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1 Introduction

Nonparametric curve estimation is devoted to estimation of functions whose shape is unknown.

A classical statistical setting is when a sample of size n is available, the problem is to propose a

feasible estimator with a minimal mean integrated squared error (MISE), and oracle approach is

used to find a benchmark for an adaptive estimator. The oracle knows some information about

an underlying estimated function, including its smoothness, and everything about nuisance

functions. Then a sharp lower bound for the MISE of oracle-estimators is established. The

notion “sharp” means that both constant and rate of the MISE convergence are established.

Then a good data-driven estimator should match performance of the oracle, and if the latter is

possible then the estimator is called adaptive because it adapts to smoothness of an underlying

estimated function and all nuisance functions. It is well known that adaptive nonparametric

estimation is possible for a wide variety of statistical models and function classes of interest,

see a discussion in Efromovich (1999,2018) and Wassermann (2006). This is a good news for

nonparametric estimation with deterministic sample size.

Situation changes rather dramatically if we are interested in the Wald problem of sequential

estimation with assigned value of a risk and a minimal mean stopping time. No adaptive

sequential estimator, matching performance of the oracle, exists for the case of differentiable

functions. More about the Wald problem, sequential estimation and the lack of adaptation

can be found in Wald (1947), Stein and Wald (1947), Anscombe (1947,1953), Ghosh and

Sen (1991), Ghosh, Mukhopadhyay and Sen (1997), Mukhopadhyay (1997), and Efromovich

(1995,2007, 2018). While there is no way to change this outcome for estimation of differentiable

functions, the paper shows that this is possible for smoother functions like analytic ones.

Further, sequential estimation can use the simplest two-stage strategy whose roots go back to
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Stein (1945) and Wald (1947), see also an interesting discussion in Aoshima and Yata (2011),

Mukhopadhyay and Zacks (2018), and Mukhopadhyay (2019).

Let us describe a considered regression model and review relevant known results beginning

with the case of a fixed sample size. We observe a sample (X1, Y1), . . . , (Xn, Yn) of size n from

(X, Y ) where X := (X1, . . . , Xk) is a vector of continuous covariates (predictors) and Y is a

response. The regression is controlled implying that the distribution of X is known, and in

what follows it is supposed that the joint density fX of the vector-predictor is supported and

positive on k-dimensional cube R := [0, 1]k. The underlying regression model is

Y = m(X) + σ(X)ξ, (1.1)

where m(x) := E{Y |X = x} is the regression function of interest, ξ is a zero-mean regression

error independent of X, and a positive function σ(x) is called a scale function. Let us formulate

one of the main known theoretical results due to Hoffmann and Lepskii (2002). Consider a

cosine tensor-product basis ϕi(x) :=
∏k
r=1 ϕir(xr) on R where ϕ0(x) = 1, ϕi = 21/2 cos(πix),

i = 1, 2, . . ., i := (i1, . . . , ik), set θi :=
∫
Rm(x)ϕi(x)dx for Fourier coefficients of m(x),

and introduce an anisotropic Sobolev class S(~α,Q) := {m(x) : m(x) =
∑∞

i=0 θiϕi(x),x ∈

R;
∑∞

i=0[1 +
∑k

r=1(1 + πir)
2αr ]θ2

i ≤ Q} of differentiable functions. Note that we use notation∑∞
i=0 :=

∑∞
i1,...,ik=0. Then it is established that the optimal (oracle’s) minimax rate of the

MISE convergence is n−2α/(2α+1) where α := [
∑k

r=1 α
−1
r ]−1 is the effective smoothness. For

univariate case k = 1 not only the rate but a sharp constant is known that is achieved by a

data-driven estimator that matches performance of the oracle that knows parameters of the

Sobolev class and the nuisance functions fX(x) and σ(x), see Efromovich (1999). Oracle’s

lower bounds, used as benchmarks for data-driven estimators, are discussed in Barron, Birge

and Massart (1999), Galtchouk and Pergamenshchikov (2009ab), and Efromovich (2018) where
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further references may be found. In short, the theory and methodology of regression estimation

for k = 1 and a fixed sample size is well developed. For sequential estimation it is known that

neither the constant nor the rate can be improved by a sequential plan with stopping time

T satisfying E{T} ≤ n. Further, if we restrict our attention to sequential estimators with an

assigned MISE and minimal expected stopping time (the Wald problem), then no data-driven

estimator can match performance of the oracle, see Efromovich (2007,2018).

As we will see shortly, that negative outcome for the Wald problem changes if we consider

an analytic class of regression functions on R with faster decreasing Fourier coefficients,

A := A(b, c, Q)

:= {m(x) : m(x) =
∞∑
i=0

θiϕi(x), x ∈ R;
∞∑
i=0

[1 +
k∑
r=1

(1 + ir)
2brecrir ]θ2

i ≤ Q}. (1.2)

Here θi :=
∫
Rm(x)ϕi(x)dx, b := (b1, . . . , bk) and c := (c1, . . . , ck) are vectors of constants

and min(c1, . . . , cr) > 0. Analytic function classes are familiar in statistical literature and well

suited for many practical applications, see a discussion in Ibragimov (2001) and Efromovich

(1999,2018). In what follows parameters (b, c, Q) of the class A are known to the oracle and

unknown to the statistician.

Now let us formulate our main aim. We are interested in estimation of the regression

function m(x) in model (1.1) by a sequential estimator E := E({m̌r(x,Z
r
1), r = 1, 2, . . .}, T ).

Here m̌r(x,Z
r
1) is a regression estimate based on a sample Zr1 := {(X1, Y1), . . . , (Xr, Yr)} with

fixed sample size r, and T is a stopping time. Accordingly when the stopping time is defined

then the regression estimate is m̌T (x,ZT1 ). Stopping time is a positive integer-valued random

variable such that after observing Zr1 we make a decision as to whether or not T = r. If

the decision is T = r, then we stop observations and use the regression estimate m̌r(x,Z
r
1),
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otherwise we continue the sampling. More rigorously, let (Ω,F , P ) be an underlying probability

space, {Zr1, r = 1, 2, . . .} be a sequence of multivariate random variables on {Ω,F , P}, and

F1 ⊂ F2 ⊂ . . . be an increasing sequence of sub sigma-fields of F such that Zr1 is Fr-measurable,

then the stopping time is a map T : Ω→ {1, 2, . . .} such that {T ≤ r} ∈ Fr. Suppose that the

oracle knows the underlying class (1.2) of regression functions, the design density fX and the

scale function σ. Then we are considering two classical sequential regression problems when a

data-driven estimator tries to match performance of the oracle. (1) Value of the mean stopping

time is assigned, and then MISE of a sequential estimator matches the oracle’s MISE; (ii) Value

of the MISE is assigned, and then the mean stopping time matches the oracle’s mean stopping

time (the Wald problem). As we will see shortly, for the former problem sequential estimation

does not dominate estimation based on a fixed sample size, but for the Wald problem sequential

estimation is superior and can match the oracle.

