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Abstract — In survival analysis a random right-censoring partitions data into uncensored

and censored observations of the lifetime of interest. The dominance of uncensored obser-

vations is a familiar methodology in nonparametric estimation motivated by the classical

Kaplan-Meier product-limit and Cox partial likelihood estimators. Nonetheless, for high

rate censoring it is of interest to understand what, if anything, can be done by aggregating

uncensored and censored observations for the staple nonparametric problems of density and

regression estimation. The oracle, who knows distribution of the censoring lifetime, can use

each subsample for consistent estimation and hence may shed light on the aggregation. The

oracle’s asymptotic theory reveals that density estimation, based on censored observations,

is an ill-posed problem with slower rates of risk convergence, the ill-posedness occurs in

frequency-domain, its severity increases with frequency, and accordingly a special aggrega-

tion on low frequencies may be beneficial. On the other hand, censored observations are not

ill-posed for nonparametric regression and the aggregation is feasible. Based on these theo-

retical results, methodology of aggregation in frequency domain is developed and proposed

estimators are tested on simulated and real examples.

Keywords: adaptation, density, nonparametric, regression, sharp minimax, survival analy-

sis

1. INTRODUCTION

Consider a lifetime of interest T which is right-censored by another lifetime C. Then

instead of a direct sample from T we get a sample from pair (V,∆) := (min(T,C), I(T ≤ C))
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where I(·) is the indicator function. Accordingly, the random right-censoring partitions data

into uncensored observations when we observe realizations of T and censored observations

when we observe realizations of C. Assuming that T and C are independent continuous

random variables, denote their densities and survival functions as fT , ST and fC , SC . Then

the joint mixed density of (V,∆) is

fV,∆(t, δ) = [fT (t)SC(t)]δ [fC(t)ST (t)]1−δ, (t, δ) ∈ [0,∞)× {0, 1}. (1)

Note the symmetry in the formula with respect to T and C, it reflects the fact that C

right-censors T and T right-censors C.

Statistical literature, devoted to analysis of the lifetime of interest T , treats the uncen-

sored subsample as the dominate one. For instance, the classical Kaplan-Meier estimator of

the survival function has jumps only at uncensored observations of T , and moreover Kaplan

and Meier (1958) refers to a censored T as a “loss”. Further, a large portion of statisti-

cal literature treats censored observations as “missing”, and then uses the Buckley-James

imputation of censored observations by statistics based on uncensored observations.

The aim of the paper is to understand how and when censored observations may be ag-

gregated with uncensored for nonparametric estimation of the density fT and nonparametric

regression of T on a predictor. Of course, both these subsamples are needed for consistent

estimation. Accordingly, the oracle’s approach is used. The oracle knows distribution of

the censoring variable C and may use uncensored and censored observations separately to

answer the raised question. Then the recommended oracle’s estimators are mimicked by

corresponding data-driven nonparametric estimators based on an estimated distribution of

C. At the same time, if the distribution of C is known or may be estimated based on an

extra sample from C, then the oracle’s approach can be used directly. A practical example

of the latter possibility will be presented in Section 3.

Let us stress that it is of a special interest to consider problems of density and regression
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estimation together because conclusions of the asymptotic theory for the problems are dif-

ferent. Namely, for density no aggregation is needed for asymptotically efficient estimation

while for regression the aggregation is beneficial. At the same time, conclusions of numer-

ical studies for small samples and high rates of censoring coalesce in terms of feasibility of

aggregation for both density and regression estimation problems.

In the paper, with some obvious but not confusing abuse of the notions, a sample from

(V,∆) is called right-censored, its subsample with ∆ = 1 is called uncensored-data or un-

censored observations because T is observed, and the complementary subsample with ∆ = 0

is called censored-data or censored observations because C is observed.

The context of the paper is as follows. Sections 2 and 3 are devoted to density and re-

gression problems, respectively. Their structures are identical. The first subsection presents

literature review, it is shown that the literature treats uncensored and censored subsamples

differently with the former being the dominant source of information. The second subsec-

tion is the core mathematical statistics that contains the sharp minimax asymptotic theory.

The theory provides both sharp constants and optimal rates of the MISE (mean integrated

squared error) convergence. This section also explains the corresponding methodology of

estimation. Further, it is of a special interest to show that this asymptotic theory is not just

a complicated mathematical exercise, and it can be applied to simulated small samples and

real-life practical examples with high rates of censoring. The latter is done in subsections 3

and 4, respectively. The interested reader can even begin with subsections 2.4 and 3.4.2 to

check how the aggregation sheds a new light on longevity of a patient with small cell lung

cancer. Proofs are in Section 4, and conclusions are in Section 5.

Note for the Reviewer: I may put the numerical part in the online Supplementary

Materials, but think that having it in the paper may be of interest to some readers. Please

advice.

2. DENSITY ESTIMATION

The problem of estimation of the density fT based on a right-censored sample of size n
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from the pair (V,∆), defined in the Introduction, is considered. The structure of the section

is outlined in the last paragraph of the Introduction.

2.1 Literature Review. It is fair to say that the modern survival analysis, and distribu-

tion estimation in particular, are based on the pathbreaking product-limit methodology of

Kaplan and Meier (1958) for nonparametric estimation of survival function by a stepwise

function with steps at uncensored lifetimes. The product-limit methodology is based on the

understanding that censored observations are dominated by uncensored. Moreover, in that

seminal paper censored observations are referred to as “losses”. And sure enough, rigorous

proof of the dominance was done later in Efron (1967), Breslaw and Crowley (1974), Meier

(1975), Aalen (1978). It took a bit longer to verify the dominance for density estimation.

Efromovich (2001) established that for large samples the oracle, who knows data and the

distribution of censoring variable, can attain the sharp constant and rate of the MISE (mean

integrated squared error) convergence using only uncensored observations. In other words,

the oracle does not need censored observations for efficient estimation of the density, see also

an interesting discussion in Brunel, Comte and Guilloux (2009).

Despite all these results, there are still two unresolved issues. First, it is of interest to

understand why the oracle does not use censored observations. Second, if the rate of censoring

is high and the sample is small, can the oracle use censored observations in an optimal

way and aggregate them with uncensored ones? In what follows we present results that

shed light on plausible answers. The theory, presented shorty in subsection 2.2, shows that

using censored observations yields consistent estimation, but rate of the MISE convergence

is slower than for uncensored observations. In other words, estimation based on censored

observations is ill-posed. This is the bad news. The good news is that the ill-posedness

occurs in frequency-domain and low frequencies see only its onset. Accordingly, the oracle

recommends to aggregate low-frequency Fourier coefficient estimates, based on uncensored

and censored observations, and then use a corresponding series density estimate. In other

words, the oracle states that the aggregation must be in frequency-domain and primarily
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on low frequencies. The interested reader will be able to check in subsections 2.3 and 2.4

feasibility of these recommendation for simulated and real-life small samples, respectively.

2.2 Asymptotic Theory and Methodology. Let us recall the right-censored model. Es-

timation of fT is based on a sample (V1,∆1), . . . , (Vn,∆n) from (V,∆) := (min(T,C), I(T ≤

C)). The right-censoring lifetime C partitions the sample into two subsamples where obser-

vations of either T or C are available. We refer to the two subsamples as uncensored and

censored observations. Note that the number N :=
∑n

l=1 ∆l of uncensored observations has

Binomial(P(∆ = 1), n) distribution.

The main aim of this subsection is to explain what can and cannot be done by using

uncensored and censored observations for estimating density fT of a bounded lifetime of

interest T . The oracle estimates the density over a finite interval, and without loss of

generality it is assumed that the density is estimated over its support [0, 1]. It is also

assumed that SC(1) > 0, this allows consistent estimation. The oracle knows density fC of

the censoring variable, and accordingly can propose consistent estimators based on each of

the two subsamples. In what follows qn := dln(n + 20)e, sn := 3 + dln(ln(n + 3))e, and dxe

is the smallest integer that larger or equal to x.

We begin with assumptions.

Assumption 1. The lifetime T is independent of the censoring lifetime C.

This is a standard assumption in the literature. Next, following (Efromovich, 2001), we

introduce a class of estimated densities. Denote by {ϕ0(t) := 1, ϕj(t) := 21/2 cos(πjt), j =

1, 2, . . .} the cosine basis on [0, 1], and introduce a shrinking local Sobolev class of α-fold

differentiable densities supported on [0, 1],

Fn := Fn(f0, α,Q) :=
{

f : f(t) = f0(t) + g(t)I(t ∈ [0, 1]),

g ∈ S(α,Q), |g(t)| ≤ min
x∈[0,1]

f0(t)/sn, t ∈ [0, 1]
}

. (2)
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Here the anchor density f0 is supported, continuous and positive on [0, 1], and

S(α,Q) := {g : g(t) =
∞
∑

j=1

θjϕj(t),
∞
∑

j=1

(1 + (πj)2α)θ2j ≤ Q, t ∈ [0, 1]}. (3)

The class (3) is called the global Sobolev class. As we will see shortly in Theorem 1, we need to

use the local Sobolev class (2) because the Fisher information for right-censored observations

depends on an underlying density. Let us also stress that f0 is not necessarily the underlying

density of interest, it simply anchors all underlying densities fT in its vanishing in L1-norm

vicinity.

