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Abstract: It is known that consistent nonparametric regression for a cur-
rent status censored (CSC) response and a univariate predictor is possible.
The paper, for the first time in the literature, presents sharp minimax the-
ory of mean integrated squared error (MISE) convergence and methodology
of adaptive estimation. Rate of the MISE convergence is classical, the sharp
constant quantifies the effect of CSC, and the results hold under a mild as-
sumption on smoothness of nuisance functions not tied to smoothness of the
regression. Then the setting is extended to a multivariate predictor. Real
and simulated examples are presented, as well as an illuminating compari-
son of theoretical results known for CSC and directly observed data.
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1. Introduction

Consider the problem of estimating a regression function
m(x) := E{T|X =z}, x€]0,1] (1.1)

where T is the continuous lifetime of interest (time to an event of interest)
and X is the continuous random predictor supported on [0, 1]. It is well known|
that if m(z) is a-fold differentiable then, based on a sample of size n from
(X,T), it can be estimated with optimal rate n=2%/(22+1) of the MISE (mean
integrated squared error) convergence, see [12,68]. Further, if the density f7
of T is of interest and it is a-fold differentiable, then it can be estimated with
the same optimal rate as the regression, see [9,68]. This is the famous principle
of equivalence between the nonparametric regression and density estimation
problems discussed in [13].

In the paper we consider a setting when the lifetime T is not observed directly.
Instead, there exists a possibility to check status of the event of interest at
some random moment of time Z, called the monitoring time. Then the available
observation is the triplet of random variables (X, Z, A) where A := [(T < Z) is
the status (indicator) of the event of interest, namely the status is equal to 1 if
the event of interest already occurred at time Z and the status is zero otherwise.
A sample from (X, Z, A) is called current status censored. Let us also introduce
notation A’ := 1 — A that will be frequently used in the paper. It is known
that for density estimation the CSC dramatically slows down the rate of MISE
convergence, and exact rates will be presented shortly. If the above-mentioned
principle of equivalence between density and regression holds for CSC, then this
is a bad news for the regression. As we will see, the principle breaks down for
CSC data and we will be able to estimate regression with the classical rates and
even evaluate sharp constants for the MISE convergence. At the same time, we
will also see that nonparametric regression is the exemption to the general rule
that CSC slows down rate of convergence. This is an interesting specific of the
CSC because there is no such phenomenon for right censored observations when|
the sampling is from (min(7,C),I(T < C)) and C is the censoring lifetime.

Current status censoring (CSC), also known as “case I” interval censoring,
arises in different applications ranging from biostatistics and engineering to
econometrics. For instance, in a clinical study devoted to the time 7" from cancer
surgery to cancer reoccurrence, the follow-up examination at time Z after the
surgery determines whether or not the cancer is present. We do not observe T]
and instead observe the monitoring time Z and the indicator of cancer A =
I(T < Z). Note that A’ = 1 means that at the time of examination the patient
is cancer free. A number of covariates, including age and size of tumor, may|
be of interest. In rodent bioassay experiments, when the time from inducing a
chemical to developing a disease is the lifetime of interest T', sacrifices are often|
used to detect the disease. Then the available information is the time Z of the
sacrifice and the indicator of disease, as well as some characteristics of rodents
and the chemical. In engineering experiments, destructive tests are used to find
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whether a system has failed. Another large cluster of CSC applications is in
econometrics when the interest is in developing choice models for individual and
household behavior (Nobel Prize in Economic Sciences in 2000). The following
example sheds light on the binary choice model. The interest is in price T
that an individual is ready to pay for an item whose asking price is Z, and
the available observations are the asking price Z and the indicator of sale A’ =
I(T > Z). Note that in the econometrics the indicator A’ is called the observable
binary outcome. This and many other econometric examples can be found in|
[7,45,46,63,69].

CSC is a well-known problem in survival analysis, see a discussion in books
[5,16,20,30,33,60], reviews in [22,59], and more recent papers [3,18,38,47] where
further references may be found. Differentiable functionals were studied in [66],
and the theory pointed upon regular and irregular convergence rates for CSC
observations. As we will see shortly, similar phenomena exist for adaptive esti-
mation of nonparametric curves under MISE criterion, and this requires devel-
oping a targeted methodology for a specific problem at hand. Let us also mention
papers devoted specifically to CSC regression models. Proportional and addi-
tive hazards are popular models discussed in [19,27,39]. The accelerated failure
time model is explored in [54]. The proportional odds regression is studied in
[56]. There is a vast literature devoted to semiparametric models. These models
are explored via sieve maximum likelihood, linear and additive transformation|
models, ensemble variable selection, EM algorithm, penalized log-likelihood es-
timation in [6,36,41,43,48,49,58,70,71]. Simultaneous estimation and variable
selection with broken adaptive ridge regression are considered in [73]. Linear
regression is studied in [37,50,57]. Interesting results for hazard regression can|
be found in [4]. An estimator of regression parameters in the accelerated fail-
ure time model by inverting a Wald-type test for testing a null proportional
hazards model is proposed in [62]. Study of a semiparametric probit model and|
its applications can be found in [8,40]. Model with varying-coefficient partially]
linear proportional odds is investigated in [42]. Theory of semiparametric linear|
regression is developed in [21] where asymptotically normal estimate is pro-
posed. Nonparametric regression of the status on the predictor is explored in
[25] where a modified maximum rank correlation estimator is proposed. There
is a relatively large literature devoted to sieve maximum likelihood regression,
see a discussion and reviews in [44,75]. There is also a rich literature devoted
to estimation of linear functionals like §° g(¢)S” (t)dt and § g(¢)f” (t)dt. The
corresponding theory of efficient estimation, methodology and examples can be
found in [2,23,28,32,72,74].

It is fair to notice that for CSC main theoretical results and a majority of
literature are devoted to estimation of the distribution of 7" based on a sample
of size n from (Z, A). Let us present some known results and compare them with
results for a direct sample from T'. For the direct sampling, a v-fold differentiable
survival function ST (¢) := P(T > t) can be estimated with a parametric rate
n~! regardless of its smoothness (regardless of v/), but CSC slows down the rate
to n=2¥/(2»+1) and makes the rate depended on the smoothness, [16,18,28,60,68].

Similarly. for a di le ] | MISE ‘ fold dif.
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ferentiable density f7(t) is n=2/(2*+1) while CSC slows it down to n~2%/(2+3)
which is the optimal rate of estimating a trivariate density for direct observa-
tions, see a discussion in [20,68]. Further, CSC makes adaptation to unknown
smoothness of a curve more complex, see [21]. Another important remark is as
follows. For directly observed data, the familiar principle of equivalence between
density and regression estimation implies that rates of convergence should be
the same, see a discussion in [13], but we will see shortly that the principle
breaks down for CSC data.

To shed light on complexity of CSC regression, Figure 1 presents a real en-
vironmental example of CSC regression data (the scattergram) that will be
explained shortly. Note that we do not observe lifetimes of interest, and each
observation only tells us the status of 7" with respect to a shown monitoring time
7. Accordingly, it is difficult to visualize an underlying regression function in a
CSC scattergram, while it is feasible for a standard regression. As we will see
shortly, special methods and a corresponding software are needed for analysis
of CSC data.

ANAEROBIC CSC DATA
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Fic 1. BIFAR data for anaerobic digestion of municipal wastewater. The circles and the
triangles show pairs (X, Z) corresponding to status 1 and 0, respectively. Observations
are rescaled onto the unit square.

Now let us explain the data. Anaerobic digestion of organic municipal solid
waste is considered as a key element in sustainable municipal waste manage-
ment due to its benefits for energy, environment, and economy. This process
dramatically reduces emission of greenhouse gases, generates renewable natu-
ral gas, and produces fertilizers and soil amendments, see [1,35]. Environmental
company BIFAR has been interested in a minimal time T for required anaerobic
digestion of municipal sludges with different thickness X which is created by
ether the gravity thickening, or gravity belt thickening, or a centrifuge. Anaer-
obic digestion happens in the absence of oxygen in a sealed, oxygen-free tank
called an anaerobic digester, and the word anaerobic means “in the absence of
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oxygen”. Because an anaerobic digester is sealed, the minimal time T to desired
digestion cannot be directly observed. Instead, an anaerobic process may be ter-
minated at a monitoring time Z, and then a laboratory analysis of the treated
sludge will show its status A = I(T < Z). Results of the BIFAR’s controlled
experiment are shown in Figure 1, and regression analysis of the CSC data will
be presented shortly in Section 5. Let us stress that the example is of interest
because the CSC methodology is the only feasible method to gain access to the
anaerobic process.

It is well known that, for small samples and a nonparametric estimation,
constants of MISE convergence are as important as rates, see a discussion in [13].
This is why the paper develops a sharp minimax theory of regression estimation|
which explains how CSC affects regression estimation. Further, the presented in|
Section 2 lower bound is developed for oracles that know all nuisance parameters
(like o) and nuisance functions (like f*:Z), and then the aim is to propose an
estimator that matches the oracle under minimal assumptions on smoothness
of nuisance functions.

Now let us explain several related problems explored in the paper. Introduce
the conditional survival function S71X(t|z) := P(T > t|X = ). Then the
regression (1.1) can be written as

m(zx) = J:o STIX (t|z)dt, = e [0,1]. (1.2)

Accordingly, regression is the linear functional of the conditional survival. Cen-
soring always causes issues with estimating right tail of the distribution, and to
remedy the issue it has been proposed to consider restricted linear functionals,
like the restricted mean survival time (RMST) {; ST (t)dt and the conditional
restricted mean survival time (CRMST)

pr () = LT ST (t|z)dt, = €[0,1], 0 <r < 0. (1.3)

To simplify the terminology, in what follows we are referring to the CRMST p,-
and the constant r as the restricted regression and the restriction, respectively.
Estimation of more general restricted linear functionals will be also explored.
The first use of the RMST for analysis of tumourless life was in [29], and the
enlightening discussion of the approach can be found in [61]. In [32] estimation
of RMST for right censored data with available covariates is investigated, and
this paper pioneered the methodology of restricted regression. In particular, that
paper presents an interesting discussion of advantages of the restricted regression|
with respect to other regression models and the Cox’s model in particular. For
now there is a relatively large literature devoted to these functionals, and reviews
can be found in [23,28,72,74].

If T and Z are conditionally independent given X, and this is a standard
assumption, then the following formula holds,

PA =1|X = 2,7 = 2z) = ST (z]z) (1.4)
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This conditional probability, and equivalently the conditional survival function,
is of a special interest in all the above-presented practical examples. For instance,
in the cancer example this is the conditional likelihood to be free of cancer at
time z after the surgery. The probability (1.4) is also of the central interest for
the econometric binary choice model [7,26,45,46]. Accordingly, we will discuss
nonparametric estimation of ST1X .

Another typical complication in CSC is the missingness. In the paper we
are considering a particular missing CSC (MSCS) when the sample is from
(A'X,A’Z, A). Accordingly, only observations with A’ = 1 are available. For
instance, in the above-mentioned econometrics example the MCSC means that
only information about completed sales is available. Discussion and examples of
the MCSC can be found in [16,18].

The context of the paper is as follows. Section 2 is devoted to sharp minimax
lower bounds for the oracle who knows both CSC data and all nuisance param-
eters and functions. Then the aim is to propose a data-driven estimator that
matches performance of the oracle. Section 3 presents oracle-estimators, as well
as estimators for controlled CSC when the design density of (X, Z) is known.
The latter is relaxed in Section 4. Analysis of real and simulated examples can,
be found in Section 5. Multivariate CSC regression, as well as estimation of a
conditional survival function given a vector of predictors, are discussed in Sec-
tion 6. Linear functionals are considered in Section 7. Conclusions and topics
for future research are in Section 8. In particular, it contains an illuminating
comparison between estimation of distributions and regressions for direct and
CSC data. Proofs are placed in the Appendix.

Finally, let us present several notations used in the paper. Recall that A’ :=
1 — A. P(-) denotes the probability, fX denotes the density of X, fX*# denotes
the joint density of (X,Z), STIX(t|z) := P(T > t|X = z) is the conditional
survival function of T' given X, STIXZ(T |z, 2) := P(T > t|X =z, Z = z) is the
conditional survival function of T given X and Z. E{-} is the expectation, and
we may write Egrix{-} to stress that the expectation is calculated using the
given STIX. Notations m and s, are used for the regression (1.2) and restricted
regression (1.3), respectively. The used risk is the mean integrated squared error
(MISE), for instance the MISE of a regression estimate m(x), x € [0,1] is
E{S;(ﬁ@(x) —m(x))?dz}. Further, x := (x1,...,2) denotes a vector, {pg(x) :=
1, ;(x) := 22 cos(mjz),j = 1,2,...} are elements of the cosine trigonometric
orthonormal basis on [0,1], I(-) is the indicator, and ¢, := 3 + [In(n)| where
|z| is the largest integer which is smaller or equal to x. C’s denote generic
positive finite constants and ¢’s denote specific constants, 0;(1)’s denote generic
vanishing sequences as the parameter j — o0. Finally, set R := [0,1] x [0, o)
and R, := [0,1] x [0,r] where the positive constant r is called the restriction.

2. Sharp lower bounds for the MISE of oracle-estimators

The aim of this section is to explain what can and cannot be done, based on CSC
and MCSC samples, for estimating regression (1.2) and restricted regression
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(1.3). Recall that we observe a sample from (X, Z, A) for CSC and a sample
from (A'X,A'Z,A) for MCSC, here A := I(T' < Z) and A’ := 1 — A. The
approach is to consider the oracle who knows more than the statistician, and
then develop a sharp lower minimax bound for the mean integrated squared
error (MISE) of oracle-estimators. The idea is that the statistician cannot solve
a problem better than the oracle, but may try to match performance of the
oracle.

Recall that basic notations can be found at the end of the Introduction.
We begin with assumptions. According to the review [30] .. the monitoring
time is almost always assumed independent of the lifetime of interest.” Our first
assumption relaxes that independence by assuming conditional independence.

Assumption 2.1. The predictor X is a continuous random variable supporte
on [0,1]. The monitoring time Z and the lifetime of interest T are nonnegative
continuous random variables. Given predictor X, the lifetime of interest T is
conditionally independent of the monitoring time Z, that is STIXZ (t|z, 2) =
STIX (t|z). The pair (X, Z) may be dependent.

The next two assumptions allow us to develop oracle’s lower bounds. To
explain the assumptions, we begin with several preliminary remarks. First, note
that the regression and the restricted regression are linear functionals of an
underlying conditional survival function,

0 T
m(z) = f STIX (t2)dt, () = f STX(tla)dt, ze[0,1].  (21)
0 0

Second, for the oracle a minimax lower bound for estimating pu, is always smaller
than for estimating regression m because the oracle may set STIX(t|z) to be
known for ¢ > r (this assertion will be proved in the Appendix). Accordingly,
we begin with a lower bound for restricted regression. Third, it is natural to
obtain a lower bound via appropriate perturbations of STI¥ (¢|z) for (z,t) € R,.
Consequently, a minimax lower bound is developed for a special class of con-
ditional survival functions. Further, as we will see shortly, a sharp minimax
constant is a functional of ST1X. This is why a local minimax approach is used
when all considered conditional survival functions converge in Lo-norm to an
anchor Sg X as n — 0. Let us stress that the anchor is not an underlying
conditional survival function and its primary role is to let the oracle know that
all underlying conditional survival functions are near the anchor known to the
oracle. Accordingly, the oracle also knows that all underlying restricted regres-
sions 4, are near the anchor o where jio(z) := §j SOTIX(t|x)dt, x € [0,1]. The
anchor myg is defined similarly as mg(z) := Sgo STIX (t|z)dt, z € [0,1].

The above-made remarks explain the following two assumptions. Recall that
vo(z) = 1, pj(x) = 22 cos(mjz), j = 1,2,... are elemenst of the cosine basis
on [0,1].

Assumption 2.2. The anchor SoTlx(t|x), (z,t) € R is known to the oracle. The
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anchor is continuous in x and differentiable in t on R,, and

i ST S ) >0, mas P00 < gy <o o)

The next assumption introduces a shrinking (toward the anchor) local Sobolev
class of underlying conditional survival functions. A discussion of Sobolev classes
can be found in [13,24].

