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1 Introduction

Nonparametric curve estimation is devoted to estimation of functions whose shape is unknown.
A classical statistical setting is when a sample of size n is available, the problem is to propose a
feasible estimator with a minimal mean integrated squared error (MISE), and oracle approach is
used to find a benchmark for an adaptive estimator. The oracle knows some information about
an underlying estimated function, including its smoothness, and everything about nuisance
functions. Then a sharp lower bound for the MISE of oracle-estimators is established. The
notion “sharp” means that both constant and rate of the MISE convergence are established.
Then a good data-driven estimator should match performance of the oracle, and if the latter is
possible then the estimator is called adaptive because it adapts to smoothness of an underlying
estimated function and all nuisance functions. It is well known that adaptive nonparametric
estimation is possible for a wide variety of statistical models and function classes of interest,
see a discussion in Efromovich (1999,2018) and Wassermann (2006). This is a good news for
nonparametric estimation with deterministic sample size.

Situation changes rather dramatically if we are interested in the Wald problem of sequential
estimation with assigned value of a risk and a minimal mean stopping time. No adaptive
sequential estimator, matching performance of the oracle, exists for the case of differentiable
functions. More about the Wald problem, sequential estimation and the lack of adaptation
can be found in Wald (1947), Stein and Wald (1947), Anscombe (1947,1953), Ghosh and
Sen (1991), Ghosh, Mukhopadhyay and Sen (1997), Mukhopadhyay (1997), and Efromovich
(1995,2007, 2018). While there is no way to change this outcome for estimation of differentiable
functions, the paper shows that this is possible for smoother functions like analytic ones.

Further, sequential estimation can use the simplest two-stage strategy whose roots go back to



Stein (1945) and Wald (1947), see also an interesting discussion in Aoshima and Yata (2011),
Mukhopadhyay and Zacks (2018), and Mukhopadhyay (2019).

Let us describe a considered regression model and review relevant known results beginning
with the case of a fixed sample size. We observe a sample (X1,Y7),...,(X,,Y,) of size n from
(X,Y) where X := (Xy,...,X}) is a vector of continuous covariates (predictors) and Y is a
response. The regression is controlled implying that the distribution of X is known, and in
what follows it is supposed that the joint density f* of the vector-predictor is supported and

positive on k-dimensional cube R := [0, 1]*. The underlying regression model is
Y =m(X) 4+ o(X)&, (1.1)

where m(x) := E{Y|X = x} is the regression function of interest, £ is a zero-mean regression
error independent of X, and a positive function o(x) is called a scale function. Let us formulate
one of the main known theoretical results due to Hoffmann and Lepskii (2002). Consider a
cosine tensor-product basis ¢j(x) := Hle @i, (x,) on R where @g(z) = 1, p; = 212 cos(mix),
i = 1,2,..., 1 = (i1,...,0), set O := [pm(x)pi(x)dx for Fourier coefficients of m(x),
and introduce an anisotropic Sobolev class S(&, Q) = {m(x) : m(x) = >.2, bipi(x),x €

Ry > 2,1+ Sk 1+ miy)2°r]02 < Q} of differentiable functions. Note that we use notation

> 20 = Yir..iv=0- Then it is established that the optimal (oracle’s) minimax rate of the
MISE convergence is n~2*/ (21 where o := [Ele a; 1171 is the effective smoothness. For

univariate case k = 1 not only the rate but a sharp constant is known that is achieved by a
data-driven estimator that matches performance of the oracle that knows parameters of the
Sobolev class and the nuisance functions f*(z) and o(x), see Efromovich (1999). Oracle’s
lower bounds, used as benchmarks for data-driven estimators, are discussed in Barron, Birge

and Massart (1999), Galtchouk and Pergamenshchikov (2009ab), and Efromovich (2018) where
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further references may be found. In short, the theory and methodology of regression estimation
for k =1 and a fixed sample size is well developed. For sequential estimation it is known that
neither the constant nor the rate can be improved by a sequential plan with stopping time
T satistfying E{T'} < n. Further, if we restrict our attention to sequential estimators with an
assigned MISE and minimal expected stopping time (the Wald problem), then no data-driven
estimator can match performance of the oracle, see Efromovich (2007,2018).

As we will see shortly, that negative outcome for the Wald problem changes if we consider

an analytic class of regression functions on R with faster decreasing Fourier coefficients,

A= A(b,c,Q)
) 00 k .
={m(x): m(x)=> bips(x), x € B D> [1+ > (1+i,)*e”]67 < Q}. (1.2)
i=0 i=0 r=1
Here 6; := [, m(x)gi(x)dx, b := (b,...,b;) and ¢ := (c1,...,cx) are vectors of constants
and min(cy, ..., ¢) > 0. Analytic function classes are familiar in statistical literature and well

suited for many practical applications, see a discussion in Ibragimov (2001) and Efromovich
(1999,2018). In what follows parameters (b, c, Q) of the class A are known to the oracle and
unknown to the statistician.

Now let us formulate our main aim. We are interested in estimation of the regression
function m(x) in model (1.1) by a sequential estimator &£ := E({m.(x,Z]),r = 1,2,...},T).
Here 7, (x, Z]) is a regression estimate based on a sample Z7 := {(X1,Y1),...,(X,,Y;)} with
fixed sample size r, and T is a stopping time. Accordingly when the stopping time is defined
then the regression estimate is m(x, Z1). Stopping time is a positive integer-valued random

variable such that after observing Z7] we make a decision as to whether or not T = r. If

the decision is T' = r, then we stop observations and use the regression estimate 7, (x, Z7),



otherwise we continue the sampling. More rigorously, let (€2, F, P) be an underlying probability
space, {Z7,r = 1,2,...} be a sequence of multivariate random variables on {Q, F, P}, and
F1 C F2 C ... be an increasing sequence of sub sigma-fields of F such that Z7 is F,-measurable,
then the stopping time is a map 7' : @ — {1,2,...} such that {T" < r} € F,. Suppose that the
oracle knows the underlying class (1.2) of regression functions, the design density f* and the
scale function o. Then we are considering two classical sequential regression problems when a
data-driven estimator tries to match performance of the oracle. (1) Value of the mean stopping
time is assigned, and then MISE of a sequential estimator matches the oracle’s MISE; (ii) Value
of the MISE is assigned, and then the mean stopping time matches the oracle’s mean stopping
time (the Wald problem). As we will see shortly, for the former problem sequential estimation
does not dominate estimation based on a fixed sample size, but for the Wald problem sequential
estimation is superior and can match the oracle.

