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Theory and methodology of nonparametric sharp minimax estimation of the conditional hazard rate function of a

right censored lifetime given a continuous covariate are developed. The theory, using an oracle’s approach, shows

how the conditional hazard and nuisance functions affect rate and constant of the mean integrated squared error

(MISE) convergence. The methodology suggests a data-driven estimator matching performance of the oracle.

Further, if the lifetime is independent of the covariate, the estimator recognizes that and the MISE converges

with the univariate rate. Then the setting is extended to a vector of continuous and ordinal/nominal categorical

predictors, and an estimator performing adaptation to smoothness and dimensionality of conditional hazard is

suggested. Practical examples devoted to reducing potent greenhouse gas emissions are presented.
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1. Introduction

We begin with a familiar problem of statistical analysis of a relationship between an explanatory con-

tinuous variable (predictor) X and a continuous lifetime of interest (response) T based on a sample of

size n from (X,T). Classical examples are age X at the time of a cancer surgery and how it affects

time T until cancer relapse, or how credit score X affects time T until mortgage default. A traditional

approach is to study regression E{T |X = x} :=
∫ ∞

0
t f T |X (t |x)dt where f T |X (t |x) := f X,T (x, t)/ f X (x),

f X,T is the joint density of (X,T), and f X (x) :=
∫ ∞

0
f X,T (x, t)dt is the marginal (design) density of the

predictor. In this paper we use a more complicated and simultaneously more appealing approach for

analysis of the relationship via the conditional hazard rate function (also referred to as the conditional

failure rate in reliability theory, conditional force of mortality in actuarial science and sociology, or

conditional age-specific rate in different fields of engineering and medical statistics)

hT |X (t |x) :=
f T |X (t |x)

ST |X (t |x)
, ST |X (t |x) :=

∫ ∞

t

f T |X (u|x)du. (1.1)

If one thinks about T as a time to an event-of-interest, then given the covariate X = x the quantity

hT |X (t |x)dt represents the instantaneous likelihood that the event occurs within the interval (t, t + dt)
given that the event has not occurred at time t. In what follows, whenever no confusion can occur, we

may refer to the conditional hazard rate function hT |X as conditional hazard rate, conditional hazard or

simply hazard, while HT |X (t |x) :=
∫ t

0
hT |X (u|x)du is called the conditional cumulative hazard.

There is one important issue to be mentioned that distinguishes nonparametric estimation of the

conditional hazard from other classical nonparametric problems like regression or density estimation.

In classical problems an estimated function is assumed to be integrable, while a conditional hazard is

not integrable, that is
∫ ∞

0
hT |X (t |x)dt =∞. Moreover, if T is supported on a finite interval [0,w] then

limt→w hT |X (t |x) =∞. This creates the curse of right tail.

Another traditional complication in survival analysis is that the lifetime of interest T is right cen-

sored, and then instead of observing a direct sample from (X,T) we observe a sample from triplet
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(X,V,∆) := (X,min(T,C), I(T ≤ C)). Here C is a censoring random variable (another lifetime), I(·) is

the indicator, and it is assumed that T and C are conditionally independent given predictor X . This is

the setting considered in the paper, and the problem is to estimate the conditional hazard rate under the

mean integrated squared error (MISE) criterion.

A comprehensive discussion of hazard rates and their role in survival analysis can be found in books

Cox and Oaks (1984), Klein and Moeschberger (2003), Lee and Wang (2003), Gill (2006), Flem-

ing and Harrington (2011), Kalbfleish and Prentice (2011), Miller (2011), Moore (2016), Efromovich

(2018), Ross, Prentice and Zhao (2019), Zhou (2019), Legrand (2021). Let us also present a review of

some known approaches and results. Minimax estimation of the hazard rate based on direct observa-

tions of the lifetime of interest is considered in Efromovich (2016) where it is shown that the sharp

constant is a functional of the survival function. Cox proportional hazards model is a classical ap-

proach that performs well in cases where an underlying model fits the Cox’s model and may be too

restrictive otherwise. Partially linear hazard models with varying coefficients are considered in Cai

et al. (2008), additive Cox models in Lu, Lu and Li (2018). Nonparametric estimation of the condi-

tional hazard is more flexible and technically challenging alternative, see a discussion in McKeague

and Utikal (1990), Li and Doss (1995), van Keilegom and Veraverbeke (2001) where martingale and

counting process techniques are employed. Using splines to estimate the conditional log-hazard rate

is discussed in Kooperberg et al. (1995). The intuitively appealing approach, motivated by formula

(1.1), is to use ratio of an estimate of the conditional density and an estimate of the conditional sur-

vival function. This approach is explored in Spierdijk (2008) and Gneyou (2014) where consistency of

the methodology is established. Brunel, Comte and Guilloux (2011, 2013) consider adaptive and rate-

optimal estimation in an interesting and more general context of marker-dependent counting processes

and the case of missing indicators. Survival analysis often involves a vector of continuous and ordi-

nal/nominal categorical covariates (predictors), see the above-presented literature as well as Kang, Lu

and Zhang (2018) where additive models are used, Cui and Hanning (2019) and companion discussions

are devoted to nonparametric generalized fiducial inference, the book Ross, Prentice and Zhao (2019)

presents a comprehensive overview of multivariate models, interesting discussion of applications can

be found in Li et al. (2022), Zhao and Feng (2020) study deep neural networks, Balan and Putter (2020)

explores frailty methodology, Hothorn (2020) discusses transformation boosting machines, Huang and

Su (2021) use penalized splines in concave extended linear models and study optimal rates, Emura,

Sofeu and Rondeau (2022) use copula methods, deep extended hazard (DeepEH) and deep learning for

partially linear Cox models are suggested in Zhong, Mueller and Wang (2021, 2022).

Overall, there is a rich literature devoted to conditional hazard estimation, including very interesting

ad hoc methods, but neither methodology nor theory of sharp minimax (efficient) conditional hazard

estimation are known due to complexity of the problem.

This paper uses an oracle approach to solve the problem of sharp-minimax nonparametric estimation

of the conditional hazard of right censored lifetime of interest T . The oracle knows both data and

information about the conditional hazard and all nuisance functions, and then develops a sharp lower

bound for a minimax MISE. The oracle also develops an oracle-estimator that can be mimicked by

a data-driven estimator that attains the lower bound. The oracle approach is of interest because it

provides us with: (i) The optimal rate of MISE convergence; (ii) The sharp constant that depends on

the so-called coefficient of difficulty; (iii) Natural nuisance functions. Let us comment on these three

outcomes. It is shown that the optimal rate is defined by the effective smoothness of hT |X (t |x) in t and

x, and this outcome resembles known results for estimation of a bivariate anisotropic regression, see

Hoffmann and Lepski (2002). Notions of the coefficient of difficulty and natural nuisance functions

may be less known to the reader. Following Efromovich (2018) let us first explain them using a more

familiar nonparametric regression model Y = m(X) + σ(X)ξ where X is the predictor supported on

[0,1] according to the design density f X , Y is the response, error ξ is standard normal and independent
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of X , m(x) is the regression function of interest, and σ(x) is the scale function. The coefficient of

difficulty d tells us what functional affects the sharp constant of the MISE convergence, and for the

regression problem it is d =
∫ 1

0
[σ2(x)/ f X (x)]dx. Importance of knowing d is that the MISE decreases

as some function of d/n, that is the larger d is, the larger sample size is needed to get a desired accuracy

of estimation. Further, there are two nuisance functions f X and σ(x) in the regression model, but only

f X is the natural one, meaning that the oracle uses only data and f X to construct a sharp-minimax

oracle-estimator. Accordingly, the statistician needs to estimate only f X to construct an efficient data-

driven estimator that mimics the oracle. But in a multivariate additive regression both the design density

and scale function are natural nuisance functions, and then both must be estimated for mimicking the

oracle, see Efromovich (2013). This is why it is important to know natural nuisance functions. As we

will see shortly, for the conditional hazard with univariate predictor the natural nuisance function is

p(t, x) := f X (x)SC |X (t |x)ST |X (t |x) = f X (x)SV |X (t |x). (1.2)

Accordingly, now the statistician knows that to mimic the oracle it is sufficient to estimate this single

function. As we will see shortly, it is possible to estimate p(t, x) directly without estimating the fac-

tors in (1.2). Furthermore, because the natural nuisance function must be estimated with a sufficient

accuracy to match performance of the oracle, it is important to untie its assumed smoothness from

unknown smoothness of an estimated conditional hazard. As we shall see shortly, the later is possible

and this is an important theoretical result. We will continue discussion of natural nuisance functions in

the Conclusion.

The content of this paper is as follows. Section 2 presents results for the case of a univariate predictor

X . Here a sharp minimax lower bound for the oracle is presented, as well as a data-driven estimator

that matches performance of the oracle who knows smoothness of the conditional hazard and all nui-

sance functions. Moreover, if T and X are independent, then the estimator recognizes this and again

matches performance of the oracle. The case of a multivariate mixed (continuous and categorical)

vector-predictor is considered in Section 3 and a data-driven estimator is proposed. Here the main em-

phasis is on the possibility of dimension reduction, and the estimator again matches performance of

the oracle who knows the underlying dimensionality. Proof of the lower bound can be found in Section

4, and other proofs in the Supplementary Material. Section 5 presents practical examples devoted to

waste treatments that decrease greenhouse gas emissions. Conclusions and topics for future research

are presented in Section 6.