Assumption 2.3. An underlying conditional survival function STIX belongs t
a class

Fn(ST¥ 0, Q1) o= {STX (t|) : LTST|X(t|:c)dteMn(ﬂro,a,Q,r)}, (2.3)

where

M (pro; o, Q1) 2= {ur () = pro(z) + g(),

g€ 8(.Q), lg(@)| < 1gn, v [0,1]}. (2.4)

In (2.4) pro(x) := §3 Sy ST () dt and

S(e,Q) = {g  g(x) = ), by5(a)
§=0

e}
Z1+ (7)*]62 < Q < 0, a > 1336[0,1]} (2.5)

is the global Sobolev class (ellipsoid).

Remark 2.1. Let us comment on the relationship between S”1X and the re-
stricted regression p, that sheds extra light on Assumption 2.3. For the condi-
tional survival on R, we can write using the Fourier theorem,

ST (t|x) = Z Kjips (2)r 2ot /r), (x,t) € R,
7,4=0
Here

Kji 1= J STIX () o (x)r 2 (t /) dtd
R,

are Fourier coefficients of the conditional survival. Using SS wi(t/r)dt = 0 for
1 = 1, we conclude that

0
x) = ri/? Z kjopi(z), xe[0,1].
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Accordingly, the restricted regression is proportional to the univariate Fourier
component of STIX (t|z) in x.

Remark 2.2. In what follows a class ]:n(SéF |X, a, Q,0) is formally defined by
replacing in (2.4) the restricted regression u,- and the restricted anchor regression
tro by the regression m and the anchor regression mg, respectively. This class
will be used for analysis of estimators proposed for unbounded 7.

Remark 2.3. Recall that if « is an integer, then S(«, Q) is the global Sobolevi
class of a-fold differentiable functions traditionally studied in the classical non-
parametric regression theory devoted to the model T = m(X) + o(X)£ where
¢ is independent of X standard normal variable (error), see [12,13,68]. Then it
is known that, based on a direct sample of size n from (X,T), the regression|
function can be estimated with the classical rate n=2%/(2a+1) of the MISE con-
vergence. Note that a real « is also considered in the literature, see [13]. The
global Sobolev class is of interest on its own and will be used in upper bounds.

Our final assumption is devoted to the joint density f*+Z(x, z) which is known
to the oracle and to the statistician for the case of a controlled CSC study.

Assumption 2.4. The joint density fX%(x,z) is known, continuous and posi-
tive on R,.

Now we are in a position to formulate lower bounds for oracle-estimators
using CSC observations.

Theorem 2.1 (Lower bounds for CSC). (1) Suppose that Assumptions 2.1
2.4 hold and a CSC sample of size n from (X, Z,A) is given. Then

lpf sup [n/d(STlX, fX’Z, T)]Za/(2oc+1)
A srixer, (ST1X 0,Q.r)
1
x Esﬂx{f (i (z) — Mr(w))Qdaf}} = P(a, Q)(1 + on(1)). (2.6)
0
Here the infimum is taken over all possible oracle-estimators that know data,

the function class Fn(Sg‘X, a,Q,r) and the joint design density f*%(x,z2),

P(Oé,Q) = [a/(w(a + 1)]2a/(2a+1)(2a + 1)1/(2&-‘,—1)Ql/(2a+1)7 (27)

and
| z oy [ (A= S8T () ST (¢]z)
d(STIX | fXZ ) = J;ar TR Z(01) dtdx (2.8)

is the coefficient of difficulty for CSC.
(ii) Let us additionally assume that d(ST'X, X% ) < oo and Assumption 2./
holds for any finite r. Then

inf sup {[n/d(sT\X’ fX’Z,OO)]2a/(2a+1)

m*  grixer (571X 0. 0.00)
w(So Qs
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X Esnx{L (m*(z) — m(x))Qdas}} > P, Q)(1 + 0,(1)). (2.9)

Let us make several comments about the result. First, it will be shown
in the next section that the lower bounds are sharp and attained by oracle-
estimators. Second, similarly to the above-mentioned classical case of a direct
sample from (X,T) and the regression model T' = m(X) + o(X)¢, rate of the
MISE convergence is the classical n=2%/(@+1) In other words, CSC regression
avoids the curse of CSC distribution estimation when the rate is slower than
for direct observations. This also shows that the familiar equivalence between
density and regression estimation, known for direct observations [13], breaks
down for CSC. Third, complexity of a CSC regression model is captured by
its coefficient of difficulty (2.8). Fourth, the coefficients of difficulty shed light
on the role of restriction r which allows us to avoid improper integrals. Fifth,
let us shed an extra light on the coefficient of difficulty (2.8). Consider a well
known problem of estimating the RMST v, := SS ST (t)dt using a sample of
size n from (Z,A), see a comprehensive discussion in [28]. Under a mild as-
sumption, the nonparametric maximum likelihood estimator 7, is efficient and
n~ 2D, — v,] £ N(0,d(ST, f#,r)) where the functional d(-,-,-) is defined in
(2.8). The fact that the same functional defines asymptotic efficiency for estima-
tion of RMSR and restricted regression is not surprising because the efficiencies
are established using the same methodology of the local asymptotic normality]
and calculation of the Fisher information for CSC observations.

The oracle’s lower bound warns us that even the oracle may not be able
to propose a consistent regression estimator for unbounded lifetimes T or if
the support of Z is a subset of the support of T'. A similar warning, based on
analysis of maximum likelihood and Fisher information, is made in [21] for linear]
CSC regression. Fortunately, in survival analysis an unbounded lifetime is a rare
phenomenon, and in a majority of statistical applications a lifetime of interest
is bounded by a known value, see the literature cited in the Introduction.

Now let us consider the MCSC sampling.

Theorem 2.2 (Lower bounds for MCSC). Suppose that Assumptions 2.1
2.4 hold and a MCSC sample of size n from (A'X, N Z,A) is given. Then the
assertion of Theorem 2.1 holds with d(STIX, fX-Z ) being replaced by

di (STX, 157 1) ::j STIX(t]x)
b 9 R

Note that the MCSC sampling does not slow down the rate of MISE conver-
gence but makes the sharp constant larger. The ratio (dy /d)?*/(2*+1) defines the
effect of missing on the accuracy of estimation under the MISE criterion. Here
and in what follows we may use notations d and dy for the functionals (2.8) and
(2.10), respectively.

R Kk 2.4. Tn the followi . bounds for mini MISEs will
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be presented. Under a minimax approach, like the one in (2.6) or (2.9), the
supremum is taken over a class F of underlying distributions STI¥ and the
infimum over a class of estimators. Accordingly, in a lower bound it is desirable
to consider a smaller F and in the upper bound a larger F. In the above-
presented lower bounds we are considering sequences in n of shrinking, toward aj
specific anchor distribution, classes JF,, of distributions. To establish sharpness
of those lower bounds, we will present oracle-estimators and estimators that
attain the lower bounds for STIX e F,. It is also a tradition in nonparametric
curve estimation to analyze MISE over a class of estimands (in our setting over a
class of regressions or restricted regressions). Traditional classes of estimands are
global Sobolev classes S(«, @) defined in (2.5). Accordingly, in upper bounds we
may simultaneously consider supremums over STIX € F,, and over an estimand
(m or u,) from S(a, Q). As an example, we may write SUpgrixcx, 1 eS(a,Q)-

3. Estimation for a controlled study

A controlled study means that the joint design density f*Z is known, and
the case of an observational study, when the design density is unknown, will be
considered in the next section. We begin with heuristic of the proposed method-
ology, and then consider efficient estimation for MCSC and CSC samples in turn.
Recall that all general notations may be found at the end of the Introduction.

3.1. Heuristic of oracle-estimators

The aim of this subsection is threefold. First, to explain the underlying idea of]
used series estimation. Second, to present oracle-estimators that attain the lower
bounds of Section 2. This will prove sharpness of the minimax lower bounds.
Third, to explain the methodology of adaptation to unknown smoothness of]
regression.

We begin with a simple technical result. Recall that C's are generic positive
constants.

Lemma 3.1. Suppose that function g belongs to the global Sobolev class S(a, Q)
defined in (2.5). Suppose that Fourier coefficients k; := Sé g(z)pj(x)dx of g ca
be estimated by K; satisfying

E{(%; — r;)*} <Cn™ % (3.1)

Set J* := n'/ (2ot and introduce the nonparametric oracle-estimator

¥
7 (@) = D Fps(a). (3.2)
j=0
Then .
sup E{[ (7% (x) — g(x))2dz} < On~20/(ZatD), (3.3)

Iad O
ges(a, @) J0
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This assertion and its proof are simple and insightful. Note that the oracle-
estimator is rate-optimal and depends only on the nuisance parameter a. Keep-
ing in mind that in statistical practice it is often assumed that « = 1 or o = 2,
see [13,68], we get a simple estimator. The proof is based on the Parseval iden-
tity. Write,

1

T
sup E{| (7%(2) —g(2))’da} = sup [DE{(R; — )} + D) #7]

9€8(a,Q) 0 9€8(a,Q) ;o G>J%

< C[n_lJ: + (,]:)_20‘] < Cn—Za/(2a+1)_

What was wished to show.

After this warming up, let us consider a more sophisticated assertion that
will lead us to sharp-minimax estimation for settings considered in Section 2.
Also recall Remark 2.4 about considering both local and global function classes
in upper bounds.

Lemma 3.2. (i) Suppose that a function of interest g belongs to the globa
Sobolev class S(a, Q) defined in (2.5). Suppose that Fourier coefficients kj :=

Sé g(x)p;(z)dx of g can be estimated by K; satisfying
E{%J} = Kj, E{(%J — :‘ij)2} < dn_l(l + On(l) + 0j(1>), 0<d< oo (34)

Introduce the nonparametric oracle-estimator

dn Jn
glx) = Y Rips(x) + D) (1= (/Tn)")Res(x), (3.5)
=0 i=qnt1

where J,, = qn+1+|[(n/d)Qr2*(a+1)(2a+1)/a]Y PtV |, Then the following
upper bound is valid for MISE of this oracle-estimator,

1
sup [n/d]za/(zaﬂ)E{f (G(2) — g(@))?dz} < P(a, Q)(1 + 0n(1)).  (3.6)
geS(a,Q) 0

Here P(«, Q) is defined in (2.7).

(ii) Let the function of interest be g = go + g+ where go € S(o/,Q’), & > «a,
Q' < 0, is the anchor function and g« € S(«, Q). Suppose that (3.4) holds. Then
MISE of the oracle-estimator (3.5), that does not use the anchor go, satisfies
the following upper bound,

sup [n/d*/ VB[ (30) - g(a)*de} < Pla, Q1+ 0n(D). (3.1)
g*¥eS(a,Q) 0

Note that the second part (ii) of the lemma does not follow from the first one

! ; i) 1 , | bel (0, Q). Part (i) shed
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light on global estimation and part (ii) on local estimation centered around the
anchor. Lemma 3.2 will be proved in the Appendix.

The main conclusion from Lemma 3.2 is that to construct an efficient non-
parametric oracle-estimator it is sufficient to propose Fourier estimates satisfy-
ing (3.4) with d being an appropriate coefficient of difficulty. Let us show how|
this can be done for MCSC and CSC sampling models in turn. We are con-
sidering estimation of Fourier coefficients for restricted regression p,., and then|
comment on the case of regression.

Suppose that Assumption 2.1 holds and assume that the coefficient of dif-
ficulty dy := dy(STIX, f5Z 1), defined in (2.10), is finite. Recall our notation|
pir(z) := §; STIX (t|z)dt for restricted regression. Using the Fourier theorem we
get

pra) = [ ST (o) = 35 Oy5(e), € 0.1, (3.5)

Jj=0

Recall that ¢o(z) = 1, @;j(z) = 2Y2cos(mjz), j = 1,2,... are elements of the
cosine basis on [0,1] and 6; are Fourier coefficients of y,,

6= | @)y ()i = | 1 [f; ST ()it | (x)dr. (3.9)

0

Using Assumption 2.1 we can write
FRP8 @, t,6) = [57 (@, t)[1 = ST ()] [T (¢a)] 0. (3.10)

Note that fX%2(z,t,0) = 0 if f5Z(2,t) = 0 or ST (t|z) = 0. This allows us
to continue (3.9),

(I () > 0) 7R (@, 1, 0)p,(«)
=1, X2 e

A'I(Z < 1)p;(X)
- E{ fX72(X,Z) }

(3.11)

The joint density %% is known to the oracle. Accordingly, for MCSC formula
(3.11) yields the sample mean Fourier estimator

~ LA ANT(AZ < )i (AIX)
0 :==n""' o It 3.12
b T A, Mz (3.12)
Further, for the sample mean Fourier estimator we get
E{6;} = 6;. E{(6; —6,)°} = dun™" (14 0;(1)). (3.13)

Now we can invoke Lemma 2.1 and conclude that the oracle-estimator (3.2),
using Fourier estimates (3.12), is rate optimal. Further, Lemma 3.2 implies that
the oracle-estimator (3.5), using Fourier estimates (3.12), is efficient according
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Fourier estimate for the regression m(z) = E{T|X = z} satisfying (3.13) where
the dy is replaced by dy(STIX, fX% o0).

Now we are considering the CSC sampling. So far, due to the study of MCSC,
we used only a subsample with A’ = 1 to estimate restricted regression p,., and
this is why the variance in (3.13) is larger than the coefficient of difficulty d de-
fined in (2.8). Let us explain how remedy this issue. Consider Fourier coefficients
of the conditional survival function on R,

Bri = Lz STIX (t2) r (x)r =2 p; (/) dtda. (3.14)

™

These Fourier coefficients allow us to introduce a special Fourier approximation|
of STIX with a skipped subset of jth Fourier coefficients Bji, i =0,1,..,

dn
S(j,n,t,x) = Z Z Bri or(x)r Y20;(t/r), (t,x)eR,. (3.15)
ke{0,1,gn}\(5) 1=0

Note that Sé S(j,n,t,z)pj(x)dr = 0 and S(j,n,t,z) converges to STIX (t|x) as j
and n increase. The oracle suggests a new unbiased Fourier coefficient estimator

N i [A = S, Zi, X)) (X))
IR Gl LoV o™ 20 A)Jpi(A) 3.16
g n l:Zl [X52(Xy, 7)) ( )

The oracle’s rationale is that, as it will be checked in the Proofs,

E{(6% — 0;)*} = d(ST, 57, r)n~ (1 + 0;(1)). (3.17)

Accordingly, the modified Fourier estimator 5;‘ can be used for sharp minimax
estimation of j,.. Of course, the conditional survival function S”X is unknown,
but it may be estimated with sufficient accuracy to match the oracle.

Finally, if m, € S(a, Q), then how can a series estimate adapt to unknown
nuisance parameters (o, Q) and d? Let us explain the heuristic of blockwise
shrinkage that performs the desired sharp adaptation to the nuisance parame-
ters.

We begin with the following classical result in point estimation. If éj is
unbiased estimator of parameter 6;, then it may be beneficial to look at the
shrinking estimator )\jgj, A;j € [0,1] which minimizes the mean squared error
E{(\;6; — 0;)?}. The oracle’s solution, known as the Wiener filter, is

2
¥ i

J T 92 2 17
9j+0jn

o3 :=nE{f; — 0,)*}. (3.18)

It may be tempting to plug in appropriate estimates of 0]2- and ajz and replace
)\;’-‘ by the corresponding estimate. Unfortunately, this idea is not feasible because
9]2 is estimable with the parametric rate n=!. On the other hand, we can see

from (3 5) that the smoothmg mze]ghts _ (l/ J )04 are close to each other for
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adjacent indexes j. This leads us to a simple solution when instead of estimating
individual weights 9]2 / (GJ2 + sznfl) we estimate a single optimal weight for a
block of adjacent indexes j. Namely, let B := {i + 1,...,i 4+ L} be a block of]
length L of positive integers. Then the shrinking coefficient A*, which minimizes

E{3cp(A0; — 0;)%}, is

A= —— Zfe’f ! — = 62 —. (3.19)
L= ZJEB J [L Z]EB ]]n S} +on
In (3.19)
O:=L"> 07 (3.20)

jeB

is the classical Sobolev functional which is the focal point of the blockwise
nonparametric adaptation. The theory of estimating Sobolev functionals is well
developed, and while /\;'4< may be estimated with the classical parametric rate
n~1, the Sobolev functional is estimable with the same rate but the constant
decreases as L (the length of block) increases. This is what creates the opportu-
nity for estimating A* with sufficient accuracy for matching oracle-estimators.
The corresponding theory is well developed [9,10,14,24].

