
´2

)

“
pπjq2

n

ż 1

0

rFXpxq ´ 2FXpxqF˚´jpxq ` rF
˚
´jpxqs

2sψ2
j pxqrf

Zpxqs´1dx. (6.158)

Using F˚´jpxq “ FXpxq ` rF˚´jpxq ´ F
Xpxqs we may continue,

EFX tppζ1j ´ ζjq2u ď
pπjq2

n

ż 1

0

rFXpxqp1´ FXpxqqsψ2
j pxqrf

Zpxqs´1dx

`
pπjq2

n
|

ż 1

0

r´2FXpxqpF˚´jpxq ´ F
Xpxqqsψ2

j pxqrf
Zpxqs´1dx|

`
pπjq2

n

ż 1

0

rpF˚´jpxqq
2 ´ pFXpxqq2sψ2

j pxqrf
Zpxqs´1dx “: u1 ` u2 ` u3. (6.159)

We are evaluating the three terms on the right side of (6.159) in turn. Using
(6.149), differentiability of both FXpxq and fZpxq, and relation (2.2.5) in [13],
we get

u1 ď
pπjq2

n
rd` cjj

´1s, where
8
ÿ

j“1

c2j ă C. (6.160)
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Now we evaluate u2 using several technical relations. First,

FXpxq ´ F˚´jpxq “ ζjψjpxqIpj ď sq `
ÿ

rąs

ζrψrpxq. (6.161)

Second, using (6.149) we write

ζj

ż 1

0

FXpxqψjpxqψ
2
j pxqrf

Zpxqs´1dxIpj ď sq

“ ζj

ż 1

0

FXpxqrfZpxqs´1rψjpxq ´ ψjpxq2
´1{2ϕ2jpxqsdxIpj ď sq

“: ζjνjIpj ď sq. (6.162)

To continue evaluation of the right side of (6.162) we use (6.150) and note that
according to that formula we get ψjpxqϕ2jpxq “ 2´1{2rψ3jpxq´ψjpxqs. This and
(6.151) yield |ζjνj |Ipj ď sq ď Cpj ` 1q´2Ipj ď sq.

Third, using the Cauchy-Schwarz inequality and the assumption of Lemma
6.8 we get,

ÿ

rąs

|ζr

ż 1

0

FXpxqψrpxqψ
2
j pxqrf

Zpxqs´1dx| ď r
ÿ

rąs

ζ2
r s

1{2

ˆ

”

ÿ

rąs

r

ż 1

0

FXpxqψrpxqψ
2
j pxqrf

Zpxqs´1dxs2
ı1{2

ď Cs´1. (6.163)

Using these results we establish

u2 ď C
pπjq2

n
rpj ` 1q´2 ` s´1s. (6.164)

To evaluate u3 we begin with based on (6.161) relation

rF˚´jpxqs
2 “ rFXpxqs2 ´ 2FXpxqrζjψjpxqIpj ď sq `

ÿ

rąs

ζrψrpxqs

`rζjψjpxqIpj ď sq `
ÿ

rąs

ζrψrpxqs
2.

Using it we obtain the following upper bound,

u3 ď C
”

u2 `

ż 1

0

rζjψjpxqIpj ď sq `
ÿ

rąs

ζrψrpxqs
2ψ2

j pxqrf
Zpxqs´1dx

ı

ď C
”

u2 ` ζ
2
j Ipj ď sq ` r

ÿ

rąs

|ζr|s
2
ı

ď Crpj ` 1q´2 ` Cs´1s. (6.165)

Now we can use the obtained upper bounds for u1, u2 and u3 in (6.159) and
get

EFX tppζ1j ´ ζjq2u ď
pπjq2

n
d
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` C
pπjq2

n
rcjpj ` 1q´1 ` pj ` 1q´2 ` s´1s, where

8
ÿ

j“0

c2j ă C. (6.166)

This ends our analysis of pζ1j .

Now we analyze two moments of statistic pζ2j introduced in (6.156). Our

aim is to show that this statistic is negligible with respect to pζ1j . Again we
begin with several technical results. Set S´j :“ t1, . . . , suztju for j ď s and
S´j :“ t1, . . . , su for j ą s, and N´l :“ t1, . . . , nuztlu. First, using the Parseval

identity, definition of qF´j and F˚´j , and Lemma 6.7 we can write

EFX
!

