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Theory and methodology of nonparametric sharp minimax estimation of the conditional hazard rate function of a
right censored lifetime given a continuous covariate are developed. The theory, using an oracle’s approach, shows
how the conditional hazard and nuisance functions affect rate and constant of the mean integrated squared error
(MISE) convergence. The methodology suggests a data-driven estimator matching performance of the oracle.
Further, if the lifetime is independent of the covariate, the estimator recognizes that and the MISE converges
with the univariate rate. Then the setting is extended to a vector of continuous and ordinal/nominal categorical
predictors, and an estimator performing adaptation to smoothness and dimensionality of conditional hazard is
suggested. Practical examples devoted to reducing potent greenhouse gas emissions are presented.
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1. Introduction

We begin with a familiar problem of statistical analysis of a relationship between an explanatory con-
tinuous variable (predictor) X and a continuous lifetime of interest (response) 7 based on a sample of
size n from (X,T). Classical examples are age X at the time of a cancer surgery and how it affects
time 7 until cancer relapse, or how credit score X affects time 7" until mortgage default. A traditional
approach is to study regression E{T|X = x} := [* 1 fTX(t|x)dt where fT1X(¢|x) := fXT (x,0)/ fX (),
f%T is the joint density of (X, T), and f¥X(x):= fooo %1 (x,1)dt is the marginal (design) density of the
predictor. In this paper we use a more complicated and simultaneously more appealing approach for
analysis of the relationship via the conditional hazard rate function (also referred to as the conditional
failure rate in reliability theory, conditional force of mortality in actuarial science and sociology, or
conditional age-specific rate in different fields of engineering and medical statistics)

T|X " ST (1]x) T)X _ [ rx
h R (tx) = ST (1]x)’ S (tlx).—/t 1% (u|x)du. (1.1)

If one thinks about 7" as a time to an event-of-interest, then given the covariate X = x the quantity
hT1X (1] x)dt represents the instantaneous likelihood that the event occurs within the interval (¢, 7 + dr)
given that the event has not occurred at time ¢. In what follows, whenever no confusion can occur, we
may refer to the conditional hazard rate function A7 X as conditional hazard rate, conditional hazard or
simply hazard, while HT X (¢]x) := /0[ RT1X (u|x)du is called the conditional cumulative hazard.

There is one important issue to be mentioned that distinguishes nonparametric estimation of the
conditional hazard from other classical nonparametric problems like regression or density estimation.
In classical problems an estimated function is assumed to be integrable, while a conditional hazard is
not integrable, that is fooo RT1X(t|x)dt = co. Moreover, if T is supported on a finite interval [0, w] then
limy_,,, AT 1X(¢|x) = oo. This creates the curse of right tail.

Another traditional complication in survival analysis is that the lifetime of interest T is right cen-
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(X,V,A) :=(X,min(T, C), (T < C)). Here C is a censoring random variable (another lifetime), (-) is
the indicator, and it is assumed that 7 and C are conditionally independent given predictor X. This is
the setting considered in the paper, and the problem is to estimate the conditional hazard rate under the
mean integrated squared error (MISE) criterion.

A comprehensive discussion of hazard rates and their role in survival analysis can be found in books
Cox and Oaks (1984), Klein and Moeschberger (2003), Lee and Wang (2003), Gill (2006), Flem-
ing and Harrington (2011), Kalbfleish and Prentice (2011), Miller (2011), Moore (2016), Efromovich
(2018), Ross, Prentice and Zhao (2019), Zhou (2019), Legrand (2021). Let us also present a review of
some known approaches and results. Minimax estimation of the hazard rate based on direct observa-
tions of the lifetime of interest is considered in Efromovich (2016) where it is shown that the sharp
constant is a functional of the survival function. Cox proportional hazards model is a classical ap-
proach that performs well in cases where an underlying model fits the Cox’s model and may be too
restrictive otherwise. Partially linear hazard models with varying coefficients are considered in Cai
et al. (2008), additive Cox models in Lu, Lu and Li (2018). Nonparametric estimation of the condi-
tional hazard is more flexible and technically challenging alternative, see a discussion in McKeague
and Utikal (1990), Li and Doss (1995), van Keilegom and Veraverbeke (2001) where martingale and
counting process techniques are employed. Using splines to estimate the conditional log-hazard rate
is discussed in Kooperberg et al. (1995). The intuitively appealing approach, motivated by formula
(1.1), is to use ratio of an estimate of the conditional density and an estimate of the conditional sur-
vival function. This approach is explored in Spierdijk (2008) and Gneyou (2014) where consistency of]
the methodology is established. Brunel, Comte and Guilloux (2011, 2013) consider adaptive and rate-
optimal estimation in an interesting and more general context of marker-dependent counting processes
and the case of missing indicators. Survival analysis often involves a vector of continuous and ordi-
nal/nominal categorical covariates (predictors), see the above-presented literature as well as Kang, Lu
and Zhang (2018) where additive models are used, Cui and Hanning (2019) and companion discussions
are devoted to nonparametric generalized fiducial inference, the book Ross, Prentice and Zhao (2019)
presents a comprehensive overview of multivariate models, interesting discussion of applications can
be found in Li et al. (2022), Zhao and Feng (2020) study deep neural networks, Balan and Putter (2020)
explores frailty methodology, Hothorn (2020) discusses transformation boosting machines, Huang and
Su (2021) use penalized splines in concave extended linear models and study optimal rates, Emura,
Sofeu and Rondeau (2022) use copula methods, deep extended hazard (DeepEH) and deep learning for
partially linear Cox models are suggested in Zhong, Mueller and Wang (2021, 2022).

Overall, there is a rich literature devoted to conditional hazard estimation, including very interesting
ad hoc methods, but neither methodology nor theory of sharp minimax (efficient) conditional hazard
estimation are known due to complexity of the problem.

This paper uses an oracle approach to solve the problem of sharp-minimax nonparametric estimation
of the conditional hazard of right censored lifetime of interest 7. The oracle knows both data and
information about the conditional hazard and all nuisance functions, and then develops a sharp lower
bound for a minimax MISE. The oracle also develops an oracle-estimator that can be mimicked by
a data-driven estimator that attains the lower bound. The oracle approach is of interest because it
provides us with: (i) The optimal rate of MISE convergence; (ii) The sharp constant that depends on
the so-called coefficient of difficulty; (iii) Natural nuisance functions. Let us comment on these three
outcomes. It is shown that the optimal rate is defined by the effective smoothness of A7 X(¢|x) in ¢ and
x, and this outcome resembles known results for estimation of a bivariate anisotropic regression, see
Hoffmann and Lepski (2002). Notions of the coefficient of difficulty and natural nuisance functions
may be less known to the reader. Following Efromovich (2018) let us first explain them using a more
familiar nonparametric regression model Y = m(X) + o(X)¢ where X is the predictor supported on
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of X, m(x) is the regression function of interest, and o-(x) is the scale function. The coefficient of
difficulty d tells us what functional affects the sharp constant of the MISE convergence, and for the

regression problem it is d = /01 [02(x)/ fX (x)]dx. Importance of knowing d is that the MISE decreases
as some function of d/n, that is the larger d is, the larger sample size is needed to get a desired accuracy
of estimation. Further, there are two nuisance functions X and o(x) in the regression model, but only
fX is the natural one, meaning that the oracle uses only data and fX to construct a sharp-minimax
oracle-estimator. Accordingly, the statistician needs to estimate only X to construct an efficient data-
driven estimator that mimics the oracle. But in a multivariate additive regression both the design density
and scale function are natural nuisance functions, and then both must be estimated for mimicking the
oracle, see Efromovich (2013). This is why it is important to know natural nuisance functions. As we
will see shortly, for the conditional hazard with univariate predictor the natural nuisance function is

p(t,x) = XS (1) X (2]x) = £X ()Y X (t]). (1.2)

Accordingly, now the statistician knows that to mimic the oracle it is sufficient to estimate this single
function. As we will see shortly, it is possible to estimate p(z, x) directly without estimating the fac-
tors in (1.2). Furthermore, because the natural nuisance function must be estimated with a sufficient
accuracy to match performance of the oracle, it is important to untie its assumed smoothness from
unknown smoothness of an estimated conditional hazard. As we shall see shortly, the later is possible
and this is an important theoretical result. We will continue discussion of natural nuisance functions in
the Conclusion.

The content of this paper is as follows. Section 2 presents results for the case of a univariate predictor
X. Here a sharp minimax lower bound for the oracle is presented, as well as a data-driven estimator
that matches performance of the oracle who knows smoothness of the conditional hazard and all nui-
sance functions. Moreover, if 7 and X are independent, then the estimator recognizes this and again
matches performance of the oracle. The case of a multivariate mixed (continuous and categorical)
vector-predictor is considered in Section 3 and a data-driven estimator is proposed. Here the main em-
phasis is on the possibility of dimension reduction, and the estimator again matches performance of
the oracle who knows the underlying dimensionality. Proof of the lower bound can be found in Section
4, and other proofs in the Supplementary Material. Section 5 presents practical examples devoted to
waste treatments that decrease greenhouse gas emissions. Conclusions and topics for future research
are presented in Section 6.