The above-discussed blockwise shrinkage is the adaptation methodology used
in this paper. This is the simplest and universal methodology of adaptation that
matches performance of efficient oracle-estimators. Further, in Section 6 it will
allow us to consider the problem of dimension reduction. Of course, there is a
number of other procedures for adaptation proposed in the literature, but they
are primarily concerned with rate optimal adaptation. The interested reader can
find reviews in [11,13,24,68].

3.2. Efficient estimation of restricted regression for MCSC

In this subsection the lifetime of interest may be bounded or unbounded, and|
these two cases are considered simultaneously. Further, recall that for a bounded
lifetime a restricted regression, with the restriction r equal to or larger than that
bound, is the underlying regression. The available sample is MCSC meaning that
we have a sample of size n from (A’X, A’Z, A). The estimand is the restricted
regression () = S; STIX (t|2)dt where r is a finite restriction. Because the
restriction is finite, we can simultaneously consider bounded and unbounded
lifetimes T' given Assumption 2.4. Indeed, that assumption is not tied to the
support of T and only requires that the known (recall that in this section we
study the controlled sampling) design density fX'# is continuous and positive
on R, =[0,1] x [0,7].
Introduce the Fourier coefficient estimator for MCSC observations

NA ) Z A I A/Zl )(pj(A/Xl)

PRI A7) (3.21)
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As we will see shortly, it can be used to construct efficient restricted regression|
estimator. Our next step, according to the heuristic of subsection 3.1, is to
define a blockwise adaptive estimator. For j > ¢, introduce consecutive and
non-overlapping blocks By, k = 1,2, ... of length Ly, := |(1 + 1/1n(g,))*¥|, that
is Bl = {QN + 1,...,qn—|—L1}, B2 = {Qn+L1 —|—1,...,qn +L1 +L2}, etc. Then
for each block we calculate two statistics. The first one is the U-statistic

~ 2 2N T(A] Zy, <) (A] X0)
= ! . 22
O Lin(n—1) Z Z H fxz A X, A;iZli) (322)

I<li<lza<n jeByi=1

The second statistic is based on Fourier estimates gj defined in (3.21),

O, =Ly > 62 (3.23)

JEB

Let k,, be the smallest integer such that Zl,z’;l Ly > n'/C0tD1n(g,) where
a is the smallest assumed value of parameter «. Recall that Assumption 2.3 sets
agp = 1, but other values also may be specified. For instance, ag = 2 implies that
the restricted regression is twice differentiable, and this is another traditional
choice.

The proposed adaptive estimator is

dn

ﬁr()zﬁxfxz Z

kn
+ > min(1,0,/0}) (O > 1/[nln(k + 3)]) Y. 80z (3.24)
k=1 JEB

Note how simple the adaptive estimator is.

Theorem 3.1. Let Assumptions 2.1 and 2.4 hold, and the anchor p.o belongs
to a Sobolev class S(o/, Q') with o/ > « and Q' < 0. Consider a MCSC' sample
of size n from (A'X,AN'Z,A). Then the following upper bound holds for MISE
of the adaptive estimator (3.24),

sup [n/d*]2a/(2a+1)
STIXeF,(Sg ™ ,0,Q,r), preS(e,Q)

xE{f Fo(e) — po(@)d2}} < P@. Q)1 +0,(0).  (3.25)

We can conclude that the lower bound of Theorem 2.2 is sharp. Further, that
lower bound is also attainable for u, from the global Sobolev classes S(«, Q).
Accordingly, we get the same results as for the case of regressions based on direct
observations from (X,T) where efficient adaptive estimators are proposed for
global Sobolev classes.
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3.3. Efficient estimation of restricted regression for CSC

In this subsection the lifetime of interest may be bounded or unbounded, and
these two cases are considered simultaneously. Further, recall that if T" is bounded
and we set r to be equal to or larger than the upper bound for the support of]
T, then the restricted regression is equal to the regression.

Now let us consider a CSC sample of size n from (X, Z, A) and propose an
efficient estimator of .. Set J(j,n) := {0,1,...,¢.}\{j} if 0 < j < ¢, and
J(j,n) :={0,1,...,¢,} otherwise. Introduce the cosine basis {1/)0( ) =12
V() = (2/r)Y%cos(mjt/r),j = 1,2,...} on [0,7]. Following the heuristic of
subsection 3.1, introduce an estimate of S”1X with subtracted projection on vy,

3(j,m, 2 2) 12 3 Z m)Yi(Z1)er (X)) (2)pr (@ ), (3.26)

X.Z
1 ke T m) 120 52X, Zy)
and the Fourier coefficient estimate
- Z SGi.n, Zy, X0)1(Z1 < )i (X)) (3.27)
fX Z(Xl7 Zl)

For adaptation to unknown smoothness of u,, we again use blocks By of
length Ly, introduced below line (3.21), and the sequence k,, defined below line
(3.23). For each block we calculate two statistics. The first one is the U-statistic

~ 2
Ok = Lin(n —1)

SG.n, Zu,, Xi,))(Zy, < r)y(Xy,)
PIEY H R, 70 L (328)

1<li<la<n jeByi=

The second statistic is based on Fourier estimates §j defined in (3.27),

oL =Lty 62 (3.29)
JEB
The proposed estimator is
dn
ﬁr(x) = ﬁr(x7 fX7Z) = 9j¢]($)
§=0
kn SR N N
+ > min(1,0x/0;) (O > 1/[nIn(k + 3)]) > ;1;(x). (3.30)
k=1 JEBy

Theorem 3.2. Let Assumptions of Theorem 8.1 hold. Consider a CSC sample
of size n from (X, Z,A). Then the following upper bound holds for the MISE of
estimator (3.30),

ix sup {[TL/d(ST‘X,fX’Zvr)]za/(2a+1)
O’T\X 1— [(Q

O Sla-O)
n\~0 SCO T e s ot
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xEJ;M — i (@)de}} < P(a, Q)1 + 0,(1)). (3.31)

Theorem 3.2, together with the lower bound of Theorem 2.1, allow us to
conclude that not only the optimal rate n=2/(22+1) ig preserved, but also the
sharp constant is attainable. Further, the proposed estimator attains the same
sharp constant over the global Sobolev classes. In short, we have the same
bouquet of results for CSC as for the case of direct observations.

3.4. Estimation of regression for unbounded T

‘We begin with an oracle-estimator and then present an estimator. It will be con-
venient to use notations D := d(STX, fXZ o) and Dy := dy(STIX, f57 ).

Assumption 3.1. Conditional survival function STIX and joint density f*%
satisfy
STlX
D, .71 J T Z(5.1) dtdr < c3 < . (3.32)

Remark 3.1. Assumption 3.1 yields that D is also bounded. At the same time,
if D is bounded then D, may be unbounded if 1/f*:%(x,t) is not integrable
for small ¢ while (1 — STIX(t|z))/f*Z (z,t) is. The latter is atypical for design
densities. Let is also recall that in [28], where the functional § S7'(t)dt is the es-
timand, the integral §[(1—S7(t))ST (t)/f#(t)]dt, called the information bound,
is assumed to be finite. We may conclude that Assumption 3.1 is in line with|
known in the CSC literature.

Set J¥ = gn + 1+ [[(n/Dy)Qn*(a + 1)(2a + 1) /a] /¥ D),

7. — 1 Ajp; (AJX))
= Z fX Z(AIX, A Z)) (3.33)

and introduce the regression oracle-estimator motivated by Lemma 3.2,

T

Zéwj 3 (U= G855 (). (3.34)

Jj=qn+1

Theorem 3.3. Suppose that Assumptions 2.1 and 3.1 hold, and the ancho
mo € S(o/, Q") where o/ > « and Q' < . Then MISE of oracle-estimato
(8.34) satisfies the inequality

sup [n/D*]2a/(2a+1)
STIXeF, (ST1X a,Q,0), meS(a,Q)

<E{[ (0 () - m(@))?de}} < P(a, @)(1 + on(1). (3.35)

Jo
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Corollary 3.1. The oracle-estimator (3.34) is asymptotically efficient for MCSC.
Its MISE is also within factor (D,k/D)#il from the lower bound (2.9) for CSC.

Accordingly, the rougher the regression the smaller the factor.

Now we are in a position to propose a blockwise adaptive estimator whose
heuristic was explained in subsection 3.1. Recall that blocks By with length Ly,
as well as the sequence k,,, were introduced below line (3.21). For each block we
calculate statistics

_ 2 2 ALe(ALX)
@k o Lkn(n — 1) Z Z H fXZ A/ Xl ,A/ Zl ) (336)

1<li<la<n jeByi=1

and

J

O, =L Y 0. (3.37)

JE€Bk

The proposed adaptive regression estimator is
= S
fX Z

kn
+ ) min(1,0,/0}) (O > 1/[nln(k +3)]) > 0;0;(x (3.38)

k=1 ]EBk
Theorem 3.4. Let Assumption 2.1 hold and

J-oo ST\X(t‘m)
o L7 0)®

Then the assertion of Theorem 3.8 holds for the regression estimator (3.38).

dt < ¢4 < 0. (3.39)

Remark 3.2. Consider a lifetime of interest T supported on [0, ). For CSC
observations, the regression estimator (3.38) is within factor (D, /D)2®/(2e+1)
from the lower bound (2.6). For MCSC observations the estimator is efficient.
Further, we can conclude that the regression function can be estimated with the
classical rate n=22/(2a+1) known for the case of direct observations. Accordingly,
the nonparametric regression “breaks” the CSC curse known for distribution
estimation, and the CSC does not slow down the optimal rate known for direct
observations.

4. Estimation for an observational study

So far we have considered the case of a known design density f*>%. In this section
this assumption is relaxed. It will be shown that under a mild assumption a plug
in methodology is feasible. Because both MCSC and CSC are considered, for
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CSC we can use the available sample of size n from (X, Z) to estimate f%7.
For MCSC, when we observe a sample from (A’X,A’Z, A), this sample does
not allow us to estimate f%X'Z because the data is biased [16]. Accordingly, for
MCSC it is assumed that an extra sample of size n from (X, Z) is available.

Assumption 4.1. An underlying joint probability density f*XZ(x, z) has a con-
tinuous mized derivative 0% fXZ(z,z)/0x0z on R, and

La [[6fX’Z(33, 2))0x)? + [0f 7 (x,2)/02) + [0* % (x, z)/@x@z]Q]dxdz

< ¢5 < 0. (4.1)

An underlying conditional survival function STIX (t|2) has a continuous mived
derivative 02ST1X (t|z)/otox on R, and

f [[6ST|X(t|x)/6x]2 + [0STX (t]x) /0t]% + [625T|X(t|x)/6tax]2]dxdt
Ry

< ¢ < 00. (4.2)

The left sides of (4.1) and (4.2) are classical Sobolev functionals. They do
not involve second-order derivatives with respect to either of the arguments. As
we will see shortly, this mild differentiability allows us to match performance of
the oracle who knows joint density fXZ.

Recall that {14(t),s =1,2,...,t € [0,r]} is the cosine basis on [0, 7] defined
above line (3.26). For CSC model introduce the joint density estimator

1

7w, 2) = max <ln(ln(n +3)

S|

Z Z (X)) vs(Z1) iz m(z)). (4.3)

For MCSC the same estimator is used only it is based on an extra sample from,
(X, Z). We use (4.3) in place of an underlying f%'Z. Note that the estimate is
separated from zero by the iterated logarithm 1/In(In(n + 3)) and hence may|
be used in a denominator.

Theorem 4.1. Let Assumption 4.1 and the assumption of Theorem 3.1 hold,
only now the joint density 572 is unknown and o > ag = 2. Introduce the
plug-in estimators fi.(z, f%) and fi. (v X Z) defined in (3.24) and (3.30),
respectively. Then the assertions of Theorems 3.1 and 3.2 hold for the plug-i
estimators.

We may conclude that the data-driven estimation is possible and the lower
bounds of Section 2 are sharp. Further, neither CSC not MCSC slow down rate
of the regression estimation with respect to direct data observations.

N . s : he t] ] ]
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5. Analysis of real and simulated examples

The context of this section is as follows. Subsection 5.1 begins with a visual
analysis of two simulated CSC datasets when we know the underlying regression,
function. In the former simulation X and Z are independent , and in the latter
they are dependent. For these simulations the above-presented estimates are
shown and discussed. Then the more complicated simulation with dependent
predictor and monitoring time is repeated 10 times and residuals of the data-
driven CSC estimator are shown. This experiment sheds light on the bias and
variance of the regression estimator. Results of an intensive numerical study are
presented in subsection 5.2 via histograms of ratios between integrated squared
errors of the proposed estimates. The study supports the proposed methodology
of plugged in estimates of the design density f**#. Regression analysis of the
environmental CSC data, presented in the Introduction, can be found in the
last subsection.

5.1. Two simulated CSC regressions

The aim of this subsection is to shed light on CSC regression via visual analy-
sis of simulated datasets and performance of the proposed estimates. Particular
simulations for two regression experiments are shown in the two columns of Fig-
ure 2. The top diagrams show by crosses the underlying direct observations of
(X, T). The bottom diagrams show corresponding CSC samples from (X, Z, A)
with triangles and circles indicating observations with A = 0 and A = 1, re-
spectively. Full description of the underlying experiments and the diagrams can|
be found in the caption.

Let us comment on the scattergrams and the estimates shown in Figure 2.
The direct data scattergrams are complicated due to the strong heteroscedas-
ticity. Still, it is possible to visualize the underlying regression as a curve that
goes through the “middle” of data. The reader may try to make a guess about
the regression, and then compare the guess with the solid line (the underlying
regression) and the dashed line (the data-driven nonparametric estimate). Note
how the estimates fit the data. The bottom diagrams show CSC modifications
of direct data. Overall, if not due to the indicators of censoring, shown by the
triangles (A = 0) and the circles (A = 1), it is impossible to visualize the un-
derlying regression. Indeed, in the both bottom diagrams the observations are
spread over the unit square and the best bet may be a horizontal line. Now let
us look at the underlying regression (the solid line) and the data paying atten-
tion to the triangles and circles. Overall, with the help of the solid line, it is
possible to appreciate the special structure of CSC scattergrams and even get
a “feeling” of the underlying regression. With some training in visualization of]
different CSC scattergrams, it is possible to get a general feeling of the shape of]
an underlying regression, but overall this is a complicated task. Only a special
software can estimate the CSC regression because here one needs first to figure
out an underlying conditional survival and then evaluate its integral.
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DIRECT DATA, n= 200, ISE = 0.0012 DIRECT DATA, n = 200, ISE = 0.00034

00 02 04 06 08 10
00 02 04 06 08 10

00 02 04 06 08 10

00 02 04 06 08 10

ISEcontr = 0.0023 , ISEobserv = 0.0042 ISEcontr = 0.013, ISEobserv = 0.00047

F1c 2. Two simulated direct regressions and the corresponding CSC' regressions are
shown in the top and bottom diagrams, respectively. Direct observations are shown by
the crosses. CSC observations are shown by the triangles and the circles for A = 0
and A = 1, respectively. The left column presents the erperiment with independent X
and Z. Here the predictor X is distributed according to the density f* (z) = (4/5)(1 +
0.5z)I(z € [0,1]), and the conditional distribution of the response T' given the predictor
is Beta(1, f2(z)). As a result, m(z) = 1/[1 + f2(z)] for = € [0,1]. Function f> is the
Normal corner function defined in [18], page 32. Namely, f2 is the normal density
with mean 0.5 and standard deviation 0.15. The underlying monitoring lifetime Z is
independent of the predictor X and f?(z) = (1 + 0.5cos(w2))I(z € [0,1]). In the left-
bottom diagram Y., | Ay = 68. The right column presents the experiment with the same
conditional distribution of T given X but with dependent X and Z. Here the design
density is f*Z(x,2) = [1 + (1/4) cos(nx) + (1/2) cos(mz) cos(72)|I((x, z) € [0,1]?). In
the right-bottom diagram Y, A; = 74. In all diagrams the solid line is the underlying
regression. In the top diagrams the dashed lines are the regression estimates of [16,
section 2.3]. In the bottom diagrams the dashed lines are CSC' estimates for controlled
regressions (the X2 s known) and the dotted lines are data-driven estimates for
observational regressions when fX'Z is unknown. The estimates use the information
0 <m(z) <1 forx €|0,1]. The titles show the type of regression, sample size n, and
the empirical integrated squared errors (ISE) of the used estimates. ISE, ISEcontr, and
ISEobserv show corresponding ISE for the estimates based on direct data, controlled
(f% is known) CSC data and observational CSC data, respectively.