In what follows we use notation q := qn := dln(n + 20)e for the minimal integer larger than ln(n +

20), and similarly s := sn := dln(q)e. These and other specific sequences are chosen based either on

asymptotic analysis or numerical studies of proposed estimates. I(·) is the indicator, w denotes generic

positive constants, i ∨ j :=max(i, j), and i ∧ j :=min(i, j).

2. Conditional hazard estimation for univariate predictor

The section is relatively long, and it is worthwhile to briefly comment on its context. The final result

is the data-driven Fourier series estimator (2.20), and as it is stated in Theorem 2, the estimator is

sharp-minimax and performs dimension reduction whenever T and X are independent. The dimension

reduction property means that the estimator’s MISE attains a known in the literature optimal univariate

rate of estimating hT for the case of a directly observed sample from T . The notion of sharp-minimaxity

is more involved because we need to establish the best constant and rate for minimax estimation of a

bivariate hT |X . In classical nonparametric theory this would be done by considering an oracle who may

know everything and who develops a sharp-minimax lower bound for oracle-estimators over a global
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Sobolev class of conditional hazards hT |X . This approach is feasible when an underlying Fisher infor-

mation does not depend on the estimand, but this is not the case for the problem at hand. Accordingly,

we are using a local minimax approach by considering a class of Sobolev conditional hazards near

a so-called anchor that is known to the oracle but not to the statistician. Then Theorem 1 presents a

lower bound for the local minimax MISE and states that the bound is sharp and attainable by oracle-

estimators. Moreover, Theorem 1 presents a blockwise-shrinking oracle estimator (2.12) that inspires

construction of the above-mentioned data-driven estimator (2.20), and the estimator is studied under

both local and global minimax approaches. These are the main results presented below. Accordingly,

in what follows we are introducing the setting, main assumptions, global and local Sobolev classes,

blockwise-shrinking estimators, and the main results are presented in Theorems 1 and 2.

Considered setting is as follows. There is a hidden sample (X1,T1), . . . , (Xn,Tn) of size n from a pair

(X,T). Here T is the lifetime of interest and X is a univariate predictor (covariate) supported on [0,1].

X and T are continuous random variables with a joint density f X,T (x, t) supported on [0,1]×[0,∞). Set

f X (x) :=
∫ ∞

0
f X,T (x, t)dt for the marginal (design) density of X . It is assumed that f X (x) is positive

on [0,1], and this allows us to introduce the conditional hazard rate hT |X (t |x) defined in (1.1). We do

not observe realizations T1, . . . ,Tn directly because they are right censored by independent realizations

C1, . . . ,Cn of a censoring lifetime C. Instead we observe a sample (X1,V1,∆1), . . . , (Xn,Vn,∆n) from

triplet (X,V,∆) where V :=min(T,C) and ∆ := I(T ≤ C) is the indicator of censoring.

For given constants a ≥ 0 and b > 0, the aim is to estimate conditional hazard rate hT |X (t |x), defined

in (1), over the rectangle R := [a, a + b] × [0,1]. It will be explained shortly why it is impossible to

consider b =∞. The used criterion for an estimator ȟ(t |x) of hT |X (t |x) is the mean integrated squared

error (MISE) E{
∫ a+b

a

∫ 1

0
(ȟ(t |x) − hT |X (t |x))2dxdt} =: E{

∫

R
(ȟ(t |x) − hT |X (t |x))2dxdt}. To define a

basis on R, set ψ0(t) := b−1/2, ψj(t) := (2/b)1/2 cos(π j(t − a)/b), j = 1,2, . . . for elements of the cosine

basis on [a, a+ b], and ϕ0(x) := 1 and ϕi(x) = 21/2 cos(πix), i = 1,2, . . . for elements of the cosine basis

on [0,1]. Then ϕji(t, x) := ψj(t)ϕi(x), ( j, i) ∈ {0,1, . . .}2 are elements of the tensor-product basis on R.

Now we can proceed to assumptions. The first one is necessary for consistent estimation, see an

interesting discussion in Tsiatis (1975).

Assumption 1. Given predictor X, lifetime of interest T and censoring lifetime C are independent.

Our next assumption is about smoothness of an estimated conditional hazard rate. Here some ex-

planation is warranted. Conditional hazard rate hT |X (t |x) is a bivariate function. It is a tradition in

nonparametric literature to assume that an estimated bivariate function is isotropic meaning that it is

as smooth (has the same number of derivatives) in t as in x, see Wasserman (2005). For some settings

this assumption is reasonable, but for a conditional hazard hT |X (t |x) there may be a difference be-

tween smoothness in t and x. For instance, consider a location model T = m(X) + ε where the random

variable ε is independent of X and its hazard rate is hε(t). Then hT |X (t |x) = hε(t − m(x)). Now note

that smoothness of hT |X (t |x) in t is defined solely by smoothness of hε(t), while its smoothness in

x depends on smoothness of hε(t) and smoothness of m(x). Accordingly, it is prudent to assume that

hT |X (t |x) may be an anisotropic bivariate function with different smoothness in t and x.

Another important remark is that while for direct data and classical density or regression estimation

problems the asymptotic MISE convergence does not depend on an underlying estimated function, see

Efromovich (1999), it will be established shortly that an underlying conditional hazard affects sharp

constant of the MISE convergence. Accordingly, in a lower bound for the MISE we are considering a

shrinking local anisotropic function class of hT |X with an anchor h0(t |x) which may depend on n. This

approach will allow us to understand how an underlying hT |X affects its estimation.

After these comments, let us introduce several functional classes. In what follows α0 and α1 are

positive integer numbers that define the number of derivatives of the conditional hazard hT |X (t |x) in t



Conditional hazard 5

and x, respectively. Introduce two anisotropic Sobolev classes of bivariate functions g(t, x) on R,

Sk := Sk(α0, α1,Q, a, b) :=
{

g : g(t, x) :=

∞
∑

j=k

∞
∑

i=0

θ jiϕji(t, x), (t, x) ∈ R,

∞
∑

j=k

∞
∑

i=0

[1 + (π j/b)2α0
+ (πi)2α1 ]θ2

ji ≤ bQ <∞
}

, k ∈ {0,1}. (2.1)

The case k = 0 implies a classical anisotropic Sobolev class S0, see Hoffmann and Lepski (2002). Now

note that if g ∈ S1 then
∫ a+b

a
g(t, x)dt = 0, and this property is used to define the following shrinking

local function class Fn of conditional hazards. Namely, introduce a continuous on R conditional hazard

h0(t |x), (t, x) ∈ [0,∞) × [0,1] that will be referred to as the anchor, and set

Fn := Fn(α0, α1,Q, a, b, h0) :=
{

hT |X : hT |X (t |x) = h0(t |x) + g(t, x)I((t, x) ∈ R); (2.2)

g ∈ S1(α0, α1,Q, a, b); |g(t, x)| < 1/q; min
(t,x)∈R

h0(t |x) > 1/s, max
x∈[0,1]

∫ a+b

0

h0(u|x)du <∞; (2.3)

∞
∑

j,i=0

(1 + j2α0+β
+ i2α1+β)[

∫

R

h0(t |x)ϕji(t, x)dxdt]2 <∞, β > 0
}

. (2.4)

In what follows we denote by F ∗
n := F ∗

n (α0, α1,Q, a, b, h0) a class (2.2)-(2.3) without assumption (2.4)

about the anchor. This class is used by the oracle, who knows the anchor, to establish the lower bound.

To get an upper bound, the oracle may or may not use knowledge of the anchor. The latter case is of the

main interest, and then the assumption (2.4) is used. Let us stress that the anchor is not necessarily an

underlying conditional hazard, its the only role is to define the local function class.

Remark 1 (Sobolev classes). Using cosine bases allows us to consider aperiodic functions and propose

good estimators for small samples, see Efromovich (1999, 2018). This is why Sobolev classes like (2.1),

also referred to as Sobolev ellipsoids, are popular in the literature. At the same time, a Sobolev class is

a subclass of a corresponding Sobolev function class with integrable squared derivatives. It is apparent

that a lower bound should hold for the larger class, but to attain the lower bound a polynomial-cosine

basis must be used, see Efromovich (2021). Parameters (α0, α1,Q) define the so-called smoothness of

Sobolev’s functions. The assumed |g(t, x)| ≤ 1/q and h0(t |x) > 1/s for (t, x) ∈ R imply that the consid-

ered conditional hazards are nonnegative. Now let us comment on the local Sobolev class F ∗
n which is

used to derive a lower bound for the corresponding local minimax. It is motivated by the classical local

minimax approach for estimation of a parameter θ when the Fisher information J(θ) depends on the

parameter. Under the parametric approach, it is assumed that θ belongs to a shrinking vicinity of the

anchor parameter θ0. The latter, under a mild assumption, yields a sharp local minimax lower bound

for the mean squared error whose sharp constant depends on the Fisher information J(θ0). Then an

estimator, typically maximum likelihood or Bayes, attains the sharp lower bound. The anchor h0, the

local Sobolev class Fn and the coefficient of difficulty d(h0), defined below in line (2.11), are the cor-

responding nonparametric analogs of θ0, the shrinking vicinity of θ0 and 1/J(θ0). A nice discussion

of the local minimax approach can be found in Ibragimov and Khasminski (1981) and Golubev(1991).