Theorem 1. Consider a sample of size n from right-censored pair (V,∆) := (min(T,C),

I(T ≤ C)), and the problem is to estimate density fT of the lifetime of interest T under

the MISE criterion. Let Assumption 1 hold, density fC is positive and continuous on [0, 1],

SC(1) > 0, and the oracle knows the right-censored data, density fC and function class Fn.

Then

inf
f̃∗

sup
fT∈Fn

EfT {(n/du)2α/(2α+1)

∫ 1

0

(f̃ ∗(t)− fT (t))2dt} ≥ Pu(1 + on(1)), (4)

where the infimum is over all possible oracle-estimators f̃ ∗. Furthermore, the lower bound is

sharp and it is attainable by an oracle-estimator f̃ ∗
u based solely on uncensored observations.

If the oracle uses only censored observations and α > 1, then

inf
f̃∗
c

sup
fT∈Fn

EfT {(n/dc)2α/(2α+3)

∫ 1

0

(f̃ ∗
c (t)− fT (t))2dt} ≥ Pc(1 + on(1)), (5)

and the lower bound is sharp. Accordingly, censored observations are ill-posed, with respect

to uncensored observations, and using only them slows down rate of the MISE convergence

from n−2α/(2α+1) to n−2α/(2α+3). In (4) and (5)

Pu :=
Q1/(2α+1)α2α/(2α+1)(2α + 1)1/(2α+1)

[π(α + 1)]2α/(2α+1)
, (6)
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Pc := [Q(2α + 3)]3/(2α+3)(1/3)[α/(π(α + 3))]2α/(2α+3), (7)

du :=

∫ 1

0

fT (t)

SC(t)
dt, dc :=

∫ 1

0

ST (t)

fC(t)
dt. (8)

Now let us present oracle’s estimators that attain the sharp lower bounds (4) and (5). We

begin with the one based on uncensored observations, and note that we are using subscript

u to highlight that. Set

θ̃∗u0 := 1, θ̃∗uj := n−1

n
∑

l=1

∆l
ϕj(Vl)

SC(Vl)
, j ≥ 1. (9)

Then the oracle-estimator based on uncensored observations is

f̂ ∗
u(t) :=

Jn
∑

j=0

θ̃∗ujI((θ̃
∗
uj)

2 > 2du ln(n)n
−1)ϕj(t) +

J∗
un

∑

j=Jn+1

(1− (j/J∗
un)

α)θ̃∗ujϕj(t), (10)

where Jn := 4dln(n+ 3)e and

J∗
un := d[(n/du)Qπ−2α(α + 1)(2α + 1)/α]1/(2α+1)e. (11)

Note that in (10) the classical universal thresholding is used on low frequencies and the

shrinkage on high frequencies. For censored observations, consider the sine basis ψj(t) :=

21/2 sin(πjt), j = 1, 2, . . . Using subscript c to highlight that a statistic is based on censored

observations, set

θ̃∗c0 := 1, θ̃∗cj := 21/2 − n−1(πj)
n

∑

l=1

(1−∆l)
ψj(Vl)

fC(Vl)
, j ≥ 1. (12)

Then the oracle-estimator based on censored observations is

f̂ ∗
c (t) :=

Jn
∑

j=0

θ̃∗cjI((θ̃
∗
cj)

2 > 2dc ln(n)n
−1)ϕj(t) +

J∗
cn

∑

j=Jn+1

(1− (j/J∗
cn)

α)θ̃∗cjϕj(t), (13)
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where

J∗
cn := d[(n/dc)Qπ−2α−2(α + 3)(2α + 3)/α]1/(2α+3)e. (14)

Theorem 2. Let Assumption 1 hold. Suppose that the anchor f0 ∈ S(α + β,Q′), β > 0.

Consider du and dc defined in (8). If du is finite, then the oracle-estimator (10), based

on uncensored observations, attains the lower bound (4). If dc is finite, then the oracle-

estimator (13), based on censored observations, attains the lower bound (5). Further, the

proposed Fourier coefficient estimates are unbiased and satisfy

Ef{(θ̃∗uj − θj)
2} = n−1σ2

uj, σ2
uj = du(1 + oj(1)), (15)

and

Ef{(θ̃∗cj − θj)
2} = n−1(πj)2σ2

cj, σ2
cj = dc(1 + oj(1)). (16)

These properties yield the following unbiased aggregation of the two Fourier coefficient esti-

mates based on uncensored-data and censored-data,

θ̃∗aj := θ̃∗uj
(πj)2σ2

cj

(πj)2σ2
cj + σ2

uj

+ θ̃∗cj
σ2
uj

(πj)2σ2
cj + σ2

uj

, (17)

with the mean squared error satisfying

Ef{(θ̃∗aj−θj)2} = σ2
uj

(πj)2σ2
cj

(πj)2σ2
cj + σ2

uj

=: σ2
uj(1−νj), 0 < νj < (πj)−2[du/dc](1+oj(1)). (18)

The assertions of Theorems 1 and 2 highlight and quantify ill-posedness of censored

lifetimes with respect to uncensored. At the same time, formula (16) implies that for small

j we see only the onset of ill-posedness. Accordingly, the frequency-domain aggregation (17)

is feasible, line (18) explains its benefits, and the theory sheds light on the numerical study

presented in the next subsections.
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The nice feature of the proposed series oracle-estimator is that it implies the following

algorithm of nonparametric estimation that will be referred to as E-estimator. The corre-

sponding R codes are available on request from the author.

Algorithm of E-Estimation: Let f(x), x ∈ [0, 1] be a square integrable function of

interest. There are three steps that E-estimator makes for its estimation using the cosine

basis {ϕj}.

Step 1. The function can be written as f(x) =
∑∞

j=0 θjϕj(x). Here θj :=
∫ 1

0
f(x)ϕj(x)dx

are Fourier coefficients of f . Suggest a sample mean estimator θ̂j of Fourier coefficients

θj :=
∫ 1

0
f(x)ϕj(x)dx. Then calculate a corresponding sample variance estimator v̂jn of the

variance vjn := Var(θ̂j) of the sample mean estimator.

Step 2. The E-estimator is defined as f̂(x) :=
∑Ĵ

j=0 θ̂jI(θ̂
2
j > cTH ln(n)v̂jn)ϕj(x). Here the

empirical cutoff is Ĵ := argmin0≤J≤cJ0+cJ1 ln(n)
{
∑J

j=0[2v̂jn − θ̂2j ]}, and cJ0, cJ1 and cTH are

parameters (nonnegative constants).

Step 3. If there are bona fide restrictions on f(x) (for instance, the probability density is

nonnegative and integrated to one, or it is known that the function is monotonic) then a

projection of f̂(x) on the bona fide function class is performed (Efromovich,1999).

Note that Steps 2 and 3 in construction of the E-estimator are the same for all non-

parametric statistical problems. As a result, as soon as a sample mean estimator of Fourier

coefficients is proposed, this Fourier estimator yields the corresponding E-estimator. Fur-

ther, the available R package allows the user to change default values of the parameters cJ0,

cJ1 and cTH .

Now let us explain a general methodology of how to adapt to unknown smoothness of

fT by using a a block-shrinkage estimator. To define the estimator, suppose that the oracle

recommends to use a Fourier estimator θ̄j of θj satisfying E{(θ̄j − θj)
2} = dn−1(1 + on(1) +

oj(1)). Set b1 := Jn + 1, bk+1 := bk + d(1 + 1/sn)
ke, k = 1, 2, . . ., Bk := {j : bk ≤ j < bk+1},
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Lk := bk+1 − bk, Kn is the smallest integer such that bKn
≥ n1/3sn,

Θ̄k := L−1
k

∑

j∈Bk

θ̄2j . (19)

Also denote by d̄ an estimate of d such that E{(d̄ − d)2} = on(1) (Efromovich, 2001,

2018). For instance, we can set d̄ := n−1
∑n

l=1 ∆l[S
C(Vl)]

−2 for uncensored observations, and

d̄ := n−1
∑n

l=1(1−∆l)[f
C(Vl)]

−2 for censored observations. Then the blockwise-shrinkage es-

timator that adapts to parameters (α,Q) and matches the MISE of a corresponding oracle’s

estimator is

f̄(t) :=
Jn
∑

j=0

θ̄jϕj(t) +
Kn
∑

k=1

∑

j∈Bk

Θ̄k − d̄n−1

Θ̄k

I(Θ̄k ≥ (1 + 1/qk)d̄n
−1). (20)

If the distribution of C is unknown, then the following method of moments estimator of

the survival function SC is used,

ŜC(t) := exp{−n−1

n
∑

l=1

(1−∆l)I(Vl ≤ t)/ŜV (Vl)}, (21)

where

ŜV (t) := n−1

n
∑

l=1

I(Vl ≥ t). (22)

Note that ŜV (Vl) ≥ n−1, and hence it can be used in the denominators of (21).