The two CSC estimates in the bottom diagrams, shown by the dashed and
dotted lines, are the estimates for controlled (the design density f%'Z is known)
and observational (the design density f*'# is unknown) CSC models, respec-
tively. The chosen simulations show us two possible outcomes. The left-bottom
diagram exhibits a “reasonable” outcome when the controlled regression with
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Residuals for independent_XZ, n= 100

00 01

-0.2
|

Residuals for dependent_XZ, n = 100

02
|

00

-0.2
|

F1c 3. Residuals m(x) — m(x) of the data-driven CSC regression estimators for ten
stmulations. The underlying experiments are the same as in Figure 2, the sample size
n = 100.

known X%

yields a better regression estimate than the observational regres-
sion where f%+Z is estimated. Further, here both estimates are significantly lag
the estimate based on direct data.

The outcome is more nuanced for the data in the right-bottom diagram where
X and Z are dependent. Here the estimate for observational regression dramati-
cally outperforms the estimate for controlled regression. Further, its performance
is comparable with the estimate based on direct observations. Is this an abnor-
mal simulation? A surprising answer will be presented in the next subsection.

Now let us look at Figure 3. It sheds additional light on performance of the
proposed data-driven estimator for observational CSC data when the design
density f%Z is unknown. The underlying CSC models are the same as in Fig-
ure 2, only now the smaller sample size n = 100 is used. Ten simulations are
performed, and then the residuals are shown. The residuals help us to visualize
the bias and variance of the estimates. As we see, the higher frequencies are
often present, and they can be easily removed from a series estimate if addi-
tional information about smoothness or number of possible modes is available,

see [13].
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F1c 4. Histograms based on 1000 simulations, n = 100. Mean and median of the ratios
are shown in the subtitle.

5.2. Numerical study

Here we return to the earlier formulated question of why a data-driven regression
estimate may perform better than an estimate that uses an underlying design
density fX#. Further, we would like to shed light on relative performance,
measured by the ISE (integrated squared error), of the three regression estimates
discussed in the previous subsection. Namely, we would like to compare the
estimates based on direct data, controlled CSC data when f*+Z is known, and
observational CSC data when fXZ is estimated. We already observed in Figure
2 the outcome when knowing the design density was not helpful. A reasonable
explanation of that phenomenon is that a simulated data, especially a bivariate
one, may be far from an “expected” data corresponding to the underlying design
density. In that case a data-driven estimate, based on the estimated design
bivariate density, may be better and yield a smaller ISE.

Let us check the above-made conjecture via the following intensive simula-
tions. We use the two underlying CSC experiments of Figure 2 with independent
and dependent X and Z, repeat each experiment 1000 times, for each simula-
tion calculate the above-explained ISEDirect, ISEContr and ISEObserv for the
3 corresponding estimates, and then visualize histograms of ratios between the
three ISEs for different sample sizes n in turn.

We begin with Figure 4 which shows us the histograms of ratios for the sample
size n = 100. The titles explain the underlying ratios. Similarly to Figure 2, the
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left column presents results for independent X and Z, the right for dependent.
Let us look at diagrams in the left column. The left-top diagram exhibits ratios of
ISEContr (the ISE of the CSC regression estimate using the underlying design
density f%'Z) to ISEDirect (the ISE of regression estimate based on direct
observations of (X,T)). As it could be expected, the ratio can be relatively
large with the mean 5.39 and median 2.27. Note that for some simulations the
direct data estimate may be overwhelmingly better. Now let us look at the
left-middle diagram. Here we compare ISE of the data-driven CSC regression
estimate (ISEObserv) with ISE of the CSC regression estimate knowing the %%
(ISEContr). It could be expected that the ratios ISEObserv/ISEContr would be
larger than 1. And indeed, the mean ratio is 1.68. Further, some ratios are very
large implying that the used design density estimate is far from being perfect.
At the same time, the median ratio is 0.956. This tells us that in a majority of
simulations knowing the design density is not needed. This supports and sheds
light on the above-made conjecture about why the data-driven estimator may
outperform the estimator knowing the underlying design density. The bottom
diagram adds extra evidence in support of the conjecture.

Now let us look at results for the experiment with dependent X and Z in the
right column of diagrams in Figure 4. The outcomes are similar but they are
clearly magnified due to the dependence between X and Z, and correspondingly
due to the more complicated underlying design density. It is difficult for the CSC
regression estimate to compete with the regression estimate based on direct
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observations. Note that some ratios are above 100, but overall the mean and
median are reasonable for this sample size. The right-middle diagram shows
that the mean ratio is 1.74 and some ratios are about 70. At the same time, the
median ratio is 1, that is for a half of simulations the data-driven CSC estimate
performs exceptionally well with respect to the CSC estimate knowing the design
density. The right-bottom diagram sheds an extra light on that conclusion.

What will be if we increase the sample size? Figures 5 and 6 exhibit similar
histograms for sample sizes 200 and 300, respectively. Overall, the conclusions
are the same and they support the above-made observation, only with larger
samples we see less outliers in terms of extremely large ratios and the improve-
ment in relative performance with respect to the oracle-estimator using direct
observations of (X,T). This is a natural outcome for larger samples, and it
supports the proposed methodology of CSC regression estimation.

5.3. Real example

In the Introduction a real CSC example was presented in Figure 1. The reader is
advised to look at that figure one more time and try to visualize an underlying
regression using the experience gained in subsection 5.1. Next let us look at the
estimate (the solid line) shown in the top diagram in Figure 7. After the pre-
vious training in “reading” CSC scattergrams, the regression looks reasonable.
Further, the decreasing regression reflects the underlying physics of anaerobic
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Fic 7. Regression analysis of two BIFAR anaerobic digestion datasets. The top diagram
exhibits regression analysis of CSC data presented in Figure 1. The solid line shows the
regression estimate, and R := ' | A;. The bottom diagram exhibits bivariate regres-
ston analysis of controlled CSC anaerobic digestion of an industrial sludge discussed
in subsection 6.1. Here X1 s thickness and Xo is concentration of bacteria rescaled
onto [0,1]%. The solid, dashed and dotted lines show regression estimates m(z1,z2)
corresponding to x2 equal to 0.1, 0.5, and 0.8, respectively.

digestion, and the outcome was well accepted by the BIFAR. The bottom dia-
gram will be explained in the next section.

6. Multivariate regression

We begin with a multivariate anisotropic regression and show that it is possible
to match the classical result of [24]. The theory is complemented by analysis
of real data. We continue with discussion of several interesting open topics in
multivariate CSC regression. The final subsection is devoted to estimation of
conditional survival function that will help us to learn more about nonparamet-
ric estimation for CSC data.

6.1. Rate optimal estimation for anisotropic regression

This is a natural extension of the explored univariate setting. Following [24],
where the case of direct observations was considered, we begin with the classical
setting of an anisotropic multivariate regression. An underlying multivariate
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regression function is m(x) = E{T|X = x}, x := (x1,...,7x) € [0,1]%. Its
smoothness (the number of derivatives) may be different for each covariate,
namely it is assumed that the regression function belongs to an anisotropic
Sobolev class

a0
Slaq,...,ax) = {m(x) s m(x) = 2 0i0i (%),
i1yeeesip =0
© k
Noe+ Y i) <Q<oo}, (6.1)
W15yt =0 s=1

where i = (i1,...,1x), and ¢;(x) = H];:l ¢i.(x;,) are elements of the cosine
tensor-product basis on [0, 1]%. Introduce an effective multivariate smoothness
Qy = [ZI: La;']71. The pioneering result of [24] shows that for a sample of
size n from (X, T) the optimal rate of MISE convergence is n~2%#/(@x+1) "and
in particular if oy = ... = oy, = « then the rate is n=2%/(22+%) Recall that k
is dimensionality of the regression, and the decreased rate defines the curse of

multidimensionality.

Let us show that this rate is also achievable for a CSC sample of size n
from (X, Z,A), and hence we again can break the curse of CSC in terms of]
slower rates of convergence for nonparametric estimation of distributions. The
following result matches [14,24].

Theorem 6.1. Consider a controlled CSC sampling from (X, Z, A) where X =
(X1,...,Xg) is supported on [0,1]%. Suppose that STIXZ(tx,z) = STX(t|x)

and
L [J[O e mdx]dz < o0. (6.2)

Introduce a multivariate regression estimator

= Y hier(x), (6.3)

ieg

where J = {0,1,..., J1}®{0,1,...,/2}®...®{0,1,..., i}, Js := 1+|n>x |,

~ i _ SOI
0; 1 Z leZ oa Zl) (6.4)

Then the estimator is rate optimal and

sup E{J () — m(x))%dx} < Cn=2+/@o4D - (5)
k) [0,1]

meS(aq,...

We may conclude that even for the case of anisotropic multivariate regression
the CSC does not slow down rates known in the theory of regression for direct
observations
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Let us complement the theory by example of bivariate regression for anaer-
obic digestion. Additions of microorganisms to industrial sludges for improving
anaerobic digestion have been explored intensively in recent years, see a review
in [52]. When the process of anaerobic digestion is improved by the microbes, it
is referred to as bioaugmentation. BIFAR is interested in how thickness (recall
our discussion of Figures 1 and 7) and concentration of added microbes affect
time T of digestion. BIFAR conducted a controlled CSC experiment similar to
the one described in the Introduction only now with a pair of predictors (X, X2)
where X is thickness and X5 is concentration of microbes. The bottom diagram
in Figure 7 exhibits three slices of estimated bivariate regression for a small con-
centration (the solid line), a moderate concentration (the dashed line), and a)
large concentration (the dotted line). As we see, addition of microbes is more
beneficial for sludges with lower thickness (implies active bioaugmentation), and
the effect diminishes as thickness increases but it is still clearly present. The re-
gression sheds light on how performance of anaerobic digestion can be regulated
by enriching the microbial community and by thickening sludges.

6.2. Several topics in multivariate regression

In this section several topics, suggested by the reviewers, are discussed. They
are the adaptation to smoothness of continuous covariates, dimension reduction,
categorical covariates, and a special setting with necessity of adding a covariate
that makes T' and Z conditionally independent but which by itself is not of
interest for the regression.

We begin with adaptation and dimension reduction. In general these are two
different topics. The former is to match performance of the oracle who knows
smoothness of the regression function. For the setting of Theorem 6.1 the adap-
tation means that an estimator yields the rate n—2%#/(22%+1) without knowing
nuisance parameters (aq,...,ax). Dimension reduction is when an estimator
matches performance of the oracle who knows that only a subset of covariates
defines the regression. To make the presentation shorter, we are considering
these two problems together. Namely, the estimator should match the oracle
who knows the subset of covariates that define the regression and also knows
the corresponding smoothness of regression in those covariates.

It is sufficient to explain the heuristic for the case of a bivariate regression,
the general case is considered absolutely similarly. Introduce the tensor-product
cosine basis {p;(z1)¢;(z2),j,i =0,1,...} on [0,1]?, and write down a bivariate
regression as the Fourier series,

m(z1,w2) = Y O (w1)pi(aa), (21,22) € [0,1]%. (6.6)
41i=0

Next, we rewrite (6.6) as the sum of four terms,

m(z1,z2) = Boopo(z1)
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a0 a0
+ Z Ojo;(21) + Z Ooipi(z2) + Z 0505 (1) pi(w2). (6.7)
j=1 i=1 Fi=1
Following the blockwise adaptation methodology explained in Section 3, we
introduce blocks for Fourier coefficients 6;¢, 0o;, and 6;; with indexes 7,7 > 1.
Blocks By of length Ly, defined in subsection 3.2, are used for the first and|
second sums in (6.7). Tensor-product blocks By, k, := By, ® By, are used for
the third sum. Let gji be the Fourier estimator (6.4). Then, following (3.19),
the blockwise oracle-estimator is

"’*( ) i ( ) i ZjEBk 9?0 ~ ( )
m-(Z1,22) = Ujip0(T + =~ 0P (L1
=1 2jeB, [932'0 +E{(0j0 — 050)?}]
n & Yicn, % Bovon ()
i1 Dien, 105 + E{(Boi — 00:)%}]
Fn S 92,
,1)I€Bk, ky 7 ~
+ UEB ke 0505 (x1)@i(22). (6.8)

b ka=1 25(i,)e By, 105 T B{(050 — 05:)%}]

Here, similarly to subsection 3.2, sequences k, and k!, are chosen based on the
assumption about minimal smoothness of the regression.

Now let us look at the three sums in (6.8). If the regression m(x1, x2) depends
only on z1, then the second and third sums are equal to zero. If the regression
m(x1,z2) depends only on xs, then the first and third sums are equal to zero.
Further, it is known from [13,14,24] that the oracle’s blockwise shrinkage can be
mimicked by statistics with accuracy preserving the oracle’s rate of the MISE
convergence. Accordingly, this special blockwise shrinkage allows us to solve the
adaptation and dimension reduction problems.

Next we are considering the case of a categorical covariate Y supported on
{0,1,..., K — 1}. It is natural to incorporate the Y into a series estimator by
using a discrete cosine basis on {0,1,..., K — 1},

Coy) =1, C(y) == 22 cos(m(2y + Dk/2K)), k=1,..., K — 1. (6.9)

The used inner product for this basis is (g1, go) = K1 2iyeo1,...xk—13 91(¥)92(y)

As an example, consider a regression m(z,y) = E{T|X = z,Y = y} where X
is a continuous predictor supported on [0, 1] and Y is categorical. The regression|
can be written as the Fourier series m(z,y) = Z;ozo Zi:)l Ok (x)Ck(y), and
the Fourier coefficients 0, can be estimated by unbiased sample mean estimates
(compare with (6.4))

X e Al (X6 ()
0 = K 'n~! 1 (X . 6.10
sk 2 TRV (X, Y1 ) (6.10)

Finally, let us consider the following situation. Recall that the developed

theory of regression estimation for the CSC is based on the assumption that the
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lifetime of interest T and the monitoring time Z are conditionally independent
given covariates. Consider the case of two continuous covariates X; and X,
supported on [0,1]2. We are interested in regression m(X;) := E{T|X;} but
need to consider the bivariate regression m (X1, X3) := E{T| X1, X2} because T|
and Z are independent only given the pair (X7, X3). Two possible scenarios are
discussed.

First, suppose that m(z1,x2) = m(z1). Then we are dealing with the already
discussed problem of dimension reduction. In other words, we treat the problem|
as a bivariate regression and use the above-described estimator that adapts to
the underlying univariate dimensionality.

Second, suppose that the regression m(x1,z2) is bivariate but we are inter-
ested in the univariate regression m(z1) = E{T|X; = z1}. For simplicity, assume
that the CSC is controlled and hence we know the joint density fX1-X2:Z Write,

m(z1) = Loo STIX (12 )t

w rl
= f f FX2X (29| ) STIX 0 Xz (¢ 20y, 0)daodt. (6.11)
0 0

Fourier coefficients of the univariate regression of interest can be written as

= Ll m(z1)p;(r1)dr

o0
_ J f[ FXX (o) TR (4 20), (1 )dardadt. (6.12)
0,1

Note that STIXtX2(t|zy, 20) = fX0X2 28 () ay #,1)/fX0X22 (1) 25, t) and
continue (6.12),

A'fXZIXl(X2|X1)90j(X1)}_ { A/(pj(Xl) }
[XXaZ(X, Xy, Z) 1 T (X)) AKX (2] X, Xp)

0, = E{

This formula yields the unbiased sample mean Fourier coefficient estimator

” -1 z@j(Xll)
. 6.13
Z 4 (X VXX (7 Xy, Xop) (6.13)

Finally, the methodology of Section 3 can be used to calculate a series regression|
estimator.