In what follows we use notation ¢ := g, := [In(n + 20)] for the minimal integer larger than In(n +
20), and similarly s := s, := [In(g)]. These and other specific sequences are chosen based either on
asymptotic analysis or numerical studies of proposed estimates. /() is the indicator, w denotes generic
positive constants, i V j := max(i, j), and i A j := min(i, j).

2. Conditional hazard estimation for univariate predictor

The section is relatively long, and it is worthwhile to briefly comment on its context. The final result
is the data-driven Fourier series estimator (2.20), and as it is stated in Theorem 2, the estimator is
sharp-minimax and performs dimension reduction whenever T and X are independent. The dimension
reduction property means that the estimator’s MISE attains a known in the literature optimal univariate
rate of estimating 4 for the case of a directly observed sample from 7. The notion of sharp-minimaxity
is more involved because we need to establish the best constant and rate for minimax estimation of a
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Sobolev class of conditional hazards 471X, This approach is feasible when an underlying Fisher infor-
mation does not depend on the estimand, but this is not the case for the problem at hand. Accordingly,
we are using a local minimax approach by considering a class of Sobolev conditional hazards near
a so-called anchor that is known to the oracle but not to the statistician. Then Theorem 1 presents a
lower bound for the local minimax MISE and states that the bound is sharp and attainable by oracle-
estimators. Moreover, Theorem 1 presents a blockwise-shrinking oracle estimator (2.12) that inspires
construction of the above-mentioned data-driven estimator (2.20), and the estimator is studied under
both local and global minimax approaches. These are the main results presented below. Accordingly,
in what follows we are introducing the setting, main assumptions, global and local Sobolev classes,
blockwise-shrinking estimators, and the main results are presented in Theorems 1 and 2.

Considered setting is as follows. There is a hidden sample (X1,7}),. . .,(Xy, T,) of size n from a pair
(X,T). Here T is the lifetime of interest and X is a univariate predictor (covariate) supported on [0, 1].
X and T are continuous random variables with a joint density f*X7 (x,t) supported on [0, 1] x [0, c0). Set
fX(x):= /000 FXT (x,1)dt for the marginal (design) density of X. It is assumed that fX(x) is positive
on [0, 1], and this allows us to introduce the conditional hazard rate A7 X (¢|x) defined in (1.1). We do
not observe realizations 71, .. ., T, directly because they are right censored by independent realizations
Cl,...,C, of a censoring lifetime C. Instead we observe a sample (X1, Vi, A1), ..., (Xn, Vi, Ay) from
triplet (X, V,A) where V := min(7, C) and A := I(T < C) is the indicator of censoring.

For given constants a > 0 and b > 0, the aim is to estimate conditional hazard rate A’ 1X(¢|x), defined
in (1), over the rectangle R := [a,a + b] X [0, 1]. It will be explained shortly why it is impossible to
consider b = co. The used criterion for an estimator /(z|x) of A7 1X(¢]x) is the mean integrated squared
error (MISE) E{ [“*” [ (h(¢lx) = BT X (1]x))2dxdr} =: B{ [ (h(tlx) = hT'X(1]x)2dxdr}. To define a
basis on R, set y(t) := b~ 1/2, Wi(t) = (2/b)' 2 cos(nj(t —a)/b), j = 1,2, ... for elements of the cosine
basis on [a, a + b], and ¢(x) := 1 and ¢;(x) = 272 cos(nix), i = 1,2, .. . for elements of the cosine basis
on [0, 1]. Then @j;(1, x) := ()i (x), (j,i) € {0, 1, .. .}? are elements of the tensor-product basis on R.

Now we can proceed to assumptions. The first one is necessary for consistent estimation, see an
interesting discussion in Tsiatis (1975).

Assumption 1. Given predictor X, lifetime of interest T and censoring lifetime C are independent.

Our next assumption is about smoothness of an estimated conditional hazard rate. Here some ex-
planation is warranted. Conditional hazard rate ”T1X(¢|x) is a bivariate function. It is a tradition in
nonparametric literature to assume that an estimated bivariate function is isotropic meaning that it is
as smooth (has the same number of derivatives) in ¢ as in x, see Wasserman (2005). For some settings
this assumption is reasonable, but for a conditional hazard A7 X(¢|x) there may be a difference be-
tween smoothness in ¢ and x. For instance, consider a location model 7' = m(X) + &€ where the random
variable ¢ is independent of X and its hazard rate is 4%(r). Then h” X (¢|x) = h®(t — m(x)). Now note
that smoothness of A7X(¢]x) in ¢ is defined solely by smoothness of 4#(r), while its smoothness in
x depends on smoothness of 4%(¢) and smoothness of m(x). Accordingly, it is prudent to assume that
WX (t]x) may be an anisotropic bivariate function with different smoothness in ¢ and x.

Another important remark is that while for direct data and classical density or regression estimation
problems the asymptotic MISE convergence does not depend on an underlying estimated function, see
Efromovich (1999), it will be established shortly that an underlying conditional hazard affects sharp
constant of the MISE convergence. Accordingly, in a lower bound for the MISE we are considering a
hrinking local anisotropic function class of AT X with an anchor /g(z|x) which may depend on n. This
approach will allow us to understand how an underlying A7 X affects its estimation.

After these comments, let us introduce several functional classes. In what follows aq and @ are
.. L . . . . . .. TlX .
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and x, respectively. Introduce two anisotropic Sobolev classes of bivariate functions g(z, x) on R,

Sk :=Sk(ap, a1, 0, a,b) := {g :g(tx):= Z Z 0jigji(t,x), (1,x) € R,
=k i=0

55

[1+ (mj/b)>™ + (m)z"']H}i <bQ < oo}, ke{0,1}. (2.1)
Jj=k i=0

The case k = 0 implies a classical anisotropic Sobolev class Sy, see Hoffmann and Lepski (2002). Now

note that if g € S| then fa axb g(t, x)dt = 0, and this property is used to define the following shrinking
local function class 7, of conditional hazards. Namely, introduce a continuous on R conditional hazard
ho(t]x), (¢, x) € [0, 00) X [0, 1] that will be referred to as the anchor, and set

F = Fn(ao, 1,0, a, b, hy) := {thX - WX (1)x) = ho(t]x) + (2, X)I((1, x) € R); (2.2)

a+b
g € Si(ap, a1,Q,a,b); [g(t,x)| <1/q; min ho(t|x)>1/s, maX/ ho(u|x)du < c0;  (2.3)
(t,x)eR x€[0,1] Jo

[se]

Z (1 + j2a0*B 4 2a+By[ / ho(t|x)@i(t, x)dxdt]* < co, B> o}. (2.4)
R

J5i=0
In what follows we denote by 7,; := 7, (a0, a1, Q, a, b, ho) a class (2.2)-(2.3) without assumption (2.4)
about the anchor. This class is used by the oracle, who knows the anchor, to establish the lower bound.
To get an upper bound, the oracle may or may not use knowledge of the anchor. The latter case is of the
main interest, and then the assumption (2.4) is used. Let us stress that the anchor is not necessarily an
underlying conditional hazard, its the only role is to define the local function class.

Remark 1 (Sobolev classes). Using cosine bases allows us to consider aperiodic functions and propose
good estimators for small samples, see Efromovich (1999, 2018). This is why Sobolev classes like (2.1),
also referred to as Sobolev ellipsoids, are popular in the literature. At the same time, a Sobolev class is
a subclass of a corresponding Sobolev function class with integrable squared derivatives. It is apparent
that a lower bound should hold for the larger class, but to attain the lower bound a polynomial-cosine
basis must be used, see Efromovich (2021). Parameters (g, a1, Q) define the so-called smoothness of
Sobolev’s functions. The assumed |g(¢, x)| < 1/q and hgy(t]|x) > 1/s for (¢, x) € R imply that the consid-
ered conditional hazards are nonnegative. Now let us comment on the local Sobolev class ¥, which is
used to derive a lower bound for the corresponding local minimax. It is motivated by the classical local
minimax approach for estimation of a parameter & when the Fisher information J(6) depends on the
parameter. Under the parametric approach, it is assumed that 6 belongs to a shrinking vicinity of the
anchor parameter 6. The latter, under a mild assumption, yields a sharp local minimax lower bound
for the mean squared error whose sharp constant depends on the Fisher information J(6p). Then an
estimator, typically maximum likelihood or Bayes, attains the sharp lower bound. The anchor A, the
local Sobolev class ¥, and the coefficient of difficulty d(hg), defined below in line (2.11), are the cor-
responding nonparametric analogs of 6y, the shrinking vicinity of 6y and 1/ (6p). A nice discussion
of the local minimax approach can be found in Ibragimov and Khasminski (1981) and Golubev(1991).

For the introduced function classes set

—4a/(2a+1) 1/Qa+1) . -1, -17-1




P = / ([u?70 + V22 — [0 1+ v2™ ) dvdu, (2.6)
(1, V):u2®0 +v221 <1;1,v>0
P, = / (1 = [ + V212 gvdu. 2.7)
(u,V):u 220 +v21 <15u,v>0

Assumption 2. Natural nuisance function p(t, x), defined in (1.2), is continuous and bounded below
from zero on R, and its partial derivative in x is bounded and integrable on R.