The content of the paper is as follows. Asymptotic theory for oracle-estimators is pre-

sented in Section 2. Oracle’s lower bounds serve as a benchmark for an estimator, and oracle-

estimators inspire data-driven estimators. Sequential estimation with assigned MISE (the

Wald problem) is considered in Section 3 where a sharp-minimax two-stage estimator match-

ing performance of the oracle, is introduced. The used methodology mimics the classical Stein’s

approach proposed for parametric models. Proofs are deferred to Section 4. Conclusions and

topics for future research can be found in Section 5. The online Supplementary Materials

contain an important environmental example devoted to a new civil engineering technology

for reducing greenhouse gas emission. This is a thought-provoking controlled regression with

5 covariates and only n = 86 observations. The example and its discussion shed a new light

on the first stage of proposed estimator.
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In the paper the following notations are used. For the first above-formulated problem

of estimation with minimal MISE, given the mean stopping time is bounded by a positive

integer n, we are interested in the asymptotic when n → ∞. Set q := qn := d2 + ln(n + 1)e

and q′ := q′n := d2 + ln(ln(n + 3))e where dce denotes the smallest integer larger or equal

to c. It is assumed that
∑n

l=n+1 := 0,
∑J

i=0 :=
∑J

i1,...,ik=0, 0/0 := 0, ∨i := max(i1, . . . , ir),

∧i := min(i1, . . . , ik), ic := (i1c1, . . . , ikck), sup is the supremum over considered function

classes, on(1)’s are generic vanishing sequences in n. I(·) is the indicator, w’s are generic

positive constants. Zr+jr+1 := {(Xr+1, Yr+1), (Xr+2, Yr+2), . . . , (Xr+j , Yr+j)} denotes a sequence

of iid observations (sample of size j) from (X, Y ). For the Wald problem, ε denotes a given

positive real number that is used to bound the MISE, and then we are interested in the

asymptotic as ε → 0. Because notation n for a given sample size is no longer used, with

some obvious abuse of notation it is convenient to consider q := q(ε) := d2 + ln(ε−1 + 1)e,

q′ := q′(ε) := d2 + ln(ε−1 + 1)e, and oε(1) denotes a generic function that vanishes as ε→ 0.

2 Asymptotic theory of oracle-estimators

Consider regression model (1.1) and the oracle who knows the model, the design density fX

and the scale function σ (the two so-called nuisance functions), and parameters of the function

class (1.2). The problem is to understand how well the oracle can solve the two sequential

problems formulated in the Introduction, namely minimization of the MISE given assigned

expected stopping time and the Wald problem of minimizing the expected stopping time given

assigned value of the MISE. While the oracle knows the design density and the scale function,

it is of interest to understand how the oracle can deal with a class of these nuisance functions.
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Introduce a class of positive and differentiable on R := [0, 1]k k-variate functions

N := N1(w1, w2, w3) := {g : w1 ≤ g(x) ≤ w2, |
∂k(g(x))

∂x1 . . . ∂xk
| ≤ w3, x ∈ R

}
, (2.1)

where w1, w2 and w3 are positive constants whose specific values play no role in the presented

below theoretical results. Accordingly, to simplify formulas we may write that both fX and σ

belong to N keeping in mind that the constants can be different.

Assumption 1. The design density fX and the scale function σ are from class (2.1) with

possibly different constants (w1, w2, w3), and
∫
R f

X(x)dx = 1. Regression error ξ in (1.1) is

independent of X and its distribution F ξ belongs to a class Ξ of distributions with zero mean

and variance bounded by 1.

The assumption is mild, and let us note that even in a classical univariate regression

theory it is traditionally assumed that the nuisance functions are positive and differentiable,

see Wassermann (2006) and Efromovich (2018).

The following theorem considers the two above-presented sequential problems and presents

sharp lower bounds for oracle-estimators. Recall notation E({m̌r(x,Z
r
1), r = 1, 2, . . .}, T ) for

a sequential estimator introduced in the Introduction. In the theorem considered sequential

regression estimates m̌r and stopping times T are constructed by the oracle, and accordingly

the estimators are called oracle-estimators. To highlight that a statistic is constructed by the

oracle we use the asterisk, for instance m̌∗r , T
∗ and E∗.

Theorem 1 (Lower Bounds for the Oracle). Let Assumption 1 hold. The two sequential

problems for oracle-estimators with assigned mean stopping time and assigned MISE are ex-

plored in turn:

(i) Introduce a class S(n) of sequential oracle-estimators E∗({m̃∗r(x,Zr1), r = 1, 2, . . .}, T ∗) with
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stopping time T ∗ satisfying

sup
fX∈N ,σ∈N ,F ξ∈Ξ,m∈A

E{T ∗/n} ≤ 1. (2.2)

Then the following lower bound for minimax MISE of oracle-estimators holds,

inf
E∗∈S(n)

sup
fX∈N ,σ∈N ,F ξ∈Ξ,m∈A

[
E{
∫
R

(m̃∗T ∗(x,Z
T ∗
1 )−m(x))2dx}/

∫
R

σ2(x)

fX(x)
dx
]

≥ n−1[ln(n)]k[

k∏
r=1

c−1
r ](1 + on(1)). (2.3)

(ii) Consider the Wald problem of minimizing the expected stopping time given an assigned

value of the MISE. Introduce a class S ′(ε) of sequential oracle-estimators E ′({m̂∗r(x,Zr1), r =

1, 2, . . .}, T ∗) whose MISE satisfies the upper bound

sup
fX∈N ,σ∈N ,F ξ∈Ξ,m∈A

E{
∫
R

(m̂∗T ∗(x,Z
T ∗
1 )−m(x))2dx} ≤ ε. (2.4)

Denote by n∗(ε) a minimal integer n such that n−1[ln(n)]k[
∏k
r=1 c

−1
r ][

∫
R σ

2(x)/fX(x)dx] ≤ ε.