ż 1

0

p pF´jpzq ´ F
˚
´jpzqq

2dz
)

“
ÿ

iPS´j

Etqζi ´ ζiq2u ď Cs3n´1. (6.167)

Second, introduce a decomposition

pF´jpZlq “ n´1
ÿ

kPN´l

∆krf
ZpZkqs

´1
ÿ

iPS´j

ψipZkqψipZlq

` n´1∆lrf
ZpZlqs

´1
ÿ

iPS´j

ψ2
i pZlq “: pF1pZlq ` pF2pZlq. (6.168)

Then using orthogonality of elements of the sine basis we can write for pF1pZlq,

EFX trF˚´jpZlq ´ pF1pZlqsrf
ZpZlqs

´1ψjpZlq|tp∆k, Zkq, k P N´luu “ 0. (6.169)

Third, Assumption 1 allows us to write

|EFX t pF2pZlqψjpZlqrf
ZpZlqqs

´1u|

“ n´1|EFX t∆lrf
ZpZlqs

´2
ÿ

iPS´j

ψ2
i pZlqψjpZlqu| ď Csn´1. (6.170)

Combining the obtained results yields

|EFX tpζ2ju| ď Cjsn´1.

This and (6.157) verify (6.154).

We are left with evaluating the second moment of pζ2j . We again do that via
establishing several technical results. First,

EFX pF˚´jpZlq ´ pF1pZlqq
2 ď Csn´1. (6.171)

Second,

EFX
!´

n´1
n
ÿ

l“1

pF2pZlqψjpZlqrf
ZpZlqs

´1
¯2)

ď Cn´2s2. (6.172)

Third, consider two integers l and m such that l ‰ m and l,m P t1, 2, . . . , nu,
and write,

rF˚´jpZlq ´
pF´jpZlqsrF

˚
´jpZmq ´

pF´jpZmqs
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“ rF˚´jpZlq ´
pF1pZlq ´ pF2pZlqsrF

˚
´jpZmq ´

pF1pZmq ´ pF2pZmqs

“ rF˚´jpZlq ´
pF1pZlqsrF

˚
´jpZmq ´

pF1pZmqs ´ rF
˚
´jpZlq ´

pF1pZlqs pF2pZmq

´ pF2pZlqrF
˚
´jpZmq ´

pF1pZmqs ` pF2pZlq pF2pZmq

“: W1 `W2 `W3 `W4. (6.173)

Using these notations we can write for any 1 ď l ă m ď n,

EFX tpζ2
2ju ď Cj2n´1EFX tpF˚´jpZlq ´ pF´jpZlqq

2u

` CEFX trW1 `W2 `W3 `W4sψjpZlqψjpZmqrf
ZpZlqf

ZpZmqs
´1u. (6.174)

The first term on the right side of (6.174) is at most Cj2sn´2 due to (6.171).
To evaluate the second term set

pF1pZl,´mq :“ pF1pZlq ´ n
´1∆mrf

ZpZmqs
´1

ÿ

iPS´j

ψ2
i pZmq

“: pF1pZlq ´ pF1pZl,mq. (6.175)

Note that pF1pZl,´mq does not depend on p∆l, Zl,∆m, Zmq and | pF1pZl,mq| ď
Csn´1 almost sure. Write,

V :“ EFX tW1ψjpZlqψjpZmqrf
ZpZlqf

ZpZmqs
´1u

“ EFX
!

rF˚´jpZlq´
pF1pZl,´mq´ pF1pZl,mqsrF

˚
´jpZmq´

pF1pZm,´lq´ pF1pZm, lqs

ˆψjpZlqψjpZmqrf
ZpZlqf

ZpZmqs
´1

)

.

To continue we need several relations. First, using (6.169) allows us to write,

EFX
!

rF˚´jpZlq ´
pF1pZl,´mqsrF

˚
´jpZmq ´

pF1pZm,´lqs

ˆψjpZlqψjpZmqrf
ZpZlqf

ZpZmqs
´1

)

“ 0.

Second, note that |r pF1pZl,mq| ď Csn´1 almost sure. Third, the Cauchy-Schwarz
inequality allows us to write,

|EFX trF˚´jpZlq ´ pF1pZl,´mqs pF1pZm, lqu|

ď rEFX trF˚´jpZlq ´ pF1pZl,´mqs
2uEFX tr pF1pZm, lqs

2us1{2

ď Crpsn´1ps2n´2s1{2 ď Cs3{2n´3{2.

These relations allow us to conclude that |V | ď Cs3{2n´3{2.
Next, using the Cauchy-Schwarz inequality we get

EFX t|W2|u ď rEFX tpF˚´jpZlq ´ pF1pZlqq
2uEFX tr pF2pZmqs

2us1{2 ď Cs2n´3{2.
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Due to symmetry the same inequality holds for W3, and EFX t|W4|u ď Cs2n´2.
Combining the above-presented relations we get

EFX tpζ2
2ju ď Cj2s2n´3{2. (6.176)

Lemma 6.8 is proved.