Lemma 1. Consider estimation of SC(t) for t ∈ [0, a]. Suppose that Assumption 1 holds

and SV (a) > 0. Then there exist finite positive constants B∗, B and a sequence of finite

constants Bk such that for any l = 1, . . . , n, z ∈ [0, a], positive ν and integer k,

E{[ŜC(Vl)− SC(Vl)]|Vl = z} ≤ B∗n
−1, (23)

P(|ŜC(Vl)− SC(Vl)| > ν|Vl = z} ≤ Bne−nν2/B, (24)
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E{[ŜC(Vl)− SC(Vl)]
2k|Vl = z} ≤ Bkn

−k. (25)

This lemma will be proved using familiar properties of Bernoulli sums, and the interested

reader can compare the assertion and simplicity of the proof with the beautiful and mathe-

matically involved theory of product-limit survival estimators, see a nice exposition in Aalen,

Borgan and Gjessing (2008). One more remark about Lemma 1 is due. Its assumption is

standard and requires that we are considering an interval [0, a] such that SV (a) > 0, and

note that SV (a) = ST (a)SC(a).

Due to the symmetry between estimating distributions of C and T , the density fC can

be estimated by the same estimator as fT only with ∆ being replaced by 1−∆.

We have defined all estimates of the nuisance functions used by the oracle.

2.3 Numerical Study. Three rows of diagrams in Figure 1 present results of different

simulations, the simulations and diagrams are explained in the caption, all estimates are data-

driven, and they are available in the R-package that allows the interested reader to repeat

and change the simulations. Recall that the package is available on request from the author.

The top row presents the case when 23.5% of observations are censored (the theoretical

P(∆ = 0) = 0.25), the underlying density fT is the Bathtub (the solid line and see its

discussion in Jankowski and Wellner 2009), and the censoring distribution is Uniform(0,1.5).

The short-dashed line is the hidden-data density estimate based on underlying (hidden)

observations of T , this data-driven estimate is from R-package Efromovich (2018) and it is

used as a benchmark. As we see, the hidden-data estimate is good and it indicates that

the underlying sample is reasonable. All other estimates are based on the right-censored

data. The circles show estimates of fC(Vl), l = 1, . . . , n. The dotted line is the uncensored-

data estimate of fT , it is based on uncensored observations, shown by the circles in the

top-left diagram with ∆ = 1, and on the estimated density of C. This estimate is also from

R-package Efromovich (2018). Visualization of the uncensored observations supports the
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the underlying density in censored observations. Nonetheless, despite the small sample size

and ill-posedness, let us look at the dot-dashed line which is the proposed density estimate

based on the censored observations, the estimator will be explained in subsection 2.3. The

estimate is surprisingly good, and it will be explained shortly why such an outcome is

possible. The long-dashed line is the aggregated estimate that will be explained in subsection

2.3 and commented on shortly. The middle row of diagrams shows a similar experiment

with the same underlying density and the larger rate of censoring, here the theoretical

P(∆ = 0) = 0.38. The particular simulation is chosen to show that despite the larger

number of censored observations, the censored-data estimate (the dot-dashed line) is clearly

worse than the others. This outcome is a real possibility due to the ill-posedness of censored

observations. At the same time, the aggregated estimate is very good, and this is the main

message of this simulation. The bottom row is devoted to estimation of the Bimodal density

defined in Efromovich (2018, p.32), here P(∆ = 0) = 0.5, and for the particular simulation

the rate of censoring is 48%. Despite the larger number of censored observations, the estimate

based on censored observations (the dot-dashed line) is dramatically worse than the estimate

based on uncensored observations (the dotted line). Repeated simulations have indicated

similar outcomes.

Let us explain the difference between the top two and the bottom experiments. The

Bathtub density, considered in the two top experiments, is a low-frequency curve while the

Bimodal is a high-frequency curve, see Efromovich (1999, s.3.3). This explains why estimates

based on ill-posed censored observations may be visually appealing for the Bathtub density

and not for the Bimodal. Now let us look at the aggregated estimates (the long-dashed

lines). It is plain to realize that they are not from a class {fA = λf̃1 + (1 − λ)f̃2, λ ∈

[0, 1]} of traditionally studied estimates aggregated in the time-domain, see a discussion

and mathematically beautiful results in Nemirovski (2000), Rigolett and Tsybakov (2007),

Samarov and Tsybakov (2007). Instead, a special aggregation in frequency-domain is used,

and this is why the aggregation may be beneficial even if a censored-data estimate is not
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good as in the case of the two bottom diagrams.

To finish discussion of Figure 1, let us present integrated squared errors of the estimates

for the three experiments and compare them with results of a numerical study based on 5000

repeated simulations for each experiment. Results for empirical integrated squared errors

(ISE) are shown in Table 1 whose caption explains the entries. We begin with experiment in

the top row of Figure 1, that is with Experiment 1. For the particular data shown in the top

diagram, the hidden-data estimate clearly dominates the others, and the uncensored-data

estimate is dramatically better than the censored-data estimate. Nonetheless, the aggregated

estimate is much better (in terms of its ISE) than the uncensored-data estimate. Overall, as

the repeated simulations show (see the denominators), the particular experiment in Figure 1

shows us a better side of the aggregation, because in a long run the aggregated estimator is

only a bit better than the uncensored-data estimator. Further, on average the censored-data

estimate is dramatically worse than the one shown in the right-top diagram in Figure 1.

This is the essence of ill-posedness. We will return to discussion of the outcome shortly,

and now let us look at Experiment 2 which is similar to the previous only now the rate of

censoring jumps from 25% to 38%. Due to the smaller number of uncensored observations,

the uncensored-data estimator performs dramatically worse than in the Experiment 1 but

still dominates the censored-data estimate. The good news is that the aggregated estimator

performs significantly better than the uncensored-data estimator due to the high rate of

censoring.

Based on the first two experiments with the same underlying low-frequency density and

different rates of censoring, we may conclude that aggregation of uncensored and censored

observations may be beneficial for high rate censoring.

Now let us look at results for Experiment 3. They support our conclusion made via

analysis of the particular outcome shown in the bottom row of Figure 1. First, even for the

hidden-data estimator the high-frequency nature of the Bimodal complicates the estimation,

and it is dramatically more difficult for the censored-data estimator. Second, on average the
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Table 1: Numerical analysis of the three experiments in Figure 1. Each entry in columns
2-5 is written as a ratio where: The numerator is the integrated squared error (ISE) of the
estimate shown in Figure 1; The denominator is the median, over 5000 repeated simulations,
of ratios between ISEs of the hidden-data estimate and the estimate indicated in the column.
The last column shows theoretical rates of censoring

Experiment Hidden-data Uncensored-data Censored-data Aggregated E{1−∆}
estimate estimate estimate estimate

1 0.0002/1 0.0029/0.80 0.0269/0.03 0.0024/0.81 0.25
2 0.0038/1 0.0121/0.22 0.3641/0.05 0.0027/0.38 0.38
3 0.051/1 0.092/0.52 0.325/0.13 0.091/0.54 0.50

aggregated estimator performs a bit better than the uncensored-data estimator.

Based on these numerical results, we can make the following conclusions for density

estimation: (i) Asymptotically uncensored observations dominate censored ones; (ii) For

small samples and high rates of censoring it may be beneficial to aggregate these observations;

(iii) Aggregation may not benefit estimation of high-frequency densities but it definitely does

not hurt the estimation.

2.4 Lung Cancer Data. Let us complement the above-presented numerical study by

analysis of the Arm A small cell lung cancer (SCLC) clinical study data presented in the

JASA paper Ying, Jung and Wei (1995). The data contains right-censored survival lifetimes,

in days, and age, in years. The censoring is caused by administrative end of the study, and

according to the paper it is independent of the survival lifetime and the age. Here we are

interested in the density of survival lifetimes, and in the next section consider the regression

problem. Let us note that about 15% of all lung cancer cases are the SCLC and this is

the most aggressive type of lung cancer with extremely short survival times after the cancer

diagnosis. Figure 2 shows the right-censored lifetimes and estimates, and this figure is similar

to a row of diagrams in Figure 1 only here we do not know the underlying density.

The top diagram exhibits the data. We are dealing with very small sample and the rate

of censoring 24%. Note that the seven largest observations of V are censoring times, and

they point upon a subset of relatively large underlying lifetimes T . The largest Vl∆l = 1221
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devoted to the lung cancer study. According to the publication, the survival of participants

was primarily defined by the binary stage of cancer, limited or extensive. This is what the

density estimates tell us about. Interestingly, the conclusion about two strata is different

from the unimodal on [0,∞) Bayesian density estimate in Poynor and Kottas (2019).