Then

inf
E ′∈S′(ε)

sup
fX∈N ,σ∈N ,F ξ∈Ξ,m∈A

E{T ∗/n∗(ε)} ≥ (1 + oε(1)). (2.5)

Let us comment on the lower bounds, and then proceed to presenting oracle-estimators

that establish sharpness (attainability) of the lower bounds. We begin with the first problem

and lower bound (2.3). Note that the MISE is proportional to the integral
∫
R[σ2(x)/fX(x)]dx

which shows how the two nuisance functions affect the MISE. This dependence is known for

non-sequential regression estimators. Next, let us rewrite the right side of (2.3) as n−1P ∗, then

the constant P ∗ is traditionally referred to as Pinsker constant to honor the pioneering result

of Pinsker (1980) devoted to filtering signals from white Gaussian noise. Pinsker constant
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describes the effect of an underlying function class A on the MISE convergence. If we return

to definition (1.2) of the class A := A(b, c, Q), then we can conclude that only vector c affects

the first order of the MISE convergence while b and Q do not. This is an interesting specific of

analytic regression functions because for Sobolev function classes, considered in Pinsker (1980),

all constants defining the class affect the Pinsker constant. Now let us look at the lower bound

for the Wald problem. It points upon a conjecture that the oracle may use an estimator with a

priori chosen fixed sample size n∗(ε) to solve the Wald problem. At first glance this conjecture

looks strange, but let us stress that we are dealing with oracle-estimators that know nuisance

functions and an underlying class of regression functions. Because the statistician does not

have that information, sequential estimation is the only option to solve the classical Wald

problem. Several more remarks about Theorem 1 are as follows. The class of distributions Ξ

of the regression errors is large and includes both continuous and discrete random variables.

Proof of the lower bound (2.3) uses a standard gaussian regression error. It is well known in

point estimation theory that gaussian distribution is the least favorable for estimation of the

mean, and here we have a similar property for the multivariate regression. Recall that for

a gaussian variable its Fisher information is reciprocal of the variance, and this sheds light

on factor σ2(x) in the integral on the left side of (2.3). It is reasonable to conjecture that

for a fixed distribution of ξ we will see a corresponding Fisher information in the integral.

Another thought-provoking comment is as follows. Suppose that the regression is additive,

that is m(x) =
∑k

r=1mr(xr), and we are interested in estimation of the univariate function

m1(x1). Additive models are often recommended to remedy the curse of multidimensionality,

see Wassermann (2006). Then sharp minimax estimation of a component in additive model

becomes dramatically more complicated according to Efromovich (2013,2018). In other words,
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minimax lower bounds for and adaptive minimax estimators of a multivariate regression and

components in an additive regression are different, and this is an interesting specific of a

multivariate regression.

Now we are in a position to introduce oracle-estimators that attain the lower bounds of

Theorem 1. As a result, we will be able to conclude that the lower bounds are sharp-minimax

and can be used as benchmarks for data-driven estimators. We begin with part (i) of Theorem

1 and introduce a minimax oracle-estimator based on a sample Zn1 . Below we define more

general statistics and sequences than needed because later they will be used in Section 3

for construction of sharp-minimax sequential estimators. Also we are using notations and

sequences introduced at the end of the Introduction.

Consider a sample Zn1
1 with shortly defined deterministic n1 < n, and introduce a low-

frequency regression estimate

m̃0(x, n1) :=
∑

∨i≤q/(q′)4
θ̃i(n1)ϕi(x), θ̃i(n1) := n−1

1

n1∑
l=1

Yl[f
X(Xl)]

−1ϕi(Xl). (2.6)

Then this estimate is used to construct a Fourier estimate

θ̂i(n1) := [n− n1]−1
n∑

l=n1+1

[Yl − m̃0(Xl, n1)][fX(Xl)]
−1ϕi(Xl). (2.7)

The proposed regression estimator is

m̃∗(x) := m̃∗(x,Zn1 ) := m̃0(x, n1) +
∑

{i: q/(q′)4<∨i, i≤q(1+1/q′)/c}

θ̂i(n1)ϕi(x). (2.8)

Here the sum complements the low-frequency Fourier components of m̃0 by high-frequency

components with indices ir ≤ q(1 + 1/q′)/cr, r = 1, 2, . . . , k. Note that m̃0(x, n1) is based on

Zn1
1 while m̃∗(x) on Znn1+1 and m̃0(x, n1). Further, the two terms on the right side of (2.8) are

low and high frequency components of the regression estimate, respectively. Finally, note that
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the estimator is data-driven and based solely on data. Also recall that for the Wald problem

the oracle’s sample size n∗(ε) was defined in Theorem 1.

Theorem 2 (Oracle-estimator). Let Assumption 1 hold and n1 := n1(n) := dn/(q′)k+2e.

(i) Consider a deterministic stopping time T = n and a corresponding data-driven estimate

m̃(x,Zn1 ) := m̃∗(x,Zn1 ). The MISE of this estimate attains the lower bound (2.3) and

sup
fX∈N ,σ∈N ,F ξ∈Ξ,m∈A

E{
∫
R

(m̃(x,Zn1 )−m(x))2dx}/
∫
R

σ2(x)

fX(x)
dx

= n−1[ln(n)]k[

k∏
r=1

c−1
r ](1 + on(1)). (2.9)

(ii) For the Wald problem, consider an oracle-estimator m̃∗(x,Z
n∗(ε)
1 ) defined in (2.8) and

based on a sample with the oracle’s deterministic sample size n∗(ε). Then

sup
fX∈N ,σ∈N ,F ξ∈Ξ,m∈A

E{
∫
R

(m̃(x,Z
n∗(ε)
1 )−m(x))2dx} ≤ ε(1 + oε(1)). (2.10)

Theorem 2 implies two important conclusions. First, the lower bounds of Theorem 1 are

sharp. Second, the oracle can solve the two classical sequential problems without invoking

stochastic stopping times. These outcomes shed an interesting light on the two problems. For

the first one (bounded mean stopping time and minimal MISE), the oracle suggest to use a

data-driven estimator. For the Wald problem the oracle suggests the same regression estimator

only with a deterministic sample size defined by nuisance functions and the underlying function

class. This is an interesting conclusion for the theory of sequential nonparametric regression.

Accordingly, the oracle tells the statistician that only sequential estimation can solve the Wald

problem, and then simplicity of a proposed solution becomes paramount. As we will see shortly

in Section 3, a two-stage Stein’s methodology allows us to solve the problem. Finally, let us
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make several technical comments. As we will see in the proof of Theorem 2, there is a large

choice of sequences n1(n) = on(1)n for which (2.9) holds. Also note while m̃∗(x,Z
n∗(ε)
1 ) is an

oracle-estimator, statistics θ̃i, θ̂i and m̃0(x, n1) based solely on data. We may conclude that

mimicking n∗(ε) by a data-driven stopping time will be the main issue in the next section

devoted to solving the Wald problem.

3 Two-stage sequential estimation with assigned MISE

The aim is to solve the Wald problem and suggest a data-driven sequential estimator that

matches performance of the sharp-minimax oracle-estimator of Theorem 2. As we will see

shortly, the renown Stein methodology of two-stage sequential estimation is applicable for the

considered multivariate heteroscedastic regression.