We have established that the considered Fourier estimates qζj and pζj satisfy
the desired statistical properties mimicking properties outlined in Lemmas 6.1
and 6.2 for Fourier estimates of cdf Fourier coefficients. The rest of the proof of
Theorem 4.1 follows the same steps as in the proof of Theorems 3.1 and 3.2, the
steps are based on using relations (6.146)–(6.151) for sines in place of cosines,
and finishing the proof presents no new technical complications. Theorem 4.1 is
verified.

Proof of Lemma 4.1. Using (6.156) we can write,

EFX tppζj ´ ζjq2u “ EFX tppζ1j ´ ζjq2u` 2EFX tppζ1j ´ ζjqpζ2ju`EFX tζ2
2ju. (6.177)

Now we are evaluating the expectations on the right side of (6.177) in turn.
Formulas (6.158) and (6.159) yield

|EFX tppζ1j ´ ζjq2u ´
pπjq2

n

ż 1

0

FXpxqp1´ FXpxqqψ2
j pxqrf

Zxs´1dx|

ď u2 ` u3 ` ζ
2
j . (6.178)

Using (6.149) and (6.151) we conclude that

ż 1

0

FXpxqp1´ FXpxqqψ2
j pxqrf

Zpxqs´1dx

“ d´

ż 1

0

FXpxqp1´ FXpxqqfZpxq2´1{2ϕ2jpxqdx “ d` ojp1q.

Combining this relation with upper bound (6.164) for u2 and upper bound
(6.165) for u3 we get

EFX tppζ1j ´ ζjq2u “
pπjq2

n
dr1` ojp1q ` onp1qs. (6.179)

Further, it is established in (6.176) that EFX tpζ2
2ju ď Cj2s2n´3{2 “ onp1qj

2n´1.
Using this, (6.179) and the Cauchy-Schwarz inequality on the right side of
(6.177) proves Lemma 4.1.

7. Conclusion and further research

Current Status Censoring (CSC) is a familiar sampling procedure when instead
of observing a lifetime of interest X only its status ∆ “ IpX ď Zq is available
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at a monitoring time Z. In other words, in place of a classical sample of direct
observations from X, under CSC a sample from p∆, Zq is available. CSC sam-
pling is a popular technique due to its simplicity, and in many applications it is
the only possibility to get information about an underlying lifetime of interest.
It is also well known that CSC makes estimation of the density and cdf ill-posed
and dramatically slows down rate of a risk convergence.

Whenever a problem is ill-posed, it is important to investigate not only the
rate but also a minimal constant of a risk convergence. The latter is due to
the fact that this constant sheds light on an ill-posed problem and because for
small samples we may see only the onset of ill-posedness. Recently [16] obtained
sharp-minimax lower bounds for density and cdf oracle-estimators, and this
paper proposed a data-driven and robust sharp-minimax estimator that attains
the oracle’s lower bound. Further, the estimator may be used for small samples
and it is tested on real and simulated examples.

There are many interesting and practically important extensions of the con-
sidered CSC setting. Missing is a typical complications in data analysis, and
then approaches of book [15] may be tested. Estimation of joint and conditional
densities is another important topic to consider. CSC regression, including a
functional regression, is another important applied topic to consider. Let us
also mention a research devoted to more general cases of interval censoring.
Here no results on sharp minimax estimation are known even for the interval
censoring case II when one observes a triplet pL,U,∆q where L ă U are two
monitoring times and the status ∆ “ ´1 if X ď L, ∆ “ 0 if L ă X ď U , and
∆ “ 1 otherwise, see [5,6,18]. It is an interesting, challenging and open prob-
lem to expand the obtained CSC sharp-minimax results to a general interval
censoring data.

Now let us formulate several open problems for the considered CSC setting
and make several last remarks. (i) The coefficient of difficulty (2.6) indicates that
there is a serious issue when the integral

şx

0
p1 ´ FXpuqqrfZpuqs´1du diverges

as x increases due to a light tail of fZpuq. This issue is paramount to address
for extending the developed theory to unbounded support of X. While cases
of unbounded lifetimes are rare in practical applications, they are of a great

theoretical interest. (ii) In Assumption 1 the equality
ş1

0
fZpzqdz “ 1 can be

relaxed and the support of Z may be larger than r0, 1s. This case does not
present a theoretical complication and the results still hold only now we are
estimating fZpzq over interval r0, 1s using Zl P r0, 1s, see the corresponding
density estimate in [13 ]. What is of interest here is to estimate the support
of X. (iii) The case when the support of X is larger than the support of Z
yields inconsistent estimation, but a sharp estimation over the support of Z is
still possible. (iv) An interesting and complicated setting is when X and Z are
unbounded. No sharp-minimax theory is known for this case. (v) An important
applied task is to create a user-friendly R package for CSC density and cdf
estimation.
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