The content of the paper is as follows. Asymptotic theory for oracle-estimators is pre-
sented in Section 2. Oracle’s lower bounds serve as a benchmark for an estimator, and oracle-
estimators inspire data-driven estimators. Sequential estimation with assigned MISE (the
Wald problem) is considered in Section 3 where a sharp-minimax two-stage estimator match-
ing performance of the oracle, is introduced. The used methodology mimics the classical Stein’s
approach proposed for parametric models. Proofs are deferred to Section 4. Conclusions and
topics for future research can be found in Section 5. The online Supplementary Materials
contain an important environmental example devoted to a new civil engineering technology
for reducing greenhouse gas emission. This is a thought-provoking controlled regression with
5 covariates and only n = 86 observations. The example and its discussion shed a new light

on the first stage of proposed estimator.



In the paper the following notations are used. For the first above-formulated problem
of estimation with minimal MISE, given the mean stopping time is bounded by a positive
integer n, we are interested in the asymptotic when n — oco. Set ¢ := ¢, := [2+ In(n + 1)]

/

and ¢’ := ¢}, := [2 + In(In(n + 3))] where [¢] denotes the smallest integer larger or equal

to c. It is assumed that > ;" ., := 0, Y= Z%]lw--,ikzo’ 0/0 := 0, Vi := max(i1,...,%),
Al := min(iy,...,i), ic := (i1c1,...,9kCk), sup is the supremum over considered function

classes, 0,(1)’s are generic vanishing sequences in n. I(-) is the indicator, w’s are generic
positive constants. Z:ijl ={(Xo41,Yr11), Xpg2,Yr42), ..., (Xp45,Yr4j) } denotes a sequence
of iid observations (sample of size j) from (X,Y). For the Wald problem, ¢ denotes a given
positive real number that is used to bound the MISE, and then we are interested in the
asymptotic as € — 0. Because notation n for a given sample size is no longer used, with
some obvious abuse of notation it is convenient to consider ¢ := g(¢) := [2 + In(e7! + 1)],

¢ :=q(e) = [2+In(e~! +1)], and 0.(1) denotes a generic function that vanishes as ¢ — 0.

2 Asymptotic theory of oracle-estimators

Consider regression model (1.1) and the oracle who knows the model, the design density f*
and the scale function o (the two so-called nuisance functions), and parameters of the function
class (1.2). The problem is to understand how well the oracle can solve the two sequential
problems formulated in the Introduction, namely minimization of the MISE given assigned
expected stopping time and the Wald problem of minimizing the expected stopping time given
assigned value of the MISE. While the oracle knows the design density and the scale function,

it is of interest to understand how the oracle can deal with a class of these nuisance functions.



Introduce a class of positive and differentiable on R := [0, 1]* k-variate functions

8k
N = N (w1, wa,w3) :=={g: w1 < g(x) < wa, ‘(%cl(g(g)x)k’ <ws, X € R}, (2.1)

where w1, wo and ws are positive constants whose specific values play no role in the presented
below theoretical results. Accordingly, to simplify formulas we may write that both fX and o

belong to N keeping in mind that the constants can be different.

Assumption 1. The design density fX and the scale function o are from class (2.1) with
possibly different constants (w1, ws, ws), and fR fR(x)dx = 1. Regression error & in (1.1) is
independent of X and its distribution F& belongs to a class = of distributions with zero mean
and variance bounded by 1.

The assumption is mild, and let us note that even in a classical univariate regression
theory it is traditionally assumed that the nuisance functions are positive and differentiable,
see Wassermann (2006) and Efromovich (2018).

The following theorem considers the two above-presented sequential problems and presents
sharp lower bounds for oracle-estimators. Recall notation &({m.(x,Z}),r = 1,2,...},T) for
a sequential estimator introduced in the Introduction. In the theorem considered sequential
regression estimates m, and stopping times T are constructed by the oracle, and accordingly
the estimators are called oracle-estimators. To highlight that a statistic is constructed by the

oracle we use the asterisk, for instance m), T* and £*.

Theorem 1 (Lower Bounds for the Oracle). Let Assumption 1 hold. The two sequential
problems for oracle-estimators with assigned mean stopping time and assigned MISE are ex-
plored in turn:

(1) Introduce a class S(n) of sequential oracle-estimators E*({m}(x,Z}),r =1,2,...},T*) with



stopping time T satisfying

sup E{T*/n} < 1. (2.2)
fXEN,0EN , FEECE,mEA

Then the following lower bound for minimax MISE of oracle-estimators holds,

inf sup E{/ (x,ZT") (X))2dX}// (%) dx]

E¥€S(n) fXeN ceN FEeE,meA r fX(x)

>n"n(n )]k[H e (1 + 0a(1))- (2.3)

r=1

(i) Consider the Wald problem of minimizing the expected stopping time given an assigned
value of the MISE. Introduce a class S'(€) of sequential oracle-estimators E'({m}(x,Z7),r =