For the introduced function classes set

P := P(α0, α1,Q, b) = bπ−4α/(2α+1)[Q/P1]
1/(2α+1)P2, α := [α−1

0 + α
−1
1 ]−1, (2.5)



6

P1 :=

∫

(u,v):u2α0+v2α1 ≤1;u,v≥0

([u2α0
+ v2α1 ]1/2 − [u2α0

+ v2α1 ])dvdu, (2.6)

P2 :=

∫

(u,v):u2α0+v2α1 ≤1;u,v≥0

(1 − [u2α0
+ v2α1 ]1/2)dvdu. (2.7)

Assumption 2. Natural nuisance function p(t, x), defined in (1.2), is continuous and bounded below

from zero on R, and its partial derivative in x is bounded and integrable on R.

Assumption 2 is mild, involves only first-order differentiability in x, and not tied to smoothness of

the estimand hT |X . The latter is one of the major theoretical achievements.

Now let us introduce several notations that will be used by an estimator. First of all, an estimator

must take into account a possibility that T and X are independent, because then a bivariate conditional

hazard hT |X (t |x) becomes a univariate hazard hT (t). To achieve this aim without testing hypotheses, we

introduce two tensor-product arrays of indexes (frequencies) ( j, i). The first one is A1 := {0,1,2, . . .} ×
{0}, the second one is A2 := {0,1,2, . . .} × {1,2, . . .}. Note that ϕj0(t, x) = ψj(t), and then for (t, x) ∈ R

we may write

hT |X (t |x) =
∑

(j,i)∈A1

θ jiϕji(t, x) +
∑

(j,i)∈A2

θ jiϕji(t, x) =: h1(t) + h2(t, x). (2.8)

Here h1(t) = hT (t) and h2(t, x) = 0 whenever T and X are independent. Accordingly, (2.8) explains the

underlying idea of dimension reduction from a bivariate conditional hazard to a univariate hazard, and

it also sheds light on the used arrays of indexes.

To solve the problem of adaptation to unknown smoothness of conditional hazard hT |X (t |x) in t

and x, the indexes (or equivalently we may say frequencies) are grouped into special blocks, and

then Fourier estimates in a block are shrunk by the same coefficient. Discussion of the introduced

below specific sequences is postponed until the end of the section because it is more convenient

to explain them after presenting the results. Introduce an increasing sequence of integers b1 = 0,

b2 = b1 + 1, . . . , bq+1 = bq + 1, and bq+r = bq+r−1 + d(1 + s−1)r e for r = 2,3, . . . Introduce blocks

of integers Bk := {bk, . . . , bk+1 −1}, k = 1,2, . . ., denote their cardinality as Lk , and define K0n and K1n

as largest integers such that bK0n+1 ≤ n1/3s + q + 1 and bK1n+1 ≤ n1/4s + q + 1. Now set k := (k1, k2),
recall that arrays Aν , ν = 1,2 were introduced above line (2.8), and for each array introduce its own

array of blocks Bνk := {Bk1
× Bk2

} ∩ Aν . Note that B1(k1,1) = Bk1
× {0}, B1(k1,k2) is the empty set when-

ever k2 ≥ 2, B2(k1,1) is always empty, and B2(k1,k2) = Bk1
× Bk2

whenever k2 ≥ 2. We use this particular

definition and notation for Bνk because they also will be used for a vector-predictor. Using this notation

we can approximate (2.8) by a partial sum

h
T |X
n (t |x) :=

2
∑

ν=1

K0n
∑

k1=1

K1n
∑

k2=1

∑

(j,i)∈Bνk

θ jiϕji(t, x) (2.9)

that will be estimated in (2.20). By Lνk we denote cardinality of Bνk, and set ρk := 1/ln(3 + k1k2).
The underlying idea of the proposed conditional hazard estimator is to mimic the oracle who knows

both data and an underlying model. This approach allows us to develop: (i) A lower bound for the

MISE; (ii) An oracle-estimator that attains the lower bound; (iii) A data-driven estimator that mimics

the oracle-estimator and matches its properties. We present the corresponding results in turn.

Theorem 1 (Oracle’s Sharp Lower Bound). Let Assumptions 1 and 2 hold, the anchor h0(t |x) is con-

tinuous on R, and a sample of size n from (X,V,∆) is available. The oracle knows data, the underlying
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function class F ∗
n , the anchor h0, the design density f X , and the conditional survival SC |X . Then

inf
ȟ∗

sup
hT |X ∈F∗

n

(n/d)2α/(2α+1)
E{

∫

R

(ȟ∗(t |x) − hT |X (t |x))2dxdt} ≥ P(1 + on(1)), (2.10)

where the infimum is taken over all possible oracle-estimators ȟ∗,

d := d(hT |X, SC |X, f X, a, b) := b−1

∫

R

hT |X (t |x)

f X (x)SC |X (t |x)ST |X (t |x)
dxdt (2.11)

is the coefficient of difficulty, and α := [α−1
0
+ α−1

1
]−1 is the effective smoothness of the class F ∗

n . The

lower minimax bound is sharp and attainable by an oracle estimator. Further, if (2.4) holds, then the

lower bound is attainable for hT |X ∈ (Fn ∪S0) by oracle-estimators that do not use the anchor, and in

particular by the following sharp-minimax oracle-estimator,

h̃∗(t |x) :=

2
∑

ν=1

K0n
∑

k1=1

K1n
∑

k2=1

∑

(j,i)∈Bνk

[

I(θ2
ji ≥ 2qdn−1)I( j ∨ i ≤ q)

+

Θνk

Θνk + L−1
νk

∑

(j,i)∈Bνk
E{(θ̂∗

ji
− θ ji)2}

I(Θνk ≥ ρkn−1)I( j ∨ i > q)
]

θ̂∗jiϕji(t, x). (2.12)

Here

θ̂∗ji := n−1
n
∑

l=1

∆l I(Vl ∈ [a, a + b])ϕji(Vl, Xl)

p(Vl, Xl)
(2.13)

is the oracle-estimator of Fourier coefficients θ ji :=
∫

R
hT |X (t |x)ϕji(t, x)dxdt and

Θνk := L−1
νk

∑

(j,i)∈Bνk

θ2
ji (2.14)

is the Sobolev functional.

Let us comment on results of Theorem 1. The lower bound (2.10) asserts that the MISE decreases

with rate n−2α/(2α+1) which is the same as for a bivariate regression of T on a pair of predictors (X1, X2)
and the case of directly observed data discussed in Hoffmann and Lepski (2002). This is a very positive

outcome because it shows that, in a more complicated problem of conditional hazard estimation based

on censored data, the rate does not slow down. On the other hand, coefficient of difficulty (2.11) is

dramatically more complicated than for the regression where it is a constant that does not depend

on an underlying regression function. Formula (2.11) explains how the quartet (hT |X, SC |X, ST |X, f X ),
together with the interval [a, a + b] of estimating the conditional hazard, affect the MISE convergence.

Further, note that each of the first three functions in the quartet makes the coefficient of difficulty (2.11)

larger as b increases because
∫ ∞

0
hT |X (t |x)dt =∞ and max(SC |X (t |x), ST |X (t |x)) → 0 as t →∞. This

result also quantifies complexity of the right–tail estimation.

Now let us explain how to construct a data-driven estimator that mimics the oracle-estimator (2.12).

We begin with introducing the following estimator of the natural nuisance function,

p̂(t, x) :=max(p̃(t, x),1/q), p̃(t, x) := n−1
n
∑

l=1

d2n1/3se
∑

i=0

I(Vl ≥ t)ϕi(Xl)ϕi(x). (2.15)
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Because p̂ is separated from zero, we can plug it in a denominator. Accordingly, we plug p̂ in (2.13)

and get the Fourier estimator

θ̂ ji := n−1
n
∑

l=1

∆l I(Vl ∈ [a, a + b])ϕji(Vl, Xl)

p̂(Vl, Xl)
. (2.16)

Similarly we get an estimate of the coefficient of difficulty,

d̂ := d̂(a, b) = n−1
n
∑

l=1

∆l I(a ≤ Vl ≤ a + b)

b[p̂(Vl, Xl)]2
. (2.17)

To mimic the shrinking weights in (2.12) we calculate two statistics

Θ̂νk :=
2

Lνkn(n − 1)

∑

(j,i)∈Bνk

∑

1≤l<r≤n

∆l∆rϕji(Vl, Xl)ϕji(Vr, Xr )I((Vl,Vr ) ∈ [a, a + b]2)

p̂(Vl, Xl)p̂(Vr, Xr )
, (2.18)

and

Θ̃νk := L−1
νk

∑

(j,i)∈Bνk

θ̂2
ji . (2.19)

The proposed conditional hazard estimator, which mimics (2.12), is

ĥ(t |x) :=

2
∑

ν=1

K0n
∑

k1=1

K1n
∑

k2=1

∑

(j,i)∈Bνk

[

I(θ̂2
ji ≥ 2qd̂n−1)I( j ∨ i ≤ q)

+min(1, Θ̂νk/Θ̃νk)I(Θ̂νk ≥ ρkn−1)I( j ∨ i > q)
]

θ̂ jiϕji(t, x). (2.20)

If necessary, a projection on the class of nonnegative functions can be performed as explained in Efro-

movich (1999). Now recall that w denotes generic positive constants.