Assumption 2 is mild, involves only first-order differentiability in x, and not tied to smoothness of
the estimand A71X. The latter is one of the major theoretical achievements.

Now let us introduce several notations that will be used by an estimator. First of all, an estimator
must take into account a possibility that 7 and X are independent, because then a bivariate conditional
hazard h” X (¢|x) becomes a univariate hazard h” (¢). To achieve this aim without testing hypotheses, we
introduce two tensor-product arrays of indexes (frequencies) (j,7). The first one is Ay :={0,1,2,...} X
{0}, the second one is A :={0,1,2,...} x {1,2,...}. Note that ¢;o(t, x) = ¥;(), and then for (¢, x) € R
we may write

WX x)= > 0+ D 0t x) = hi(0) + ha(t, x). (2.8)
(.i)€A, (,i)€Ay

Here hy(t) = hT (¢) and ho(t, x) = 0 whenever T and X are independent. Accordingly, (2.8) explains the
underlying idea of dimension reduction from a bivariate conditional hazard to a univariate hazard, and
it also sheds light on the used arrays of indexes.

To solve the problem of adaptation to unknown smoothness of conditional hazard h” X (¢|x) in ¢
and x, the indexes (or equivalently we may say frequencies) are grouped into special blocks, and
then Fourier estimates in a block are shrunk by the same coefficient. Discussion of the introduced
below specific sequences is postponed until the end of the section because it is more convenient
to explain them after presenting the results. Introduce an increasing sequence of integers b = 0,
by=by+1,...,bgy1 = by + 1, and byir = byir—1 + [(1 + s~1] for r = 2,3,... Introduce blocks
of integers By := {bg,...,br+1 — 1}, k =1,2,. .., denote their cardinality as Ly, and define K, and K,
as largest integers such that bk, 1 < n'Bs + g+ 1land bk, +1 < ntl4s + q + 1. Now set k := (ky, kp),
recall that arrays A,, v = 1,2 were introduced above line (2.8), and for each array introduce its own
array of blocks By := {By, X By, } N A,. Note that By, 1) = B, X {0}, B, k,) is the empty set when-
ever ky > 2, By,,1) is always empty, and By, r,) = Bk, X By, whenever k; > 2. We use this particular
definition and notation for B, because they also will be used for a vector-predictor. Using this notation
we can approximate (2.8) by a partial sum

2 Kon Kin

X =3" 3N 0t x) (29

v=1 k1=l k2=l (j,i)EByk

that will be estimated in (2.20). By L,k we denote cardinality of Bk, and set pg := 1/In(3 + k1 k7).

The underlying idea of the proposed conditional hazard estimator is to mimic the oracle who knows
both data and an underlying model. This approach allows us to develop: (i) A lower bound for the
MISE; (ii) An oracle-estimator that attains the lower bound; (iii) A data-driven estimator that mimics
the oracle-estimator and matches its properties. We present the corresponding results in turn.

Theorem 1 (Oracle’s Sharp Lower Bound). Let Assumptions 1 and 2 hold, the anchor ho(t|x) is con-
) ize n from (X A) is available. The oracle knows data, the underlying
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function class F,;, the anchor hg, the design density X, and the conditional survival SCX. Then

inf sup (n/d)**/etDE( / (h*(1]x) = hT X (¢]x))?dxdt} > P(1 + 0,(1)), (2.10)
h* pTIX e F2 R

where the infimum is taken over all possible oracle-estimators h*,

TIX
d:= d(hTX, SCIX £X 4 by = ] / h () @.11)

R fX(x)SCIX (2]x)ST1X(1]x)

is the coefficient of difficulty, and « := [aa L al_l]_l is the effective smoothness of the class F,. The
lower minimax bound is sharp and attainable by an oracle estimator. Further, if (2.4) holds, then the
lower bound is attainable for hT'X € (%, U Sp) by oracle-estimators that do not use the anchor, and in

particular by the following sharp-minimax oracle-estimator,

2 Kon Kin

Fen=> Y5 3 [1(9% > 2qdn NI Vi< q)

v=1 k1=l ko=1(j,i)€Byx

®Vk

+ — — 1Oy > pxn DI Vi > q)| 0% 051, x). (2.12)
Ok + L) Y iven E{(9}, - 6;1)%} Y s
Here
R NIV € [a,a+ b)ei;(V, X
= - Z Vi€l Deji(Vi, X1) 2.13)
= p(Vi, X)
is the oracle-estimator of Fourier coefficients 6;; 1= fR hT|X(t|x)goji(t, x)dxdt and
O =L, Z 0, (2.14)

(j’i)EBVk
is the Sobolev functional.

Let us comment on results of Theorem 1. The lower bound (2.10) asserts that the MISE decreases
with rate n=2@/2@+1) which is the same as for a bivariate regression of T on a pair of predictors (X1, X»)
and the case of directly observed data discussed in Hoffmann and Lepski (2002). This is a very positive
outcome because it shows that, in a more complicated problem of conditional hazard estimation based
on censored data, the rate does not slow down. On the other hand, coefficient of difficulty (2.11) is
dramatically more complicated than for the regression where it is a constant that does not depend
on an underlying regression function. Formula (2.11) explains how the quartet (A7 1X, SCIX §TIX ¢X)]
together with the interval [a, a + b] of estimating the conditional hazard, affect the MISE convergence.
Further, note that each of the first three functions in the quartet makes the coefficient of difficulty (2.11)
larger as b increases because /Ooo RT1X (¢]x)dt = co and max(S€ X (¢]x), STX(¢]x)) — 0 as t — co. This
result also quantifies complexity of the right—tail estimation.

Now let us explain how to construct a data-driven estimator that mimics the oracle-estimator (2.12).
We begin with introducing the following estimator of the natural nuisance function,

n 2n'3s]

Bt x) = max(p(e, %), 1/q), ple,x):=n"" > 3" 1V = @i (X)ei(x). 2.15)

=1 =0




Because p is separated from zero, we can plug it in a denominator. Accordingly, we plug p in (2.13)
and get the Fourier estimator

n
A NIV, € [a,a + D)g;i(Vi, X)
fji:=n"" = : (2.16)
! ; p(Vi, X1)
Similarly we get an estimate of the coefficient of difficulty,
n
A s Al(a<Vi<a+b
d=dab)=n") = (aj b ) (2.17)
2 Blp(V X))]
To mimic the shrinking weights in (2.12) we calculate two statistics
A 2 818y ;i (Vi XD9ji(Ves X)I(Va, Vi) € [a, a + bI)
Owi= > asu J(V ;()i(v X)r . (218)
k (.i)eB,y 1<l<r<n PVELADP WV Ar
and
Onc:=L, > 02 (2.19)
(jvi)Eka
The proposed conditional hazard estimator, which mimics (2.12), is
2 Kon Kin
EE IS [z(ej.i > 2gdn" NI Vi< q)
v=1 kj=1kp=1 (j,i)Eka
+min(1, 0,1 /O,1) 1Oy > prn™ NI Vi > q)|6jiji(t, x). (2.20)

If necessary, a projection on the class of nonnegative functions can be performed as explained in Efro-
movich (1999). Now recall that w denotes generic positive constants.

Theorem 2 (Upper bound). Let Assumptions 1 and 2 hold. Then the data-driven estimator (2.20) is
sharp-minimax and

sup [n/d]>*/ G+ Ry / (WTX(1]x) = KT X (2] x))?dxdt} < P(1 + 0,(1)), (2.21)
hTIX e(F,USy) R

that is the estimator not only matches performance of the oracle that knows the shrinking local class
Fn defined in (2.2), but it also attains the oracle’s lower bound over the global Sobolev class Sy defined
in (2.1). If additionally the lifetime of interest T and the predictor X are independent and accordingly
WX = WY, then the estimator attains the optimal univariate rate and

sup E{ / (WTX(1]x) = hT (1)) ?dxdt} < wn=20/CGao*D), (2.22)
thXE{ﬂUS(), hT|X:hT} R

We conclude that the proposed data-driven estimator of the conditional hazard rate function: (i)
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to smoothness of the conditional hazard; (iii) Takes into account a possible independence between the
lifetime of interest 7 and the predictor X when the bivariate h” X (¢|x) is equal to the hazard rate h” ().
In that case the estimator attains the optimal univariate rate of MISE convergence; (iv) All these desired
properties are achieved without any complementary procedures like a hypothesis testing or an intensive
numerical calculation.