2,...},T%) whose MISE satisfies the upper bound

sup E{/ (x,ZT") — m(x))%dx} <e. (2.4)
fXeEN,0eN , FEcE,meA
Denote by n*(e) a minimal integer n such that n=*[In(n)|*[[T;_; ¢; ][ 0% (x)/ f*(x)dx] < €
Then
inf sup E{T*/n"(e)} > (14 o0.(1)). (2.5)

E'eS(e) fXeN oceN FEEE,meA

Let us comment on the lower bounds, and then proceed to presenting oracle-estimators
that establish sharpness (attainability) of the lower bounds. We begin with the first problem
and lower bound (2.3). Note that the MISE is proportional to the integral [,0?(x)/f*(x)]dz
which shows how the two nuisance functions affect the MISE. This dependence is known for
non-sequential regression estimators. Next, let us rewrite the right side of (2.3) as n~!P*, then
the constant P* is traditionally referred to as Pinsker constant to honor the pioneering result

of Pinsker (1980) devoted to filtering signals from white Gaussian noise. Pinsker constant
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describes the effect of an underlying function class A on the MISE convergence. If we return
to definition (1.2) of the class A := A(b, ¢, Q), then we can conclude that only vector ¢ affects
the first order of the MISE convergence while b and @ do not. This is an interesting specific of
analytic regression functions because for Sobolev function classes, considered in Pinsker (1980),
all constants defining the class affect the Pinsker constant. Now let us look at the lower bound
for the Wald problem. It points upon a conjecture that the oracle may use an estimator with a
priori chosen fixed sample size n*(¢e) to solve the Wald problem. At first glance this conjecture
looks strange, but let us stress that we are dealing with oracle-estimators that know nuisance
functions and an underlying class of regression functions. Because the statistician does not
have that information, sequential estimation is the only option to solve the classical Wald
problem. Several more remarks about Theorem 1 are as follows. The class of distributions =
of the regression errors is large and includes both continuous and discrete random variables.
Proof of the lower bound (2.3) uses a standard gaussian regression error. It is well known in
point estimation theory that gaussian distribution is the least favorable for estimation of the
mean, and here we have a similar property for the multivariate regression. Recall that for
a gaussian variable its Fisher information is reciprocal of the variance, and this sheds light
on factor o?(x) in the integral on the left side of (2.3). It is reasonable to conjecture that
for a fixed distribution of £ we will see a corresponding Fisher information in the integral.
Another thought-provoking comment is as follows. Suppose that the regression is additive,
that is m(x) = Zle my(x,), and we are interested in estimation of the univariate function
mq(z1). Additive models are often recommended to remedy the curse of multidimensionality,
see Wassermann (2006). Then sharp minimax estimation of a component in additive model

becomes dramatically more complicated according to Efromovich (2013,2018). In other words,



minimax lower bounds for and adaptive minimax estimators of a multivariate regression and
components in an additive regression are different, and this is an interesting specific of a

multivariate regression.

Now we are in a position to introduce oracle-estimators that attain the lower bounds of
Theorem 1. As a result, we will be able to conclude that the lower bounds are sharp-minimax
and can be used as benchmarks for data-driven estimators. We begin with part (i) of Theorem
1 and introduce a minimax oracle-estimator based on a sample Z7. Below we define more
general statistics and sequences than needed because later they will be used in Section 3
for construction of sharp-minimax sequential estimators. Also we are using notations and
sequences introduced at the end of the Introduction.

1

Consider a sample Z7* with shortly defined deterministic n;y < n, and introduce a low-

frequency regression estimate

ni
mo(x,n1) = Y Bi(m)ei(x), Gi(n1) =ny" Y V(XD es(X). (2.6)
vi<q/(q')* =1
Then this estimate is used to construct a Fourier estimate
Oi(m) i=[n—m]™" Y [¥i— o (X, n)][F (X)) (X)) (2.7)
I=ni1+1
The proposed regression estimator is
m*(x) = m*(x, Z}) = ino(x,m1) + > 0;(n1)pi(x). (2.8)

{i: ¢/(¢")*<Vi, i<q(14+1/¢’)/c}

Here the sum complements the low-frequency Fourier components of mg by high-frequency
components with indices i, < q(1+1/¢')/¢,, r =1,2,..., k. Note that mg(x,n1) is based on
Z" while m*(x) on Z ., and mg(x,n1). Further, the two terms on the right side of (2.8) are

low and high frequency components of the regression estimate, respectively. Finally, note that
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the estimator is data-driven and based solely on data. Also recall that for the Wald problem

the oracle’s sample size n*(¢) was defined in Theorem 1.

Theorem 2 (Oracle-estimator). Let Assumption 1 hold and ny := ni(n) := [n/(¢')*+2].
(i) Consider a deterministic stopping time T = n and a corresponding data-driven estimate

m(x, Z}) := m*(x,ZY). The MISE of this estimate attains the lower bound (2.3) and

n(x, Z") — m(x))%dx U2(X>x
erN,aeilfl,gses,meAE{/R(m( 2i) —m{x))d }//fo(x)d
k
= n " In(n)*[[ [ & 11 + 0 (1)). (2.9)
r=1

(ii) For the Wald problem, consider an oracle-estimator m*(x, Z?*(E)) defined in (2.8) and

based on a sample with the oracle’s deterministic sample size n*(¢). Then

sup E{/ (m(x, 27 ) — m(x))2dx} < e(1+ 0c(1)). (2.10)
fXEN,0eEN , FECE,mEA R

Theorem 2 implies two important conclusions. First, the lower bounds of Theorem 1 are
sharp. Second, the oracle can solve the two classical sequential problems without invoking
stochastic stopping times. These outcomes shed an interesting light on the two problems. For
the first one (bounded mean stopping time and minimal MISE), the oracle suggest to use a
data-driven estimator. For the Wald problem the oracle suggests the same regression estimator
only with a deterministic sample size defined by nuisance functions and the underlying function
class. This is an interesting conclusion for the theory of sequential nonparametric regression.
Accordingly, the oracle tells the statistician that only sequential estimation can solve the Wald
problem, and then simplicity of a proposed solution becomes paramount. As we will see shortly

in Section 3, a two-stage Stein’s methodology allows us to solve the problem. Finally, let us
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make several technical comments. As we will see in the proof of Theorem 2, there is a large
choice of sequences nj(n) = o,(1)n for which (2.9) holds. Also note while m*(x, Z?*(E)) is an
oracle-estimator, statistics 6;, 6; and mo(x,n1) based solely on data. We may conclude that
mimicking n*(e) by a data-driven stopping time will be the main issue in the next section

devoted to solving the Wald problem.