Theorem 2 (Upper bound). Let Assumptions 1 and 2 hold. Then the data-driven estimator (2.20) is

sharp-minimax and

sup
hT |X ∈(Fn∪S0)

[n/d]2α/(2α+1)
E{

∫

R

(ĥT |X (t |x) − hT |X (t |x))2dxdt} ≤ P(1 + on(1)), (2.21)

that is the estimator not only matches performance of the oracle that knows the shrinking local class

Fn defined in (2.2), but it also attains the oracle’s lower bound over the global Sobolev class S0 defined

in (2.1). If additionally the lifetime of interest T and the predictor X are independent and accordingly

hT |X
= hT , then the estimator attains the optimal univariate rate and

sup
hT |X ∈{Fn∪S0, h

T |X
=hT }

E{

∫

R

(ĥT |X (t |x) − hT (t))2dxdt} ≤ wn−2α0/(2α0+1). (2.22)

We conclude that the proposed data-driven estimator of the conditional hazard rate function: (i)

Adapts to an underlying smoothness of the conditional hazard; (ii) Matches performance of the oracle

under minimal assumptions on smoothness of nuisance functions, and those assumptions are not tied
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to smoothness of the conditional hazard; (iii) Takes into account a possible independence between the

lifetime of interest T and the predictor X when the bivariate hT |X (t |x) is equal to the hazard rate hT (t).
In that case the estimator attains the optimal univariate rate of MISE convergence; (iv) All these desired

properties are achieved without any complementary procedures like a hypothesis testing or an intensive

numerical calculation.

As it was mentioned earlier, we finish this section by discussion/explanation of the sequences used

in construction of the oracle-estimator (2.12). First of all, the estimator has the low-frequency part,

where each Fourier estimate θ̂∗
ji

is individually hard thresholded, and the high-frequency part where

the same shrinkage is applied to all Fourier estimates from a block. The low-frequency part is motivated

by numerical simulations in Efromovich (1999), while the high-frequency part yields the asymptotic

sharp minimax. Now let us consider these two parts and explain the involved sequences. We begin

with the lower-frequency part. Recall that q = dln(n + 20)e, dn−1 is the asymptotic variance of θ̂∗
ji

,

and accordingly the used hard thresholding is classical and it is often referred to as universal. Con-

sidering a logarithmic number of individual Fourier coefficients is also well known and supported

by numerical studies, see Efromovich (1999). Now consider the high-frequency part. The weakly ge-

ometrically increasing blocks are convenient and yield a relatively small, of order (qs)2, number of

considered blocks, at the same time slower increasing blocks may be also considered as explained in

Efromovich (1985, 1999). The choice of K0n and K1n, and more specifically of the sequences bK0n+1

and bK1n+1 that do not depend on chosen blocks, is motivated by analysis of the integrated squared

bias B of not estimated Fourier coefficients. Recall that bK0n+1 is of order sn1/3 and bK1n+1 is of

order sn1/4. We begin with explanation of the choice for K0n. Consider the case when X and T are

independent, and set J0n := bK0n+1 − 1. The proposed blockwise estimator must preseve the optimal

rate n−2α0/(2α0+1), see (2.22). Because θ ji = 0 whenever i > 0, the integrated squared bias of inter-

est is
∑

j>J0n
θ2
j0
≤ wJ

−2α0

0n

∑

j>J0n
j2α0θ2

j0
≤ w(sn1/3)−2α0 ≤ ws−2n−2α0/(2α0+1)

= on(1)n
−2α0/(2α0+1).

This calculation sheds light on the choice of K0n. Now let us explain the choice of K1n which

should yield B = on(1)n
−2α/(2α+1) if T and X are dependent and correspondingly hT |X is a bivari-

ate function. Set J1n := bK1n+1 − 1, note that J1n ≤ J0n, and write B ≤
∑

i≥0

∑

j>J1n
(θ2

i j
+ θ2

ji
) ≤

wJ−2
1n

∑

i≥0

∑

j>J1n
[ j2α0θ2

ji
+ j2α1θ2

i j
] ≤ w(sn1/4)−2 ≤ ws−2n−2α/(2α+1)

= on(1)n
−2α/(2α+1). What was

wished to show. Also note that K0n and K1n are of order qs. Finally, let us comment on the blockwise-

shrinking estimation. For the oracle it is ideal to use blocks of unit cardinality and shrinking weights

θ2
ji
/[θ2

ji
+ E{(θ̂∗

ji
− θ ji)

2}], this is the famous Wiener’s shrinking that minimizes the MISE. However,

the statistician cannot mimic this individual shrinking of each θ̂∗
ji

with sufficient accuracy. This is why

blocks are used because they yield estimation of averaged shrinking coefficients. It will be explained

in the proofs that there are special restrictions on cardinalities of blocks and sequences ρk that im-

ply sharp minimaxity. The interested reader can find more discussion of the oracle-estimators in the

Supplementary Material.

3. Estimation for a mixed multivariate predictor

We are considering the case of a vector-predictor when the model is extended to a multivariate pre-

dictor which may contain mixed (continuous and ordinal/nominal categorical) covariates. Namely,

the predictor is Z := (X,U) where X := (X1, . . . , Xτ) ∈ [0,1]τ is the vector of τ continuos covari-

ates and U := (U1, . . . ,Um) ∈ Mm :=
∏m

k=1
{0,1, . . . ,Mk − 1} is the vector of m categorical covari-

ates. The corresponding mixed design density f Z(z) = f Z(x,u) := f X |U(x|u) f U(u) is supported on

Rτm := [0,1]τ×Mm. Also set M :=
∏m

k=1
Mk and introduce two hyperrectangles R := [a, a+b]×[0,1]τ

and R1τm := [a, a + b] × Rτm.
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Our main aim is to suggest an estimator whose MISE converges with the rate corresponding to the

underlying smoothness and dimensionality of hT |Z when the lifetime of interest T may depend on a

subset of continuous covariates. Similarly to the case of a univariate predictor, we will use a series

estimator based on a tensor-product basis defined on the set R1τm with the inner product

〈g1, g2〉 := M−1
∑

u∈Mm

∫

R

g1(t, (x,u))g2(t, (x,u))dxdt. (3.1)

The corresponding squared norm is denoted as ‖g‖2 := 〈g, g〉. A convenient basis is defined as fol-

lows. For vector X of continuous predictors on [0,1]τ we use the cosine tensor-product basis ϕi(x) :=
∏τ

k=1
ϕik (xk) where i := (i1, . . . , iτ) ∈ {0,1, . . .}τ . For a kth categorical covariate uk ∈ {0,1, . . . ,Mk −1}

we use a discrete trigonometric basis

η0(uk,Mk) = 1, ηr (uk,Mk) := 21/2 cos(π(2uk + 1)r/(2Mk)), r = 1, . . . ,Mk − 1,

which allows us to define the tensor-product basis {ηr(u) :=
∏m

k=1
ηrk (uk,Mk), r ∈ Mm,u ∈ Mm}. Fi-

nally, for the inner product (3.1) we use the tensor-product basis {ψjir(t,x,u) := ψj(t)ϕi(x)ηr(u) =:

ψj(t)ϕir(x,u), ( j, i, r) ∈ {0,1, . . .}1+τ ×Mm}. Using this basis and the Parseval theorem, a conditional

hazard with a finite norm may be written as a Fourier series,

hT |Z(t |z) =
∑

(j,i,r)∈M(1+τ)m

θ jirψjir(t, z), where θ jir := 〈hT |Z, ψjir〉, (t, z) ∈ R1τm. (3.2)

Similarly to the above-discussed univariate predictor case, for dimension reduction and adaptation

to smoothness of hT |Z(t |x,u) in continuous variables (t,x), we define blocks of indexes ( j, i, r). Set

A′
0

:= {0,1, . . .}, and introduce tensor-product arrays of indexes A1 := A′
0
× {0}τ ×Mm, A2 := {A′

0
×

A′
0
×{0}τ−1 ×Mm} \ A1, A3 := {A′

0
×{0}× A′

0
×{0}τ−2 ×Mm} \∪

2
k=1

Ak , . . . , A1+τ := {A′
0
×{0}τ−1 ×

A′
0
×Mm} \ ∪

τ
k=1

Ak , A1+τ+1 := {{A′
0
}3 × {0}τ−2 ×Mm} \ ∪

1+τ
k=1

Ak , A1+τ+2 := {{A′
0
}2 × {0} × A′

0
×

{0}τ−3 ×Mm} \ ∪
1+τ+1
k=1

Ak , . . ., A2τ := {{A′
0
}1+τ ×Mm}} \ ∪

2τ−1
k=1

Ak . The arrays are arranged in such

a way that the number cν , cν ∈ {1,2, . . . ,1 + τ} of considered continuous variables in array Aν is

a stepwise function increasing in ν = 1,2, . . . ,2τ , and note that continuous variables in Aν include

variable t together with cν − 1 continuous covariates. Then similarly to (2.8) we can rewrite (3.2) as

hT |Z(t |z) =

2τ
∑

ν=1

hν(t, z), where hν(t, z) =
∑

(j,i,r)∈Aν

θ jirψjir(t, z). (3.3)

Using blocks Bk introduced in Section 2, for each Aν we define its own array of tensor-product blocks

Bνk := As ∩ {{Bk1
, Bk2

, . . . , Bk1+τ
}1+τ ×Mm}, k := (k1, . . . , k1+τ), and then denote by Lνk cardinality

of Bνk. Recall notation K0n and set Kτn to be the largest integer such that b1+Kτn
≤ n1/(2τ+1). Note that

if τ = 1 then K1n is the same as for the univariate predictor. Also set ρk := 1/ln(3 +
∏1+τ