6.3. Estimation of conditional survival function

Following the above-presented setting of a multivariate regression, let us consider
estimation of a conditional survival function S”1X(t|x) := P(T > ¢|X = x). Note

that now we are estimating a (1+k)-dimensional function in ¢ and x. Recall that,
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according to [18], estimation of a survival function ST (¢) based on a CSC sample
from (Z,A) is ill-posed, no longer the classical rate n~! is achievable, and for
a-fold differentiable survival function the optimal rate of MISE convergence is
n—20/2e+1) - Ag we will see shortly, estimation of a conditional survival function
is also ill-posed with respect to its direct data counterpart. To make presentation
of the following proposition shorter, let us assume that 7" is supported on [0, 1]
and that STIX(¢x), as a (1 + k)-dimensional function in (t,x), belongs to a
Sobolev class S(aq, ..., ag+1) defined in (6.1).

Theorem 6.2. Suppose that assumptions of Theorem 6.1 hold and ST (1) = 0.
Introduce an estimator

STIX (t]x) : 2 Oii(t, x) (6.14)
ieJ
Herei := (il, e ,ik+1), j = {O7 1, ceey J1}®{0, 17 ey J2}® . ®{O, 1, ceey Jk+1}7

-1
s

Ty =1+ n2 % | aw = [XM a7, @it x) = o1 (0 15 @i (w4, -1), and

3 IZ,X
_n—lzfl‘p l l (6.15)

Then the estimator (6.14) is rate optimal and

sup E J (ST (t]x) — S’T‘X(t|x))2dtdx}
[0 1]k+1

STIXeS(ay,.ypat)

< O~ 20/ Qe t1), (6.16)

To get a feeling of the rate and compare it with a regression setting of the
previous subsection, let us assume that all a; are the same and equal to «, that is
STIX(t|x) and m(x) are a-fold differentiable with respect to each variable. Then
the optimal rate for regression is n=2%/(2+%) yersus a slower n—2¢/(a+k+1) for
the conditional survwal function. The difference in one dimension is explained
by the integral m(x) = §; STX(t|x)dt. On the other hand, because ST (t|x) =
E{I(T > t)|X = x}, for direct data conditional survival is estimated with the
classical rate n—20/(o+k),

7. Conditional linear functionals

Recall formula (1.2) and write

m(z) = E{T|X =z} = JOO STIX (t|2)dt. (7.1)
0
We also have "
m(z) = f tf 71X (tz)dt. (7.2)

JO
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As we see, the regression can be considered as a linear functional of the con-
ditional survival or of the conditional density. There is a rich survival analysis
literature devoted to linear functionals [23,28,29,31,32,61,66,72,74]. As we will
see shortly, in general it is preferable to work with linear functionals of STIX
because they may be more accurately estimated.

In what follows we assume that ) is a known and continuous on [0, c0) func-
tion, and W(¢) := So u)du. Introduce a restricted linear functional

M, (2) == M, (w,, STX) .= fo ") STX (1) dt. (7.3)

Note that 9(t) = 1 yields the restricted regression p,., while the power function|
Y(t) = ktP~1 k= 2,3,... is often used to evaluate higher moments [28,32,72].
To present results for estimation of M,., it is convenient to use Assumption

2.3 where p,. and () are replaced by M, and M,o(x) := So T‘X (t|z)dt,
respectively. To stress the change, the modified functlon class (2 3) is denoted

as Fn (S0, 0, Q7 1).

Theorem 7.1 (Lower bounds for oracle-estimators). Suppose that As-
sumptions 2.1-2.4 hold. Suppose that a CSC sample of size n from (X, Z,A) is
given. Then

inf sup {[n/a (71X, X7 1, e/ Gas)
M* STIXeF, (Sg‘ Q)

<Bnel [ (W2() ~ M, @0)de}) > Pl Q)1+ on(1). ()
Here P is defined in (2.7) and

' aT , [ 0 ST (t]x) ST (t])
d (S |X7 fX Z7r7 qp) = f fX’Z(QC,t) dtdx. (75)

Now suppose that a MCSC sample of size n from (A'X,AN'Z A) is given. The

illf sup {[n/d;(ST\X7 fX,Z, r, w)]Qa/(2a+1)
ME STIXeF, (55X Qi)

X EsT\X{L (M (z) — Mr(x))zd:r}} = P, Q)(1 + 0,(1)). (7.6)

Here 2 TIX |
TIX X.Z P2 (t) ST (t]x)
d (STIX | 52 f fX 7t T dtdx. (7.7)
In (7.4) and (7.6) the inﬁmum is taken over all oracle-estimators that know the
corresponding sample, Fy, ( Ly, Q. ), fX57 and .

Let us present an oracle-estimator that attains the lower bound (7.6), and it

L ithi : from (7.4
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Theorem 7.2. Let Assumptions 2.1 and 2.4 hold. Consider the oracle-estimato

J*

an% + D, (=T M)050(x). (7.8)

Jj=qn+1

Here J¥ := g, + 1+ |[(n/d})Qn 2% (o + 1)(2a + 1)/a]V/@4D)| and

g, : Z I(AZy < ) (A1 Z20) (A Z))
FXZ(NX, A7) '

(7.9)

The MISE of this oracle-estimator attains the lower bound (7.6).

We can also use the blockwise shrinkage methodology of Section 3 to prove
that the adaptive estimator is also efficient.

Now let us look at linear functionals of f71X. Write,

M, ) = | W) £t
0

- j () ST (tl)de] — [W(r) ST (r])]

= My (2,9, ST) — [ (r)STI¥ (r]2)]. (7.10)

A particular example is My (x, t*, fT1X) = E{T*|X = x} where b is the endpoint
of the support of T, see an interesting discussion in [64,65]. Let us look at the
two terms on the right side of (7.10). Suppose that U(r) # 0 to avoid triviality.
The first term is the already studied linear functional of STIX | and we know
that it can be estimated with the univariate rate defined by smoothness of the
conditional survival in z. The second term, unless STI¥ (r|z) = 0 due to r > b,
is the bivariate function in (r, z), and it is estimated with a slower bivariate rate
[65].

The latter is not the only complication in estimating linear functionals of
fTIX | First, recall that adaptive nonparametric pointwise estimation triggers
the Lepski’s penalty for the rate of convergence [13,68]. Second, an intriguing
outcome may occur if b = b(x), that is when the endpoint of the support of
T depends on X. In this case for some x we may have a univariate rate of
estimating M, (z, ¥, fXIT) and for others a bivariate rate.

In conclusion, the survival analysis uses the above-discussed linear functionals
as interpretable and meaningful survival metrics [28,32,72,74]. It is reasonable
to conclude that, whenever it is possible to choose between linear functionals of
STIX or fTIX it is prudent to choose the former.

8. Conclusions and further research

1. Under current status censoring (CSC) the lifetime of interest 7" to the event

T . : L L1l bili : -
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time Z if the event of interest already occurred or not. Accordingly, under CSC
we observe a sample of size n from pair (Z,A) where A := I(T < Z) is the
status, and if a predictor X of T is available, then we observe a sample of size n
from the triplet (X, Z, A). The CSC literature is primarily devoted to estima-
tion of the distribution of T, and it is shown that the problem is ill-posed and all
traditional rates for estimating the survival function and density of T' dramati-
cally slow down. In particular, under CSC the rate of estimating the density is
the same as estimating a trivariate density based on direct observations. This
is why CSC is considered as an extremely complicated problem.

2. For directly observed data there is a familiar principle of equivalence be-
tween nonparametric regression and density estimation problems. In particular,
the principle implies that rates of the MISE convergence must be the same.
Fortunately, the paper shows that CSC limits applicability of the equivalence
principle, and CSC nonparametric regression can be estimated with the same
rate as a nonparametric regression based on direct observations. This is a dra-
matic relief for CSC because it has a wide range of applications where T cannot
be observed directly.

3. The established fact that rate of a multivariate CSC regression is the
same as for the case of direct observations is of a key importance due to the
familiar curse of dimensionality. At the same time, unfortunately the outcome
is worse for estimating conditional survival functions that suffer slower rates
than estimates based on direct observations. On the other hand, there is an
interesting theoretical situation with the survival functions. Namely, consider
a conditional survival function STI¥X(¢|z). This is a bivariate function, but for
direct data it is estimated with a univariate rate, but CSC “corrects” that and
it is estimated with a classical bivariate rate.

4. Nuisance functions and their required smoothness are a hot topic in modern
nonparametric literature. It is shown, for the first time in the literature, that
a very mild assumption that does not involve second derivatives, is sufficient
for a data-driven estimation of regression m(z) := E{T|X = z} that may be as
smooth as desired. Accordingly, it is possible to untie smoothness of nuisance
functions and smoothness of the regression.

5. Presented in Theorem 1 coefficient of difficulty sheds additional light on
CSC via explanation of how an underlying conditional survival function, to-
gether with nuisance functions, affect regression estimation. The latter allows
us, at least theoretically, compare regressions for direct and CSC data. Namely,
consider a classical normal regression model Y = m(X) + o(X)¢{. Here a stan-
dard normal regression error £ is independent of predictor X, o(z) is the scale
function, and density fX (z) is continuous, positive and supported on [0, 1]. For
direct data the coefficient of difficulty for this regression is Sé ;;—(&))dx, and note
that it does not depend on an underlying regression function, see [12,13]. This
nonparametric result mimics a familiar one in the theory of point estimation.
Namely, consider a sample of size n from a Normal variable with mean 6 and
variance 2. Then the sample mean is efficient estimator of # and its variance
0?/n attains the famous Cramer-Rao lower bound. We may say that for this
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classical parametric problem the coefficient of difficulty is o2 (of course, it is
the reciprocal of Fisher information), and similarly to the normal regression the
coefficient of difficulty does not depend on the estimand. Now let us return to
our CSC regression and write down coefficient of difficulty (2.8) as

r STIX (z]2) (1=5T1X (z|z))
d— ! SO f21X (z]z) dzdx = ! Mdm (81)
; fX(@) 0o [H@)

The expression on the right side of (8.1) is motivated by the above-presented
coeflicient of difficulty for the normal regression. If one would like to think about
equivalence between the two nonparametric models, then (8.1) sheds light on
how CSC “creates” a scale function. Further, note how coefficient of difficulty o2

o%(

for the classical parametric model transfers into Sé 7 X(”;)) dx for the direct-data)

nonparametric regression, and then into (8.1) for CSC regression.

6. What will be if the support of Z is a subset of the support of T, say T is
supported on [0, a] while Z is supported on [0, b] with b < a? Then no consistent
estimation of the regression is possible. A feasible ad hoc remedy is to estimate
the distribution over [0, b] and then test reasonable parametric models.

7. Anaerobic digestion of organic municipal solid waste is a key element in
sustainable municipal waste management due to its benefits for energy, environ-
ment, and economy. This process dramatically reduces emission of greenhouse
gases, generates renewable natural gas, and produces fertilizers and soil amend-
ments. At the same time, it is impossible to directly evaluate the minimal time
of digestion but collecting CSC observations is possible. Then the nonparametric
CSC regression has allowed the environmental company BIFAR to “look” at the
hidden minimal time and choose optimal parameters for anaerobic digestion.

8. Let us compare what we know about rates of estimation of parameters and
nonparametric functions for directly observed and CSC data. In what follows
by a rate we mean an optimal rate under MSE or MISE for a sample of size n.
Further, for a multivariate function it is assumed that it has the same number|
a of derivatives for each variable. We begin with estimation of a population|
mean u = E{T} and a survival function ST(t) = E{I(T > t)}. Note that
the first estimand is a parameter and the second is a function of one variable.
Nonetheless, for direct observations of T' the rate of their estimation is the same
n~! because the estimands are expectations of observable variables T'and I(T >
t), respectively. For CSC the situation changes, and while the population mean is
still estimated with the parametric rate n~!, the survival function is estimated
with the rate n=2%/(2¢+1) which is the same as for estimation of an a-fold
differentiable univariate regression m(x) based on direct observations. Relation
W= SSO ST (t)dt sheds light on why the parametric rate for u is preserved,
and the fact that indicator I(T > t) is no longer directly observed explains
“return to normality” in estimation of a univariate survival function S7(t).
The interested reader may find an insightful theory of estimating functionals in
[66]. After this warm-up let us turn our attention to nonparametric estimation
of a k-variate regression function m(x) = E{T|X = x} and a corresponding
conditional survival function STIX(t|x) = E{I(T > t)|X = x}. The regression
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function is k-variate, the conditional survival function is (k 4 1)-variate, but for
direct observations they are estimated with the same optimal k-dimensional rate
n—2/(2a+k)  The fact that conditional survival is the conditional expectation
of an observed indicator I(T > t) explains the result. For CSC the outcome
changes. Because the indicator I(T > t) is no longer observed, for the survival
function the rate slows down to the classical (k + 1)-dimensional n~2¢/(2e+k+1),
and note that the rate “fits” the dimensionality of STI*¥. The integral formula
m(x) = SSO STIX(t|x)dt explains the faster rate n=2%/(2¢+k) for CSC regression,
and note that the integral effectively performs one dimension reduction with|
respect to the conditional survival. Let us also stress that while there exists
the asymptotic equivalence between density and regression settings for direct
data, see [13], there is no such equivalence for CSC data. In other words, the
CSC limits the classical theory of asymptotic equivalence between density and
regression problems.

9. Let us present several open problems that may be solved via further devel-
oping of the presented nonparametric methodology. (i) Regression with doubly
CSC data is a practically important topic where the interest is in the length
of time between two events that occur sequentially. Classical examples are the
length of time between: The infection and its diagnosis; The infection of an indi-
vidual and the subsequent infection of another individual; Marriage and divorce.
Under the doubly CSC, lifetimes of the two consecutive events of interest are
not available and instead, at a monitoring time Z, statuses of the two events are
observed. An excellent overview of the doubly CSC regression can be found in
[55,65], and more recent results in [67]. (ii) Another closely related problem is re-
gression with interval-censored data when survival times are not known exactly,
but are only known to have occurred between intermittent examination times,
see a discussion in the book [60]. (iii) An interesting developing of the considered
CSC regression is a sequential sampling with assigned risk and minimal cost of]
the sampling. (iv) Efficient nonparametric estimation of the hazard rate is an-
other feasible expansion of the developed theory, see a discussion of the problem
for right-censored observations in [15]. It may be expected that the problem is
ill-posed, and this presents new challenges for small samples. (v) A CSC prob-
lem becomes extremely complicated when T' and Z are dependent given X. A
straightforward calculation shows that in this case the proposed regression es-
timators are biased and they estimate a function g(z) := SSO STIXZ 2|z, 2)dz.
Because in a CSC sample the lifetime of interest is never observed, it is impos-
sible to use CSC data for testing the conditional independence. To tackle the
dependence, one of the possible approaches is to use parametric models that
define the dependence, see a discussion and interesting results in [44] where
the case of a known copula model is explored. An appropriate alternative is
to develop an adaptive nonparametric approach based on an extra experiment
devoted to exploring the dependence. (vi) It is of interest to consider other non-
parametric estimators like kernels, splines and series estimators with wavelet
and other bases considered in the literature, explore different loss functions like
Lo and MSE at a point, develop confidence bands, explore more general Sobolevi

classes using the methodology of [17]. (vii) An open and interesting topic is to
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explore a vast class of known dimension-reduction techniques for multivariate
CSC regressions. (viii) Case-control study is another interesting and related
problem where sampling is done from subpopulations with A = 1 and A = 0,
see [34]. No optimal nonparametric results have been developed so far. (ix) It
is an open and interesting problem to consider a restricted regression with the
restriction 7 being a function of the predictor. (x) Missing data is a familiar
complication in survival analysis, see [16]. Theory of nonparametric regression
with missing predictors and responses is well developed for direct data, and it
will be of interest to test robustness of the standard approaches to the CSC.
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Appendix: Proofs

Recall that all basic definitions can be found at the end of the Introduction.
Whenever it is not confusing, in what follows we may skip subscripts.