As it was mentioned earlier, we finish this section by discussion/explanation of the sequences used
in construction of the oracle-estimator (2.12). First of all, the estimator has the low-frequency part,
where each Fourier estimate é*fl. is individually hard thresholded, and the high-frequency part where
the same shrinkage is applied to all Fourier estimates from a block. The low-frequency part is motivated
by numerical simulations in Efromovich (1999), while the high-frequency part yields the asymptotic
sharp minimax. Now let us consider these two parts and explain the involved sequences. We begin
with the lower-frequency part. Recall that ¢ = [In(n + 20)], dn~! is the asymptotic variance of é;fi,
and accordingly the used hard thresholding is classical and it is often referred to as universal. Con-
sidering a logarithmic number of individual Fourier coefficients is also well known and supported
by numerical studies, see Efromovich (1999). Now consider the high-frequency part. The weakly ge-
ometrically increasing blocks are convenient and yield a relatively small, of order (¢s)?, number of
considered blocks, at the same time slower increasing blocks may be also considered as explained in
Efromovich (1985, 1999). The choice of Ky, and Kj,, and more specifically of the sequences b, +1
and bk, .1 that do not depend on chosen blocks, is motivated by analysis of the integrated squared
bias B of not estimated Fourier coefficients. Recall that bk, . is of order sn'/3 and bk, +1 is of]
order sn'/*. We begin with explanation of the choice for Kg,. Consider the case when X and T are
independent, and set Jo, := bk, +1 — 1. The proposed blockwise estimator must preseve the optimal
rate n~2@/ (2"0“), see (2.22). Because 6;; = 0 whenever i > 0, the integrated squared bias of inter-
est is Zj>J0,, 9]20 < WJ0—n2(to Zj>Jon ]'2009120 < W(Snl/S)—2ao < ws2n~2a0/Qao+1) — on(l)n—Zao/(Zao+1)_
This calculation sheds light on the choice of Kp,. Now let us explain the choice of Ki, which
should yield B = 0,(1)n22/C+1) if T and X are dependent and correspondingly 47X is a bivari-
ate function. Set Ji,, := bg,,+1 — 1, note that Ji,, < Jy,, and write 8 < 35 Zj>J1n(9i2j + 9]2.l.) <
le’n2 D0 Zj>Jln[j2"00]2.i + j H?j] < w(sn')72 < ws2p2e/Qatl) — o (1)p~22/Qat]) What was
wished to show. Also note that K, and K, are of order gs. Finally, let us comment on the blockwise-
shrinking estimation. For the oracle it is ideal to use blocks of unit cardinality and shrinking weights
sz.i / [912'1‘ + E{(é}fl. -0 ji)z}], this is the famous Wiener’s shrinking that minimizes the MISE. However,

the statistician cannot mimic this individual shrinking of each é’fl. with sufficient accuracy. This is why
blocks are used because they yield estimation of averaged shrinking coefficients. It will be explained
in the proofs that there are special restrictions on cardinalities of blocks and sequences pk that im-
ply sharp minimaxity. The interested reader can find more discussion of the oracle-estimators in the
Supplementary Material.

3. Estimation for a mixed multivariate predictor

We are considering the case of a vector-predictor when the model is extended to a multivariate pre-
dictor which may contain mixed (continuous and ordinal/nominal categorical) covariates. Namely,
the predictor is Z := (X,U) where X := (X},...,X;) € [0,1]7 is the vector of 7 continuos covari-
ates and U := (Uy,...,Uy) € My, := HZ’zl{O, 1,...,My — 1} is the vector of m categorical covari-
ates. The corresponding mixed design density f%(z) = fZ(x,u) := fXU(x|u)fU(u) is supported on
Rem = [0,1]" X My, Also set M := []]" | My and introduce two hyperrectangles R := [a, a+b]x [0, 1]*
and Ry, :=[a,a + b] X Ry,
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Our main aim is to suggest an estimator whose MISE converges with the rate corresponding to the
underlying smoothness and dimensionality of A7 Z when the lifetime of interest 7 may depend on a
subset of continuous covariates. Similarly to the case of a univariate predictor, we will use a series
estimator based on a tensor-product basis defined on the set R, with the inner product

(e =m 3 [ e s, G3.1)

uemM,, R

The corresponding squared norm is denoted as ||g||> := (g, g). A convenient basis is defined as fol-
lows. For vector X of continuous predictors on [0, 1]7 we use the cosine tensor-product basis ¢j(x) :=
[1io; v (xx) where i := (i, ...,ir) € {0, 1,...}7. For a kth categorical covariate uy € {0, 1,..., My -1}
we use a discrete trigonometric basis

n0(ues M) = 1, (g, M) =22 cos(mQuy + Dr /M), r=1,..., My — 1,

which allows us to define the tensor-product basis {nr(w) := [1}2, 17, (g, My), ¥ € My, u € M, }. Fi-
nally, for the inner product (3.1) we use the tensor-product basis {¢i(z,X,u) := ;(£)¢i(X)ne(u) =:
ieir(x,w), (j,ir) € {0, 1,.. 17 x M,,,}. Using this basis and the Parseval theorem, a conditional
hazard with a finite norm may be written as a Fourier series,

hTIZ(tlz) = Z Hjll'l//jll‘(h Z)s Where 9]11‘ = <hT|Z’ l!’[ll‘)? (t3 Z) € Rle' (32)
U’Lr)EM(H‘r)m

Similarly to the above-discussed univariate predictor case, for dimension reduction and adaptation
to smoothness of A71%(¢|x,u) in continuous variables (z,x), we define blocks of indexes (j,i,r). Set
Aj =10, 1,...}, and introduce tensor-product arrays of indexes Aj := Ay X {0}" X My, Az := {A X
ALX{0} I XM b\ Al Az = {A] X {0} X AL X {0} 2 X M} \Us_ Ar, - . Apr i= {A] X {0} X
AL X M} \UE_ Ak, Alrrst o= {{AGY X {0} X My} \ Ui T Ag, Arirsn == {{A))? X {0} X A] X
{0} 3 X My} \ UM Ay, L Age = {{AJMT X My} )\ U2 Ay, The arrays are arranged in such
a way that the number ¢,, ¢, € {1,2,...,1 + 7} of considered continuous variables in array A, is
a stepwise function increasing in v = 1,2,...,27, and note that continuous variables in A, include
variable ¢ together with ¢, — 1 continuous covariates. Then similarly to (2.8) we can rewrite (3.2) as

27'
WGz = h(t,2), where h(tz)= > Ojieljic(t,2). (3.3)
v=1 (J,Lr)eA,

Using blocks By introduced in Section 2, for each A, we define its own array of tensor-product blocks
Byx 1= Ag N {{By,, By, . . .,Bkm}l” X M}, k:=(ki,...,k1+¢), and then denote by L,k cardinality
of B,k. Recall notation Ky, and set K, to be the largest integer such that by, g, < n'/@7+1) Note that
if 7 =1 then K, is the same as for the univariate predictor. Also set pk := 1/In(3 + ng ky). Then
following (2.9) we can approximate conditional hazard (3.3) by

27 KOn Krn

hy 2= 3T T elt,2), (3.4)

v=1ki=1ky,...k1+r=1(j,ir)€Byk

This is tf ol hose Foui ffici intend .
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Now let us introduce a considered function class. For a vector @ := (ag, @1, . . ., @) of positive inte-
gers, whose elements represent number of derivatives of a function in its 1 + 7 continuous variables,
following Hoffmann and Lepski (2002) we define an anisotropic Sobolev function class

S@,0) = {g; ¢(t,2) > 0 for (1,2) € [0,00) X Rem,

gtz)= Y Oein(t2) for (,2) € Rirm,
(/.’iar)eM(H‘r)m
T
Z [1+ (mj/b)%® + Z(nik)zakw?ir <bQ < oo}, (3.5)
(j’i’r)eM(IJr‘r)m k=1

and its effective smoothness

wm— (3.6)

T -1
k=0 Yk

It is known due to Hoffmann and Lepski (2002) that for this Sobolev class and nonparametric regres-
sion with (1+7) continuous covariates the optimal rate of the oracle’s MISE convergence is n~2/(2a+1)
As we will see shortly, this result can be matched for conditional hazard with (7 + m) mixed covariates

under the following assumption.

Assumption 3. Given predictor Z, lifetime of interest T and censoring lifetime C are independent. An
underlying natural nuisance function p(t,z) = f%(2)ST2(t|z)SC%(t|z) for all t € [a, a + b] belongs to
the Sobolev class

St0={g: gwa) = Y wlpu(@ for ()€ Rigm,
ALr)eMem

max Z [1+ zT:(m'k)ZT][Kir(t)]2 < oo, g(t,z) >0 for (t,2) € [0,00) X RTm}. (3.7)

tela,a+b] (Lr)eMem =

Remark 2. The oracle knows the natural nuisance function p. Assumption 3 allows us to match the or-
acle by suggesting an appropriate estimate of p. To overcome the curse of dimensionality, the assumed
Sobolev’s smoothness in (3.7) depends on 7, but it is not tied to smoothness of hT1Z | Also note that the
natural nuisance function is the product of three functions, and accordingly its smoothness in a con-
tinuous covariate x; is defined by a coarsest in x; function among the triplet ( fZ, S71Z, SC1Z)_ Finally,
because ST1Z is a factor in the natural nuisance function, the estimand hT1Z ig at least as smooth in x
as p(t,z), and accordingly (3.7) implies that in (3.5) we have min(ay, ..., ;) > 7.