We continue to use notations and statistics introduced in the previous sections, and let us

make a specific remark about regression estimate m̃0(x, n1) and Fourier estimates θ̃i(n1) and

θ̂i(n1) defined in (2.6) and (2.7). In the proposed two-stage sequential regression estimator

these statistics are used twice by both stages but using different observations collected by the

corresponding stages. It is convenient to utilize the same notation for these statistics and keep

in mind that they are based on different observations.

Now let us describe two stages of sequential estimation. The first one is based on n0

observations Zn0
1 from (X, Y ) where n0 := n0(ε, k) is the smallest integer such that n0 >

ε−1qk/[q′]k+1 and q := q(ε), q′ := q′(ε) are defined at the end of the Introduction. Note that

supn0/n
∗(ε) = oε(1), where the supremum is over the same classes as in (2.10) and n∗(ε) is

the oracle’s benchmark for the mean stopping time, see part (ii) of Theorem 2. Observations
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of the first stage are used to calculate size ñ of an extra sample for the second stage,

ñ := ñ(ε,Zn0
1 ) := dε−1d̃

k∏
r=1

J̃re. (3.1)

Here

J̃r := min
{
J : F̃r(J) ≤ ε/q′, J ∈ {dq/q′e, dq/q′e+ 1, . . . , qq′}

}
, (3.2)

F̃r(J) :=

qq′∑
i−r=0

qq′∑
ir=J+1

[
2[n0(n0 − 1)]−1

∑
1≤l1<l2≤n0

Yl1Yl2ϕi(Xl1)ϕi(Xl2)

fX(Xl1)fX(Xl2)

]
(3.3)

is U-statistic used to estimate Sobolev functional Fr(J) :=
∑qq′

i−r=0

∑qq′

ir=J+1 θ
2
i , and (k − 1)-

dimension vector i−r is obtained from vector i by removing its rth element, for instance i−2 :=

(i1, i3, . . . , ik). Used in (3.1) statistic

d̃ := max(1/q′,min(q′, (n0 − n1)q−2
qq′+q2∑
j=qq′+1

[θ̂j,0,...,0(n1)]2)) (3.4)

evaluates integral
∫
R[σ2(x)/fX(x)]dx that we have seen in the lower bound (2.3) of Theorem

1. Recall that this integral describes the effect of two nuisance functions on the MISE. Let us

also stress that statistics θ̃i(n1), θ̂i(n1), m̃0(x, n1) are based on the sample Zn0
1 , n1 = n1(n0) =

dn0/(q
′)k+2e, q = qε, q

′ = q′ε, and ε is as small as desired.

The second stage is defined as follows. The stopping time is T := n0 + ñ, where ñ is defined

in (3.1), and accordingly we get an extra sample ZTn0+1 from (X, Y ). In what follows, to use

notations of Section 2, we formally set n := ñ, n1 := n1(ε) := dε−1qk/(q′)k+2e (note that n1 is

not random), and using the extra sample ZTn0+1 and formulas (2.6) and (2.7) calculate Fourier

estimates θ̃i(n1), θ̂i(n1) and the low-frequency regression estimate

m̌0(x, n1) :=
∑

∨i≤q/(q′)4
θ̃i(n1)ϕi(x). (3.5)

The proposed sequential regression estimator, mimicking (2.8), is

m̂T (x,ZT1 ) := m̌0(x, n1) +
∑

{i: q/(q′)4<∨i, i≤J̃}

θ̂i(n1)ϕi(x), (3.6)
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where J̃ := (J̃1, . . . , J̃k) and cutoffs J̃r are defined in (3.2). Note that the regression estimator

(3.6) uses observations Zn0
1 to calculate ñ and J̃, while all other statistics are calculated using

the extra observations ZTn0+1.

Theorem 3 (Sequential Estimator for the Wald problem). Let Assumption 1 hold and

supF ξ∈Ξ E{ξ4} < ∞. Then the two-stage sequential regression estimator m̂T (x,ZT1 ), defined

in (3.6), is sharp-minimax. Namely, its MISE satisfies

sup
fX∈N ,σ∈N ,F ξ∈Ξ,m∈A

Ef{
∫
R

(m̂T (x,ZT1 )−m(x))2dx} ≤ ε(1 + oε(1)), (3.7)

and its mean stopping time matches the oracle’s one,

sup
fX∈N ,σ∈N ,F ξ∈Ξ,m∈A

E{T}/n∗(ε) = 1 + oε(1). (3.8)

This is an interesting theoretical outcome for a multivariate heteroscedastic regression

which states that it is possible to suggest an adaptive sequential estimator that solves the

Wald problem and matches performance of the oracle. Moreover, the two-stage sequential

approach is motivated by and resembles classical pioneering methods of Stein (1945), Wald

(1947) and Anscombe (1949,1953) for sequential estimation of parameters. Several possible

extensions of the result are discussed in the Conclusion.

4 Proofs

Recall that main notations were introduced at the end of the Introduction. In the proofs we

are interested in asymptotic in n→∞ for Theorems 1 and 2, and in ε→ 0 for Theorem 3.
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Proof of Theorem 1. We begin with proving the oracle’s lower bound (2.3) given the

restriction (2.2) on the mean stopping time. To make the proof shorter we convert it to

Efromovich (1989,2000). The left side of (2.3) does not increase if we consider: (i) Specific

nuisance functions fX(x) and σ(x) from the class N ; (ii) Specific distribution of the regression

error ξ from the class Ξ; (iii) A subclass of considered regression functions. Let us consider

these suggestions in turn and explain the motivation. (i) We choose fX(x) = I(x ∈ R) and

σ2(x) = d∗. This functions belongs to N and they are the only constant functions on R that

maximize the integral in (2.3); (ii) We choose a standard normal distribution for the regression

error ξ. Recall that Fisher information for the mean of a gaussian distribution is reciprocal

of the variance, and that for all distributions with bounded variance a gaussian one is the

least favorable for estimating the mean; (iii) A subclass of regression functions is chosen in

such a way that each Fourier coefficient can be treated independently, and accordingly the

subclass should be a parallelepiped in place of ellipsoid A. To define the parallelepiped set

J∗r := d(1/cr)q(1− 1/q′)e, J∗ := (J∗1, . . . , J∗k), and note that for any b > 0

q−be−q(1−1/q′) = n−1[q−bn1/q′ ](1 + on(1)) and qb = on(1)n1/q′ . (4.1)

These relations allow us to introduce a parallelepiped

Rn := {m(x) : m(x) =

∞∑
i=0

I(∧i ≥ q/q′, ∨(i/J∗) ≤ 1)θiϕi(x), θ2
i ≤ n−1+1/(2q′)}, (4.2)

and according to (4.1) for all sufficiently large n we have Rn ⊂ A.