We will continue discussion of the lung cancer data in the subsection 3.4.2 where we look

at regression of the survival lifetime on the patient’s age.

3. NONPARAMETRIC REGRESSION WITH CENSORED RESPONSES

The structure of this section is identical to the previous one, that is we begin with the

literature review which is followed by asymptotic theory, methodology, numerical study and

analysis of real data.

3.1 Literature Review. It is well documented in the literature that the Kaplan-Meier’s un-

derstanding of the dominance of uncensored observations was also pathbreaking in regression

estimation. The dominance is at the core of the seminal papers Cox (1972,1975) where the

methodology of partial likelihood was proposed. Efron (1977) and Oakes (1977), using infor-

mation calculations, have established that the Cox’s estimator is nearly fully efficient. Using

the dominance principle, Buckley and James (1979) suggested to replace censored responses

by their conditional expectations calculated using uncensored observation. This novel impu-

tation approach and the estimator got their name, and the estimator was rigorously studied

in Ritov (1990), Jin, Lin and Ying (2006), and also see an interesting discussion of imputa-

tion in Rubin (1987). Discussion of several other related ideas, all of whom are based on the

dominance principle, can be found in Miller and Halpern (1982), Kohler, Mathe and Pinter

(2002), Jin, Lin and Ying (2006 Shirazi, et al. (2013), Salah and Yousri (2019). There is also

a large literature specifically devoted to nonparametric regression with censored responses.

Fan and Gijbels (1994) use uncensored observations to construct nonparametric imputa-

tion of censored responses, and then apply a nonparametric estimator to the transformed

responses. This is an interesting and technically challenging nonparametric development
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of the Buckley-James imputation method. Interesting and sophisticated regression estima-

tors, based on the dominance of uncensored observations, Kaplan-Meier methodology and

Buckley-James imputation, can be found in Gross and Lai (1996), Kim and Truong (1998),

Brunel and Comte (2006), Delecroix, Lopez and Patilea (2008), Li, MacGibbon and Valenta

(2008), Guessoum and Said (2010), Shirazi et al. (2013), Efromovich (2018).

Surprisingly, it will be shown in the next subsection 3.2 that, in contrary to the above-

discussed problem of density estimation, censored observations are no longer ill-posed for

nonparametric regression estimation. Namely, censored observations allow the oracle to esti-

mate nonparametric regression with the same rate as uncensored observations. Accordingly,

there is no superiority of uncensored observations over censored ones, and the oracle recom-

mends to use an aggregated, in frequency domain, regression estimator. Then in subsections

3.3 and 3.4 we will have a chance to evaluate this recommendation using a numerical study

when we know the underlying regression as well as analysis of real-life examples.

3.2 Asymptotic theory and methodology. There is an underlying pair of interest (X, T )

where X is the predictor and lifetime T is the response, and the problem is to estimate

nonparametric regression m(x) = E{T |X = x}. The response T is not observed directly.

Instead, we observe a sample of size n from (X, V,∆) where V := min(T,C), ∆ := I(T ≤ C)

and C is the censoring variable. The censoring partitions data into uncensored and censored

observations when we observe realizations of (X, T,∆ = 1) and (X,C,∆ = 0), respectively.

As we know from the literature review presented in subsection 3.1, the principle of dom-

inance of uncensored observations is believed to be valid for nonparametric regression. Let

us explore this issue using the oracle approach. We begin with several assumptions that

resemble assumptions of Section 2. More general settings are considered in Section 5. In

what follows we use sequences qn and sn introduced in Section 2.

Assumption 2. The conditional density fT |X(t|x) is supported on [0, t∗)× [0, 1] where t∗ is

either a finite number or infinity. Censoring variable C is a continuous lifetime, its density

fC is positive and continuous on [0, t∗), and C is independent of (X, T ). Predictor X is a
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continuous variable with density fX which is continuous, positive and supported on [0, 1].

Our next assumption is about the oracle.

Assumption 3. The oracle knows an anchor conditional survival function S0(t|x), (t, x) ∈

[0, t∗)× [0, 1]. Anchor S0(t|x) is continuous in (t, x), differentiable in t, and for any positive

constant a < t∗

min
x∈[0,1]

min
t∈[0,a]

S0(t|x) ≥ u1(a) > 0, max
x∈[0,1]

max
t∈[0,a]

∂S0(t|x)/∂t ≤ −u2(a) < 0. (26)

Set m0(x) :=
∫∞

0
S0(t|x)dt. The oracle knows that an underlying ST |X belongs to the follow-

ing local shrinking Sobolev class

F(α,Q,m0, n) := {ST |X(t|x) :
∫ ∞

0

ST |X(t|x)dt ∈ M(α,Q,m0, n)}, (27)

where

M(α,Q,m0, n)

:=
{

m(x) : m(x) = m0(x) + g(x), g(x) ∈ M(α,Q), |g(x)| ≤ 1/sn, x ∈ [0, 1]
}

, (28)

M(α,Q) :=
{

g(x) : g(x) =
∞
∑

j=0

θjϕj(x),
∞
∑

j=0

[1 + (πj)2α]θ2j ≤ Q <∞, x ∈ [0, 1]
}

. (29)

Let us explain these assumptions. The conditional survival function S0(t|x) anchors

all possible underlying survival functions whose regression functions satisfy the additive

perturbation (28). Because a conditional survival function must be bona fide (nonnegative

and nonincreasing in t), restriction (26) on the anchor is introduced. Also note that the

second inequality in (26) implies that the anchor conditional density f
T |X
0 (t|x) is positive

on [0, 1] × [0, a]. Let us note that a may depend on n. Line (29) defines a global Sobolev

class of α-fold differentiable functions traditionally studied in the classical nonparametric
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regression theory devoted to the model T = m(X) + σ(x)ξ where ξ is a standard normal

variable (error) independent of X, see Hoffmann and Lepski (2002). Then it is known that,

based on a direct sample of size n from (X, T ), the regression function can be estimated with

the classical rate n−2α/(2α+1) of the MISE convergence.

Let us present a lower bound for MISE of the oracle who uses only censored observations.

Theorem 3. Consider a nonparametric regression problem of estimating m(x) = E{T |X =

x} by the oracle who knows the nuisance functions fX , fC and the function class F(α,Q,m0, n).

The oracle uses only censored observations from a sample of size n from (X, V,∆). Suppose

that Assumptions 2-3 hold and

Dc :=

∫ 1

0

∫∞

0
ST |X(t|x)

fC(t)
dt

fX(x)
dx <∞. (30)

Then

inf
m̃∗

sup
ST |X∈F(α,Q,m0,n)

[n/Dc]
2α/(2α+1)

EST |X{
∫ 1

0

(m̃∗(x)−m(x))2dx} ≥ P (1 + on(1)). (31)

Here the infimum is taken over all possible oracle-estimators and P is equal to the right side

of (6). Further, if the anchor m0 ∈ M(α+ β,Q′), β > 0, then the lower bound is attainable

by an oracle-estimator that does not use the anchor.

Several comments are due. First, n−2α/(2α+1) is the optimal rate of regression estimation

for the case of a directly observed sample from (X, T ), and Theorem 3 asserts that using

censored observations yields the same rate. Accordingly, for the regression problem censored

observations are no longer ill-posed and the idea of aggregation is fertile. Second, for di-

rect observations and a classical regression Y = m(x) + σ(x)ξ with standard Normal ξ we

would see in the lower bound (31) the functional D :=
∫ 1

0
σ2(x)[fX(x)]−1dx in place of Dc.

This allows us to conclude that using only censored observations is similar to the classical
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regression with normal regression errors and the scale function

σ(x) =
[

∫ ∞

0

ST |X(t|x)
fC(t)

dt
]1/2

. (32)

This is an interesting outcome of the theory which sheds a new light on regression with right-

censored responses. Third, the integral (30) can be finite even if T is supported on [0,∞), in

this case the conditional survival ST |X(t|x) should decrease in t a “bit” faster than fC(t), for

instance if for large t we have ST |X(t|x)/fC(t) ≤ Bt−1−ν , ν > 0. The corresponding example

will be considered shortly in Figure 3.

Let us present a series oracle-estimator (compare with the estimators in Section 2) which

is based on censored observations and attains the lower bound (31). The proof of this

assertion can be found in the next section. Set

m̂∗(x) :=
Jn
∑

j=0

θ̂∗cjI((θ̂
∗
cj)

2 > 2Dc ln(n)n
−1)ϕj(x) +

J ′
cn

∑

j=Jn+1

(1− (j/J ′
cn)

α)θ̂∗cjϕj(x), (33)

where Jn is the same as in Section 2, J ′
cn is equal to the right side of (11) with du being

replaced by Dc, and

θ̂∗cj := n−1

n
∑

l=1

(1−∆l)ϕj(Xl)

fX(Xl)fC(Vl)
. (34)

It will be also shown in the next section that θ̂cj is unbiased estimate of Fourier coefficient

θj :=
∫ 1

0
m(x)ϕj(x)dx and

E{(θ̂∗cj − θj)
2} = n−1Dc(1 + oj(1)). (35)

Then, following Section 2, we can use the data-driven E-estimator for small samples and the

blockwise-shrinkage estimator for sharp-minimax estimation. Further, in place of unknown

densities fX and fC we can use the E-estimates presented in Section 2.