Proof of Theorem 2.1. It is worthwhile to begin with explanation of the
proof’s heuristic. Let us present it via classical example of nonparametric regres-
sion [11,12]. We begin with the nonparametric regression Y = m(X) + £ where
¢ is standard normal and independent of the predictor X supported on [0, 1], o
is a positive constant (the scale). A sample of size n from (X,Y) is available and
it is known that the regression m belongs to the global Sobolev class S(a, Q).
The idea of obtaining a sharp minimax lower bound is as follows. First, the
nonparametric problem of estimating m is replaced by considering a parametric
regression m(z) = mo(z) + Zji 5, 05 (x) with some specially chosen sequences
Ji and J5. Then a Bayesian approach is used with special Gaussian distribu-
tions for the Fourier coefficients ¢;, and Fisher informations for each Fourier
coefficient are calculated. The Fisher informations yield the desired coefficient
of difficulty o2 that can be attained by estimators. Now consider a more com-
plicated heteroscedastic regression Y = m(X) + o(X){ where o(z) is the scale
function. We can use the above-described approach, but it yields the coefficient

of difficulty d' = | é %(i(f)dx]_l. This coefficient of difficulty is too small. Best

2
regression estimators can attain a larger coefficient of difficulty d = Sé }IX(&)) dx

(the relation between d’ and d follows from the Cauchy-Schwarz inequality). To
get the larger coefficient of difficulty, a less favorable prior should be proposed.
The idea is to divide the support [0,1] into a slowly increasing in n number
of subintervals, on each subinterval approximate m(x) by its own Fourier se-
ries, apply to that series the above-presented Bayes approach, and then add the
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lower bounds for each subinterval. This is how we get the larger coefficient of
difficulty d. Finally, for the CSC regression we can employ the above-described
methodology of obtaining a lower bound, but it yields the coefficient of difficulty]
d = [SRT(fX’Z(x, 2)/[(1 = STIX (t|x))STIX (t|x)])dtdz which is too small. Again,
the idea is to propose a less favorable prior. We divide the rectangle R, into
a slowly increasing sequence of subrectangles, on each subrectangle consider its
own Fourier series, calculate Fisher informations and finish with local Bayes
lower bounds. Then we add together obtained lower bounds for the subrectan-
gles and get the wished coeflicient of difficulty. This is the approach used in the
following proof.

We begin with introducing several new notations, and also note that we are
interested in asymptotic in n. In the proof (and only in this proof) we use the
sequence s := S, := 5+|In(gy, )|, divide the interval [0, 1] (the support of X) into
s subintervals, and then use an additive perturbation only at the inner intervals.
Set

M = {pr () pr (@) 1= pro(x) + 2 gr(@)I(1/s <z <1-1/s), gr(z) € Mg}

To define the above-mentioned function classes M., we need more definitions.
Let ¢(z) := ¢(n,x) be a sequence of flattop kernels defined on a real line such
that for a given n it is zero beyond (0, 1), it is a-fold continuously differentiable
on (—o0,0), 0 < ¢(x) < 1, ¢(x) = 1 for 2(In(n))"2 < x < 1 —2(In(n))~2,
and |¢(®)| < C(In(n))?>*, see Section 7.1 in [13]. Set ¢up(z) := ¢(sz — k)
and recall that po(z) = 1, pj(z) := 2Y2cos(mjz), j = 1,2,... For 1 <
J(k
k < s — 2 define: g;(z) := /spj(sz — k), g (x) = Zji},(k) Vsl Psky (),
909(2) = g1y (@)6sk(2), J(k) = [[n(20+ 1) (o + 1)s~20Qu () ~1]H 204D,
gTIX
(k) :=1[J ( )/In(n)], Qsk = (Q —1/3)( T T = §olSe Y (tlk/s)[1 -
Sy (tlk/s))/ FX7 (kfs, Ddt, I3 = S5 15!
Using the above-introduced deﬁmtions we set

M= {9+ g(&) = g @)1 (k/s < v < (k +1)/s),

J(k)

> @)%V, < 572 Qg (@) < s () I (k)0 " }.

j=7 ()

The class Mg of considered regression functions is defined, and note that any|
1 from this class may be written as

s—2 J(k
pr () = piro( Z Z Vskj‘PskJ x)Psi (). (A1)
k=1 j=J' (k)

Now recall that the class M, (pro,, Q,7) of underlying pu, is introduced
in Assumption 3. Our next step is to show that for large n the considered
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in Theorem 1 function class M, (10, @, @,7) includes the above-defined class
M. If the latter is correct, then we will be able to replace the larger class by
the smaller one in establishing the lower bound. To check this fact, we first
note that using the flattop kernel implies that p.(z) — pro(z) is a-fold con-
tinuously differentiable over [0, 1] Now we are exploring the derivatives. By

Leibniz rule §o[(gpe (2)6sk(2)@]2dz = §3[i, Cafy " (@)6 (2)]2da where

Cy = o!/(( —z)m) Note that maxo<i<a §o (640 (2))2dz < C(s(In(n))?)?*, and
for 0 < | < a we can write,

J(k)
l !
i @R =1 vekieln (@)
j=J'(k)
J(k) J(k)
< Os2eTDH N a2 00N ) < Ol (n)/J (k).
j=J'(k) j=J'(k)

Further,
) 2 Dy o
| i @i < e < Qu
S

What was wished to check.
Following [10,16] and using [31], let us introduce specific parameters

Toj o= [n 71 (1= 3p™ )15 max(p™", min(p, (J(k)/5)* = 1))]"/?,

where p > 3 is a constant that may be as large as desired. A direct calculation
(see the above-mentioned references) shows that if we set vy, j = Tskj, then these
particular parameters satisfy the definition of classes M. Namely, introduce
the class of vectors (recall that functions gpu(2) are used in the definition of
Msk)

J(k)

®sk: = {ﬁsk . Z (7(-])2(X Sij st7
j=J'(k)
g ()2 < 5° 1n(n)J(k)n*1}, k=1,....5—2, (A.2)
where ﬁsk = {VskJ’(k)7"' skJ } then 7. Tsk - {TskJ/(k)v"'aTskJ(k)} € esk.

Now recall that the oracle knows the anchor .9, and hence we can write
down an oracle-estimator as fi*(x) = pro(x) + g*(x), « € [0, 1] and convert the
considered problem into estimation of the additive perturbation g. Using this
fact, the already established My < M, (ur0, , @Q,7), and the Parseval identity]
we can write,

sup E {Jl(m*(z) - m(x))%zx}

pr€Man (prg,0,Q,) 0




‘Regression_for CSC 41

> swp B [ )~ m(a) "}

meMg 0

s=2 (k+1)/s
=57 sup E{ | <a*<x>—g<k><x>>2dx}. (A.3)
k=1

Dskeesk k/s

Next we are evaluating a particular integral on the right side of (A.3),

(k+1)/s
Jk/ (5 (2) — g ())*de

(k+1)/s

> (-5 f (5% (2) — g (2))da

(k+1)/s
—s f Lo () (1 — ug (2))]2dx

k/s

(k+1)/s
>(1-s571) L/ (7" (2) — gy (@) *dz

+ 0,(1)s(In(n))~Y2p 2/ Ratl) (A.4)

By using this lower bound in (A.3) and with the help of the Parseval’s identity
we conclude that

1
o o[ i) ) e
€M (pir0,0,Q,7) 0
s—2 J (k)
>(1-s)) sup > E{(@h; — ve)’} +o(1)n /et (A5)
k=17k€Osk j_ 1/(k)
where 7 ;1= S,g;:l)/s G*(x)@skj(x)dz. The last term on the right side of (A.5)
is in order smaller than the verified lower bound, and hence we can concentrate
on the s — 2 sums.
To estimate a particular sum, we use a classical minimax theory technique
when a minimax risk is bounded from below by a Bayesian risk. To do this, we
need to introduce a prior distribution for 7g. Let us explain how this may be
done. Introduce independent and zero mean normal random variables (,;; with|
the above-defined corresponding variances Tfk ;- Touse that normal distribution|
for creating a bona fide prior on Oy, it is projected onto O, and then we are
dealing with random vector 77 such that P(7 € A) := P(C € A|C € Og), A € Oy
If we were dealing with a traditional regression, then we could calculate Fisher
information corresponding to each vg; and then follow the proof in [10]. Here,
because we are dealing with CSC regression when the response is not observed
directly, that path should be modified. Below two steps are proposed and they|
include: (1) New method of defining normal variables (sx; via a vector of other
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independent normal variables; (2) Calculation of Fisher information matrices
for the new variables.
For (z,t) € R :=[0,1] x [0, 00) introduce a function

T|X( T\X(

t|z) = t|z)

s—2 s—2

J (k) In(s)
Z Z Z Z KkjuiPski () Psk (¥)Pskui(t), (A.6)
1 =T (k) o=

.

where SOT|X is introduced in Assumption 2.2, Yspyi(t) 1= (/7)Y (st/r — v),
and v;(t) = 2'/2sin(wit)I(t € [0,1]). Denote by S*(x,t), (z,t) € R, the sum on
the right side of (A.6). The function S* is continuous in ¢ due to the used sine
bases on the subintervals of [0, 7], and it is also differentiable in ¢ € [0, r] with the
exception of the end points of the subintervals where S* is equal to zero. Now
note that if |kpjpi| < n~1/3/s> (and compare this bound with Tsk; being of order
n~1/2), then for all inner points of the subintervals max,c[o 1] |05 (z,t)/0t| =
0, (1). Combining these properties, we conclude that according to Assumption|
2.2 the function Sy ™ (t|x) is a bona fide survival function for all large n. Further,
under this assumption we get a bona fide regression

s—2 1

J(k) n(s)]
Z [ Z Z bskviﬁkjvi]@skj(l‘)d)sk(x)' (A7)
j=J'( =

v=1 =1

s—2

My () 2

Here by := SS Yskvi(t)dt, and then the Parseval identity implies that

0
D i = 1/s. (A.8)
i=1

Now we can compare terms in the square brackets on the right side of (A.7)
with ve; in (A.1). Recall that we used a zero-mean normal prior for Vskj
with standard deviation 74; := [n~1(1—3p1)I ! max(p~t, min(p, (J(k)/§)* —
1))]'/2, where I;! := §([S, STtk s) (1= ST (¢k/5))/ £57 (k /s, t)]dt. Introduce

independent normal random variables (s v With zero mean and variance
(S0 ™ (w/slk/s)(1 = Sg " (v/slk/s))/ £ (k/5,0/5)]
x[n~'(1=3p~") max(p~", min(p, (J(k)/5)* —1))]
(compare with Tfkj). Then using (A.8) we get

s—2 [In(s)]

E{(X X bskvigskjvi)Q} = 72,1+ 0,(1)). (A.9)

v=1 i=1

We conclude that the above-defined more complicated model of generating

s for Fowrd T oft] 1 fnetion vield -
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the same prior as the above-described (sx; used in [10]. This finishes the first
above-outlined step.

The second step is to calculate Fisher matrices Zyy; for vector-parameter
Rokj = {Kkjwi-v = 1,...,8 — 2,1 = 1,...,[In(s)]}. For two particular pairs of
indexes (v1,41) and (vg,i2) the corresponding element Zgy; (v, 1, v2,42) of the
Fisher matrix is

2
Lej(v1, 01, v2,12) : { n [0ln fXZA X, Z, A)/a”kjvuzu]} (A.10)

To simplify notation, set 6, := Kgjy,i,, ¥ = 1,2. Also recall that ¢x(z) and
Yskvi(t) are supported on (k/s, (k + 1)/s) and (rv/s,r(v + 1)/s), respectively.
This allows us to write for the considered indexes,

Tops(or, i1, 03,12) = B{ (1 - H (257X (21)/00,1/s™ (21X) ||
2
+E{A T |10 = $™¥(2x))/00,)/11 - s7¥ (21| }

B 1 pr x.Z . 1 1
-, L) ey + )

X Vskoriy (D) Vskogia (£) 0o (€) 02 (€) dbd. (A.11)

To evaluate the right side of the last equality we use Assumptions 2.1-2.3 and
relations

(k+1)/s ) (k+1)/s , ,
L | @l =1+ Jk L @ -
(k+1)/s ) ) .
| y sk (@) (P5(z) — D)dx| = 0,(1)s™7,
and
(k+1)/s (k+1)/s .
L/ porg@a@da] = || euns(a) x [0un(2) ~ el = on(1)5™

Further, we have i w(t)tskjv i () Wskjuai, (£)dt = 0 for any integrable function
w(t) whenever v; # vy (note that in this case supports of the two basis func-
tions are disjoint), and the Cauchy-Schwarz inequality yields {{ |tskjui(t)]dt <
Cs~/2. We may conclude that the above-defined Fisher matrix Zy; is a block-
diagonal matrix and Zy; = diag(A1, ..., As_2) where each block A, is a [In(s)]x
[In(s)] matrix with diagonal elements

A(inin) = | S5 (ro/slh/s)
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< (1= 83 (ro/slk/ ) /757 /s, ro/)] (14 0,(1), (A12)

where |o,,(1)| < C/s for all considered parameters. Further, absolute values of
all other elements in a block-matrix are bounded by Cs~!. Now recall that
s := s, — o as n — o and that the inverse of a block-diagonal matrix is again,
a block-diagonal matrix created by corresponding inverses of the blocks. This
and (A.8) allow us to conclude that the inverse Fisher matrix Is_klj satisfies for

the vector-row by := (bsk11s - - - bsk(s—2)[mm(s)]) and its transpose l_;;k the relation

Do Loty = LT[SOT X (tlk/s)(1 — S (t]k/5))/£57 (k/5,1)]dE(L + 04 (1))

=111+ 0,(1)). (A.13)

Now we are ready to straightforwardly follow the proof of Theorem 1 in [10]
and conclude that

J(k)

inf sup Y E{(y — verj)?} = () 21+ 0,(1)), (A14)
Vsk €Ok j=J'(k)

where the infimum is over all possible oracle-estimators of s, considered in
Theorem 1 and Py := (a/m(a+ 1))+ (20 4-1)1/20+1D)  Using (A.14) on the
right side of (A.5) we can write,

nf o ew E{f % (2) — o (2)) 2o}
M:X" Hr€EMy, ;Uf'rO a,Q, T)

Z 2a/(2a+1) —2a/(2a+1) P, Ql/ 2a+1)(1 +0,(1))

(k+1)/s pr o/(2a+
f | A e T

xn=20/(2a+1) p O1/C2a+1)(1 4 4 (1))

f J [0 (tl2) (1 = S5 (¢]))/ £7 (@, ) dtda

x n=2/2% ) P, Q)(1 + 0,(1)). (A.15)

This proves the lower bound (2.6).

Now note that in the proof proof of (2.6) we considered only conditional
survival functions ST1X(t|x) = TlX(t|x) (x,t) € [0,1] x [r,o0). Thus that
proof also verifies (2.7).

The assumed in part (i) of Theorem 2.1 inequality d(ST1¥X, fX% o0) < oo
yields that d(STIX | fXZ r) — d(STIX| fXZ o0) as r — oo. This and (2.6) verify
(2.9). Theorem 2.1 is proved

>2a/(2a+1)
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Proof of Theorem 2.2. The proof follows along line of the proof of Theorem
2.1 with the following two changes. The new I, := {{ [Sng(t|k/s)/fX’Z(k/s, )]
are used. Then we repeat the already made calculations in (A.10)—(A.13) only|
now, due to the MCSC, in place of the sum [STIX (¢]z)]~ + [1 — ST (t|z)] !
in (A.11) we have only the first term [ST!X (#[2)]~". This is how the new Iy, is
calculated in (A.13). Theorem 2.2 is proved.