The introduced notions and notations for the case of a multivariate predictor are similar to the uni-
variate case, and the same similarity will be observed between the proposed estimators.
We begin with introducing a plug-in sample mean Fourier estimator

(3.8)

A < All(‘/l € [aa a+ b])lﬁ 'il‘(‘/la Zl)
Qe =n"'M7! J
s [_Zl p\Vi,Zy)
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and an estimator of the coefficient of difficulty,

s 1 NIV €la,a+ b))
di=n"'M" ! . 3.9
APV Fr AT 59

Here p is an estimator of the natural nuisance function defined as

plt,2) = max(p(t,2),g7"), pltr):=n"'M7 Y N IV 2 Dpi(Z)gin(z),  (3.10)
=1 (ir)eA’

where A’ :={0,1,.. ot/ 3Ts)}T X M,y Next, similarly to (2.19)-(2.20) we introduce two statistics

2 2 N Wie (Ve 20, IV, € [a,a + b))
vk - 1—[

. kan(n - 1) G ﬁ(‘/ln’zln)

@

G.11)
LLr)EByk 1<l <l <n n=1

and 0, := LV_ll 2(ir)eB,x 9]2.ir. The proposed conditional hazard estimator is

27 Kon Kzn

M2am=)" % > | Y, 1@>2dn G visg

v=lki=lky,...kisz=1 (jir)eB,

+min(1, 0,k /0,i) 10k > prn” HI((j Vi> Q)]éjirl//jir(t’ z), (3.12)
where j Vi:=max(j,ij,...,i).
Theorem 3 (Multivariate mixed predictor). Let Assumption 3 hold. Then the conditional hazard

estimator (3.12) is rate-optimal over an anisotropic Sobolev class (3.5) and

sup  B{||ATVZ — pT1Z)2} < ypp—20/Cax]) (3.13)
hT12eS(@,0)

where « is the effective smoothness (3.6) of the Sobolev class. If an estimated conditional hazard
W2 depends only on a subvector (Xk» - - -» Xk, ), v < T of continuous covariates, then the estimator’s
MISE satisfies (3.13) with a being replaced by a corresponding effective smoothness a* := 1/[e L

v -1
i1 9, |

The rates outlined in Theorem 3 are optimal even for the oracle who knows an underlying dimen-
sionality, and this implies that the estimator performs the desired dimension reduction.

4. Proofs

Proof of Theorem 1. We begin with the heuristic that sheds light on steps in the proof and explains
new notions. Nonparametric lower bounds for minimax risks over Sobolev classes, that are defined
by special restrictions on Fourier coefficients like (2.1), are established using a Bayes approach with
least favorable priors for Fourier coefficiens. For the case when Fourier coefficients are observed with
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problem, the methodology of Efromovich (1989) can be used which is developed for a model where
Fisher information, contained in an observation about a Fourier coefficient, is constant or asymptoti-
cally approaches a constant. Then, similarly to Pinsker (1980), a normal prior may be used. To make the
proof shorter and more concise, it is worthwile to use technical results of that papers. Accordingly, to
get a constant Fisher information, we divide the rectangle R := [a, a + b] X [0, 1] into s2 subrectangles of
sizes (b/s) X (1/s). Then for each subrectangle its own cosine tensor-product basis and a local Sobolev
class are created. Because all involved functions are smooth, for large n the local Fisher information
is almost constant, and we can use the above-mentioned methodology of the proof. A pure technical
issue to resolve, which complicates presented below notions and notations, is that the local hazard rate
functions should be sewed together to get a Sobolev’s smooth function over the R. Fortunately, this
is a familiar procedure in harmonic analysis and is done using special flattop smoothing kernels. One
more comment is due which explains specific notions and sequences used below. Consider a Sobolev
ellipsoid with coefficients aj; == 1+ (js/ b)?@ + (mis)*™,i,j =0,1,... and power bQy, and note that
a1j; and Q1 = Q define the ellipsoid (2.1). Further, assume that 7 is the constant Fisher information for
a problem at hand, for instance 7 is reciprocal of the variance of Gaussian white noise in the filtering
model of Pinsker (1980). Then it is known that the sharp-minimax estimator over that ellipsoid esti-
mates only Fourier coefficients on frequencies satistying a;; < a;, where a;, is solution of the equation
Dagji<al, [(asji Ja)V? - a jil = bQgnI . Further, a;, can be replaced by any other sequence satisfying
an = ay(1 + 0,(1)). Accordingly, we can evaluate a,, by replacing the sum by the integral and solving
the equation f{(x’t): astx5a,,;z,x>0}[(am‘/a”)l/2 — agx]dtdx = bQsnI . Using the change of variables

V= Jrsxa,_ll/ Q@) and u = ntsb_la,zl/ (2‘10), we conclude that the upper bound on considered a,;; may

be set to
an = ay(s, Qs T) := [s°Qu T b P ' n P/ G+, .1

where P is defined in (2.6). In its turn, the a,, allows us to calculate the corresponding minimax MISE.
Denote this MISE by M,,, and use the Pinsker’s formula M, = (1/1n) ZaSﬁSan[l - (asjn/an)l/z].
Then repeating approximation of the sum by a corresponding integral and using the same change of
variables we get

My, = P(ag, a1, s Qy, b)(nZ )72/ D(] 4 0,,(1)). (4.2)

Here function P is defined in (2.5). Now we can explain the last part of the heuristic. Power Q of
the Sobolev class (2.1) over the rectangle R should be spreaded among the above-mentioned Sobolev
subclases for s> subrectangles. This is done by assigning the power inversely proporional to the local
Fisher information, and then the sharp-minimax oracle-estimator verifies that this approach is indeed
the least favorable. Of course, to make the above-mentioned step we need to calculate local Fisher
informations. The calculation will be done shortly, and now let us explain its heuristic. The mixed
density (likelihood) of the triplet (X, V, A) is

fX’V’A()C, ‘. 5) — fX(x)[Sclx(t|x)hT‘X(t|x)e_fot hT|X(z |x)d2]5

X [FCX (1]x)eJo WX @l)dzy1=6 (4.3)

t
Here we used formula ST1X(¢|x) = e_fo hT‘X(le)dZ. The Fisher information is calculated for Fourier
coefficients of a cosine tensor-product series expansion of 27 X In (4.3) a Fourier coefficient of A7 IX
t
WX @)z 344 in the factor AT1X when A = 1. In the factor e~ 4"~ @x)dz
we get integrals like fot cos(wju)du = (wj)~ sin(wjr) = 0j(1),j > 0. In establishing a lower mini-
max bound the oracle may consider only increasing frequencies j > ¢*, and then a straightforward

t
is present in the factor el
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) : . : — Jy kX (z]x)dz
calculation shows that the component of Fisher information, created by the factor e~ /o .

vanishes as n increases. For the factor AT'X calculation of the corresponding component of the
Fisher information is a standard calculus problem, and as we will see shortly the Fisher informa-

tion is [fX(x)SC|X(t|x)SOT|X(t|x)/h0(t|x)](1 + 0,(1)), where (x,¢) is a point from the subrectangle

and Sg |X(tlx) = ft ® ho(z|x)dz is the conditional survival defined by the anchor. Note that the Fisher
information is the natural nuisance function (1.2) divided by the conditional hazard rate. The final step
of the proof is to show that the lower bound is attainable by an oracle-estimator. The proposed oracle-
estimator (2.12) is convenient for understanding of how to mimic it by a data-driven estimator, but it is
a complicated task to directly analyze its MISE. Instead, a ladder of sharp-minimax oracle-estimators
is considered that leads us to the (2.12). The ladder will be explained at the beginning of the upper
bound proof.

Now we proceed to the proof of the lower bound. As it was explained in the heuristic, the first step is
to introduce a new function class that is a subset of 7, and is defined by local Sobolev classes on the
above-mentioned subrectangles of R. Set

s—1 a+b
Hy={h: helx) = ho(tl) + 10 €R) Y [gag(t0) = b7 / 80z 0)dz.
r,k=0 a

8ot (%) € Hypry Rlt]x) 0}. (4.4)

We will define all the elements of the class shortly, and now note the following. H;, are local classes
on the subrectangles, functions g, are smoothed, at boundaries of the (r, k)th subrectangle, Fourier

series so functions & — kg belong to the Sobolev class S;. Also note that fa a+b[h(t|x) — ho(t]x)]dt =0,

and accordingly ST X (¢|x) is not changed for ¢ > b.