Using the above-described steps (i)-(iii) and the Bessel inequality we get for all sufficiently

large n,

inf
m̃∗T

sup
(fX ,σ)∈N (d∗),F ξ∈Ξ,m∈A

[
E{
∫
R

(m̃∗T (x,ZT )−m(x))2dx}/
∫
R

σ2(x)

fX(x)
dx
]

15



≥ inf
m̃∗T

sup
m∈Rn

E∗{
∫
R

(m̃∗T (x,ZT )−m(x))2dx}/d∗

≥ sup
m∈Rn

∞∑
i=0

I(min(i) ≥ q/q′, ∨(i/J∗ ≤ 1) inf
θ̃∗i (T )

E∗{(θ̃∗i (T )− θi)2}/d∗. (4.3)

Here the expectation E∗ stresses that distribution of the regression function ξ is standard

normal, fX(x) = I(x ∈ R), and σ2(x) = d∗. In other words, on the right side of (4.3)

the underlying model is Y = m(x) +
√
d∗ξ0 where ξ0 is standard normal and independent of

uniformly distributed on R predictor X, and m(x) belongs to the parallelepiped (4.2). We

converted the setting into one considered in Efromovich (1989,2000), recall that parametric

Fisher information for Y ′ := θ +
√
d∗ξ0 is 1/d∗, and then validity of the lower bound (2.3) is

established.

Lower bound (2.5) given (2.4) follows from (2.2) and (2.3) using proof by contradiction.

Assume that (2.5) does not hold and instead its right side is (1−γ+ oε−1(1)) for some positive

constant γ. Then this contradicts (2.2)-(2.3). Theorem 1 is proved.

Let us present a technical lemma that will be used shortly in proofs of Theorems 2 and 3.

Lemma 1. (i) The following relation holds for function class A = A(b, c, Q) defined in (1.2),

A ⊂ A∗ := {m(x) : m(x) =

∞∑
i=0

θiϕi(x), θ2
i ≤ [Q/k][

k∏
r=1

(ir + 1)−bre−crir ]1/k, x ∈ R}. (4.4)

(ii) Let function g(x) be square integrable on R and
∫
R[∂kg(x)/∂x1 . . . ∂xk]

2dx <∞. Then the

following relation is valid for Fourier coefficients of g(x),

∞∑
i1,...,ik=1

k∏
r=1

i2r [

∫
R
g(x)ϕi(x)dx]2 =

∫
R

[∂kg(x)/∂x1 . . . ∂xk]
2dx/π2k. (4.5)

Remark 1. There are two useful corollaries of Lemma 1. The first one is that for functions

from A their Fourier coefficients are absolutely summable and the functions are uniformly

bounded. The second one is that the same can be said about the ratio σ2(x)/fX(x) from the

16



class N of nuisance functions. To see that Fourier coefficients are absolutely summable note

that for any set K ⊂ {0, 1, . . .}k equality (4.5) and the Cauchy-Schwarz inequality imply

∑
i∈K
|κi| ≤

[∑
i∈K

[
k∏
r=1

(1 + i2r)]
−1
∑
i)∈K

[
k∏
r=1

(1 + i2r)]κ
2
i

]1/2
. (4.6)

Proof of Lemma 1. Inequality (4.4) follows from the classical inequality between geo-

metric and arithmetic means. Verification of (4.5) is more involved. To simplify formu-

las, set g(x) := σ2(x)/fX(x) and note that g is square-integrable on R and the derivative

g′(x) := ∂kg(x)/∂x1 . . . ∂xk exists and square-integrable on R. Then in place of the cosine

tensor-product we use the sine tensor-product, and write using Parseval’s identity and inte-

gration by parts, ∫
R

[∂kg(x)/∂x1 . . . ∂xk]
2dx

=
∞∑

i1,...,ik=1

[ ∫
R

[∂kg(x)/∂x1 . . . ∂xk]

k∏
r=1

21/2 sin(πirxr)dx
]2

= 2k
∞∑

i1,...,ik=1

[ ∫
[0,1]k−1

(
(∂k−1g(x)/∂x1 . . . ∂xk−1) sin(πikxk)

∣∣∣1
xk=0

−
∫ 1

0
(πik) cos(πikxk)(∂

k−1g(x)/∂x1 . . . ∂xk−1)dxk

) k−1∏
r=1

sin(πirxr)dxt

]2
.

Using sin(0) = sin(πik) = 0 and then repeating the above-made step for xk−1, . . . , x1 we

conclude that

∞∑
i1,...,ik=1

[
πk

k∏
r=1

ir

∫
R
g(x)

k∏
r=1

ϕir(xr)dx
]2

=

∫
R

[∂kg(x)/∂x1 . . . ∂xk]
2dx. (4.7)

Lemma 1 is proved.

Proof of Theorem 2. Some parts of the proof will be used later in the proof of Theorem 3.

This explains why several more general relations than needed are presented.
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First of all let us check that Fourier estimates introduced in (2.6) and (2.7) are unbiased.

Using Assumption 1 we can write,

E{θ̃i(n1)} = E{Y [fX(X)]−1ϕi(X)} = E{ [m(X) + σ(X)ξ]ϕi(X)

fX(X)
}

=

∫
R

fX(x)m(x)ϕi(x)

fX(x)
dx =

∫
R
m(x)ϕi(x)dx = θi. (4.8)

Now we are considering Fourier estimate θ̂i(n2). Using Assumption 1 and that Znn1+1 and

m̃0(x, n1) are independent, we can write for ∨i > q/(q′)4,

E{θ̂i(n1)} = E{ [m(Xn) + σ(Xn)ξn − m̃0(Xn, n1)]ϕi(Xn)

fX(Xl)
}

= E{m(Xn)ϕi(Xn)

fX(Xn)
} − E{

∫
R
m̃0(x, n1)ϕi(x)dx} = θi. (4.9)

In the last equality we used (2.6) and
∫
R ϕj(x)ϕi(x)dx = I(j = i).

Unbiasedness of the two Fourier estimates is established, and now we are exploring their

variances (mean squared errors). Using Remark 2 it is plain to realize that

supE{(θ̃i(n1)− θi)2} ≤ wn−1
1 . (4.10)

Here and in what follows the supremum is over the same function classes as in (2.9), and recall

that w’s are generic positive constants.