Proof of Lemma 3.2. Recall that C' denotes a generic positive constant. Using
the Parseval identity we can write for all sufficiently large n,

5{ [ G g

0

dn Jn
= VE(® - )+ Y. E{(L— (/)R — k)P4 Y K2
j=0

J=qn+1 J>Jn

JIn
<COgan™ 4 X0 B{I(L=(3/Jn)™)(Fs—r5) = (/) k1P 1+ D) 5. (A.16)

Jj=aqn+1 Jj>Jn

Using (3.4) we continue (A.16),

Bf | (3(e) — 9(e)?} < O™

0
Jn
+n7ldlg) Y (1= (/1)) A+ 0a(1) + (1) 72 D) ()2 k2. (ALT)
jZQ7z+1 j>¢Zn

Now we are evaluation the two sums on the right side of (A.17). A direct calcu-
lation yields

JIn

D (A= (/) =

J=aqn+1

T o) (A18)

Definition (2.5) of the global Sobolev class yields

sup Z (m§)** K7 < Q. (A.19)
9eS(a, Q) I>qn

Using (A.18), (A.19) and the definition of J,, proves part (i) of Lemma 3.2.

Now let us verify part (ii) of Lemma 3.2. Denote by xo; and ky; Fourier
coefficients of gy and g4, respectively. Now note that the underlying ¢ affects
only the second sum on the right side of (A.17). Let us evaluate it for the
considered g = gg + gx. Write for some v > 0,

D, @R < Y (@)L + sy + (L4 )wg)]

J>qn J>qn
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SA+MQ+ A+ Y (mh)* o) (mh) > kg,

J>qn
SAL+7Q+ (L +y g Q"
Set v := ¢S5~ o and get

sup Z (m§)*“K3 < Q(1 + 0(1)). (A.20)
gx€S(,Q) j=q,.

Using (A.20) in place of (A.19) in (A.17) verifies part (ii) of Lemma 3.2. Lemma
3.2 is proved.

Proof of Theorem 3.1. Recall that the lifetime of interest 7" may be un-
bounded, the sample is MCSC and the joint design density f**# is known. The
proof is based on using Lemma 3.2.

We begin with analysis of the proposed Fourier estimator

_1 Z A/I A Zl < )@J(A/Xl>
fXZ (A1 Xy, A1 Zy)

Using f5%2(x,t,0) = 57 (2,t)STIX (t|x) we get

~ o (AT(AZ <r)p;(A'X)
E{6;) = { fX2(AX,A'Z) }
1 T 1
- J [J ST (t]2)dt] o, () dar = f m(@)p; (2)da = 6;. (A.21)
o Jo 0
We conclude that the Fourier estimator is unbiased. For its variance we may|

write,
E{f; —0,)%} = n~ [E{[A I;QZZ(;QX,(%X)] } — 03]

To evaluate the last expectation we use @3 (x) = 1+ @2;(z), j > 1 and get

]E{[A/I(A’Z < r)goj(A’X)]Q}
fX’Z(A'X, A/Z)
ST (t]) 3 () T
_ _ X £X,Z 1
JRT X Z(01) dtde = d(S™, f47,r) + 0;(1).
Further, we have 0? — 0, 5 — o0.

Now we are ready to evaluate MISE of the blockwise-shrinkage estimator
(3.24). Ee begin with analysis of the oracle-estimator

Adn -~ krn
M (z) 1= Zogj%. Z o +d*n — Z 0,0,z (A.22)
iz
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is sharp-minimax, that is its MISE attains the lower bound of Theorem 2.2.
In (A.22) we used notation Oy := L' 2jeBy 07 for Sobolev functionals. Note
that the studied adaptive estimator (3.24) mimics the oracle. To make formulae
shorter, set Ay 1= O /(O + den~t) and write,

> E{(Axf; — 0;)%}

JEBk
= MIAZE{(8; — 0,)%} + (1 — Ax)?603 — 20;A0(1 — AR)E{(f; — 0,)}]. (A.23)
JEB
_ To simplify further references on the proof, note that the Fourier estimator
0; satisfies the inequalities

[E{0; — 0;}] < Cn~'q2, E{(0; — 0;)%} <n '[dy + 0i(1) + 0(1)].  (A.24)

These inequalities will be sufficient.
Using (A.24) and Cauchy inequality [20;A,(1 —A,.)| < n™V/2A2 + n1/29j2-(1 —
Ax)?, we continue (A.23)

D E{(Arf; — 0;)%}

JE€BK
SAZLgn tdy + (1 — AR)?LyOy + Z [AZn~t + (1 — Ak)QGJZ](On(l) +0,(1))
JEBk
= [A%Lknild* + (1 — Ak)QLk@k](l + On(l) + Oj(l)).
Using definition of Ay we continue,
D E{(Akf; — 0;)%}
JEBk

@infld* d2n=20y
+
(O +den=1)2 (O +dyn1)

<L 5 |1+ 0. (1) + 0r(1)]

6+ din—tlt T on(l) +ox(1)]. (A.25)

Now we may return to the MISE of the oracle-estimator and write using the
Parseval identity and (A.24),

E{ J (% () — my ()}

b, ko
= DYE{0; — 0;)%} + > E{(Axf; — 0;)} + D] LyOy
j=0 k=1 k>kn
En O,n 1d,

[1+0n(1) + o]+ Y| L6,  (A.26)

21—
k>ky,

O, +den-1

< Chun™ + ) Ly
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Next, a direct calculation shows that

sup [ i Lk@k#ldil[l + 0, (1) + 0r(1)] + Z LkG)k]
mrinS(a,Q) - 1 @k+ xT k>k,
< P(a, Q)(dyn™1)2/22+1 (1 4 0, (1)). (A.27)

Using the proof of Lemma 3.2, the same upper bound holds for the supremum|
over fn(SOT ‘X, a, @, ). This verifies that the oracle-estimator is sharp-minimax
over the local and global Sobolev classes.

Note that the proposed estimator (3.24) mimics the oracle-estimator’s smooth-
ing coefficients ©/(Oy, + dyn~1) by statistic

min(1,0;/0;)1(0) > 1/[nIn(k + 3)).

This mimicking is well-known in the literature and the proof that it preserves the
verified sharp-minimaxity of the oracle-estimator may be found in [12]. Theorem
3.1 is verified.

Proof of Theorem 3.2. The proposed Fourier estimator (3.27) is motivated
by the oracle-estimator

i et 30 AL S 21 X2 < 1)is(X)
=1

FXZ(X0, 7)) , (A.28)

where (recall our notation J(j,n) :={0,1,...,q,}\{4})
S(jsn, 2, )

= 3 S [ e @amanu@ae. ()

keJ (j,n) i=0

Note that S(j,n,z, x) is a special Fourier series approximation of S71X(z|z)
with deleted jth Fourier component.
Recall that {1, ;(x),j = 1,2,...} is the orthonormal basis on [0, 1] and write,

1 pr
E(6*) = 0, - L L S(ism, 2 ), (@) dzdz — 0; — 0 = 6. (A.30)

‘We conclude that the oracle’s Fouriez estimator is unbiased.
Next we evaluate the variance of 9;‘. Write,

nE{(0F - 6%} = B{| A5 ”ffz)gl(zf =) (X)]z} — 62 (A31)

Consider the expectation on the right side of (A.31). Note that (A’)? = A’ and
write,
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{ [A"—2A'S(j,n, Z,X) + S2(j,n, Z, X)|I(Z < r)@(X) }
[fX4(X, Z)]?

- Ll UOT STIX (2] —25Tx(;|§’)25((xj:;,z,x) + S2(j, n’Z’x)dZ]QD?(x)da:
1 r QT|X 2lz) — STlX(Z|Z))2
_ J [ J STIX( |f1<vz((a?,2) dz]<p§(x)dx
1 TO[QS;|X(z|x)(STX(z|x)S(j,n,z,x)) 5
+L [L FXZ (2, 2) dz]gaj(m)das

* Ll ”0 e Z}Qz_(ijx(zm)ydz] 2 () da. (A.32)

The first integral on the right side of (A.32) can be evaluated as

Jl [Lr STIX (22)[1 — (ST|X(Z\m)]dZ]<p§(x)dm =d+0j(1). (A.33)

0 [ (, 2)

Here d = d(STIX, fXZ r). The second and third integrals, using definition
(A.29), can be evaluated as 0,(1). We conclude that

E{(0F — 0,)%} = n"'[d + 0;(1) + 0, (1)]. (A.34)

Now note that the proposed Fourier estimator §j mimics the oracle’s Fourier
estimator by replacing unknown function S(j,n, z, ) by its estimate

SG.n,z,x) = n"L 2 D Z A (Z)n (X)) n(@)

XZ(
1=1keJ (jn) i=0 f2(X, 21)

Further, we may write,

’\ _1 j,n Zl,Xl S(j,n,Zl,Xl) o) ~
(X)) =07+ A;. (A
Z X72(X,, 7)) pi(Xy) =07 + A;. (A.35)

Now we evaluate the mean and variance of Ej .Set N(1) :={1,2,...,n}\{l}
and write

(S(j,n, Z1, X1) — §<j,n,zl,X1>>soj(X1>}

E{EJ}ZE{ fX’Z(Xl,Zl)

I CAT NG TNPATNES ,
{ZIEN(I ) ke (o) Dt Rl l)}o;]?,(z());i),él)l)%( )~ S(j,n, 71, X1)

an’Y(Xl Zl)

<o} - w5 SEAAR) o)

X.2(
ke T (n) 1=0 [fX2 (X1, Z1)]?
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The first expectation on the right side of (A.36) is zero because
E{p; (X0)[f7 (X1, Z)] 7'} =0,
and the second is of order n~1¢2. We conclude that

(A} < On~'¢?

’I’L

(A.37)

Next we evaluate the second moment of Ej. Write,

T2\ —2 ]7” Zlel) S(janathl) )
E{A%} = Z;E{ TR ) i (X))

g(]; n, Zua Xu) * S(], n, Zu7 Xu)
fX)Z(X’Un Zu)
There are two types of terms in the double sum. The first one is when u = [ and

the second when u # [. We explore them in turn. For the case u = [ we note
that

wj(xu)}. (A.38)

E{[§<j’nvzl7Xl) - S(], n, Zl7Xl)

2
XZ2(X,, 2) %(Xz)] }s Cn™'ql. (A.39)

If u # 1, set N'(u,l) :={1,2,...,n}\{u,{} and write,

Alapi( i
Wme—nt 3y Al L)l et

seN (u,l) ke T (j§,n) i=0
oy y $ A e Xo Ui Gen(@)
X Z
se{u,l} ke T (j,n) i=0 f Xsazs)
::Sl(j7n7zyx)+§2(j,n,z,x)_ (A.40)

Using the new notation we can write (recall that we are considering r # [)

By
L
- p{ PR BTl S SO B0, )
_ {51(3,71 Zl;;z(lz){vs(g’)n Zl’Xl)@j(Xz)

(X154




‘Regression_for CSC 51

Sl(ja n, Zua Xu) B S(]7 n, Zua Xu)
" FXE(X,, Z) i}

gl(jvna Zl7Xl) _S(j,'fI,Zl,Xl)
fX’Z(Xth)
§2(j7na Zl7Xl) §2(j7na ZTmXu)
Pt 7y ) e,z o)
=: By + By + Bs. (A41)

So(jy 1y Zuy Xo)
fX’Z(Xua Zu)

+21E{ 5 (X1) 2 (Xu)}

+]E{ 05 (X1)

Term Bj on the right side of (A. 41) is zero because So @;(x)dz = 0. Using
(A.39), E{[S2(j.n, X;, Z;)]*} < Cn~2¢} and Cauchy-Schwarz 1nequahty we get
|Ba| < Cn=3/2¢2. Finally, |B3| < Cn_qul. Combining these results in (A.41),
and then using the obtained relation and (A.39) in (A.38) we conclude that

E{ﬁ?} < Cn 32k (A.42)
Now we can combine the obtained results and conclude that
[E{6;} — 0;] < Cn~'q2, E{(8; —0,)°} = n ' [d+05(1) +0a(1)].  (A43)

Properties (A.43) of the Fourier coefficient estimator éj are the same as (A.24)
used in the proof of efficiency of the blockwise shrinkage estimator, recall the
proof of Theorem 3.1. This finishes the proof of Theorem 3.2.

Remark A.1 It follows from the established properties of the Fourier estima-
tor 0; that it matches performance of the oracle’s Fourier estimator 9;‘ with
sufficient accuracy for the efficient nonparametric estimation.

Proof of Theorem 3.3 Fourier estimator (3.33) is the sample mean estimator.
Accordingly, we get E{0;} = 60; and E{(0; — 0;)?|]] = Du«(1 + 0j(1)). These
relations allow us to use Lemma 3.2, and it proves Theorem 3.3.

Proof of Theorem 3.4. The proof follow the steps of the proof of Theorem 3.1.
First, it follows from Theorem 3.3 that the smoothing oracle (3.34) is efficient for
MCSC and within factor (Dy/D)?*/(22+2) from being efficient for CSC. Second,
introduce the blockwise oracle-estimator

an kn
oz 1 s (@ :
Ze EGH(M > (A.44)

jeBy

Here ©, := L 'y jeBy j are Sobolev functionals. Note that the studied adap-
tive estimator (3 38) mimics the oracle. Directly following the proof of Theorem
3.1 we establish that the blockwise oracle estimator m. is efficient for MCSc
and that (3.38) is also efficient. Theorem 3.4 is verified.

Proof of Theorem 4.1. We are considering MCSC and CSC samplings in
turn. For MCSC there is an extra sample of size n* (we are considering a more

| sctting than i le size n) from (X, Z) that is used .
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the joint density fX'Z. Due to the extra sample, we can separate observations
used to estimate the nuisance function and the regression, and at the same time
prove a number of needed technical propositions. Then we explore the CSC
when the same observations are used to estimate the nuisance joint density and
the regression.

For MCSC the Fourier estimator is

/
i Z AI(AiZr < m)ei(AX) Z A(Z < r)ps (X)) (A.45)
F(NX), A Z) =1 F(X1,2))
Note that we skipped some factors A] to simplify the formula. In (A.45)
flz, 2) = max(1/Inln(n, + 3), f(z, 2)) (A.46)

and f(x, z) is the projection density estimate

Fao) =t Y Y elXeuZe)g@n). (A

r=1(i,s)eN

In (A47) (XE1,ZE1), - - -+ (XEBnys ZEny ) is the extra sample from (X, Z), N :=
{0,1,...,[1 —|—n1/4j}2, {¢;} and {1} are cosine bases on [0, 1] and [0, 7], respec-
tively. The truncation from below in (A.46) allows us to use f in the denomi-
nators of (A.45).

Recall that the nuisance joint density f*Z(x,z) is supported and bounded
below from zero on R, := [0,1] x [0, 7], and in what follows we are considering
only (x,z2) € R,.

The following elementary relation will be useful (to simplify formulae in what
follows we may write f(z,2) := f%%(xz,2))

L1 fwa) - fae) | (f2) = fe2) A
Faw Twa " P@D feorws O
Using this relation we can rewrite (A.45) as
A Api(X) | s Al (X)X, Z) — (X0, Z)
Z [(Xy, 7Z) 2 [2(X1, Zy)

o1 Z A, (X)) (f (X, Z1) — J?(Xl,Zl))Q
=1 f(Xth)fz(XlaZl)
5 + ﬁl + Ag. (A49)

Note that 5;" is the Fourier estimator (3.21) used in Theorem 3.1, and hence

we only need to explore terms Ay and A,. We begin with the following technical
result.
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Lemma A.1l. Suppose that a bivariate function g(x, z), (z,2) € R+ has a con-

tinuous mized derivative 0% f(x,z)/0xdz. Set

VYis 1= LT JOI g(x, 2)pi(x)s(2)dxdz

for Fourier coefficients of the function. If

Tl
f J [0%g(x, 2)/020z])*dxdz < oo,
0 Jo

then . X
Z (is)?~Z = (7“2/71'4)J- f [0%g(x, 2)/0x0z])*dxdz.
i,s=0 0 Jo
If
r prl
f J [0g(z, z)/0x)*dzdz < oo,
o Jo
then
© r rl
Z PPy = 77_2‘[ f [0g(x, 2)/0x)?dxdz.
i,5=0 0 JO
If
r rl
f J [0g(x, 2)/02])*dxdz < o,
o Jo
then

2,5=0

If (A.50), (A.52) and (A.54) hold, then
o0
DA+ + 8707 = Gy,
1,s=0

where

r rl
Gy o= [ | [lote. 2 + 7 2feg(a,2) /0]

0

[}

+ (r}/m®)[og(x, 2)/02)* + (r*/x*) [0 g(x, z)/&x@z]z]dacdz,

and for any pair (ig, So) of nonnegative integers

Z isl < ex(1+740) 72 (1 + 50) "2 In(3 + i) In(3 + 50) G/,

1210,52S0

where ¢y is an absolute finite constant.

i 22 = (r?/n?) La Ll[ag(x,z)/ﬁz]Zdazdz.