ν=1 kν). Then

following (2.9) we can approximate conditional hazard (3.3) by

h
T |Z
n (t |z) :=

2τ
∑

ν=1

K0n
∑

k1=1

Kτn
∑

k2,...,k1+τ=1

∑

(j,i,r)∈Bνk

θ jirψjir(t, z). (3.4)

This is the partial sum whose Fourier coefficients we intend to estimate.
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Now let us introduce a considered function class. For a vector ®α := (α0, α1, . . . , ατ) of positive inte-

gers, whose elements represent number of derivatives of a function in its 1 + τ continuous variables,

following Hoffmann and Lepski (2002) we define an anisotropic Sobolev function class

S(®α,Q) :=
{

g : g(t, z) ≥ 0 for (t, z) ∈ [0,∞) × Rτm,

g(t, z) =
∑

(j,i,r)∈M(1+τ)m

θ jirψjir(t, z) for (t, z) ∈ R1τm,

∑

(j,i,r)∈M(1+τ)m

[1 + (π j/b)2α0
+

τ
∑

k=1

(πik)
2αk ]θ2

jir ≤ bQ <∞
}

, (3.5)

and its effective smoothness

α :=
1

∑τ
k=0

α−1
k

. (3.6)

It is known due to Hoffmann and Lepski (2002) that for this Sobolev class and nonparametric regres-

sion with (1+τ) continuous covariates the optimal rate of the oracle’s MISE convergence is n−2α/(2α+1).

As we will see shortly, this result can be matched for conditional hazard with (τ +m) mixed covariates

under the following assumption.

Assumption 3. Given predictor Z, lifetime of interest T and censoring lifetime C are independent. An

underlying natural nuisance function p(t, z) := f Z(z)ST |Z(t |z)SC |Z(t |z) for all t ∈ [a, a + b] belongs to

the Sobolev class

S∗(t, τ) :=
{

g : g(t, z) =
∑

(i,r)∈Mτm

κir(t)ϕir(z) for (t, z) ∈ R1τm,

max
t∈[a,a+b]

∑

(i,r)∈Mτm

[1 +

τ
∑

k=1

(πik)
2τ][κir(t)]

2 <∞, g(t, z) ≥ 0 for (t, z) ∈ [0,∞) × Rτm

}

. (3.7)

Remark 2. The oracle knows the natural nuisance function p. Assumption 3 allows us to match the or-

acle by suggesting an appropriate estimate of p. To overcome the curse of dimensionality, the assumed

Sobolev’s smoothness in (3.7) depends on τ, but it is not tied to smoothness of hT |Z. Also note that the

natural nuisance function is the product of three functions, and accordingly its smoothness in a con-

tinuous covariate xi is defined by a coarsest in xi function among the triplet ( f Z, ST |Z, SC |Z). Finally,

because ST |Z is a factor in the natural nuisance function, the estimand hT |Z is at least as smooth in x

as p(t, z), and accordingly (3.7) implies that in (3.5) we have min(α1, . . . , ατ) ≥ τ.

The introduced notions and notations for the case of a multivariate predictor are similar to the uni-

variate case, and the same similarity will be observed between the proposed estimators.

We begin with introducing a plug-in sample mean Fourier estimator

θ̂ jir := n−1M−1
n
∑

l=1

∆l I(Vl ∈ [a, a + b])ψjir(Vl,Zl)

p̂(Vl,Zl)
(3.8)
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and an estimator of the coefficient of difficulty,

d̂ := n−1M−1
n
∑

l=1

∆l I(Vl ∈ [a, a + b])

[p̂(Vl,Zl)]2
. (3.9)

Here p̂ is an estimator of the natural nuisance function defined as

p̂(t, z) :=max(p̃(t, z), q−1), p̃(t, z) := n−1M−1
n
∑

l=1

∑

(i,r)∈A′

I(Vl ≥ t)ϕir(Zl)ϕir(z), (3.10)

where A′ := {0,1, . . . , n1/3τ s)}τ ×Mm. Next, similarly to (2.19)-(2.20) we introduce two statistics

Θ̂νk :=
2

Lνkn(n − 1)

∑

(j,i,r)∈Bνk

∑

1≤l1<l2≤n

2
∏

η=1

∆lηψjir(Vlη ,Zlη )I((Vlη ∈ [a, a + b])

p̂(Vlη ,Zlη )
(3.11)

and Θ̃νk := L−1
νk

∑

(j,i,r)∈Bνk
θ̂2
jir

. The proposed conditional hazard estimator is

ĥT |Z(t |z) :=

2τ
∑

ν=1

K0n
∑

k1=1

Kτn
∑

k2,...,k1+τ=1

[
∑

(j,i,r)∈Bνk

I(θ̂2
jir > 2qd̂n−1)I( j ∨ i ≤ q)

+min(1, Θ̂νk/Θ̃νk)I(Θ̂νk > ρkn−1)I(( j ∨ i > q)
]

θ̂ jirψjir(t, z), (3.12)

where j ∨ i :=max( j, i1, . . . , iτ).

Theorem 3 (Multivariate mixed predictor). Let Assumption 3 hold. Then the conditional hazard

estimator (3.12) is rate-optimal over an anisotropic Sobolev class (3.5) and

sup
hT |Z∈S( ®α,Q)

E{‖ ĥT |Z − hT |Z‖2} ≤ wn−2α/(2α+1), (3.13)

where α is the effective smoothness (3.6) of the Sobolev class. If an estimated conditional hazard

hT |Z depends only on a subvector (Xk1
, . . . , Xkν ), ν < τ of continuous covariates, then the estimator’s

MISE satisfies (3.13) with α being replaced by a corresponding effective smoothness α∗ := 1/[α−1
0
+

∑ν
i=1 α

−1
ki
].

The rates outlined in Theorem 3 are optimal even for the oracle who knows an underlying dimen-

sionality, and this implies that the estimator performs the desired dimension reduction.

4. Proofs

Proof of Theorem 1. We begin with the heuristic that sheds light on steps in the proof and explains

new notions. Nonparametric lower bounds for minimax risks over Sobolev classes, that are defined

by special restrictions on Fourier coefficients like (2.1), are established using a Bayes approach with

least favorable priors for Fourier coefficiens. For the case when Fourier coefficients are observed with

additive Gaussian errors, Pinsker (1980) proposed to use normal priors and developed methodology

of finding sharp minimax lower bounds. If the additive Gaussian model is not appropriate, as in our
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problem, the methodology of Efromovich (1989) can be used which is developed for a model where

Fisher information, contained in an observation about a Fourier coefficient, is constant or asymptoti-

cally approaches a constant. Then, similarly to Pinsker (1980), a normal prior may be used. To make the

proof shorter and more concise, it is worthwile to use technical results of that papers. Accordingly, to

get a constant Fisher information, we divide the rectangle R := [a, a+ b]× [0,1] into s2 subrectangles of

sizes (b/s) × (1/s). Then for each subrectangle its own cosine tensor-product basis and a local Sobolev

class are created. Because all involved functions are smooth, for large n the local Fisher information

is almost constant, and we can use the above-mentioned methodology of the proof. A pure technical

issue to resolve, which complicates presented below notions and notations, is that the local hazard rate

functions should be sewed together to get a Sobolev’s smooth function over the R. Fortunately, this

is a familiar procedure in harmonic analysis and is done using special flattop smoothing kernels. One

more comment is due which explains specific notions and sequences used below. Consider a Sobolev

ellipsoid with coefficients as ji := 1+ (π js/b)2α0 + (πis)2α1 , i, j = 0,1, . . . and power bQs , and note that

a1ji and Q1 =Q define the ellipsoid (2.1). Further, assume that I is the constant Fisher information for

a problem at hand, for instance I is reciprocal of the variance of Gaussian white noise in the filtering

model of Pinsker (1980). Then it is known that the sharp-minimax estimator over that ellipsoid esti-

mates only Fourier coefficients on frequencies satisfying as ji ≤ a∗n where a∗n is solution of the equation
∑

as j i ≤a
∗
n
[(as ji/a∗n)

1/2 − as ji] = bQsnI. Further, a∗n can be replaced by any other sequence satisfying

an = a∗n(1 + on(1)). Accordingly, we can evaluate an by replacing the sum by the integral and solving

the equation
∫

{(x,t): ast x ≤an ;t,x>0}
[(astx/an)

1/2 − astx]dtdx = bQsnI. Using the change of variables

v = πsxa
−1/(2α1)
n and u = πtsb−1a

−1/(2α0)
n , we conclude that the upper bound on considered as ji may

be set to

an := an(s,Qs,I) := [s2QsIbπ2P−1
1 n]2α/(2α+1), (4.1)

where P1 is defined in (2.6). In its turn, the an allows us to calculate the corresponding minimax MISE.

Denote this MISE by Mn, and use the Pinsker’s formula Mn = (1/In)
∑

as j i ≤an [1 − (as jn/an)
1/2].