3 Two-stage sequential estimation with assigned MISE

The aim is to solve the Wald problem and suggest a data-driven sequential estimator that
matches performance of the sharp-minimax oracle-estimator of Theorem 2. As we will see
shortly, the renown Stein methodology of two-stage sequential estimation is applicable for the
considered multivariate heteroscedastic regression.

We continue to use notations and statistics introduced in the previous sections, and let us
make a specific remark about regression estimate g(x,n;) and Fourier estimates 6;(n;) and
0;(n1) defined in (2.6) and (2.7). In the proposed two-stage sequential regression estimator
these statistics are used twice by both stages but using different observations collected by the
corresponding stages. It is convenient to utilize the same notation for these statistics and keep
in mind that they are based on different observations.

Now let us describe two stages of sequential estimation. The first one is based on ng
observations Z7° from (X,Y) where ng := ng(e, k) is the smallest integer such that ng >
e~ 1¢*/[¢')F! and q := q(¢), ¢ := ¢/(¢) are defined at the end of the Introduction. Note that
supng/n*(e) = o0-(1), where the supremum is over the same classes as in (2.10) and n*(¢) is

the oracle’s benchmark for the mean stopping time, see part (ii) of Theorem 2. Observations
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of the first stage are used to calculate size n of an extra sample for the second stage,

i = i(e, Z1°) := [e ' [ [ I (3.1)

r=1
Here
J, := min {J L B(J) <e/d, Je{la/d) Ta)d] +1,... ,qq'}}, (3.2)
aq’ qq’
_ _ Y1, Y, 03 (X, )1 (Xa, )
F(J) = 2[no(ng — 1)]7" e . : 3.3
) izT:O z’T;H [ ! : 1Sl1§;§no FAXn) 2 (Xea) } .
is U-statistic used to estimate Sobolev functional F.(J) := ?3;:0 ng/:JH 02, and (k — 1)-

dimension vector i_, is obtained from vector i by removing its rth element, for instance i_o :=

(41,93, ...,1k). Used in (3.1) statistic
} ' +q*
d := max(1/¢', min(q, (no — n1)q > Z [00....0(n1)]?)) (3.4)
J=qq'+1

evaluates integral [j[0?(x)/f*(x)]dx that we have seen in the lower bound (2.3) of Theorem
1. Recall that this integral describes the effect of two nuisance functions on the MISE. Let us
also stress that statistics 6;(ny), 63(n1), mo(x,n1) are based on the sample Z7°, n1 =ni(ng) =
[n0/(¢)2], ¢ = qe, ¢ = ¢, and ¢ is as small as desired.

The second stage is defined as follows. The stopping time is T := ng+n, where 7 is defined
in (3.1), and accordingly we get an extra sample Zgo 41 from (X,Y). In what follows, to use
notations of Section 2, we formally set n := 7, nq := n1(g) := [e71¢*/(¢')**?] (note that n; is
not random), and using the extra sample Z7 | and formulas (2.6) and (2.7) calculate Fourier

estimates 6;(n1), 6;(n1) and the low-frequency regression estimate

mo(x,n1) = Y Oi(na)pi(x). (3.5)
Vvi<g/(¢')*

The proposed sequential regression estimator, mimicking (2.8), is

(%, Z1) == 1ho(x,n1) + > Bi(n1)pi (), (3.6)
{iza/(¢")4<Vi, i<d}
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where J := (Ji,...,J;) and cutoffs J, are defined in (3.2). Note that the regression estimator
(3.6) uses observations Z7° to calculate 7 and J, while all other statistics are calculated using

the extra observations Zgo 41

Theorem 3 (Sequential Estimator for the Wald problem). Let Assumption 1 hold and
suppecz E{&*} < co. Then the two-stage sequential regression estimator tr(x,Z7), defined

in (3.6), is sharp-minimaz. Namely, its MISE satisfies

swp By [ (i ZT) — mi) ) < (14 0.(1), (3.7)
fXeN,ceN, FEeEmeA R

and its mean stopping time matches the oracle’s one,

sup E{T}/n*(e) =1+ 0:(1). (3.8)
fXeN,0ceN,FEeEmeA

This is an interesting theoretical outcome for a multivariate heteroscedastic regression
which states that it is possible to suggest an adaptive sequential estimator that solves the
Wald problem and matches performance of the oracle. Moreover, the two-stage sequential
approach is motivated by and resembles classical pioneering methods of Stein (1945), Wald
(1947) and Anscombe (1949,1953) for sequential estimation of parameters. Several possible

extensions of the result are discussed in the Conclusion.