Using this result, the Parseval identity and definition of n1 we conclude that

supE{
∫
R

(m̃0(x, n1)−
∑

∨i≤q/(q′)4
θiϕi(x))2} ≤ wn−1

1 (1 + q/(q′)4)k = on(1)n−1qk. (4.11)

For θ̂i(n1) we need to establish a more accurate upper bound than (4.10), namely we need

to get
∫
R[σ2(x)/fX(x)]dx in place of a generic constant w. Write using (4.9), the Cauchy

inequality, and a constant γ ∈ (0, 1),

(n− n1)2E{(θ̂i(n1)− θi)2} = E
{[ n∑

l=n1+1

[
[m(Xl) + σ(Xl)ξl − m̃0(Xl, n1)]ϕi(Xl)

fX(Xl)
− θi]

]2}
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= E
{[ n∑

l=n1+1

[
(m(Xl) + σ(Xl)ξl −m(Xl))ϕi(Xl)

fX(Xl)
+

(m(Xl)− m̃0(Xl, n1)ϕi(Xl)

fX(Xl)
− θi]

]2}

≤ (1+γ)(n−n1)

∫
R

σ2(x)ϕ2
i (x)

[fX(x)]2
dx+(1+γ−1)E

{[ n∑
l=n1+1

[
(m(Xl)− m̃0(Xl, n1)ϕi(Xl)

fX(Xl)
−θi]

]2}
=: (1 + γ)(n− n1)A1i + (1 + γ−1)A2i. (4.12)

To analyze A1 we note that ϕ2
i (x) = 1 + 2−1/2ϕ2i(x), and this together with Lemma 1 and

Remark 2 allow us to conclude that

A1i =

∫
R

[σ2(x)/fX(x)]dx(1 + ρi), where sup
∞∑
i=0

|ρi| < w <∞. (4.13)

For the term A2 on the right side of (4.12) we can write for any considered i satisfying

∨i > q/(q′)4,

A2i =
n∑

l=n1+1

E{[ (m(Xl)− m̃0(Xl, n1)ϕi(Xl)

fX(Xl)
− θi]2}

+2
∑

n1+1≤l<r≤n
E{[ (m(Xl)− m̃0(Xl, n1)ϕi(Xl)

fX(Xl)
− θi][

(m(Xr)− m̃0(Xr, n1)ϕi(Xr)

fX(Xr)
− θi]}

= (n− n1)[E{[ (m(Xn)− m̃0(Xn, n1)ϕi(Xn)

fX(Xn)
]2} − θ2

i ]. (4.14)

In the last equality we used
∫
R[m(x) − m̃0(x, n1)]ϕi(x)dx = θi. With the help of (4.11) we

conclude that supA2i = on(1)nqk. Combining the results we get

sup
E{(θ̂i(n1)− θi)2}∫

R
σ2(x)
fX(x)

dx
≤ n−1(1 + on(1) + ρ′i), where

∞∑
i=0

|ρ′i| < w <∞. (4.15)

Using (4.15) we conclude that

sup

∑
{i: q/(q′)4<∨i, ∨(ic)≤q(1+1/q′)} E{(θ̂i(n1)− θi)2}∫

R[σ2(x)/fX(x)]dx
≤ n−1qk[

k∏
r=1

c−1
r ](1 + on(1)).

This relation, together with sup
∑
∨(ic)>q(1+1/q′) θ

2
i = on(1)n−1qk, (4.11), (4.15) and the Par-

seval identity, verify Theorem 2.
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Proof of Theorem 3. In what follows we are considering functions and distributions from

the classes considered in the supremum of (3.7), and the sup means the supremum over that

classes. Recall that general notations and specific sequences are introduced at the end of the

Introduction, and in particular q = q(ε), q = q′(ε), and oε(1)→ 0 as ε→ 0. Also, to simplify

formulas it is convenient to introduce a generic function o∗ε(1) such that sup |oε(1)| = oε(1).

We begin with verification of the following upper bound on the mean sample size of the

second stage,

supE{ñ} ≤ n∗(ε)(1 + oε(1)). (4.16)

Set J∗r := d(1/cr)q(1 + 1/q′)e, r = 1, . . . , k and recall from Section 2 that these are optimal

cutoffs of the sharp-minimax oracle-estimator (2.8). Write,

E{ñ} = Ef{I(

k⋂
r=1

{J̃r/J∗r ≤ 1})dε−1d̃

k∏
r=1

J̃re}+ Ef{I(

k⋃
r=1

{J̃r/J∗r > 1})dε−1d̃

k∏
r=1

J̃re}

≤ 1 + ε−1E{d̃}
k∏
r=1

J∗r + ε−1Ef{I(
k⋃
r=1

{J̃r/J∗r > 1})d̃
k∏
r=1

J̃r} =: 1 +A1 + ε−1A2. (4.17)

To continue we recall one familiar inequality for moments of U-statistics due to Lemma 4.1 and

Remark 4.1 in Efromovich (2000), and note that this is the place where the extra assumption

of a bounded fourth moment of the regression error ξ is used. The inequality is

supE{(F̂ − F )4/(F + Ln−1
0 )2} ≤ wn−2

0 , w <∞. (4.18)

Here F̂ :=
∑

i∈K 2[n0(n0−1)]−1
∑

1≤l1<l2≤n0

Yl1Yl2ϕi(Xl1
)ϕi(Xl2

)

fX(Xl1
)fX(Xl2

)
, F :=

∑
i∈K θ

2
i , K ⊂ {0, 1, . . .}k,

and L is cardinality of set K. Further note that used in (3.4) statistic θ̂j,0,...,0(n1) estimates

a univariate Fourier coefficient
∫ 1

0 [
∫

[0,1]k−1 m(x)dx2 . . . dxk]ϕj(x1)dx1. Then using Lemma A.1

in Efromovich (2013) we get a rough inequality

supE{(d̃− d)4} ≤ wq−4. (4.19)
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Now we can return to considering terms A1 and A2 on the right side of (4.17). For A1 we

write using (4.19),

E{d̃} = d+ E{d̃− d} = d+ o∗ε(1).

This relation yields that

1 +A1 = n∗(ε)(1 + o∗ε(1)). (4.20)

For term A2 we can write using d̃ ≤ q′ and J̃r ≤ qq′,

A2 = Ef{I(
k⋃
r=1

{J̃r/J∗r > 1})d̃
k∏
r=1

J̃r} ≤ q′
k∑
r=1

E{I(J̃r > J∗r )
k∏
s=1

J̃s}

≤ q′
k∑
r=1

(qq′)k−1E{I(J̃r > J∗r )J̃r}. (4.21)

Recall that Fr(J) =
∑qq′

i−r=0

∑qq′

ir=J+1 θ
2
i , and if J > J∗r then

Fr(J) ≤ w(1 + J)|br|e−crq(1+1/q′)/cr ≤ wε/(q′)2, and F̃r(J̃r − 1) > ε/q′.

Accordingly, for all sufficiently small ε and uniformly over the considered function classes we

get

E{I(J̃r > J∗r )J̃r} =

qq′∑
j=J∗r+1

E{I(J̃r = J)J} ≤
qq′∑
J=J∗r

(J + 1)P(F̃r(J)− F (J) > ε/(2q′)).