Nonparametric regression based on uncensored observations is discussed in Efromovich
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example. The caption explains the underlying censored regression. The top diagram shows a

scattergram with right-censored responses. Here we see a sample of size n from (X, V,∆) :=

(X,min(T,C), I(T ≤ C)), and the problem is to estimate the nonparametric regression

m(x) := E{T |X = x}. Note that about a third of observations are censored. It is of

interest to compare the scattergram of right-censored data with the underlying (hidden)

scattergram from (X, T ) shown in the middle diagram. The underlying scattergram exhibits

a complicated heteroscedastic regression. The regression function, shown by the solid line,

has the shape of Bimodal density studied in Figure 1. Accordingly, we know that the

regression is a high-frequency function, and recall that censored observations could not help

to estimate the Bimodal density. In the bottom diagram of Figure 2 the solid and short-

dashed lines are the same as in the middle diagram, that is we see the underlying regression

and its estimate based on the hidden data. The hidden-data estimate serves as a benchmark.

The estimate is relatively good and indicates a “fair” sample from (X, T ). The dotted line

is the uncensored-data estimate, the dot-dashed line is the censored-data estimate, and the

long-dashed line shows the aggregated estimate. These three estimates are data-driven, and

let us look at them more closely. They correctly show the bimodal shape but the magnitude

of the right mode is small. This could be predicted from analysis of the two scattergrams

because all realizations of T larger than 6 are censored. As about another mode, it is shifted

to the left and the reason for this is clear from the scattergram. Surprisingly, the estimate

based on censored observations, despite their relatively small number, is better than the

estimate based on uncensored observations. Also, note that while for density estimation

the high-frequency nature of the Bimodal prevented its fair estimation based on censored

observations, there is no such issue for the regression. Aggregated estimate (the long-dashed

line) is the best and it is dramatically better than the uncensored-data estimate. The

visual analysis is supported by empirical ISEs provided in the caption. Now let us present

results of a numerical study based on 5000 repeated simulations of Figure 3. The mean

rate of censoring is 36%, that is in Figure 3 we see a bit less than the mean number of
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censored observations. The average ISEs are 0.14, 0.36, 0.27 and 0.25 for the hidden-data,

uncensored-data, censored-data, and aggregated estimates, respectively. We may conclude

that the shown in Figure 3 estimates are typical in terms of their ISEs, and that the idea

of aggregating uncensored and censored observations in nonparametric regression is feasible

even for high-frequency regression functions.

3.4 Analysis of Real Data. We are considering in turn two practical examples with rela-

tively small sample sizes and high rates of censoring. The first example is the environmental

study by BIFAR, described below, and the second is continuation of the lung cancer example

of subsection 2.4.

3.4.1 Environmental Example. Wastewater treatment facilities are designed to speed up

the natural process of purifying water. With billions of people and even more wastewater,

the natural process is overloaded. Without wastewater treatment, the amount of wastewater

would cause environmental devastation by discharging into the environment. Moreover,

wastewater treatment plays critical role in climate change mitigation by reducing greenhouse

gas emission, see Davis (2020).

Wastewater centrifuge is a part of industrial wastewater treatment plant, see Foster

(2003) and Davis (2020). Centrifugal thickening and dewatering of sludge is a high speed

process that uses the force from rapid rotation of a cylindrical bowl to separate wastewater

solids from liquid. The sludge accumulates on the bowl periphery, and the internal conveyer

scrapes towards the sludge discharge ports to produce a non-liquid material referred to as

the cake. Because of the abrasive nature of many sludges, especially some mining, industrial

and sewage sludges, hard-facing materials are applied to the leading edges of the conveyer

blades. The wearing surfaces are replaceable but this can be done only by the manufacturer

due to necessity to balance the conveyer. Accordingly, it is important to know lifetime of

the conveyer blade.

Another important issue, related to the lifetime of the conveyer blade, is the level of

grit in the treated waste. Grit is the heavy inorganic solids that could cause excessive
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lifetime C of bearings right censors T . In the BIFAR experiment only 16 observations of T

are uncensored, that is N =
∑34

l=1 ∆l = 16. These n and N are very small for nonparametric

estimation. To help with the estimation, BIFAR provided data about directly observed

nE = 54 lifetimes of bearings. These observations were used to construct E-estimate of fC .

The final remark is about used predictor. It is difficult to control the level of grit in the

waste supplied to the centrifuge, but plain to define cost of a preliminary grit separation.

Accordingly, BIFAR provided cost X of grit separation and recommended it as the predictor.

The available data and corresponding estimates are shown in Figure 4 and its caption

explains the diagrams. Uncensored observations are shown by circles in the left-top diagram,

censored observations are shown by crosses in the right-top diagram, and these observations

together are shown in the left-bottom diagram. The above-explained extra observations of C

are shown by triangles in the right-bottom diagram, and the estimated density fC is shown

by the solid line. Note that the support of C in the extra sample is clearly larger than

[0, V(n)], and hence SC(V(n)) > 0. This yields validity of using the developed estimators.

The uncensored-data regression estimate (the solid line in the left-top diagram) looks

reasonable for the shown scattegram, but please keep in mind that the observations are biased

because fV |∆(t|1) = fT (t)SC(t)
P(∆=1)

. Accordingly, visualization should be used with vigilance. The

right top diagram shows us 18 censored observations, that is the lifetimes of bearings. Note

that the censored-data regression estimate (the solid line) is not “supported” by the data

visualization, and we already know that for censored data this is not a defining factor in

judging the estimate.

The left bottom diagram shows us the total right-censored BIFAR data and the aggre-

gated regression estimate (the solid line). Let us stress that here all available observations

are used to construct the estimate.

Table 2 sheds extra light on the BIFAR data and the three regression estimates. Es-

timates of Fourier coefficient θ0 =
∫ 1

0
m(x)dx are presented in the second column. The

estimates are very close, and note how aggregation of the uncensored and censored obser-
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Table 2: Estimated Fourier coefficients and corresponding standard deviations for the three
regression estimates shown in Figure 4. Each entry is written as A/B where A is the estimate
and B is its standard deviation.

Estimand θ0 θ1 θ2 θ3 θ4
Uncensored-data 0.56/0.16 -0.15/0.07 -0.01/0.05 0.04/0.05 -0.05/0.05
Censored-data 0.58/0.16 -0.27/0.13 -0.17/0.21 0.16/0.14 0.18/0.21
Aggregated 0.57/0.11 -0.18/0.06 -0.02/0.05 0.06/0.05 0.05/0.05

vations decreases the standard deviation. The latter is not a surprise due to the high rate

of censoring. Estimates of Fourier coefficient θ1 =
∫ 1

0
m(x)21/2 cos(πjx)dx are presented in

the third column. This parameter defines “slope” of the regression. Note the difference in

conclusions of the uncensored-data and censored-data regression estimators about θ1, and

we can also see this in the slopes of the corresponding regressions shown in Figure 4. The

aggregated Fourier estimate is more close to the uncensored-data estimate of θ1 than to

the censored-data one, and this is because the standard deviation of the uncensored-data

Fourier estimate is almost twice smaller. All other Fourier estimates are insignificant and

hard-thresholded by the regression E-estimators. Accordingly, all three estimates are of the

form m̂(x) = θ̂0 + θ̂1ϕ1(x).

3.4.2 Lung Cancer Example. Here we look at the regression for the lung cancer study for

which we already estimated densities of survival and censoring lifetimes in Section 2. Recall

that in the JASA paper Ying, Jung and Wei (1995) the regression data is provided with

predictor X being the age of a participant, and it is explained that the censoring lifetime C

does not depend on the predictor.

The top diagram in Figure 5 shows the scattergram of the right-censored data. Note that

the lifetimes are relatively small for the five youngest and four oldest participants, while the

largest lifetimes are indicated by the censored lifetimes for the middle age participants. This

phenomenon is reflected by the regression estimates. Further, as it could be expected from

the scattergram, the censored-data estimate (the dashed line) is the most pronounced, but

due to the smaller number of censured lifetimes (the crosses) its effect on the aggregated
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as functions in t. As we will see shortly, Fisher informations are functionals of fC(t)/ST (t).