4 Proofs

Recall that main notations were introduced at the end of the Introduction. In the proofs we

are interested in asymptotic in n — oo for Theorems 1 and 2, and in € — 0 for Theorem 3.
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Proof of Theorem 1. We begin with proving the oracle’s lower bound (2.3) given the
restriction (2.2) on the mean stopping time. To make the proof shorter we convert it to
Efromovich (1989,2000). The left side of (2.3) does not increase if we consider: (i) Specific
nuisance functions fX(x) and o(x) from the class NV; (ii) Specific distribution of the regression
error ¢ from the class =; (iii) A subclass of considered regression functions. Let us consider
these suggestions in turn and explain the motivation. (i) We choose fX(x) = I(x € R) and
0?(x) = d*. This functions belongs to A and they are the only constant functions on R that
maximize the integral in (2.3); (ii) We choose a standard normal distribution for the regression
error £. Recall that Fisher information for the mean of a gaussian distribution is reciprocal
of the variance, and that for all distributions with bounded variance a gaussian one is the
least favorable for estimating the mean; (iii) A subclass of regression functions is chosen in
such a way that each Fourier coefficient can be treated independently, and accordingly the
subclass should be a parallelepiped in place of ellipsoid A. To define the parallelepiped set

Jor = [(1/cr)q(1 =1/¢")], Ju := (Ja, ..., Juk), and note that for any b > 0
g e 10719 — =g (1 4+ 0,(1)) and ¢* = 0, (1)n'/. (4.1)
These relations allow us to introduce a parallelepiped

R = {m(x) : m(x) =Y _I(Ai>q/q, V(i/T.) < Dbigi(x), 07 <~ T/} (4.2)
i=0
and according to (4.1) for all sufficiently large n we have R,, C A.

Using the above-described steps (i)-(iii) and the Bessel inequality we get for all sufficiently

large n,

inf sup El / (x, Z7) — m(x))2dx}/ / ),

M (FX 0)eN (d*), FEEE,mEA r fX(x)
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>inf sup E.{ [ (mp(x, Z7) — m(x))%dx}/d*

mr meR, R
> sup S I(min(i) > q/d, V(i/T, < 1) inf E{(6(T) - 65)2}/d". (4.3)
MER i=0 0* (T)

Here the expectation E, stresses that distribution of the regression function £ is standard
normal, f¥(x) = I(x € R), and 0?(x) = d*. In other words, on the right side of (4.3)
the underlying model is Y = m(x) + Vd* &y where & is standard normal and independent of
uniformly distributed on R predictor X, and m(x) belongs to the parallelepiped (4.2). We
converted the setting into one considered in Efromovich (1989,2000), recall that parametric
Fisher information for Y’ := 6 4+ v/d*&y is 1/d*, and then validity of the lower bound (2.3) is
established.

Lower bound (2.5) given (2.4) follows from (2.2) and (2.3) using proof by contradiction.
Assume that (2.5) does not hold and instead its right side is (1 —y+o0.-1(1)) for some positive

constant . Then this contradicts (2.2)-(2.3). Theorem 1 is proved.

Let us present a technical lemma that will be used shortly in proofs of Theorems 2 and 3.

Lemma 1. (i) The following relation holds for function class A = A(b,c,Q) defined in (1.2),

k

AcC A* = {m -m Z 91901 12 < [Q/k”H(ZT + 1) crlT}l/kv X € R} (4'4)

r=1

(ii) Let function g(x) be square integrable on R and fR[akg(x)/axl ...0xy)?dx < co. Then the
following relation is valid for Fourier coefficients of g(x),

Z H / (x)dx]? /R[akg(x)/axl ... Oxy)Pdx/m?. (4.5)

Lip=1r=1

Remark 1. There are two useful corollaries of Lemma 1. The first one is that for functions
from A their Fourier coefficients are absolutely summable and the functions are uniformly

bounded. The second one is that the same can be said about the ratio o?(x)/fX(x) from the
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class NV of nuisance functions. To see that Fourier coefficients are absolutely summable note

that for any set K C {0,1,...}* equality (4.5) and the Cauchy-Schwarz inequality imply

k k

Sl < [T+ ST+ 2] (16)

iek iek r=1 e r=1
Proof of Lemma 1. Inequality (4.4) follows from the classical inequality between geo-
metric and arithmetic means. Verification of (4.5) is more involved. To simplify formu-
las, set g(x) := 02(x)/f*(x) and note that g is square-integrable on R and the derivative
g (x) := 0Fg(x)/0z1 ...Oxy exists and square-integrable on R. Then in place of the cosine
tensor-product we use the sine tensor-product, and write using Parseval’s identity and inte-

gration by parts,

/ 0 g(x) /0w . .. Owy]2dx
R

o0 k 9
= Z [/ [0%g(x)/0z1 ... 0xy] H 21/2 sin(rri,«xr)dx]
i1ip=1 B r=1
e 1
=2k Z [/ ((ak_lg(x)/aazl oo 0xp—1) sin(migxy)
i dn=1 [0,1]—1 x,=0
1 k—1 9
—/ (i) cos(mipay) (O*tg(x) /0y . .. 8xk_1)d:vk) H sin(wirxr)dxt} .
0 r=1
Using sin(0) = sin(mwix) = 0 and then repeating the above-made step for xj_1,...,21 we
conclude that
00 k k 9
Z [ﬂ'k Hir/Rg(x) ngir(:cr)dx} = /R[(?kg(x)/axl ... 0xp)dx. (4.7)
ieig=1  r=l1 r=1

Lemma 1 is proved.
Proof of Theorem 2. Some parts of the proof will be used later in the proof of Theorem 3.

This explains why several more general relations than needed are presented.
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First of all let us check that Fourier estimates introduced in (2.6) and (2.7) are unbiased.

Using Assumption 1 we can write,

[m(X) + o (X)&pi(X)
fAX)

O R I
| R i = [ mix)aax = 0. (48)

E{fi(m1)} = E{Y[f¥ (X)) 'i(X)} = E{ }

X

Now we are considering Fourier estimate éi(ng). Using Assumption 1 and that Z7 ,; and
mo(x,n1) are independent, we can write for Vi > ¢/(¢')*,

[m(Xn) + U(Xn)gn - mO(X’m nl)]@l(xn)

FXX)
_ m(Xs)pi(Xn) . a(x. 11 )os (x)dx) = 6
= B Sy —( [ noe m)e(x)dx) = b (49)

E{fi(n1)} = E{

}

In the last equality we used (2.6) and [, ¢;(x)pi(x)dx = I(j = i).
Unbiasedness of the two Fourier estimates is established, and now we are exploring their

variances (mean squared errors). Using Remark 2 it is plain to realize that
sup E{(fi(n1) — 6;)?} < wnjt. (4.10)

Here and in what follows the supremum is over the same function classes as in (2.9), and recall
that w’s are generic positive constants.