Now we define the functions and classes in (4.4). Let ¢(x) := ¢(n, x) be a sequence of flattop non-
negative kernels defined on a real line such that for a given n: the kernel is zero beyond (0, 1), it
is a-fold continuously differentiable on (—oo,00), 0 < ¢(x) < 1, ¢(x) =1 for 2/¢> < x <1 -2/4>,
and its /th derivative satisfies max, |g5(l)(x)| < Cq21, [ =1,...,a. For instance, such a kernel may be
constructed using so-called mollifiers discussed in Efromovich (1999). Then set @y (x) := ¢(sx — k).
Absolutely similarly define ¢g,(¢) only with a; being replaced by ag and the interval [0,1] by
[a,a + b]. Set @gi(x) := s'2p;i(sx — k) and Werj(t) = sl/zzpj(st — br). For an (r, k)th subrectangle
[a+br/s,a+b(r+1)/s]x[k/s,(k+1)/s] (as we will see shortly, common boundaries are irrelevant
for the proof and simplify formulae), 0 < r,k < s — 1, set ¢gpi(t, X) := bsr(H)bsr (), Osrkji(t, x) :=
Wsrj(O)@ski(x), and

grrk)(tx) = Z NsrkjiPsrkji(t, X), &kt X) = grk) (&, X) | Psric (2, X). 4.5)
(,i)eD(s,r,k)

Here D(s, r, k) := {(j, i) : n2@/Qa+D) g4 < asji < an(s, Qsrks Lsri); i =q° +1,4°+2,. ..}, ap is defined
in (4.1), Qgri 1= O = 1/5)I5 )™ Lok = fX(k/)SC X (a+ br/s|k/5)SE X (a+br/sk/s)/ho(a +

— t
br/s|k/s), I;' = Z:_klzo(l/lsrk), and Sglx(ﬂx) = ¢ o MG [ et us comment on (4.5). Fourier

series g[,«] is the subrectangle’s analog of Sobolev’s additive perturbations g in (2.2). As it was ex-
plained in the heuristic, we need to sew the perturbations from adjoint subrectangles, and this is why
the smoothed at the boundaries 8(rk) is introduced. Also note that, as was explained in the heuristic,
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Now we can define local function classes Hj,, used in (4.4). Using defined in (4.5) local Fourier
series g[r] and their smoothed at boundaries versions g(,), set

Hri := {g(rk)(t’ x): guritx)=[ Z NsrkjiPsriji(t X)]Psri(t, x),
(J,0)eD(s,r,k)

Z asjmzrkji <bQuk 57 < ”nzrkji <s, g (t.x))* < 5° 1n(n)n_2”/(20+1>}~ (4.6)
(Jj,i)eD(s,r,k)

Note that this is a very special subclass of vanishing, as n increases, and smoothed at boundaries
local Sobolev functions with intermediate frequencies and additional restrictions on underlying Fourier
coefficients.

Our next step is to verify that H, c 7, for all large n. Definition of the flattop kernel implies that
for (1, x) € R the difference h7 X (¢|x) — ho(t|x) is a;-fold differentiable with respect to x and aq-fold
differentiable with respect to r. Second, let us verify that for 4 € H this difference belongs to 7.
We begin with testing derivatives with respect to x. To simplify formulas, in several next lines we are

using c,b(l)(t x) := 0ly(t,x)/dx! for the Ith derivative. By the Leibniz rule (&rri)(t, X)dsric (2, x))@) =
o C g<f,;] (1, )¢ (2, x) where € := a1/ ((an — DUY). For 0 < I < ay we have (¢, (1,x))? <
C(s(In(n))?)?, and for 8(rk) € Hsrik we can write (recall that w denotes generic positive constants that

may be different even in the same line)

(@1-1) W ol al a+b(r+l)/s (k+1)/s (1-1) )
/[ r,l] (1, x)¢srk(t x)] dxdt < ws“ In™(n) / [g[rll (7, x)?dxdt
R a+br/s k/s

2((l| l)

< WS2[ 1114[(1’1) Z 2((1/1 -1),2 < Wq4a/1+1

Uérk], = Osrk = On(l)q erk
(j,i)eD(s,r,k)

X
(G.)eD(s,rk)  aji

In the last equality the definition of #,; and the relation min(; jyepsrk i > g° were used. Absolutely
similarly we get

/[(3”"71g[rk](t, xX)91%71)(0' gk (2, x)/01) P dxdt = 04(1)g > Qsric-
R

Next, using the Parseval identity we get for g(,x) € H i,

/R |81 + (0 g1ysy 1, X/ 0372 + (00 g1y 1, 5)/ 010 | 82, 1, )k

2
< Z ajing, i S bQsrk-

(J,i)eD(s,r,k)

The above-obtained relations, together with Propos1t10n 1 of Efromovich (2001) and Zs =0 Osrk =

Q(1 —s71), yield that for all 8(rk) € Hyri we have Zr =1 &kt x) € F (o, a1, O(1 — s~ Y, a, b, hy). To
finish verification of the relation H C F*, we are left with analysis of the function (recall the definition

(4.4))

s—1 a+b
gs(x):=b7! Z / 8oz x)dz, x €[0,1]. (4.7)

—1
k=1
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a+b(r+1)/s
+br/s
that g¢ belongs to 7, (e, @1, on(l)s‘l, a, b, hy).

This concludes verification of the assertion that for all large n we have H C F,. Accordingly, in
the proof of the lower minimax bound we can replace 7, by Hs. The latter allows us to consider a
parametric estimation problem with conveniently chosen parameters 775z ;.

Now we are evaluating from below a component of the studied MISE over a specific subrectangle
Rypx :=la+ br/s,a+ b(r + 1)/s] x [k/s,(k + 1)/s]. Recall that gs(x) is defined in (4.7), introduce
h(t|x) =t ho(t]x) + h(t|x), and write for A(f|x) € Hs,

Using relation / 8[rk|(t, x)dt = 0 and definition of the flattop kernel ¢, «(z, x), we conclude

/ (h(t]x) = h(t|x))*dxdt = / (h(t]x) = (i (1, X) + gs(x))dxdt
R,k Rsrk

>(1-s) /R (u(t1) = giya (1)) dxdt — s / [0 X)(1 = B3yt ) + g ()Pt

Rsrk

=(1- S_l)/ (h(t|x) - girk) (s x))2dxdt + on(l)sq_l/2n_2"/(2"+1)_
srk

To continue, set g, ki := fR‘ . E(tlx)t,osrkﬁ(t, x)dxdt for Fourier coefficients of the oracle-estimate

h. Using definitions (4.4) and (4.6) of function classes H and H;,, and the Bessel inequality we
continue

sup { / (h(t|x) - h(t|x))2dxdt}> sup E{ / (h(t]x) - h(tlx))zdxdt}

= sup Z { / (ﬁ(tlx)—h(tlx))zdxdt}

heHs ) k=0

s—1

>(1-s7" Z Sqlip Z E {(ﬁsrkji - U.srkji)z} + op(1)n~2@/Ga+)
rk=0 "E€Hsri (ji)eT(s,r.k)
s—1
=: (1 _s—l) Z Ark +0n(1)n—2(1//(2(1+1). (48)

r,k=0

Our next step is to find lower bounds for the parametric risks A,. To do that, we bound a minimax
risk by a Bayes one. Introduce an array of independent normal random variables ;¢ j; with zero mean

and variance Tszrkﬁ :=n71(1 = 3y,) max(yn, min(y;, !, [an(s, Qsris Isk)/asji]'/? = 1)), here y,, < 1/3
tends to zero as slow as desired and the function a,, is defined in (4.1). Using these variables we
introduce a stochastic process /*(t|x), defined as the studied h(¢|x) € H; but with random .« ji used in
place of deterministic 775, ;- The idea and methodology of considering such a stochastic process goes
back to Pinsker (1980) and Efromovich (1989). To use the methodology we need to establish several
technical results and then calculate Fisher information. First, following along lines of establishing line

(S.18) in Pinsker (1980) we get

B((R" (¢]x) = ho(elx) € H, ) 2 1= lon(1). (4.9)
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: 2 -1
Second, using Torkji <sn~" we get

2 3 -2a/Qa+l
sup[Tsrkji@sriji(t, X)]° < ws’n a/Qa+l)

(u)eD(s,r,k) ¥

Third, introducing a similarly defined stochastic process P_zf‘r k]’ and using the above-presented calcula-
tions together with Theorem 6.2.3 of Kahane (1985) we get

P( sup |i_zFrk](t|x)|2 < s4qn_2“/(2"+1)) >1—|on(1)|s72.
(t,x)€eR

Now, following Efromovich (1989), we are calculating Fisher information in the triplet (X, V, A) about
parameter 74,4 ;; of the conditional hazard rate hT1X e H. Recall that formula for the likelihood is
presented in (4.1), and it yields that the Fisher information is the sum of two components for A = 1
and A = 0. We evaluate the components in turn. In what follows we use notation Eg, ;o to stress that

the expectation is calculated using KX with Nsrkji = 0. Write for the case A =1 of the uncensored
lifetime of interest T,

T
Lyrjit = B jio{ A0 (R X (T1X)e™ b 11X X0d=) 15, 2, (4.10)

Let us consider the derivative on the right side of (4.10),

T T
dIn(hTX(T|X)e b W@y T (rix)) @ fy hTX(z]X)dz
Msriji OMsriji OMsriji

=B -B,. (411)

Note that

a+b
WX (8, x) = ho(t]) + (8t (8 x) = ™' 1((¢, ) € R) / 8z X)dz], (4.12)
where
80riy(t, %) := grri) (6, X)psric(t, ) (k /s S x < (k+ 1)/s)[(a+br/s <t < a+b(r+1)/s), (4.13)

and g(,k)(t, X) 1= 2(j.iyeD(s,r k) MsrkjiPsrkji(t, X). Using these formulas we get dgyk1(t, x)/0nsrkji
= @grkji(t, x), recall that ¢ (¢, x) is a flattop kernel described in the beginning of the proof,