Then repeating approximation of the sum by a corresponding integral and using the same change of

variables we get

Mn = P(α0, α1, s
−4αQs, b)(nI)

−2α/(2α+1)(1 + on(1)). (4.2)

Here function P is defined in (2.5). Now we can explain the last part of the heuristic. Power Q of

the Sobolev class (2.1) over the rectangle R should be spreaded among the above-mentioned Sobolev

subclases for s2 subrectangles. This is done by assigning the power inversely proporional to the local

Fisher information, and then the sharp-minimax oracle-estimator verifies that this approach is indeed

the least favorable. Of course, to make the above-mentioned step we need to calculate local Fisher

informations. The calculation will be done shortly, and now let us explain its heuristic. The mixed

density (likelihood) of the triplet (X,V,∆) is

f X,V,∆(x, t, δ) = f X (x)[SC |X (t |x)hT |X (t |x)e−
∫ t

0
hT |X (z |x)dz]δ

× [ f C |X (t |x)e−
∫ t

0
hT |X (z |x)dz]1−δ . (4.3)

Here we used formula ST |X (t |x) = e−
∫ t

0
hT |X (z |x)dz . The Fisher information is calculated for Fourier

coefficients of a cosine tensor-product series expansion of hT |X . In (4.3) a Fourier coefficient of hT |X

is present in the factor e−
∫ t

0
hT |X (z |x)dz and in the factor hT |X when ∆ = 1. In the factor e−

∫ t

0
hT |X (z |x)dz

we get integrals like
∫ t

0
cos(w ju)du = (w j)−1 sin(w jt) = oj(1), j > 0. In establishing a lower mini-

max bound the oracle may consider only increasing frequencies j > qs , and then a straightforward
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calculation shows that the component of Fisher information, created by the factor e−
∫ t

0
hT |X (z |x)dz ,

vanishes as n increases. For the factor hT |X , calculation of the corresponding component of the

Fisher information is a standard calculus problem, and as we will see shortly the Fisher informa-

tion is [ f X (x)SC |X (t |x)S
T |X
0

(t |x)/h0(t |x)](1 + on(1)), where (x, t) is a point from the subrectangle

and S
T |X
0

(t |x) :=
∫ ∞

t
h0(z |x)dz is the conditional survival defined by the anchor. Note that the Fisher

information is the natural nuisance function (1.2) divided by the conditional hazard rate. The final step

of the proof is to show that the lower bound is attainable by an oracle-estimator. The proposed oracle-

estimator (2.12) is convenient for understanding of how to mimic it by a data-driven estimator, but it is

a complicated task to directly analyze its MISE. Instead, a ladder of sharp-minimax oracle-estimators

is considered that leads us to the (2.12). The ladder will be explained at the beginning of the upper

bound proof.

Now we proceed to the proof of the lower bound. As it was explained in the heuristic, the first step is

to introduce a new function class that is a subset of F ∗
n and is defined by local Sobolev classes on the

above-mentioned subrectangles of R. Set

Hs =

{

h : h(t |x) = h0(t |x) + I((t, x) ∈ R)

s−1
∑

r,k=0

[

g(rk)(t, x) − b−1

∫ a+b

a

g(rk)(z, x)dz
]

,

g(rk)(t, x) ∈ Hsrk, h(t |x) ≥ 0
}

. (4.4)

We will define all the elements of the class shortly, and now note the following. Hsrk are local classes

on the subrectangles, functions g(rk) are smoothed, at boundaries of the (r, k)th subrectangle, Fourier

series so functions h − h0 belong to the Sobolev class S1. Also note that
∫ a+b

a
[h(t |x) − h0(t |x)]dt = 0,

and accordingly ST |X (t |x) is not changed for t > b.

Now we define the functions and classes in (4.4). Let φ̃(x) := φ(n, x) be a sequence of flattop non-

negative kernels defined on a real line such that for a given n: the kernel is zero beyond (0,1), it

is α1-fold continuously differentiable on (−∞,∞), 0 ≤ φ̃(x) ≤ 1, φ̃(x) = 1 for 2/q2 ≤ x ≤ 1 − 2/q2,

and its lth derivative satisfies maxx |φ̃
(l)(x)| ≤ Cq2l , l = 1, . . . , α1. For instance, such a kernel may be

constructed using so-called mollifiers discussed in Efromovich (1999). Then set φ̃sk(x) := φ̃(sx − k).
Absolutely similarly define φ̂sr (t) only with α1 being replaced by α0 and the interval [0,1] by

[a, a + b]. Set ϕski(x) := s1/2ϕi(sx − k) and ψsr j(t) := s1/2ψj(st − br). For an (r, k)th subrectangle

[a + br/s, a + b(r + 1)/s] × [k/s, (k + 1)/s] (as we will see shortly, common boundaries are irrelevant

for the proof and simplify formulae), 0 ≤ r, k ≤ s − 1, set φsrk(t, x) := φ̂sr (t)φ̃sk(x), ϕsrk ji(t, x) :=

ψsr j(t)ϕski(x), and

g[rk](t, x) :=
∑

(j,i)∈D(s,r,k)

ηsrk jiϕsrk ji(t, x), g(rk)(t, x) := g[rk](t, x)]φsrk(t, x). (4.5)

Here D(s, r, k) := {( j, i) : n2α/(2α+1)s−4 ≤ as ji ≤ an(s,Qsrk,Isrk); j, i = qs
+1, qs

+2, . . . }, an is defined

in (4.1), Qsrk :=Q(1−1/s)(I−1
s Isrk)

−1, Isrk := f X (k/s)SC |X (a+ br/s |k/s)S
T |X
0

(a+ br/s |k/s)/h0(a+

br/s |k/s), I−1
s =

∑s−1
r,k=0

(1/Isrk), and S
T |X
0

(t |x) := e−
∫ t

0
h0(z |x)dz . Let us comment on (4.5). Fourier

series g[rk] is the subrectangle’s analog of Sobolev’s additive perturbations g in (2.2). As it was ex-

plained in the heuristic, we need to sew the perturbations from adjoint subrectangles, and this is why

the smoothed at the boundaries g(rk) is introduced. Also note that, as was explained in the heuristic,

functions g[rk] have only intermediate frequencies. Further, Isrk denotes the local Fisher information,

and note that the Sobolev’s power is spreaded inversely proportional to local Fisher information.
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Now we can define local function classes Hsrk used in (4.4). Using defined in (4.5) local Fourier

series g[rk] and their smoothed at boundaries versions g(rk), set

Hsrk :=
{

g(rk)(t, x) : g(rk)(t, x) = [
∑

(j,i)∈D(s,r,k)

ηsrk jiϕsrk ji(t, x)]φsrk(t, x),

∑

(j,i)∈D(s,r,k)

as jiη
2
srk ji ≤ bQsrk, s−1 < nη2

srk ji ≤ s, |g[rk](t, x)|
2 ≤ s4 ln(n)n−2α/(2α+1)

}

. (4.6)

Note that this is a very special subclass of vanishing, as n increases, and smoothed at boundaries

local Sobolev functions with intermediate frequencies and additional restrictions on underlying Fourier

coefficients.

Our next step is to verify that Hs ⊂ F ∗
n for all large n. Definition of the flattop kernel implies that

for (t, x) ∈ R the difference hT |X (t |x) − h0(t |x) is α1-fold differentiable with respect to x and α0-fold

differentiable with respect to t. Second, let us verify that for h ∈ Hs this difference belongs to F ∗
n .

We begin with testing derivatives with respect to x. To simplify formulas, in several next lines we are

using ψ(l)(t, x) := ∂lψ(t, x)/∂xl for the lth derivative. By the Leibniz rule (g[rk](t, x)φsrk(t, x))
(α1) =

∑α1

l=0
C
α1

l
g
(α1−l)
[rk]

(t, x)φ
(l)
srx(t, x) where C

α1

l
:= α1!/((α1 − l)!l!). For 0 < l ≤ α1 we have (φ

(l)
srk

(t, x))2 ≤

C(s(ln(n))2)2l , and for g(rk) ∈ Hsrk we can write (recall that w denotes generic positive constants that

may be different even in the same line)

∫

R

[g
(α1−l)
[rk]

(t, x)φ
(l)
srk

(t, x)]2dxdt ≤ ws2l ln4l(n)

∫ a+b(r+1)/s

a+br/s

∫ (k+1)/s

k/s
[g

(α1−l)
[rk]

(t, x)]2dxdt

≤ ws2l ln4l(n)
∑

(j,i)∈D(s,r,k)

i2(α1−l)η2
srk ji ≤ wq4α1+1 max

(j,i)∈D(s,r,k)

i2(α1−l)

aji
Qsrk = on(1)q

−2Qsrk .

In the last equality the definition of Hsrk and the relation min(j,i)∈Dsrk i > qs were used. Absolutely

similarly we get

∫

R

[(∂α0−1
g[rk](t, x)∂tα0−1)(∂lφsrk(t, x)/∂tl)]2dxdt = on(1)q

−2Qsrk .

Next, using the Parseval identity we get for g(rk) ∈ Hsrk ,

∫

R

[

g
2
[rk](t, x) + (∂

α1g[rk](t, x)/∂xα1 )2 + (∂α0g[rk](t, x)/∂tα0 )2
]

φ2
srk(t, x)dxdt

≤
∑

(j,i)∈D(s,r,k)

ajiη
2
srk ji ≤ bQsrk .

The above-obtained relations, together with Proposition 1 of Efromovich (2001) and
∑s−1

r,k=0
Qsrk =

Q(1− s−1), yield that for all g(rk) ∈ Hsrk we have
∑s−1

r,k=1
g(rk)(t, x) ∈ F ∗

n (α0, α1,Q(1− s−1), a, b, h0). To

finish verification of the relation Hs ⊂ F ∗, we are left with analysis of the function (recall the definition

(4.4))

gs(x) := b−1
s−1
∑

r,k=1

∫ a+b

a

g(rk)(z, x)dz, x ∈ [0,1]. (4.7)
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Using relation
∫ a+b(r+1)/s

a+br/s
g[rk](t, x)dt = 0 and definition of the flattop kernel φsrk(t, x), we conclude

that gs belongs to F ∗
n (α0, α1, on(1)s

−1, a, b, h0).