Using this result, the Parseval identity and definition of n; we conclude that

supE{/ (mo(x,n1) — Z 0ip1(x))%} < wnit (14 q/(¢)MF = on(1)n ¢ . (4.11)
R vi<a/(@')*

For éi(nl) we need to establish a more accurate upper bound than (4.10), namely we need
to get [plo?(x)/f*(x)]dz in place of a generic constant w. Write using (4.9), the Cauchy

inequality, and a constant v € (0, 1),

(n _ nl)ZE{(éi(nl) _ 91)2} _ E{[ Z [[m(Xl) + O'(Xl)ﬁ:lxz}??)o(xl,nl)]sol(xl) . ‘91]}2}
l=n1+1
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— E{[ Z [(m(Xl) + o (X)& — m(Xy))wi(Xy) . (m(Xy) — o (Xy, n1)pi(Xa) Hi]r}

o X)) X(X))
. o? ()¢ (x) N 1 =~ (m(Xy) —mo(Xy, n)ei(Xs) 2
< (a4 Py FX(X) 2y
= (1+7)(n—n)Ai+ (1+77 Ay (4.12)

To analyze A; we note that ¢?(z) = 14 27/2p9;(2), and this together with Lemma 1 and

Remark 2 allow us to conclude that

Ay = / [0%(x)/ X (x)]dx(1 + p;), where supz lpi] < w < 0. (4.13)
R i=0

For the term As on the right side of (4.12) we can write for any considered i satisfying

Vi >q/(q)",
n

A= 3 E{[(m(xz) — mo(Xy,n1)ei(Xa) 02}

l=n1+1 fX(Xl)
(m(Xy) — mo(Xy, n1)pi(Xy) 1 (m(Xy) = mo(Xe, m)ei(Xe)
+2 n1+1%:<T§n E{[ fX(Xl) ‘91” fX(Xr) ‘91]}
_ (m(Xp) — mo(Xy,n1)wi(Xn)
= (n —n1)[E{[ XX, 1%} — 67 (4.14)

In the last equality we used [p[m(x) — mo(x,n1)]ei(x)dx = 6;. With the help of (4.11) we

conclude that sup Ag; = 0,,(1)ng*. Combining the results we get

E{(6i(n1) — 6:)*} <n Y1+ o0,(1) 4 pl), where i Ipi] < w < . (4.15)

o2(x —
I 7fx((x)) dx i=0

sup

Using (4.15) we conclude that

(1) — 6;)2 k
sup Z“Zq/(‘”4<“’f“f;’§(§§7}/£'@f§f‘( || Ry
R

r=1
This relation, together with sup > . icysq(141/¢) 02 = 0,(1)n"1q", (4.11), (4.15) and the Par-

seval identity, verify Theorem 2.
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Proof of Theorem 3. In what follows we are considering functions and distributions from
the classes considered in the supremum of (3.7), and the sup means the supremum over that
classes. Recall that general notations and specific sequences are introduced at the end of the
Introduction, and in particular ¢ = ¢(¢), ¢ = ¢/(¢), and 0-(1) — 0 as € — 0. Also, to simplify
formulas it is convenient to introduce a generic function of(1) such that sup |o:(1)| = 0-(1).
We begin with verification of the following upper bound on the mean sample size of the

second stage,

supE{n} < n*(e)(1 + 0:(1)). (4.16)

Set J¥ := [(1/¢;)g(1 +1/¢")], r = 1,...,k and recall from Section 2 that these are optimal

cutoffs of the sharp-minimax oracle-estimator (2.8). Write,

k
E{n} = E{I( ﬂ{J JTE< 1D —1dHJ }HE{I( U{J JJE > 11 [e Hj

r=1
~ k k ~ ~ k ~
<14 'B{d} [[ 7 + e "B I(J{Te/ T > DA ][} = 1+ A+ 4y (4.17)
r=1 r=1 r=1

To continue we recall one familiar inequality for moments of U-statistics due to Lemma 4.1 and
Remark 4.1 in Efromovich (2000), and note that this is the place where the extra assumption

of a bounded fourth moment of the regression error £ is used. The inequality is

sup E{(F — F)*/(F + Lng")?*} <wng?, w < oo. (4.18)

~ _ Yy, Vi, 01(Xiq )i (X))
Here F := ZiEIC z[no(no_l)] ! Zl§l1<l2§n0 llf)éQ(Xll)]lle(XlQ)lQ ) F .= Zigl(j 9127 KC {07 17 .. -}k7
and L is cardinality of set K. Further note that used in (3.4) statistic éj,07_,,70(n1) estimates
a univariate Fourier coefficient fol [f[o 11 m(x)dxy . .. drglej(r1)de;. Then using Lemma A.1

in Efromovich (2013) we get a rough inequality

sup B{(d — d)*} < wqg™*. (4.19)
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Now we can return to considering terms A; and Ay on the right side of (4.17). For A; we

write using (4.19),

E{d} =d+E{d—d} =d+o(1).

This relation yields that

14+ A; =n"(e)(1+0%(1)). (4.20)

For term Ay we can write using d < ¢/ and J, < ¢¢/,
koo ko k ) koo
=EAI(J{T/ 77 > a7} < ¢ Y B > T) [] 76}
r=1 r=1 r=1 s=1

k
Z qd ) TIR{I(T, > TN, (4.21)

Recall that F,.(J) =>_{" 702 _ 1 0f, and if J > J7 then

F(J) < w(l + J)brlemeraQtl/d)er < e /(g2 and  Eo(J, — 1) > e/q.