@srkji(t, x) are elements of the tensor-product cosine basis on the (r, k)th subrectangle, and then

k(/k:l)/s @srkji(t, x)dx = 0 and fa Z’br(/r:l) /s @srkji(t, x)dt = 0. Also recall that on the considered rectan-

t
gle functions /o(7]x), £X(x), S1X(¢|x) and Sglx(tlx) = ¢~ ™G4z 4 continuous and |hT X (] x) -
ho(t|x)| < 1/q. Using these remarks and a straightforward calculation we get
FXk/)SCX (a+ br/slk/s)S, ™ (a+ br/s|k/s)
hola + br/s|k/s)

Esrkjio{Bl} = (1+0n(1). (4.14)
To evaluate the second moment of B;, we need to make a simple remark. B; is the functional of the
integral of 17X For j > 0 we have fot cos(njsz/b)dz = (mjs/b)~ ' sin(njst/b) = 0j(1), and recall that
we are considering only j > ¢°*. This remark and a straightforward calculation yield that

Esrkji.0{B3} = 04(1) (4.15)
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uniformly over considered (r, k, j,i). Using (4.10), (4.14), (4.15) and the Cauchy inequalty we conclude
that Igp i1 = Esrkji,O{B%}(l + 0,(1)) = I 1 (1 + 0,(1)). Note that the first component of the Fisher
information, calculated for the case A = 1, is the value used in spreading the Sobolev power among the
subrectangles. The reason for this is that the second component, for the case A =0, is

af hT|X(z|X)dz]2} ot

(4.16)
a7]srkji

IsrkjiO = Esrkji,O {(1 - A)[

where the last relation is due to (4.15). We can make an important theoretical conclusion that the oracle
can use only uncensored cases, when A = 1, for the sharp minimax estimation.

Now we are ready to finish analysis of terms A, in (4.8). The calculations (4.1) and (4.2) allow us
to use results of Efromovich (1989) and get

inf A, > (s Q)P D (0, 1) 242D P, @, 1, b)(1 + 04 (1)). (4.17)

Here the infimum is over all possible nonparametric oracle-estimates of A7 1X(¢|x) considered in Theo-
rem 1. Now we plug in values of O, introduced at the beginning of the proof and get

s—=1 s=1 _
inf Z A = Pn—2(1/(20/+1)s—4a/(2(z+1)[ Z (Is—lIsrk)—l/(2a+1)1;r2ka'/(2(x+1)](1 fou(1).  (418)
r,k=0 r,k=0

For the sum on the right side of (4.18) we may write,

s—1 s—1

-1 - —2a/Qa+1 T 1N— - 1
Z (Is llsrk) l/(2(r+1)1sr]:¥/( a+1) — (Is 1) 1/Qa+1) Z Isrlk — (Is 1)2(1/(2a/+1)
r,k=0 k,r=0

:(SZ/b)2<x/(2(1+l)[(b/s2) i ho(a+br/s|k/s)

]2(l/(20/+])
20 FX(k/$)SCWX (a+ br/s|k/s)Sy X (a+ br/s|k/s) '

(4.19)

Because all functions in the last sum are continuous, using (4.19) we continue (4.18) and get

s—1 T|X
h 2a/a+1)
inf > A ZP[n‘l(b_lf (z]:x) dxdt)] P 0+ 0n(1)).

4 & FXCOSCT (1]x)STX (1]x)

The oracle’s lower bound is proved. Proof of its sharpness can be found in the Supplementary Mate-
rial.

5. Practical examples

Producing greenhouse gas, also called biogas, greengas or biomethane, occurs in nature when a di-
verse population of bacteria breaks down organic materials, contained in waste, landfills and livestock
manure, into the biogas and a combination of solids and liquid components. Greenhouse gas contains

CICe C C CICC aroon 0..0‘ and dC€ amoun Ol other gasc O
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give a perspective on gravity of the problem, according to EPA in the USA landfills and manure man-
agement are responsible for 27% of toxic methane emissions second only to 32% by natural gas and
petrolium systems. Instead of escaping into the air, the potent gas can be captured, converted, and used
as a clean renewable energy resource. This is what waste treatment plants do, and aerators are the im-
portant part of those systems. Moreover, an aerator fouling may force to stop the plant. This is why
prediction of the fouling is an important statistical problem.
The section presents four examples of statistical analysis of diffuser fouling in wastewater aerators.
We begin with a brief explanation of aeration and diffuser fouling, and then consider experiments
conducted by environmental company BIFAR.
Aeration is an essential and most energy demanding process of wastewater treatment plants, and it
creates opportunity for wastewater recycling and reducing environmental pollution by cutting green-
house gas emissions produced by otherwise untreated waste, see Slavov (2017) and Albu et al. (2021).
Aeration introduces bubbles of air into a wastewater that supply the required oxygen to the metabolizing
microorganisms and provide mixing of waste that allows microorganisms to come into contact with the
dissolved and suspended organic matter. While a diffused aeration system (aerator) is a complicated
engineering mechanism, we will deal only with two of its parts: (i) Air diffuser which transfers air
into wastewater; (ii) Air blower which supplies pressurized air to diffuser. The diffusers are susceptible
to chemical and biological fouling that decreases supply of air and causes substantial aeration energy
wastage, while the blower may break down due to pollution in poorly filtered air, see a discussion in the
above-cited references and Drewnovski et al. (2019), Vinardella et al. (2020), Samuelsson et al. (2021).
The environmental company BIFAR has been interested in the effect of several parameters (covariates)
on the diffuser fouling time 7. Below four controlled BIFAR experiments are explained in turn. In the
BIFAR experiments 7" was right censored by end of the study or breakdown of the blower. The experi-
ments are conducted for different diffusers and wastes, the experiments are labor-intensive and costly,
and that explains relatively small sample sizes.

The following aeration terminology is used. CSS, CCR and LAP stand for concentration of sus-
pended solids, concentration of chemical reagents, and level of air polution, respectively.

Experiment 1. BIFAR was interested in fouling time 7" of a new diffuser given level X of suspended
solids in treated wastewater. Perfect air filtration was used to avoid breakdowns of the blower. At the
same time, because for some diffusers their lifetime 7" was too long, BIFAR stopped an experiment
when T exceeded a threshold cg. This created a deterministic right censoring with triplet of observed
variables (X, V, A) where V := min(7, cg) and A = I(T < ¢p). BIFAR conducted n = 92 experiments and
among those 20 were censored. The observations, linearly rescaled by BIFAR onto unit square [0, 1],
are shown in Figure 1. With some obvious but understandable abuse of notations, in the figure and in
what follows we denote by X and V the rescaled variables, and as a result if A=0then V = 1.

Before discussion of the data and its statistical analysis, let us make the following important remark.
Deterministic censoring, used by BIFAR, is not covered by the paper’s theory where C is assumed to
be random. On the other hand, because BIFAR is interested only in 7 € [0, 1], all assumptions of the
theory are fulfilled. Moreover, the interested reader can double-check that the proposed estimator does
not use values of V beyond an interval of interest.

Now let us return to the data shown in Figure 1. Let us look at the top diagram where only uncensored
observations (pairs (X, V) = (X, T)) are shown by the circles. In many instances a visual analysis of a
scattergram may reveal a pronounced relationship between predictor X and response T, see examples in
Efromovich (2018). This is not the case here, and even our general knowledge that the lifetime should
decrease as the concentration of suspended solids increases does not help to see that in the data. Also
note that, at least on first glance, Fourier estimator (2.16) uses only uncensored observations, and the
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Uncensored Data for Experiment 1
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Figure 1. Data for BIFAR experiment 1. X is the CSS (concentration of suspended solids), V is the censored
lifetime. Observations are rescaled by BIFAR on [0, 1]2. The circles show uncensored observations, that is obser-
vations with A = 1. The triangles show censored observations whose lifetimes exceeded the BIFAR’s threshold.
The sample size n =92, and 20 lifetimes are censored by BIFAR.

observations, help us to realize that the diffusers are not everlasting and the fouling increases when X
increases. Now we can return to the issue of using only uncensored observations. This is indeed the
case for the oracle, but the oracle knows the principle nuisance function p. The Fourier estimate (2.16)
utilizes estimate (2.15) of p which uses censored observations.

Now let us present the estimated conditional hazard (recall that ¢;(x) = 2'/2 cos(nx) and it is a
decreasing function on [0, 1]),

iz(tlx) =2.1-p1(x) = @1(1)[1.3-0.601(x)], (t,x)€]O0, 1]2. 5.1

Recall that ¢ is the time and x is the CSS. As we see, the conditional hazard increases in ¢ and x, and
the increase in ¢ accelerates as x increases. This outcome was accepted by BIFAR and supported by the
theory of diffuser fouling.