This triggers the necessity to divide the studied interval [0, 1] into a sequence of subintervals

with decreasing length as n → ∞. This step allows us to deal with almost constant Fisher

information for each subinterval. Correspondingly, for each subinterval its own Sobolev class

of parametric densities is proposed. Then the main issue is how to spread the power Q of the

global Sobolev class over the subintervals, and this is done inversely proportional to the local

Fisher informations. Several other comments are also due. The density must be from the

class Fn, and to achieve that we sew local functions at boundaries of the subintervals using

so-called flattop kernels, the latter is a standard technique in harmonic analysis. Another

issue is the right boundary where ST (t) may be too close to zero. To deal with this issue

we bound from below the MISE considered over interval [0, 1] by the MISE considered over

a subinterval [0, a] with some fixed a ∈ (0, 1). To implement this idea, we divide the unit

interval into sn subintervals and then consider only subintervals within [0, a]. Finally, to

highlight steps that shed light on ill-posedness and to make the proof shorter, whenever

possible we are using technical results of Efromovich (2001) obtained in the proof of lower

bound (4).

Now we begin the outlined steps of the proof of lower bound (5). Set s := sn :=

3 + dln(ln(n + 3))e, where dxe is the smallest integer larger or equal to x. Recall that f0

is the anchor density of the considered local Sobolev class of underlying densities, S0(t) :=
∫ 1

t
f0(u)du is the anchor survival function, B denotes a generic positive constant, a ∈ (0, 1)

is a constant. Let φ(x) = φ(n, x) denote a sequence of flattop kernels such that for a

given n: the kernel is zero beyond (0, 1), α-fold continuously differentiable on (−∞,∞),

0 ≤ φ(x) ≤ 1, φ(x) = 1 for 2(ln(n))−2 ≤ x ≤ 1 − 2(ln(n))−2, and |φ(m)| ≤ B(ln(n))2m,

see examples of the kernel in Efromovich (2016). We divide the unit interval [0, 1] into s

equal subintervals and numerate them using index k = 0, 1, . . . , s − 1. On each subinterval

we introduce the sine basis ψskj(t) := s1/2ψj(st− k), j = 1, 2, . . ., ψj(t) := 21/2 sin(πjt) and

the corresponding flattop kernel φsk(t) := φ(st − k). Also set Qsk = (Q − 1/s)(I−1
s Isk)

−1,
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Isk = fC(k/s)/S0(k/s), I−1
s =

∑bsac
k=0(1/Isk) where bxc is the largest integer not exceeding x.

Note that, as was explained in the heuristic, only subintervals of [0, a] are considered. Also

set

Jsk := d[(α + 3)(2α + 3)α−1(sπ)−2α−2QskIskn]
1/(2α+3)e.

We begin with replacing the studied local Sobolev class by a sequence in n of parametric

classes of densities that are subclasses of the local Sobolev class. Set

Hs =
{

f : S(t) =

∫ 1

t

f(v)dv, S(t) = S0(t) +

basc
∑

k=0

gsk(t)φsk(t),

gsk(t) =

Jsk
∑

j=bJsk/ ln(n)c

(πjs)−1νskjψskj(t), |dgsk(t)/dt|2 ≤ s3 ln(n)Jskn
−1,

Jsk
∑

j=bJsk/ ln(n)c

(πj)2αν2skj ≤ s−2αQsk, f ≥ 0, t ∈ [0, 1]
}

.

Let us comment on the class Hs. The flattop kernels are used to smoothly “sew” the additive

permutations gsk at the boundaries, and also note that the permutations are zero (vanish) at

the boundary points. If we “ignore” the flattop kernels and differentiate a survival function

fromHs, then we get an additive permutation studied in Efromovich (2001) and matching the

underlying local Sobolev class of densities. The reason why we are dealing with the specific

class of survival functions is because the likelihood of censored observations is defined by the

survival function and not the density, recall (1), and accordingly it is convenient to define

the class Hs via survival functions. Then following Efromovich (2001) we get Hs ⊂ Fn

for all sufficiently large n, and accordingly in (5) we can replace the supremum over Fn by

supremum over Hs. Our final remark is that Hs is a class of densities created by additive

perturbations of the anchor density f0 on each of the first basc+1 subintervals of [0, 1]. Note
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that the additive perturbations are independent of each other. Thus we get the inequality,

sup
f∈Fn

Ef{
∫ 1

0

(f̃ ∗(t)− f(t))2dt} ≥ sup
f∈Hs

basc
∑

k=0

Ef{
∫ (k+1)/s

k/s

(f̃ ∗(t)− f(t))2dt}. (36)

Now we can use the classical approach of bounding from below the studied minimax risk

by a Bayesian risk using independent zero mean Normal priors for parameters νskj. Namely,

for νskj the variance of normal prior is set to

τ 2skj = (πjs)2n−1(1− 3q−1
∗ )I−1

sk max(q−1
∗ ,min(q∗, [(Jsk/j)

α − 1])),

where q∗ > 3 is a constant that may be as large as desired. Next we need to make several

straightforward calculations. We begin with calculating Fisher information for parameter

νskj and censored pair ((1 − ∆)C,∆), recall that we are verifying the lower bound (5) for

the oracle who uses only censored observations. This is the step that will shed light on

ill-posedness of censored observations. The corresponding mixed density is

f (1−∆)C,∆(t, δ) = [fC(t)ST (t)]1−δ[P(∆ = 1)]δ

= [fC(t)ST (t)]1−δ[1−
∫ 1

0

fC(v)ST (v)dv]δ. (37)

Here the first factor corresponds to density of censored pair (V,∆) with ∆ = 0 while the

second factor is the corresponding value of the probability mass function of the Bernoulli ran-

dom variable ∆, as we will see shortly the second factor yields a negligibly small component

of the Fisher information. The parametric Fisher information is

Iskj := E{[∂ ln([fC(C)S(C)]1−∆[1−
∫ 1

0

fC(u)S(u)du]∆)/∂νskj]
2}

= E

{

(1−∆)
[∂S(C)/∂νskj]

2

[S(C)]2

}

+ E

{

∆
[
∫ 1

0
fC(u)(∂S(u)/∂νskj)du]

2

[P(∆ = 1)]2

}
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= (πjs)−2
[

Ef0

{

(1−∆)
[ψskj(C)φsk(C)]

2

[S(C)]2

}

+ E

{

∆
[
∫ 1

0
fC(u)ψskj(u)φsk(u)du]

2

[P(∆ = 1)]2

}]

= (πjs)−2
[

∫ 1

0

[fC(u)/S0(u)][ψskj(u)φsk(u)]
2du

+

∫ 1

0

fC(u)ψskj(u)φsk(u)du/P(∆ = 1)
]

= (πjs)−2[fC(k/s)/S0(k/s)](1 + on(1))

= (πjs)−2Isk(1 + on(1)). (38)

In the next to last line we used definition of ψskj, which is element of the sine basis on the kth

subinterval, and that φsk is the flattop kernel on that subinterval, as well as the assumption

about continuity and smoothness of fC and S0. Formula (38) sheds light on the ill-posedness

because we see that the Fisher information decreases as the frequency j increases. This is

what creates the ill-posedness in frequency domain for censored observations.

Now we make several more calculations. First we get via approximation of a sum by a

corresponding integral,

R(J, n, d) := n−1d

J
∑

j=0

(πjs)2[1− (j/J)α] = n−1J3d(πs)2
α

3(α + 3)
(1 + oJ(1)). (39)

Second, using the same calculation technique, we find that solution with respect to J of the

equation dn−1
∑J

j=1(πjs)
2α+2[(J/j)α − 1] = Q∗ is

J(n, s, d,Q∗) =
[nQ∗(α + 3)(2α + 3)

d(πs)2α+2α

]1/(2α+3)

(1 + on(1)). (40)

Using (36), the above-defined Bayesian approach, (38)–(40), and following steps of the

32



proof in Efromovich (2001) we get

sup
f∈Fn

Ef{
∫ 1

0

(f̃ ∗(t)− f(t))2dt} ≥
basc
∑

k=1

Ak + on(1)n
−2α/(2α+3), (41)

where

Ak ≥ R(J(n, s, I−1
sk , Qsk), n, I

−1
sk )(1 + on(1))

= n−1[J(n, s, I−1
sk , Qsk)]

3I−1
sk (πs)

2α[3(α + 3)]−1(1 + on(1))

= Pcn
−2α/(2α+3)[s2α+2I−1

s ]−3/(2α+3)s2I−1
sk (1 + on(1))

= Pcn
−2α/(2α+3)[s−1I−1

s ]−3/(2α+3)s−1I−1
sk (1 + on(1)).

Now note that s−1I−1
s = s−1

∑basc
k=0 I

−1
sk =

∫ a

0
[S0(v)/f

C(v)]dv(1 + on(1)). We conclude that

basc
∑

k=0

Ak ≥ Pc[n/

∫ a

0

[S0(v)/f
C(v)]dv]−2α/(2α+3)(1 + on(1)).