Accordingly, for all sufficiently small € and uniformly over the considered function classes we

get
E{I(J, > J¥)J Z E{I(J, = J)J} < i (J+D)P(E.(J) — F(J) > £/(2¢)).
j=Jr+1 J=Jzx

Using (4.18) and the Chebyshev inequality we continue

E{I(J, > J")J,

S E((RW) - FU)Y
REP L N T

< w(qq)*(e/2¢) g™ e + (qq)ong ' Png?
< qu(ql)6€—4{q\br|€1+1/q + (qql)ksq—k(q/)k+1]262q—2k(ql)2k+2

*(1)q2—2k’+1/2. (422)

:08
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We conclude that et Ay = 0 (1)n*(g). This, (4.20) and (4.17) verify (4.16).

Now we are verifying that MISE of the proposed sequential regression estimator is at most

£(1 4 0%(1)). For an underlying regression function m := m(x), introduce its specific vector
I := (Jmi,- -, Jmr) of oracle’s cutoffs implying sharp-minimax estimation,
¢ qq
- ;:min(,]: F=Y Y <2/, J:0,1,...,J:), r=1,...k (4.23)
i,=0 j=J+1

The subscript m in J,,,,, emphasizes that this is a special oracle’s cutoff based on the underlying
regression function m(x) from the class A. Previously introduced cutoffs J;" are minimax and
use only information about function class A. The latter explains the upper bound J in (4.23).
We are analyzing the MISE using two vectors of oracle-cutoffs (Jy,1, .. ., Jmk) and (J7, ..., Jf).
For an underlying regression function m € A introduce a set of indexes D,,, := ﬂ,’le{JT e <

Jr < J¥}, and note that the complementary set is

D =Ur_{J  { T < Jp < T =UF_ (U0 {Jr < T} UL > T}

We also introduce notation J := (Jy,...,J;) for the vector of estimated cutoffs. Using these

notations we can write,

E{ /R (s (x, ZT) — m(x))2dx}
= E{I(J € D,,) /

(i (x, ZT) — m(x))2dx} + E{I(3 € DE) / (i (x, ZT) — m(x))2dx)
R R

Uit (124)
Term U, is the oracle’s MISE and sup U; < €(140.(1)). Accordingly, we need to show that
sup Uy = eo.(1). (4.25)

Using the above-presented formula for Dy, we get,

k
U <Y EB{I(Jr < Jr) /R (i (x, ZT) — m(x))%dx}

r=1
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k

k k
+> E{I(J, > J}) /R (mr(x,Z]) = m(x))%dx} = > Uair + Y Usay. (4.26)
r=1 r=1

r=1

Note that terms in the first sum use cutoffs smaller than recommended by the oracle for an
underlying regression function m, and this may lead to larger bias. Terms in the second sum
use cutoffs larger than suggested by the minimax oracle, and this may lead to larger variance.

We are considering these two cases in turn. Write using the Parseval identity,

Usty = E{I(Jy < Jpy) /R (r(x, ZT) — m(x))%dx}

¢ Jmr—1 qq’
SEU <) 33 G002+ B < J) S S 021+ Y 02
i_.=0 ,=0 i,T:Oirij Vi>qq'
= Vi+Vo+ Vs (4.27)

Here 6; := 6;I1(Vi < q/(¢)Y) + 6;I(Vi > ¢/(¢)*). For m € A we have supVs = o.(1)e.

Accordingly, V3 is sufficiently small, and we are evaluating V7 and V5 in turn. For V; we use

Cauchy-Schwarz inequality and get
99" Jmr—1
vi < B < 0] CE(Y S @-a)] (4.28)
ip=0 ir=0

For the probability term we note that if J, < Jy,, then F,.(J) < /¢’ and F,(J) > 2¢/¢’. This

remark, Chebyshev inequality, J, > [¢/¢'] almost sure, and (4.18) yield

Jmr—1 Jmr—1
P(Jr <Jmr)= Y P=J)< D PEJ) = F(]) > (1/2F(]), F(]) > 2/q)
J=[q/q" J=[q/q"]
Jmr 1 —2 Yk —1)2
< w Z 0 (FT(J;:‘(F]Q)Q) 0 ) I(F(J) > 28/(]/) < 0;(1)(]7%((]/)10. (4.29)
J=la/q.] "

Next step is to evaluate the expectation on the right side of (4.28). Recall that Fourier
estimate 6;(n1) is not sequential and based on a sample of size ni. This yields E{(6;(n;) —

0:)*} < wn? = of(1)e2q2#(¢')***°. To evaluate moments of 0; we note that this Fourier
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estimator is based on a sample with random size 72 — n; defined by the first stage. Accordingly,
set ny = [e71q%/(¢)FF1], n* := [e71¢¥(¢")* 1], note that for all sufficiently small £ we have
ny < n < n* almost sure, and recall that we are considering asymptotic in € — 0 and hence

ny = o%(1)n, allows us to assume that n; < n.. Using these remarks we can write,

niﬁ (Y'l _ mO(le nl))(pi(Xl) — 91]4}

. _ N\ — n—mng)"t
E{(6; — 6:)*} = E{[(A — n1) (X))

l=nog+n1+1

*

_ nz E{I(TNL _ S)[(S o n1>fl nOZ—H (i/l - mO(Xl,nl))SOi(Xl) _ ai]4}

S=Nx I=no+ni+1 fX(Xl)
n* no—+s — W n .
= R E(e -yt Y USRS IA gy )
s=n. l=ngm +1

For the expectation on the right side of (4.30) we can use inequality (1.3.50) in Efromovich

(2018) and get for Vi > q/(¢')* (also recall a similar calculation in the proof of Theorem 2)

no+s -
Y, — mo(Xy,n (X _
E{[(s—n)"" Y (¥ O(X’ V)il l)—ai]4}gw(s—n1) 2, (4.31)
I A X))
=no+ni+1
Here we used the above-mentioned n; = o0X(1)n. and that in (4.31) statistic rg(x,n1) is

independent of (X;,Y;). Using this inequality in (4.30) we conclude that
E{(f; — 6;)*} < wny? = 0f(1)e2q 2* ()23, (4.32)

Using (4.32) in (4.28) we conclude that V; = o}(1)e.