Two comments are due. First, it may be difficult (and even impossible) to “visualize" conditional
hazard in data, and accordingly one needs to use an appropriate statistical methodology and software.
Second, while practitioners often prefer a polynomial formula in ¢ and x, and this is not difficult to do
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Data: V versus X1 for Experiment 2
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Figure 2. Data for BIFAR experiment 2. X1 is the rescaled CSS (concentration of suspended solids), X2 is the
rescaled CCR (concentration of chemical reagents), V is the rescaled censored time of diffuser fouling. The circles
show uncensored lifetimes 7', the triangles show censored lifetimes. The sample size n = 147, and 15 lifetimes are
censored.

by using the Legendre basis discussed in Efromovich (1999), it is the author’s recommendation to use
cosines because polynomials create a familiar “temptation” to extrapolate a formula beyond a studied
set of variables.

Experiment 1 sheds a new light on the problem of conditional hazard estimation and the proposed
solution, and it also provides a learning experience that will be useful for understanding next examples.

Experiment 2. This was a more sophisticated experiment when the BIFAR was interested in aera-
tors for dairy wastewater, Slavov (2017). Concentration of chemical reagents in the wastewater from
washing milk trucks, tanks, equipment and floor is a familiar source of diffuser fouling. The experi-
ment was similar to the previous one only now, in addition to CSS (concentration of suspended solids)
X1:= X := X, CCR (concentration of chemical reagents) X2 := X, was another controlled covariate of
interest. Collected data are shown in Figure 2 and explained in the caption. Similarly to data for experi-
ment 1, it is not easy to visualize a relationship between the variables, especially in the bottom diagram
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Data: V versus X1 for Experiment 3
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Figure 3. Data for BIFAR experiment 3. X1 := X is the CSS (concentration of suspected solids), X3 := X3 is
the LAP (level of air pollution), V is the censored time of diffuser fouling. Observations are rescaled by BIFAR
onto [0, 1]3. The circles and the triangles show uncensored and censored lifetimes, respectively. The sample size
n = 151 and 35 lifetimes are censored.

where we see the scattergram of censored lifetimes V versus CCR. Estimated conditional hazard is

(t|x1,x2) = 2.7 = @1 (£)[ 1.4 = 0.6 (x1) — 0.2¢01 (x2)]

—1.1¢1(x1) — 0.5¢1(x2), (1, x1,x2) €[0,1]3. (5.2)

As we see, the conditional hazard rate of diffuser fouling increases in ¢, x| and x, (that is in time, CSS
and CCR), and the increase in ¢ accelerates as CSS and CCR increase. The result is impressive due to
the small sample size and estimating the trivariate function.

Experiment 3. Here BIFAR was interested in the effect of CSS X; and LAP (level of air pollution) X3
on diffuser fouling. Specific of the experiment is that air pollution also affects lifetime of the blower,
and accordingly diffuser fouling times may be randomly right censored by blower’s breakdowns or
deterministic censoring by end of the study. Observations are shown in Figure 3 and explained in the
caption. The top diagram resembles the bottom diagram in Figure 1, and here again it is difficult to
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Data: V versus X1 for Experiment 4
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Figure 4. Data for BIFAR experiment 4 where the effect of impulses of increased air flow (cases with U = 1) are
used to explore feasibility of this method versus controls with constant air flow (controls with U = 0). X1 := X is
the CSS (concentration of suspected solids), X3 := X3 is the LAP (level of air pollution), V is the censored time of
diffuser fouling. Observations are rescaled by BIFAR onto [0, 1]3. The circles and the triangles show uncensored
and censored lifetimes, respectively. The crosses overlay observations with U = 1. The total sample size n = 163,
the number of controls and cases are 73 and 90, respectively. Among controls and cases 7 and 8 observations are
censored, respectively.

visualize a relationship between lifetimes of interest and CSS X; which is denoted in Figure 1 by X.
The bottom diagram shows us observed pairs (X3, V) where X3 is the LAP. Note that the triangles
with V < 1 show observed lifetimes of the blower, and we can visualize a pronounced decrease in
the lifetimes for larger LAP. Further, the uncensored diffuser lifetimes (the circles) indicate a possible
minor effect of LAP on diffuser fouling. The obtained formula for the conditional hazard is

h(t]x1, x3) = 2.6 — 91 (1)[0.9 = 0.6¢1 (x1) — 0.201 (x3)] — @1 (x1) = 0.5¢1(x3), (2, x1,%3) € [0, 1]}, (5.3)

As we see, the conditional hazard rate increases in time, CSS and LAP, and the increase in time ¢
accelerates as CSS and LAP increase. It is of interest to compare (5.3) with (5.1) where x = x;. We
may conclude that despite different studied components of aeration (diffuser, blower, air filtration,
waste), shapes of the estimated conditional hazards are similar.
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Experiment 4. Methods of combating the diffuser fouling process can be divided into two groups: the
ones that require emptying the reactor and the ones that do not. The non-invasive methods include ad-
dition of formic acid to the air supplying diffusers and periodic impulses of increased air flow. Adding
formic acid only enables to control the pressure losses of diffusers (limited effect on external foul-
ing), whereas increasing the air flow rate results in the detachment of loose external biofilm fragments.
BIFAR tested the second method of periodic increases in the air flow rate. As a result, we get a cate-
gorical covariate U € {0, 1}, and U = 0 indicates a control aeration with constant air flow while U = 1
indicates a case aeration with periodic impulses of increased air flow. Otherwise the study is similar to
Experiment 3 and we are dealing with the triplet (X}, X3, U) of covariates and observe a sample from
(V, X1, X3, U).

Data are shown in Figure 4 and explained in the caption. Here our main attention is to the cases
indicated by crosses. Similarly to the previous experiments, without taking into account censored times
(the triangles), it is difficult to say something about the benefit of periodic air impulses. Useful in-
formation about the experiment is given in the caption. Presented below formula for the conditional
hazard rate sheds more light on the experiment. Recall that the two basis functions for the categorical
random variable U are no(u) =1 and ny(u) =1 =2I(u = 1), u € {0, 1}. The formula is

h(t]x1, x3,u) = 2.8 + 211 (1) — 1(£)[0.8 + 2971 (u) — 0.3¢01 (x3) — 2401 (x1 )1 ()]

— 4p1(x1) = 0.2¢1(x3), (1, x1,x3)€[0,1]%,u€{0,1}. (5.4)

As we see, periodic impulses of increased air flow slow down diffuser fouling. The formula also
sheds light on interaction between the 3 predictors.

6. Conclusion and possible future research

For the first time in the literature, the theory and methodology of efficient nonparametric estimation
of conditional hazard rate of a right censored lifetime are developed. The proposed estimator matches
performance of the oracle who knows underlying dimensionality and smoothness of the conditional
hazard rate and all nuisance functions. It is shown that only a single natural nuisance function is used
by the oracle to construct an optimal oracle-estimator. Because the natural nuisance function can be
estimated with an accuracy sufficient for matching the oracle, it is possible to match the oracle by
a data-driven estimator. Further, the used minimal assumption about smoothness of the natural nui-
sance function is not tied to smoothness of the conditional hazard, and this is an important theoretical
outcome of the paper. It also follows from the developed theory that the oracle uses only uncensored
observations for sharp minimax estimation because using censored observations triggers solution of]
ill-posed problems with slower rates of convergence. Important practical examples, devoted to waste
treatment and reducing potent greenhouse gas emissions, show practical feasibility of the estimators
for small samples.

Let us comment on the notion of natural nuisance function. The oracle defines a function (or a vector
of functions) as the natural nuisance function if using it together with data yields a sharp minimax
estimation. Let us present several particular examples that shed light on the notion. For mentioned in
the Introduction nonparametric regression model Y = m(X) + o(X)& and available sample from pair
(X,Y), the natural nuisance function is the design density fX of the predictor X. The oracle uses the
design density fX and the sample to construct a sharp minimax estimator of the regression. Note
that in this example the natural nuisance function is the nuisance function for both the oracle and
istici is not related to the estimated regression function. Our second example
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is estimation of the hazard rate function 4T based on a sample from T considered in Efromovich
(2016). For this problem the natural nuisance function is the survival function ST . This is an interesting
example because knowledge of S” is equivalent to knowing the estimand 4”7, and hence S” is not a
nuisance function for the statistician. Further, for this problem the oracle uses data and the natural
nuisance function to construct a sharp minimax oracle-estimator of 4 that can be mimicked by a data-
driven estimator. Our final example is the setting considered in the paper when the natural nuisance
function is p(z, x) = fX(x)SCX(¢]x)ST X (¢|x). Note that only f*X and S€!T are nuisance functions for
the statistician, and the presence of factor S X allows the statistician to directly estimate p instead of
estimation of the factors. The latter is the interesting specific of the studied problem.

Now let us mention several open problems for future research. An interesting setting, specifically in
biostatistical and actuarial applications, is when a categorical variable affects smoothness and dimen-
sionality of conditional hazard in continuous covariates. A specific example is the effect of smoking or
zip code on longevity. Missing data are typical in survival data. For a nonparametric regression differ-
ent estimators are optimal for missing responses and predictors. It is of interest to explore these settings
for conditional hazard. Sequential estimation with assigned risk is an interesting and important practi-
cal problem due to unknown smoothness of conditional hazard and unknown censoring mechanisms.
Measurement errors in covariates is another familiar problem in survival data. It will be of interest to
explore optimal nonparametric estimation for this setting.
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