Using (4.18) and the Chebyshev inequality we continue

E{I(J̃r > J∗r )J̃r} ≤
qq′∑
j=J∗r

(J + 1)
E{(F̃r(J)− F (J))4}

(ε/2q′)4

≤ w(qq′)2(ε/2q′)−4[q|br|ε1+1/q′ + (qq′)kn−1
0 ]2n−2

0

≤ wq2(q′)6ε−4[q|br|ε1+1/q′ + (qq′)kεq−k(q′)k+1]2ε2q−2k(q′)2k+2

= o∗ε(1)q2−2k+1/2. (4.22)
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We conclude that ε−1A2 = o∗ε(1)n∗(ε). This, (4.20) and (4.17) verify (4.16).

Now we are verifying that MISE of the proposed sequential regression estimator is at most

ε(1 + o∗ε(1)). For an underlying regression function m := m(x), introduce its specific vector

Jm := (Jm1, . . . , Jmr) of oracle’s cutoffs implying sharp-minimax estimation,

Jmr := min
(
J : Fr(J) =

qq′∑
i−r=0

qq′∑
j=J+1

θ2
i ≤ 2ε/q′, J = 0, 1, . . . , J∗r

)
, r = 1, . . . , k. (4.23)

The subscript m in Jmr emphasizes that this is a special oracle’s cutoff based on the underlying

regression function m(x) from the class A. Previously introduced cutoffs J∗r are minimax and

use only information about function class A. The latter explains the upper bound J∗r in (4.23).

We are analyzing the MISE using two vectors of oracle-cutoffs (Jm1, . . . , Jmk) and (J∗1 , . . . , J
∗
k ).

For an underlying regression function m ∈ A introduce a set of indexes Dm := ∩kr=1{Jr : Jmr ≤

Jr ≤ J∗r }, and note that the complementary set is

Dcm := ∪kr=1{Jr : {Jmr ≤ Jr ≤ J∗r }c} = ∪kr=1{Jr : {Jr < Jmr} ∪ {Jr > J∗r }}.

We also introduce notation J̃ := (J̃1, . . . , J̃k) for the vector of estimated cutoffs. Using these

notations we can write,

E{
∫
R

(m̂T (x,ZT1 )−m(x))2dx}

= E{I(J̃ ∈ Dm)

∫
R

(m̂T (x,ZT1 )−m(x))2dx}+ E{I(J̃ ∈ Dcm)

∫
R

(m̂T (x,ZT1 )−m(x))2dx}

=: U1 + U2. (4.24)

Term U1 is the oracle’s MISE and supU1 ≤ ε(1+oε(1)). Accordingly, we need to show that

supU2 = εoε(1). (4.25)

Using the above-presented formula for Dcm we get,

U2 ≤
k∑
r=1

E{I(J̃r < Jmr)

∫
R

(m̂T (x,ZT1 )−m(x))2dx}
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+

k∑
r=1

E{I(J̃r > J∗r )

∫
R

(m̂T (x,ZT1 )−m(x))2dx} =:

k∑
r=1

U21r +

k∑
r=1

U22r. (4.26)

Note that terms in the first sum use cutoffs smaller than recommended by the oracle for an

underlying regression function m, and this may lead to larger bias. Terms in the second sum

use cutoffs larger than suggested by the minimax oracle, and this may lead to larger variance.

We are considering these two cases in turn. Write using the Parseval identity,

U21r = E{I(J̃r < Jmr)

∫
R

(m̂T (x,ZT1 )−m(x))2dx}

≤ E{I(J̃r < Jmr)

qq′∑
i−r=0

Jmr−1∑
ir=0

(θ̌i − θi)2}+ E{I(J̃r < Jmr)

qq′∑
i−r=0

∑
ir≥J̃r

θ2
i }+

∑
∨i>qq′

θ2
i

=: V1 + V2 + V3. (4.27)

Here θ̌i := θ̃iI(∨i ≤ q/(q′)4) + θ̂iI(∨i > q/(q′)4). For m ∈ A we have supV3 = oε(1)ε.

Accordingly, V3 is sufficiently small, and we are evaluating V1 and V2 in turn. For V1 we use

Cauchy-Schwarz inequality and get

V1 ≤
[
P(J̃r < Jmr)

]1/2[
E
{

[

qq′∑
i−r=0

Jmr−1∑
ir=0

(θ̌i − θi)2]2
}]1/2

. (4.28)

For the probability term we note that if J̃r < Jmr then F̃r(J̃) ≤ ε/q′ and Fr(J̃) > 2ε/q′. This

remark, Chebyshev inequality, J̃r ≥ dq/q′e almost sure, and (4.18) yield

P(J̃r < Jmr) =

Jmr−1∑
J=dq/q′e

P(J̃r = J) ≤
Jmr−1∑
J=dq/q′e

P(F̃r(J)− Fr(J) > (1/2)Fr(J), Fr(J) > 2ε/q′)

≤ w
Jmr−1∑
J=dq/q′εe

n−2
0 (Fr(J) + (qq′)kn−1

0 )2

F 4
r (J)

I(Fr(J) > 2ε/q′) ≤ o∗ε(1)q−2k(q′)w. (4.29)

Next step is to evaluate the expectation on the right side of (4.28). Recall that Fourier

estimate θ̃i(n1) is not sequential and based on a sample of size n1. This yields E{(θ̃i(n1) −

θi)
4} < wn−2

1 = o∗ε(1)ε2q−2k(q′)2k+5. To evaluate moments of θ̂i we note that this Fourier
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estimator is based on a sample with random size ñ−n1 defined by the first stage. Accordingly,

set n∗ := dε−1qk/(q′)k+1e, n∗ := dε−1qk(q′)k+1e, note that for all sufficiently small ε we have

n∗ ≤ ñ ≤ n∗ almost sure, and recall that we are considering asymptotic in ε → 0 and hence

n1 = o∗ε(1)n∗ allows us to assume that n1 < n∗. Using these remarks we can write,

E{(θ̂i − θi)4} = E{[(ñ− n1)−1
n0+ñ∑

l=n0+n1+1

(Yl − m̌0(Xl, n1))ϕi(Xl)

fX(Xl)
− θi]4}

=

n∗∑
s=n∗

E{I(ñ = s)[(s− n1)−1
n0+s∑

l=n0+n1+1

(Yl − m̌0(Xl, n1))ϕi(Xl)

fX(Xl)
− θi]4}

=

n∗∑
s=n∗

P(ñ = s)E{[(s− n1)−1
n0+s∑

l=n0+n1+1

(Yl − m̌0(Xl, n1))ϕi(Xl)

fX(Xl)
− θi]4}. (4.30)

For the expectation on the right side of (4.30) we can use inequality (1.3.50) in Efromovich

(2018) and get for ∨i > q/(q′)4 (also recall a similar calculation in the proof of Theorem 2)

E{[(s− n1)−1
n0+s∑

l=n0+n1+1

(Yl − m̌0(Xl, n1))ϕi(Xl)

fX(Xl)
− θi]4} ≤ w(s− n1)−2. (4.31)

Here we used the above-mentioned n1 = o∗ε(1)n∗ and that in (4.31) statistic m̌0(x, n1) is

independent of (Xl, Yl). Using this inequality in (4.30) we conclude that

E{(θ̂i − θi)4} ≤ wn−2
∗ = o∗ε(1)ε2q−2k(q′)2k+3. (4.32)

Using (4.32) in (4.28) we conclude that V1 = o∗ε(1)ε.