To evaluate V5 on the right side of (4.27) we note that this is the main term when
JNT < Jmr because a smaller cutoff increases squared bias and decreases variance of a re-
gression estimate. To evaluate the increased squared bias and to simplify formulas, set
Zy = 2?31:0 257 07/(e/d). Note that Z, is a random variable (function of J;), and

according to definition of J, we have F,(J,) < ¢/¢, and also for m € A and any positive
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constant c. we have 3\ ;. 07 = 0f(1)eq—°*. Using this remark and the Chebyshev inequality

we conclude that for a constant z > 2 and all sufficiently small € we have

Imr—1
P(Zy > 2, Jp < Jr) S > P(B(J) = E(J) > (2/3)F(J), F(J) > (2/2)e/q)
J=lq/q"]
Jmr—1 oz 4
<w ) E{(F;(Aﬁ? (ﬁaij)) D) > (:/2)e/d) = 02(Dg V222, (4.33)
J=[q/q"] "

Using this inequality and a classical inequality E{nI(n > 2)} < "2 P(n > r) we can
finish evaluation of V5,

qq’

Vo =Ep{I(Jr < Tor) > D 67} = (c/dVB{I(Jr < Tonr) 20}
i_rZOiijr
<2/qd + (¢/q) iIP’(ZT >z, < Jpy) < 2e/q + oz(l)giz_z =o:(1)e. (4.34)
z=1 z=1

Using the already evaluated terms Vi + V3 = 0%(1)e together with (4.34) in (4.27) we
conclude that Usj, = 0%(1)e. Accordingly, Zle Ua1r = 0%(1)e.

Now we are evaluating a term U, in (4.26). Recall that J is the oracle’s minimax cutoff.
Accordingly, the case J, > J,- increases the variance part of the MISE while its squared bias
part remains sufficiently small. To realize that, we may write using the Parseval’s identity

(compare with (4.27))

Usaw = B{I(J, > J7) / (g (%, ZT) — m(x))2dx

R
3 9’ Jr . qq’
SE{I(L, > J0) Y Y (6= 6+ B> T Y Y 6+ D 6
i_r=01%,=0 i,=04->J} Vi>qq’
=Vi+V;+ V. (4.35)

Here, similarly to (4.27), we use notation 6; := 6;I1(Vi < q/(¢')*)+6;1(Vi > ¢/(¢)*). Definition

of J* implies that for m € A we have Vj 4+ V3 = 0%(1)e. The term V/ is evaluated similarly to
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the term V] in (4.27) and we get V{ = of(1)e. We have shown that all considered terms are
0%(1)e, and there are only a finite number of these terms.

Theorem 3 is proved,

5 Conclusion

The developed theory shows that asymptotically a sequential estimation of analytic multivari-
ate regression functions with assigned MISE and minimax mean stopping time is possible.
The proposed data-driven sequential estimator matches performance of the oracles that knows
smoothness of an estimated multivariate regression and all nuisance functions, and accordingly
the estimator can be referred to as adaptive. The asymptotic theory sheds a new light on the
potential of sequential estimation because the only theoretical result known so far has been
that no minimax adaptive sequential estimation is possible for differentiable regression func-
tions. Another important result is that, similarly to classical parametric models, a two-stage
sequential methodology solves the problem.

Let us mention several interesting open problems for future research. First, it is of interest
to understand the effect of missing data on sequential estimation. Missing data are typical in
regression problems. Some theoretical results are known for fixed sample sizes, see Efromovich
(2018). In particular, it is known that different remedies should be used for missing predictors
and missing responses. It is understood that for sequential estimation an underlying missing
mechanism must be evaluated and taken into account, and the latter is a challenging problem
on its own. Second, it is of interested to apply the developed sequential methodology to

other familiar sequential problems like change point discussed in Baron (2001) and Schmegner
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and Baron (2004), confidence bands and hypotheses testing discussed in Wald (1947). Third,
sequential estimation of the scale function o(x) and distribution of regression error ¢ is another
practically important and theoretically challenging problem. Fourth, as it follows from the
discussion in Section 2, it is of interest to develop theory of sequential estimation for additive
regression models. Fifth, in Galtchouk and Pergamenshchikov (2009ab) a practically important
type of heteroscedastic regression Y = m(z) + o(x,m)¢{ is considered where the scale may
depend on both x and the regression function m(z). It will be of interest to consider a
multivariate regression of this type and then explore sequential estimation of the regression
and scale.

Finally, a challenging and urgent open problem is the practically important case of a small
sample for a first stage. First stage is based on a priori chosen sample size, and this creates a
possibility of no feasible estimation due to curse of multidimensionality and a sample size which
may be too small for an underlying regression (of course, using multiple stages is a possible
remedy but still simplicity of just two stages is appealing). Supplementary Materials shed light
on challenges of first stage and point upon possible modifications of proposed asymptotically
optimal estimates via exploring a thought-provoking environmental example of a multivariate
regression with 5 covariates and sample size n = 86. The practical example also highlights
a connection between studied nonparametric multivariate regression and nonparametric func-
tional regression where predictor is a process. Accordingly, sequential functional regression is

another important topic for future research.
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