Now recall that dc =
∫ 1

0
[S0(v)/f

C(v)]dv. Because a may be chosen as close to 1 as desired,

this finishes the proof of lower bound (5). Sharpness of the lower bounds will follow from

the verified below Theorem 2. Theorem 1 is proved.

Proof of Theorem 2. We begin with the following assertion that evaluates MISE of the

low-frequency component of the density estimate. Suppose that E{(κ̃j − κj)
2} ≤ B∗n

−1.

Then we can write that

E{(κ̃jI(κ̃2j > 2d ln(n)n−1)− κj)
2} ≤ 2[E{(κ̃j − κj)

2}+ E{κ2jI(κ̃2j ≤ 2d ln(n)n−1)}]

≤ 2[B∗n
−1 + 4E{[κ̃2j + (κ̃j − κj)

2]I(κ̃2j ≤ 2d ln(n)n−1)} = on(1) ln(n)snn
−1.

Accordingly, the MISE of the low-frequency component of the estimate is on(1)n
−2α/(2α+1),

and we need only to study MISE of the high-frequency component. Note that this is an
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interesting result because the low-frequency component inspires the E-estimator for small

samples while the high-frequency component yields asymptotic efficiency (sharp constant

and optimal rate). Now let us return to the proof.

The case of using uncensored observations is considered in Efromovich (2001). The new

here is the case of censored observations and the aggregation. We begin with analysis of the

Fourier estimate θ̃∗cj defined in (12). Recall that {ψj(x)} and {ϕj(x)} are the sine and cosine

bases on [0, 1]. Using iid of censored observations and (1) we can write for j ≥ 1,

E{θ̃∗cj} = 21/2 − E{n−1(πj)−1

n
∑

l=1

(1−∆l)
ψj(Vl)

fC(Vl)
}

= 21/2 − (πj)−1
E{(1−∆)

ψj(V )

fC(V )
}

= 21/2 − (πj)−1

∫ ∞

0

ST (t)ψj(t)dt.

We continue using ϕj(0) = 21/2 , integration by parts, and the assumed support [0, 1] of T ,

E{θ̃∗cj} = 21/2 − (πj)−1[−ST (t)(πj)ϕj(t)|1t=0 − (πj)

∫ 1

0

fT (t)ϕj(t)dt]

= 21/2 − [21/2 −
∫ 1

0

fT (t)ϕj(t)dt] = θj.

This proves that the estimate is unbiased. Next, again using (1) we write,

n(πj)−2
E{(θ̃∗cj − θj)

2} = E{
(1−∆)ψ2

j (V

[fC(V )]2
} =

∫ 1

0

ST (t)ψ2
j (t)

fC(t)
dt = dc(1 + oj(1)).

This verifies (16). To verify (17)-(18) we note that if random variables Z and Y have the

same mean and variances σ2
Z and σ2

Y , then the aggregation λZ + (1− λ)Y has the minimal

variance when λ = σ2
Y /[σ

2
Z + σ2

Y ]. Now we verify that the density estimate (13) attains

the lower bound (5). Recall that B denotes generic positive constants. Using the Parseval
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identity and the above-verified properties of θ̃cj we get,

E{
∫ 1

0

(f̃ ∗
c (t)− f(t))2dt}

=
Jn
∑

j=1

E{θ∗cj − θj)
2}+

J∗
cn

∑

j=Jn+1

E{[(1− (j/J∗
cn)

α)θ̃j − θj]
2}+

∑

j>J∗
cn

θ2j

=

J∗
cn

∑

j=1

E{(θ̃cj − θj)
2}

+E{
J∗
cn

∑

j=Jn+1

[(1− (j/J∗
cn)

α)(θ̃∗cj − θj) + (j/J∗
cn)

αθj]
2}+

∑

j>J∗
cn

θ2j

≤ Bn−1J3
n + n−1

J∗
cn

∑

j=1

(πj)2(1− (j/J∗
cn)

α)2dc(1 + oj(1)) +
∑

j>Jn

(j/J∗
cn)

2αθ2j . (42)

For the considered functional class of densities we have

∑

j>Jn

(j/J∗
cn)

2αθ2j ≤ (πJ∗
cn)

−2αQ(1 + on(1))

due to the assumed smoothness of the anchor. Using this relation as well as (40) with s = 1

and Q∗ = Q, we get

dcn
−1

J∗
cn

∑

j=Jn+1

(πj)2α+2[(J∗
cn/j)

α − 1] = Q(1 + on(1)),

and then can write,
∑

j>Jn

(j/J∗
cn)

2αθ2j

≤ (πJ∗
cn)

−2αdcn
−1

J∗
cn

∑

j=Jn+1

(πj)2α+2[(J∗
cn/j)

α − 1](1 + on(1))
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= n−1dc

J∗
cn

∑

j=Jn+1

(πj)2[(j/J∗
cn))

α − (j/J∗
cn)

−2α](1 + on(1)).

Using this relation in (42), together with (39), (7) and (14), we conclude that

E{
∫ 1

0

(f̃ ∗
c (t)− f(t))2dt}

≤ Bn−1J3
n + n−1dc

J∗
cn

∑

j=1

(πj)2[1− (j/J∗
cn)

α]

≤ n−1dc[J
∗
cn]

3π2 α

3(α + 3)
(1 + on(1))

= (n/d)−2α/(2α+3)Pc(1 + on(1)).

Sharp minimax property of f̃ ∗
c is established. Theorem 2 is proved.

Proof of Lemma 1. Let us look at the estimate (22) of the survival function SV (t) :=

E{I(V ≥ t)} of the continuos and always observed random variable V ,

ŜV (t) := n−1

n
∑

l=1

I(Vl ≥ t).

This is the classical sample mean estimate based on the sample of n Bernoulli random

variables I(Vl ≥ t), l = 1, 2, . . . , n, and it is assumed that we are considering this estimate

for t ∈ [0, a] and SV (a) > 0. Then the relations (23)-(25) of the verified Lemma 1, where

(ŜV , SV ) are used in place of (ŜC , SC), hold according to classical properties of a sum of

Bernoulli random variables, see Efromovich (2018, s.1.3). Next we note that

SC(t) = e−
∫ t

0
[fC(v)/SC(v)]dv = e−

∫ t

0
fV,∆(v,0)/SV (v)]dv = e−E{(1−∆)I(V ∈[0,t])/SV (V )}.

Now we can note that (21) is the plug-in sample mean estimate, and the assertion of Lemma

1 follows from the Taylor formula and a straightforward calculation. Lemma 1 is verified.
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Proof of Theorem 3. The proof follows along lines of the proof of Theorem 1 and,

whenever possible, it uses the same notations. The main difference is in the necessity to use

more complicated parametric classes because those used in the proof of Theorem 1 are too

“simple” and yield a lower bound smaller than the verified (31). Nonetheless, to simplify the

presentation, we first introduce a parametric class that is similar to Hs, used in the proof of

Theorem 1, and then it will be explained how to modify it for more “complicated”, or we

can say less favorable, estimation. Introduce a class of additive perturbations of the anchor

regression,

Ms := {m(x) : m(x) := m0(x) +
s−2
∑

k=1

gk(x)I(1/s ≤ x ≤ 1− 1/s), gk(x) ∈ Msk},

where classes Msk will be defined shortly. In what follows, similarly to the proof of Theorem

1, we are dividing the interval [0, 1] into s subintervals, and then use the additive perturbation

only at the inner intervals. Then we are following steps of the proof of Theorem 1 and use

the same flattop kernels to smoothly sew additive perturbations on the subintervals of [0, 1].

Namely, for 1 ≤ k ≤ s− 2 we introduce ϕskj(x) :=
√
sϕj(sx− k),

g[k](x) :=

J(k)
∑

j=J ′(k)

νskjϕskj(x),

g(k)(x) := g[k](x)φsk(x),

J(k) := d[n(2α + 1)(α + 1)s−2αQsk(απ
2α)−1]1/(2α+1)e,

J ′(k) := dJ(k)/ ln(n)e, Qsk := (Q− 1/s)(I−1
s Isk)

−1,

I−1
sk :=

∫ t∗

0

S0(t|k/s)
fX(k/s)fC(t)

dt,

and I−1
s :=

∑s−2
k=1(1/Isk).

37



Using these sequences we define classes Msk used in the definition of Ms,

Msk :=
{

g : g(x) = g(k)(x)I(k/s ≤ x ≤ (k + 1)/s),

J(k)
∑

j=J ′(k)

(πj)2αν2skj ≤ s−2αQsk, |g[k](x)|2 ≤ s3 ln(n)J(k)n−1
}

.

Note that a regression function from the class Msk can be written as

m(x) = m0(x) +
s−2
∑

k=1

J(k)
∑

j=J ′(k)

νskjϕskj(x)φsk(x).