This concludes verification of the assertion that for all large n we have Hs ⊂ F ∗
n . Accordingly, in

the proof of the lower minimax bound we can replace F ∗
n by Hs . The latter allows us to consider a

parametric estimation problem with conveniently chosen parameters ηskr ji .

Now we are evaluating from below a component of the studied MISE over a specific subrectangle

Rsrk := [a + br/s, a + b(r + 1)/s] × [k/s, (k + 1)/s]. Recall that gs(x) is defined in (4.7), introduce

ĥ(t |x) =: h0(t |x) + h̃(t |x), and write for h(t |x) ∈ Hs ,

∫

Rsrk

(ĥ(t |x) − h(t |x))2dxdt =

∫

Rsrk

(h̃(t |x) − g(rk)(t, x) + gs(x))
2dxdt

≥ (1 − s−1)

∫

Rsrk

(h̃(t |x) − g[rk](t, x))
2dxdt − s

∫

Rsrk

[g[rk](t, x)(1 − φsrk(t, x)) + gs(x)]
2dxdt

= (1 − s−1)

∫

Rsrk

(h̃(t |x) − g[rk](t, x))
2dxdt + on(1)sq−1/2n−2α/(2α+1).

To continue, set η̃srk ji :=
∫

Rsrk
h̃(t |x)ϕsrk ji(t, x)dxdt for Fourier coefficients of the oracle-estimate

h̃. Using definitions (4.4) and (4.6) of function classes Hs and Hsrk , and the Bessel inequality we

continue

sup
h∈F∗

n

E

{∫

R

(ĥ(t |x) − h(t |x))2dxdt

}

≥ sup
h∈Hs

E

{∫

R

(ĥ(t |x) − h(t |x))2dxdt

}

= sup
h∈Hs

s−1
∑

r,k=0

E

{∫

Rsrk

(ĥ(t |x) − h(t |x))2dxdt

}

≥ (1 − s−1)

s−1
∑

r,k=0

sup
h∈Hsrk

∑

(j,i)∈T (s,r,k)

E

{

(η̃srk ji − ηsrk ji)
2
}

+ on(1)n
−2α/(2α+1)

=: (1 − s−1)

s−1
∑

r,k=0

Ark + on(1)n
−2α/(2α+1). (4.8)

Our next step is to find lower bounds for the parametric risks Ark . To do that, we bound a minimax

risk by a Bayes one. Introduce an array of independent normal random variables ζsrk ji with zero mean

and variance τ2
srk ji

:= n−1(1 − 3γn)max(γn,min(γ−1
n , [an(s,Qsrk, Isk)/as ji]

1/2 − 1)), here γn < 1/3

tends to zero as slow as desired and the function an is defined in (4.1). Using these variables we

introduce a stochastic process h̄∗(t |x), defined as the studied h(t |x) ∈ Hs but with random ζsrk ji used in

place of deterministic ηsrk ji . The idea and methodology of considering such a stochastic process goes

back to Pinsker (1980) and Efromovich (1989). To use the methodology we need to establish several

technical results and then calculate Fisher information. First, following along lines of establishing line

(S.18) in Pinsker (1980) we get

P

(

(h̄∗(t |x) − h0(t |x)) ∈ Hs

)

≥ 1 − |on(1)|. (4.9)
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Second, using τ2
srk ji

≤ sn−1 we get

∑

(j,i)∈D(s,r,k)

sup
t,x

[τsrk jiϕsrk ji(t, x)]
2 ≤ ws3n−2α/(2α+1).

Third, introducing a similarly defined stochastic process h̄∗
[rk]

, and using the above-presented calcula-

tions together with Theorem 6.2.3 of Kahane (1985) we get

P

(

sup
(t,x)∈R

| h̄∗[rk](t |x)|
2 ≤ s4qn−2α/(2α+1)

)

≥ 1 − |on(1)|s
−2.

Now, following Efromovich (1989), we are calculating Fisher information in the triplet (X,V,∆) about

parameter ηsrk ji of the conditional hazard rate hT |X ∈ Hs . Recall that formula for the likelihood is

presented in (4.1), and it yields that the Fisher information is the sum of two components for ∆ = 1

and ∆ = 0. We evaluate the components in turn. In what follows we use notation Esrk ji,0 to stress that

the expectation is calculated using hT |X with ηsrk ji = 0. Write for the case ∆ = 1 of the uncensored

lifetime of interest T ,

Isrk ji1 := Esrk ji,0{∆[∂ ln(hT |X (T |X)e−
∫ T

0
hT |X (z |X)dz)/∂ηsrk ji]

2}. (4.10)

Let us consider the derivative on the right side of (4.10),

∂ ln(hT |X (T |X)e−
∫ T

0
hT |X (z |X)dz)

∂ηsrk ji
=

∂ ln(hT |X (T |X))

∂ηsrk ji
−
∂
∫ T

0
hT |X (z |X)dz

∂ηsrk ji
=: B1 − B2. (4.11)

Note that

hT |X (t, x) = h0(t |x) + [g(rk)(t, x) − b−1I((t, x) ∈ R)

∫ a+b

a

g(rk)(z, x)dz], (4.12)

where

g(rk)(t, x) := g[rk](t, x)φsrk(t, x)I(k/s ≤ x ≤ (k + 1)/s)I(a + br/s ≤ t ≤ a + b(r + 1)/s), (4.13)

and g[rk](t, x) :=
∑

(j,i)∈D(s,r,k) ηsrk jiϕsrk ji(t, x). Using these formulas we get ∂g[rk](t, x)/∂ηsrk ji
= ϕsrk ji(t, x), recall that φsrk(t, x) is a flattop kernel described in the beginning of the proof,

ϕsrk ji(t, x) are elements of the tensor-product cosine basis on the (r, k)th subrectangle, and then
∫ (k+1)/s

k/s
ϕsrk ji(t, x)dx = 0 and

∫ a+b(r+1)/s

a+br/s
ϕsrk ji(t, x)dt = 0. Also recall that on the considered rectan-

gle functions h0(t |x), f X (x), SC |X (t |x) and S
T |X
0

(t |x) = e−
∫ t

0
h0(z |x)dz are continuous and |hT |X (t |x) −

h0(t |x)| ≤ 1/q. Using these remarks and a straightforward calculation we get

Esrk ji,0{B2
1} =

f X (k/s)SC |X (a + br/s |k/s)S
T |X
0

(a + br/s |k/s)

h0(a + br/s |k/s)
(1 + on(1)). (4.14)

To evaluate the second moment of B2, we need to make a simple remark. B2 is the functional of the

integral of hT |X . For j > 0 we have
∫ t

0
cos(π jsz/b)dz = (π js/b)−1 sin(π jst/b) = oj(1), and recall that

we are considering only j > qs . This remark and a straightforward calculation yield that

Esrk ji,0{B2
2} = on(1) (4.15)
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uniformly over considered (r, k, j, i). Using (4.10), (4.14), (4.15) and the Cauchy inequalty we conclude

that Isrk ji1 = Esrk ji,0{B2
1
}(1 + on(1)) = Isrk(1 + on(1)). Note that the first component of the Fisher

information, calculated for the case ∆ = 1, is the value used in spreading the Sobolev power among the

subrectangles. The reason for this is that the second component, for the case ∆ = 0, is

Isrk ji0 = Esrk ji,0

{

(1 − ∆)
[ ∂

∫ T

0
hT |X (z |X)dz

∂ηsrk ji

]2}

= on(1), (4.16)

where the last relation is due to (4.15). We can make an important theoretical conclusion that the oracle

can use only uncensored cases, when ∆ = 1, for the sharp minimax estimation.

Now we are ready to finish analysis of terms Ark in (4.8). The calculations (4.1) and (4.2) allow us

to use results of Efromovich (1989) and get

inf Ark ≥ (s−4αQsrk)
1/(2α+1)(nIsrk)

−2α/(2α+1)P(α0, α1,1, b)(1 + on(1)). (4.17)

Here the infimum is over all possible nonparametric oracle-estimates of hT |X (t |x) considered in Theo-

rem 1. Now we plug in values of Qsrk introduced at the beginning of the proof and get

inf

s−1
∑

r,k=0

Ark ≥ Pn−2α/(2α+1)s−4α/(2α+1)
[

s−1
∑

r,k=0

(I−1
s Isrk)

−1/(2α+1)I
−2α/(2α+1)
srk

]

(1 + on(1)). (4.18)

For the sum on the right side of (4.18) we may write,

s−1
∑

r,k=0

(I−1
s Isrk)

−1/(2α+1)I
−2α/(2α+1)
srk

= (I−1
s )−1/(2α+1)

s−1
∑

k,r=0

I−1
srk = (I

−1
s )2α/(2α+1)

= (s2/b)2α/(2α+1)
[

(b/s2)

s−1
∑

r,k=0

h0(a + br/s |k/s)

f X (k/s)SC |X (a + br/s |k/s)S
T |X
0

(a + br/s |k/s)

]2α/(2α+1)
. (4.19)

Because all functions in the last sum are continuous, using (4.19) we continue (4.18) and get

inf

s−1
∑

r,k=0

Ark ≥ P
[

n−1
(

b−1

∫

R

hT |X (t |x)

f X (x)SC |T (t |x)ST |X (t |x)
dxdt

)]2α/(2α+1)
(1 + on(1)).