To evaluate V2 on the right side of (4.27) we note that this is the main term when

J̃r < Jmr because a smaller cutoff increases squared bias and decreases variance of a re-

gression estimate. To evaluate the increased squared bias and to simplify formulas, set

Zr :=
∑qq′

i−r=0

∑
j≥J̃r θ

2
i /(ε/q

′). Note that Zr is a random variable (function of J̃r), and

according to definition of J̃r we have F̃r(J̃r) ≤ ε/q′, and also for m ∈ A and any positive
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constant c∗ we have
∑
∨i>qq′ θ

2
i = o∗ε(1)εq−c∗ . Using this remark and the Chebyshev inequality

we conclude that for a constant z ≥ 2 and all sufficiently small ε we have

P(Zr ≥ z, J̃r < Jmr) ≤
Jmr−1∑
J=dq/q′e

P(Fr(J)− F̃r(J) > (z/3)F (J), F (J) > (z/2)ε/q′)

≤ w
Jmr−1∑
J=dq/q′e

E{(Fr(J)− F̃r(J))4}
z4[Fr(J)]4

}I(F (J) > (z/2)ε/q′) = o∗ε(1)q−1/2z−2. (4.33)

Using this inequality and a classical inequality E{ηI(η ≥ 2)} ≤
∑∞

r=1 P(η ≥ r) we can

finish evaluation of V2,

V2 = Ef{I(J̃r < Jmr)

qq′∑
i−r=0

∑
ir≥J̃r

θ2
i } = (ε/q′)E{I(J̃r < Jmr)Zr}

≤ 2ε/q′ + (ε/q′)
∞∑
z=1

P(Zr ≥ z, J̃r < Jmr) ≤ 2ε/q′ + o∗ε(1)ε
∞∑
z=1

z−2 = o∗ε(1)ε. (4.34)

Using the already evaluated terms V1 + V3 = o∗ε(1)ε together with (4.34) in (4.27) we

conclude that U21r = o∗ε(1)ε. Accordingly,
∑k

r=1 U21r = o∗ε(1)ε.

Now we are evaluating a term U22r in (4.26). Recall that J∗r is the oracle’s minimax cutoff.

Accordingly, the case J̃r > Jr∗ increases the variance part of the MISE while its squared bias

part remains sufficiently small. To realize that, we may write using the Parseval’s identity

(compare with (4.27))

U22r = E{I(J̃r > J∗r )

∫
R

(m̂T (x,ZT1 )−m(x))2dx

≤ E{I(J̃r > J∗r )

qq′∑
i−r=0

J̃r∑
ir=0

(θ̌i − θi)2}+ E{I(J̃r > J∗r )

qq′∑
i−r=0

∑
ir≥J∗r

θ2
i }+

∑
∨i>qq′

θ2
i

=: V ′1 + V ′2 + V ′3 . (4.35)

Here, similarly to (4.27), we use notation θ̌i := θ̃iI(∨i ≤ q/(q′)4)+ θ̂iI(∨i > q/(q′)4). Definition

of J∗r implies that for m ∈ A we have V ′2 + V ′3 = o∗ε(1)ε. The term V ′1 is evaluated similarly to
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the term V1 in (4.27) and we get V ′1 = o∗ε(1)ε. We have shown that all considered terms are

o∗ε(1)ε, and there are only a finite number of these terms.

Theorem 3 is proved,

5 Conclusion

The developed theory shows that asymptotically a sequential estimation of analytic multivari-

ate regression functions with assigned MISE and minimax mean stopping time is possible.

The proposed data-driven sequential estimator matches performance of the oracles that knows

smoothness of an estimated multivariate regression and all nuisance functions, and accordingly

the estimator can be referred to as adaptive. The asymptotic theory sheds a new light on the

potential of sequential estimation because the only theoretical result known so far has been

that no minimax adaptive sequential estimation is possible for differentiable regression func-

tions. Another important result is that, similarly to classical parametric models, a two-stage

sequential methodology solves the problem.

Let us mention several interesting open problems for future research. First, it is of interest

to understand the effect of missing data on sequential estimation. Missing data are typical in

regression problems. Some theoretical results are known for fixed sample sizes, see Efromovich

(2018). In particular, it is known that different remedies should be used for missing predictors

and missing responses. It is understood that for sequential estimation an underlying missing

mechanism must be evaluated and taken into account, and the latter is a challenging problem

on its own. Second, it is of interested to apply the developed sequential methodology to

other familiar sequential problems like change point discussed in Baron (2001) and Schmegner
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and Baron (2004), confidence bands and hypotheses testing discussed in Wald (1947). Third,

sequential estimation of the scale function σ(x) and distribution of regression error ξ is another

practically important and theoretically challenging problem. Fourth, as it follows from the

discussion in Section 2, it is of interest to develop theory of sequential estimation for additive

regression models. Fifth, in Galtchouk and Pergamenshchikov (2009ab) a practically important

type of heteroscedastic regression Y = m(x) + σ(x,m)ξ is considered where the scale may

depend on both x and the regression function m(x). It will be of interest to consider a

multivariate regression of this type and then explore sequential estimation of the regression

and scale.

Finally, a challenging and urgent open problem is the practically important case of a small

sample for a first stage. First stage is based on a priori chosen sample size, and this creates a

possibility of no feasible estimation due to curse of multidimensionality and a sample size which

may be too small for an underlying regression (of course, using multiple stages is a possible

remedy but still simplicity of just two stages is appealing). Supplementary Materials shed light

on challenges of first stage and point upon possible modifications of proposed asymptotically

optimal estimates via exploring a thought-provoking environmental example of a multivariate

regression with 5 covariates and sample size n = 86. The practical example also highlights

a connection between studied nonparametric multivariate regression and nonparametric func-

tional regression where predictor is a process. Accordingly, sequential functional regression is

another important topic for future research.
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