Next five steps follow along lines of the proof of Theorem 1. First, direct calculations

show that the class F includes Ms. Second, we introduce

τskj := [n−1(1− 3q−1
∗ )I−1

sk max(q−1
∗ ,min(q∗, (J(k)/j)

α − 1))]1/2,

where q∗ > 3 is a constant that may be as large as desired. Note that νskj = τskj satisfy

the definition of classes Msk, and for k = 1, . . . , s− 2 we can introduce the following sets of

these parameters,

Θsk :=
{

~νsk :

J(k)
∑

j=J ′(k)

(πj)2αν2skj ≤ s−2αQsk, |g[k](x)|2 ≤ s3 ln(n)J(k)n−1
}

.

Here ~νsk := {νskJ ′(k), . . . , νskJ(k)}, and note that ~τsk := {τskJ ′(k), . . . , τskJ(k)} ∈ Θsk. The third

step is to use the Parseval identity, notation ν̃∗skj :=
∫ (k+1)/s

k/s
g̃∗(x)ϕskj(x)dx, the fact that

the oracle knows the anchor m0, and conclude that

sup
ST |X∈F(α,Q,m0,n)

E

{
∫ 1

0

(m̃∗(x)−m(x))2dx

}
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≥ (1− s−1)
s−2
∑

k=1

sup
~νsk∈Θsk

J(k)
∑

j=J ′(k)

E
{

(ν̃∗skj − νskj)
2
}

+ o(1)n−2α/(2α+1). (43)

The fourth step, motivated by the proof of Theorem 1, is to bound from below the supremum

of expectations on the right side of (43) by Bayesian risks via introducing independent and

zero mean normal random variables ζskj with the above-defined corresponding variances

τ 2skj. Then a direct calculation shows that for the considered regression this step yields a

smaller lower bound than the verified one. This is the earlier-mentioned place were a more

complicated parametric class and less favorable prior is needed. We do that by creating

another layer of parameters, and then by using new normal variables for defining the desired

least favorable prior. Set

S(t|x) := S0(t|x) +
s−2
∑

k=1

J(k)
∑

j=J ′(k)

s−2
∑

r=1

dln(s)e
∑

i=1

κskjriϕskj(x)φsk(x)ψsri(t).

Here ψsri(t) := (s/t∗)1/2ψi(st/t
∗ − r), ψi(t) = 21/2 sin(πit)I(t ∈ [0, 1]). Note that if |κskjri| ≤

n−1/3/s5 (and compare this bound with τskj being of order n−1/2 in the proof of Theorem

1), then |∂[S(t|x)− S0(t|x)]/∂t| = on(1). This and Assumption 3 allow us to conclude that

S(t|x) is a bona fide survival function for all large n. Further, the corresponding regression

is

m(x) = m0(x) +
s−2
∑

k=1

J(k)
∑

j=J ′(k)

[

s−2
∑

r=1

dln(s)e
∑

i=1

bsriκskjri

]

ϕskj(x)φsk(x),

where bsri :=
∫ t∗

0
ψsri(t)dt. Using the Parseval identity we get

∑∞
i=1 b

2
sri = t∗/s. The last

equality allows us to introduce independent Normal random variables ζskjri with zero mean

and variance

S0(r/s|k/s)
fX(k/s)fC(r/s)

[n−1(1− 3q−1
∗ )max(q−1

∗ ,min(q∗, (J(k)/j)
α − 1))],

39



compare with τ 2skj. Further, a direct calculation shows that

E

{(

s−2
∑

r=1

dln(s)e
∑

i=1

bsriζskjri

)2}

= τ 2skj(1 + on(1)).

The fifth step is to calculate parametric Fisher informations. Recall that the oracle uses

only uncensored observations, and this is equivalent to having a sample of size n from the

triplet (X, (1−∆)C,∆). Consider corresponding elements of the Fisher matrix,

Iskj(r1, i1, r2, i2) := E

{

2
∏

l=1

[∂ ln(fX(X)fX,(1−∆)C,∆(X, (1−∆)C,∆)/∂κskjrlil ]
}

.

Direct calculations, similar to those in the proof of Theorem 1, yield that Iskj is a block-

diagonal matrix and Iskj = diag(B1, . . . , Bs−2) where each Br is a dln(s)e × dln(s)e matrix

with diagonal elements Br(i1, i1) = [S0(r/s|k/s)/fX(k/s)fC(r/s)]−1(1 + o∗n(1)), where for

some finite constant B∗ we have |on(1)| < B∗/s uniformly over all considered parameters,

and absolute values of all other elements are bounded by B∗/s. Accordingly, the inverse

Fisher matrix I−1
skj satisfies for the vector-row ~bsk := (bsk11, . . . , bsk(s−2)dln(s)e) the relation

~bskI−1
skj
~b Tsk =

∫ t∗

0

S0(t|k/s)
fX(k/s)fC(t)

dt(1 + on(1)) = I−1
sk (1 + on(1)).

This, (40) and (41) yield that

inf sup
~νsk∈Θsk

J(k)
∑

j=J ′(k)

E{(ν̃∗skj − νskj)
2} ≥ (nIsk)

−2α/(2α+1)P (1 + on(1)), (44)

where the infimum is over all possible oracle-estimators of ~νsk considered in Theorem 3. The

rest of the proof of the lower bound (31) follows along lines of the proof of Theorem 1,

Now let us show that the lower bound is sharp and is attainable by the series estimate
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(33). For the proposed Fourier coefficient estimator (34) we can write,

E{θ̂∗cj} = E{(1−∆)ϕj(X)

fX(X)fC(V )
}

=

∫ 1

0

∫ ∞

0

fX(x)ST |X(t|x)fC(t)ϕj(x)

fX(x)fC(t)
dtdx

=

∫ 1

0

[

∫ ∞

0

ST |X(t|x)dt]ϕj(x)dx =

∫ 1

0

m(x)ϕj(x)dx = θj.

Thus the estimate is unbiased. Further,

E{(θ̂∗cj − θj)
2} = n−1[E{

(1−∆)ϕ2
j(X)

fX(X)fC(V )]2
} − θ2j ] = n−1Dc(1 + oj(1)).

This verifies (35). Using these two results, we can use the proof of Theorem 2 to verify

efficiency of (33) and sharpness of the lower bound. Theorem 3 is proved.

5. CONCLUSION

Right-censoring partitions data into uncensored and censored observations when either

the lifetime of interest T or the censoring variable C are observed. The dominance of

uncensored observations over censored ones is a familiar principle in the survival analysis

literature. The paper addresses the dominance principle both theoretically, using the oracle’s

approach, and numerically. The obtained answer is two-fold. First, for nonparametric density

estimation the dominance principle is correct, and the problem of density estimation based

on censored-data is ill-posed. This is the bad news, the good news is that the ill-posedness

is defined in frequency domain with its onset on low frequencies. Accordingly, it may be

beneficial to aggregate uncensored and censored observations for estimating low-frequency

components of the density. Second, for nonparametric regression censored-data are not ill-

posed, and then their special aggregation in frequency domain is beneficial.

It is important to stress that the proposed aggregation is different from the classical one

performed in the time domain, see a discussion in Nemirovski (2000) and Rigollet and Tsy-
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bakov (2007). The time-domain aggregation uses a set of already calculated nonparametric

estimates and then tries to create a better one with the main application being adapta-

tion to unknown smoothness and/or dimensionality. The proposed methodology suggests

to aggregate individual Fourier coefficient estimates based on complementary subsamples

of uncensored and censored observations, that is the aggregation is done in the frequency

domain.

The developed aggregation methodology is beneficial for data with high rate censoring

and/or small sample sizes.

Let us also comment on one interesting byproduct of the developed oracle’s theory. It

shows that if distribution of the censoring variable is known, then the oracle recommends

to use relatively simple efficient estimators. Accordingly, whenever possible it is desirable

to get an extra information about the censoring variable and then mimic the oracle. The

environmental example of subsection 3.4.1 illustrates this possibility.

Now let us briefly comment on topics for future research:

(1) Considered model of nonparametric regression assumes that the predictor and response

(X, T ) are independent of the censoring variable C. This is a classical model and occurs in

many applications, see Miller and Halperin (1982), Klein et al. (2014), Legrand (2021). A

more general model is when T and C are conditionally independent given predictor X. In

this case the developed methodology is still applicable with the estimates ŜC and f̂C being

replaced by ŜC|X and f̂C|X , respectively.

(2) Estimation of conditional density fT |X is theoretically challenging and practically im-

portant problem. Note that both the classical and quantile nonparametric regressions are

functionals of the conditional density.

(3) Nonparametric estimation of the hazard rate and conditional hazard rate. This topic is of

a particular interest in actuarial science, biostatistics and reliability theory, see Efromovich

(2018).

(4) Missing data is a traditional complication in survival analysis. It is known that in the
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case of a classical (no censoring) regression, cases of missing responses and predictors re-

quire different methods of estimation. It will be of interest to understand how missing and

right-censoring interact, and then develop optimal estimators.
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