The oracle’s lower bound is proved. Proof of its sharpness can be found in the Supplementary Mate-

rial.

5. Practical examples

Producing greenhouse gas, also called biogas, greengas or biomethane, occurs in nature when a di-

verse population of bacteria breaks down organic materials, contained in waste, landfills and livestock

manure, into the biogas and a combination of solids and liquid components. Greenhouse gas contains

roughly 50-70 percent methane, 30-40 percent carbon dioxide, and trace amounts of other gases. To
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give a perspective on gravity of the problem, according to EPA in the USA landfills and manure man-

agement are responsible for 27% of toxic methane emissions second only to 32% by natural gas and

petrolium systems. Instead of escaping into the air, the potent gas can be captured, converted, and used

as a clean renewable energy resource. This is what waste treatment plants do, and aerators are the im-

portant part of those systems. Moreover, an aerator fouling may force to stop the plant. This is why

prediction of the fouling is an important statistical problem.

The section presents four examples of statistical analysis of diffuser fouling in wastewater aerators.

We begin with a brief explanation of aeration and diffuser fouling, and then consider experiments

conducted by environmental company BIFAR.

Aeration is an essential and most energy demanding process of wastewater treatment plants, and it

creates opportunity for wastewater recycling and reducing environmental pollution by cutting green-

house gas emissions produced by otherwise untreated waste, see Slavov (2017) and Albu et al. (2021).

Aeration introduces bubbles of air into a wastewater that supply the required oxygen to the metabolizing

microorganisms and provide mixing of waste that allows microorganisms to come into contact with the

dissolved and suspended organic matter. While a diffused aeration system (aerator) is a complicated

engineering mechanism, we will deal only with two of its parts: (i) Air diffuser which transfers air

into wastewater; (ii) Air blower which supplies pressurized air to diffuser. The diffusers are susceptible

to chemical and biological fouling that decreases supply of air and causes substantial aeration energy

wastage, while the blower may break down due to pollution in poorly filtered air, see a discussion in the

above-cited references and Drewnovski et al. (2019), Vinardella et al. (2020), Samuelsson et al. (2021).

The environmental company BIFAR has been interested in the effect of several parameters (covariates)

on the diffuser fouling time T . Below four controlled BIFAR experiments are explained in turn. In the

BIFAR experiments T was right censored by end of the study or breakdown of the blower. The experi-

ments are conducted for different diffusers and wastes, the experiments are labor-intensive and costly,

and that explains relatively small sample sizes.

The following aeration terminology is used. CSS, CCR and LAP stand for concentration of sus-

pended solids, concentration of chemical reagents, and level of air polution, respectively.

Experiment 1. BIFAR was interested in fouling time T of a new diffuser given level X of suspended

solids in treated wastewater. Perfect air filtration was used to avoid breakdowns of the blower. At the

same time, because for some diffusers their lifetime T was too long, BIFAR stopped an experiment

when T exceeded a threshold c0. This created a deterministic right censoring with triplet of observed

variables (X,V,∆) where V :=min(T, c0) and ∆ = I(T ≤ c0). BIFAR conducted n = 92 experiments and

among those 20 were censored. The observations, linearly rescaled by BIFAR onto unit square [0,1]2,

are shown in Figure 1. With some obvious but understandable abuse of notations, in the figure and in

what follows we denote by X and V the rescaled variables, and as a result if ∆ = 0 then V = 1.

Before discussion of the data and its statistical analysis, let us make the following important remark.

Deterministic censoring, used by BIFAR, is not covered by the paper’s theory where C is assumed to

be random. On the other hand, because BIFAR is interested only in T ∈ [0,1], all assumptions of the

theory are fulfilled. Moreover, the interested reader can double-check that the proposed estimator does

not use values of V beyond an interval of interest.

Now let us return to the data shown in Figure 1. Let us look at the top diagram where only uncensored

observations (pairs (X,V) = (X,T)) are shown by the circles. In many instances a visual analysis of a

scattergram may reveal a pronounced relationship between predictor X and response T , see examples in

Efromovich (2018). This is not the case here, and even our general knowledge that the lifetime should

decrease as the concentration of suspended solids increases does not help to see that in the data. Also

note that, at least on first glance, Fourier estimator (2.16) uses only uncensored observations, and the

oracle does not use censored observations. We return to this issue shortly, and now let us look at the

bottom diagram where all available observations are shown. Note how the triangles, exhibiting censored
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Experiment 4. Methods of combating the diffuser fouling process can be divided into two groups: the

ones that require emptying the reactor and the ones that do not. The non-invasive methods include ad-

dition of formic acid to the air supplying diffusers and periodic impulses of increased air flow. Adding

formic acid only enables to control the pressure losses of diffusers (limited effect on external foul-

ing), whereas increasing the air flow rate results in the detachment of loose external biofilm fragments.

BIFAR tested the second method of periodic increases in the air flow rate. As a result, we get a cate-

gorical covariate U ∈ {0,1}, and U = 0 indicates a control aeration with constant air flow while U = 1

indicates a case aeration with periodic impulses of increased air flow. Otherwise the study is similar to

Experiment 3 and we are dealing with the triplet (X1, X3,U) of covariates and observe a sample from

(V, X1, X3,U).

Data are shown in Figure 4 and explained in the caption. Here our main attention is to the cases

indicated by crosses. Similarly to the previous experiments, without taking into account censored times

(the triangles), it is difficult to say something about the benefit of periodic air impulses. Useful in-

formation about the experiment is given in the caption. Presented below formula for the conditional

hazard rate sheds more light on the experiment. Recall that the two basis functions for the categorical

random variable U are η0(u) = 1 and η1(u) = 1 − 2I(u = 1), u ∈ {0,1}. The formula is

ĥ(t |x1, x3,u) = 2.8 + .2η1(u) − ϕ1(t)[0.8 + .2η1(u) − 0.3ϕ1(x3) − .2ϕ1(x1)η1(u)]

− .4ϕ1(x1) − 0.2ϕ1(x3), (t, x1, x3) ∈ [0,1]3,u ∈ {0,1}. (5.4)

As we see, periodic impulses of increased air flow slow down diffuser fouling. The formula also

sheds light on interaction between the 3 predictors.

6. Conclusion and possible future research

For the first time in the literature, the theory and methodology of efficient nonparametric estimation

of conditional hazard rate of a right censored lifetime are developed. The proposed estimator matches

performance of the oracle who knows underlying dimensionality and smoothness of the conditional

hazard rate and all nuisance functions. It is shown that only a single natural nuisance function is used

by the oracle to construct an optimal oracle-estimator. Because the natural nuisance function can be

estimated with an accuracy sufficient for matching the oracle, it is possible to match the oracle by

a data-driven estimator. Further, the used minimal assumption about smoothness of the natural nui-

sance function is not tied to smoothness of the conditional hazard, and this is an important theoretical

outcome of the paper. It also follows from the developed theory that the oracle uses only uncensored

observations for sharp minimax estimation because using censored observations triggers solution of

ill-posed problems with slower rates of convergence. Important practical examples, devoted to waste

treatment and reducing potent greenhouse gas emissions, show practical feasibility of the estimators

for small samples.

Let us comment on the notion of natural nuisance function. The oracle defines a function (or a vector

of functions) as the natural nuisance function if using it together with data yields a sharp minimax

estimation. Let us present several particular examples that shed light on the notion. For mentioned in

the Introduction nonparametric regression model Y = m(X) + σ(X)ξ and available sample from pair

(X,Y ), the natural nuisance function is the design density f X of the predictor X . The oracle uses the

design density f X and the sample to construct a sharp minimax estimator of the regression. Note

that in this example the natural nuisance function is the nuisance function for both the oracle and

the statistician because f X is not related to the estimated regression function. Our second example
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is estimation of the hazard rate function hT based on a sample from T considered in Efromovich

(2016). For this problem the natural nuisance function is the survival function ST . This is an interesting

example because knowledge of ST is equivalent to knowing the estimand hT , and hence ST is not a

nuisance function for the statistician. Further, for this problem the oracle uses data and the natural

nuisance function to construct a sharp minimax oracle-estimator of hT that can be mimicked by a data-

driven estimator. Our final example is the setting considered in the paper when the natural nuisance

function is p(t, x) = f X (x)SC |X (t |x)ST |X (t |x). Note that only f X and SC |T are nuisance functions for

the statistician, and the presence of factor ST |X allows the statistician to directly estimate p instead of

estimation of the factors. The latter is the interesting specific of the studied problem.

Now let us mention several open problems for future research. An interesting setting, specifically in

biostatistical and actuarial applications, is when a categorical variable affects smoothness and dimen-

sionality of conditional hazard in continuous covariates. A specific example is the effect of smoking or

zip code on longevity. Missing data are typical in survival data. For a nonparametric regression differ-

ent estimators are optimal for missing responses and predictors. It is of interest to explore these settings

for conditional hazard. Sequential estimation with assigned risk is an interesting and important practi-

cal problem due to unknown smoothness of conditional hazard and unknown censoring mechanisms.

Measurement errors in covariates is another familiar problem in survival data. It will be of interest to

explore optimal nonparametric estimation for this setting.
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