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)
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Proof of Lemma A.1. We begin with (A.51). Using the Parseval identity, the
sine basis {2'/2sin(7jz), j = 1,2,...} on [0,1], and integration by parts we can
write for any z € [0, r],

@ 1

L (e, ) fordz]Pdi | J

i=1 0

[0%g(z, 2)/0202]2"/? sin(ﬂ'ix)dx] ’

= Z [[39(3:, 2)/02]2Y/? sin(miz) o

1

— (i) Ll [0g(z, 2)/02]2"/? cos(m'x)dx] ’

‘ =0
K3

i (mi) [J- [0g(x,2)/0z]pi(x ] i (i) (A.59)

Using the Leibnitz theorem we note that

1 L g(x, 2) s (7)da (2
5i) = f [ate 2ol pu(ade - DI DRI _ GG -y g

where G;(z) := So g(x, 2)p;(x)dz.
By repeatmg steps made in (A.59), only now using the sine basis
{(2/r)Y?sin(nsz/r), s = 1,2,...} on [0, 7], we can write for ¢; defined in (A.60),

T o0 T - 2
Jo @7 (2)dz = ;1 [L oi(2)(2/r) / sm(nsz/r)dz]

r

_ i |Gi=) 2/ Sln(ﬂsz/r)‘zzr ~ (ns/r) f Gi(2)(2/r) V2 cos(wsz/r)dzr

0

i (ms/r) 2[JT (z)r_l/ngs(z/r)dz]Q. (A.61)

Recall that G;(z) := Sé g(z, z)pi(x)dz, and using the Fubini theorem we con-
clude that

Lr L [0%g(x, 2)/0x0z])*dzdz

= S @isse?| [ 1] o et o arts]

i,5=1

(i5)* s
0

= (a/r%)

ki agk

Equality (A.51) is proved.
Now we verify (A.53). Following (A.59) we can write,

[1[69(33 z)/0x)*d i [ [ [0g(x, 2)/0x]2Y/2 51n(mx)dw]2
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i [ z, 2)2Y? sin(wizx)

i=1

z=1 1 2
0 (m)f gz, z)2"? cos(m’z)dx]
r= 0

=] [ ot ] (r62)

Next, using the Parseval identity we get

LT [Ll g(, Z)%(x)dxrdz
— i [LT Ll g(z, 2)pi(x)r~"2ps(z/r) dxdz] i 2 (A63)

Combining (A.62) and (A.63) we may write,

J 1 [0g(x, z)/0x] dx]dz 2 JT [Jl (x,z)cp,-(m)da:rdz

s=0 1:0

MS

_21( [

Relation (A.53) is verified. Relation (A.55) is verified similarly to (A.53).
To verify (A.56), note that (1+4%)(1+4s?) = 14142+ s*+i?s%. This, together
with the Parseval identity, (A.45), (A.53), and (A.55), verify (A.56).

Now we are verifying (A.52). Using the Cauchy-Schwartz inequality and
(A.56) we may write,

Z ‘%qu < [ Z (1 +3)7Y2(1 4+ )Y [In(3 + i) In(3 + s)]fz]

210,52 80 1210,5280

x [ N @)1+ %) 23 + i) In(3 + s)]zﬁs] (A.64)
1=10,5=80

Because Y, i '[In(i)] 7 < oo, the first factor on the right side of (A.64)

is bounded from above by a finite absolute constant calculated for the case

io = so = 0 (recall that To evaluate the second factor, we note that (1 +

i2)1/2In*(3+10)/(1+42)"/? = In?(3+1) for any i > ig > 0, and that (1+i3)~"/? <

2'/2(1 +ig)~'. This and (A.56) allow us to write for the second factor on the
right side of (A.64),

D W+ A+ )P nB + i) In(3 + 5)]*7,

i=10,8=80

< (L+i0) 2B +ip)(1+55) 2> B+ s0) Y. (L+i%)(1+ 5797

210,52 80

< 2(1 +1g) (1 + s9) "1 In?(3 +ip) In?(3 + 50) Gy
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Combining the obtained results in (A.62) we verify (A.58). Lemma A.1 is proved.
We need one more technical result about the proposed density estimate.

Lemma A.2. Let density f*%(x,z) satisfies the assumption
GfX,Z < o0, (A65)

where G yx.z is defined in (A.57). Then, for some positive constants co and c1,

~

the defined in (A.47) estimate f(x,z) satisfies the exponential inequality

H”(< max (f(e.2) — 7 (.2)| > ey ) <2nde et (A66)
T,2)ER,

Proof of Lemma A.2. We begin with the following relation,

Ja) = 2w == Y ripilaaou(/a)

(i,8)¢N

+ 0 et Y ei(XE)$s(Zm) — kisloi(@)¥s(2)
i,8€EN =1
=: Dy(z,2) + Dy(x,2) =: Dy + Dy. (A.67)

Here N := {0,1,...,N}? with N := |1 + n}k/4J. The first term D; is evaluated

using Assumption 4.1, Lemma A.1, and the Cauchy-Schwarz inequality (below|
a more general than needed relation is presented for future use)

IDil=1 ), rispi(@)aPos(z/a)l <2072 30 ||
(i,8)¢N (i,8)¢N
<207 N @+ Y (L)1 ]
(i,8)¢N (i,8)¢N
<CON"V2 < ong'®, (A.68)

Recall that C's denote generic constants.
Analysis of the second term in (A.67) is more involved. We begin with a
remark that we may rewrite Dy as

Mg

By=ni' M1 Y eilXeus(Zepi@)es(2)]

I=1 " (i,8)eN

“[ Y mepi@)u ()] =0y % | Dot — Dan|. (A.69)

(i,8)EN 1=1
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Note that E{Dy; — Do;} = 0. To evaluate the second moment of the difference
we note that Lemma 1 yields

[ee]
D7 kil < C. (A.70)

1,5=0

Next, using the fact that the basis functions are bounded, (A.70) and the ele-
mentary trigonometric identity

pi(2)ps(2) = 272 [pi—s (@) + pirs(@)],

we can write,

E{(Da1 — D)%}
o [E{(%(XEl)i/Js(ZEl) — Kis) (i (Xm)¥s (Zm1) — Kirs) }

(4,8)EN (3’,8")EN
xpi(@)s (2)pu (2)pw (2/a) |

<C S lsizisra| + miskig]] < ON? < Cny/?. (A.71)
(3,8)eEN (¢/,s")eN

Here Kj+i s+s denotes any possible plus or minus combination of the indexes
which is created by the above-mentioned trigonometric identity. Let us also note
that

|Dyy — Doyy| < CN? < Cni/?. (A.72)

These results allow us to use the Bernstein exponential inequality [18], p.19
and conclude that

2 /2, 2
~ n*u ny “u
Set u := cln;l/ 8 for some positive constant c¢;. Also recall notations Eg =

Dy(z, 2) introduced in (A.67), that (z,z) € R,, and then conclude with the
help of (A.73) that for any k pairs (z;, z;) € [0,1] x [0, a] we have

k
Z (|D2 Xy 2i)| = c1ng -8 ) < 2k:exp{—con,1k/4}. (A.74)

The inequality (A.72), together with (A.68), is “almost” what we want to
prove, only additionally we need to check that a similar inequality holds simul-
taneously for all points (z,z) € R,. To check this we use a rough inequality]
|02D5(z, 2)/0x0z] < CN* < Cny a.s. (it is indeed a rough but sufficient for
our purposes inequality, and a better result may be obtained via analog of the
generalized Bernstein inequality for the derivative of a trigonometric polynomial
discussed in [41], p.96. Keeping in mind the maximum value of the derivative,

« . 2 . ~
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that if (z;,2;) belongs to a sub-rectangle and |Da(zi, 2)| < ciny /%, then the
mean value theorem implies that for all points from this sub-rectangle we have
| Do (z, 2)| < cong_l/8 for some finite ¢. This concludes the proof of Lemma A.2.

Remark A.2 The exponential inequality of Lemma A.2 allows us, whenever it
is convenient in a proof, to replace the density estimate f (a: z) by f (ac z) and
vise versa. Indeed, it is known that the underlying bivariate density f(z,z) is
bounded below from zero on R.., and hence probability of the event f (x,2) #
F(x, 2) is exponentially small in n, (and hence in n) while all the studied risks
decrease as some power of n.

Following Remark 6.2, denote by Ay and A, the expressions for A1 and AQ,
defined in (6.55), only with f being replaced by f , and recall that definitions of]
these joint density estimates are presented in (6.52) and (6.53). We begin with
evaluation of second moments of A; and A, in turn. Recall that to simplify
formulae we may write f(x, z) in place of f*+Z(x, z). For the second moment of
El we get

E{A?} = n_lE{[AI%(X)(J;(Q)(()’(Z)Z)_ (X, Z))]2}

+n%n(n — DE{V?} =: A1y + n 2n(n— 1) Ao (A.75)

Here

‘ CE €T,z X, zZ)— X,z TAZ
Ve “s”| L, 2)p; (1) [f (2 2) — Fla, 2))dad

f J STIX (2|2) f Nz, 2) i (x )[ Z (Kis — Ris)pi(2)1s(2)

(i,8)eN

Z Kispi(x )] dxdz

(i,5)¢N
= Z (Kis — Ris)Vitjs + Z KisVitj,ss (A.76)
(i,8)EN (i,8)¢N
and we used notation
Vitjs 1= J J STIX (2|2) f~Hw, 2)0 ()i ()1 (2)dadz. (A.TT)

This notation is motivated by the trigonometric identity (recall that we already
used it before)

pi(2)p;(x) = 272 [piy(2) + pir;(2)]. (A.78)
Further, for the considered bivariate functions S(z|z) and f(z, z), with the help
of Lemma A.1, we get

maxz Z it sl < C. (A.79)

=0
J 1=0s=
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Also, recall our notations for Fourier coefficients of the density and its estimate,

Kis 1= JTJ f(z, 2)pi(x)ps(z)dzdz, (A.80)
0 Jo

and

Ris = j ' j Tl )pula)os (2)drd

S (X e)ea(Zen). (A81)

r=I

Now we are in a position to evaluate the two terms on the right side of (A.75).
For the first term we get using Lemma A.2 that

Ay < Cngn (A.82)

Evaluation of A5 is more involved, and we begin with the following useful
proposition.

Lemma A.3. Let Assumption 4.1 hold. Consider k;s and R;s defined in (A.80)
and (A.81), respectively. Then

E{%zs} = Kis, (A83)
E{(Fis — ris)’} < Cny', (A.84)
and using notations gog"ii,(:c) = ¢j(x)pi(z) and y;;"ii, () := ;(x)y (), we
have
|E{(%15 - ’iis)(%i’s’ - Hi’s’)}‘
r prl
— n;l[fo L [z, 2) ol (2)iy o (2)dedz — msnils/]
= ”Ql[miz",sis' — Kiskirs ] (A.85)
where

[e¢]
o Ritir st | + [Riskina|] < C. (A.86)
i,s=1

Proof of Lemma A.3. Recall that

Ty
Ris = ny" 2 0i(Xer)0s(ZEr),
=1

and this yields (A.83) because k;s = E{p;(X)9s(Z)}. Relation (A.84) follows
from (A.83) and independence of pairs (Xg;, Zg;) in the extra sample. To check]
(A.85) we write using (A.83),

E{(%a — Kj )(ﬁ;/ 1 — Ry /)}
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Ty

=12 Y B{(0i(Xen)¥s(Ze) — kis) (0 (Xp)ps (Zai) — Firs)}

l1,lo=1

= ny "E{(0i(X)¥s(Z) — kis) (0 (X )er (Z) — Kier)}
a 1

= ";1[J J f(x,2)piri (2)srs (2)dxdz — ffisﬂz"s/]
o Jo

=i 0y [Ritirsxe — Riskirg]- (A.87)
This relation and (A.71) verify (A.85). Lemma A.3 is proved.

Using Lemma A.3 and (A.76)-(A.81) we can evaluate Ay defined in (A.75).
Write,

Ay = E{V?}
2
= E{ Z (Kis — Ris) (Kirs — %i's')Viij,sVi'ij,s'} [ Z KisVitj,s ]
(3,8),(¢,s")eN (i,8)¢N
=: A1o1 + Aqao. (A.SS)

For the first term, using (A.70), (A.79) and (A.87), we conclude that

-1 -1
A1 = ng 2 [Kitir,stsr — Riskire [VidjsVirtjs < Cng . (A.89)
(,8),(#",8")EN

To evaluate Aj2o we recall that an underlying parameter « is at least ag = 2.
This yields that for all sufficiently large considered in Theorem 4.1 sample sizes
ny and n we have j < N/2 (we have even stronger relation j < 0,%(1)N). Then,
using Lemma A.1 and the Cauchy-Schwarz inequality we get,

A122 = RisVitij,s H Vz+j s 4 (Ago)
» < ¥ ¥

(4,8)¢N (i,8)gN (3,8)¢N
This yields that
Ap < C[Tl;l + N74], (Ag].)
which in its turn, together with (A.82) and (A.75), yield the following result for
Ala -
E{A?} < C[n;' + N74]. (A.92)

Now we are evaluating the second moment of Az. Recall that this statistic is
defined in (A.49) and we can write it as a sum of two terms,

A A (X)X, 2) — (X0, Z0))?
A2 =n ZZ; f?’(Xth)
_12 N (X)(f(X1, Z) — (X1, Z1))?
lezz)fg(Xz,Zl)
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= Ao + Aos. (A93)

Recall our earlier explanation that for the purpose of estimating moments
with the desired accuracy, and according to Lemma A.2 we may replace in A21
the density estimate f by f Let us denote this modified term as A»; and explore
the second moment of As;. Using Lemma A.3 and formula

fla,2) = flx,2)
Z Kis — Hm SDZ 9 Z /’929%01 9 ) (A94)

,8)EN (i,8)¢N
we may write,

E{ﬁﬁl} _ nlE{[A/%(X)(fJgEXZ?)Z)
T|X z|x z) — Nac,z 2 2
+n~ nn—lIE{ J J- ST (e)es(@ >((z(z) ) = f(,2)) d:cdz] }

-1 ~ ~
<Cn n* {[ Z (Hi1s1 - ﬁilsl)(ﬂizsz - Hi282)yi1ii2ij,51i32
(i1,81),(i2,52)eN

~

f(X,Z))Z]z}

> D7 (Kivss = RiysRigs Vi tist snts
(i1781)EN (i3,33)$N

2
+ Z KZESS’{i484yi3ii4ij,33i84] }
(i3,53),(14,54)¢N
1 —1/8 ~ ~ 2
< C[n T +]E{[ Z (Hilsl - "%131)(’%232 - Hi2sz)yi1ii2ij781i82]

(i1,81),(i2,82)EN

2
+[ Z RizszRigsy Vi3ii4ij,53is4]
(43,83),(i4,54)EN

~ 2
Z 2 (ﬁilsl - Hi151)Hisssl/ilii:sij,sliss] ]

(i1,81)eN (i3,53)¢N

= C[n"'ny® + A1y + Ag1a + Anis). (A.95)

Here
Viitistj,s14s2
[ [ S (o) g, (s
f3(z,2) ' '
Applying the Cauchy inequality we evaluate Aajq,

2
Aop < E{[ Z (Kiys; — %ns1)2|yi1ii2ij,sli52|] } (A.97)
(41,51),(i2,52)EN
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Now note that E{(x;, s, —Ri,s,)*} < Cnz? and relation (A.79) holds for parame-
ters defined in (A.96), namely 2252:0 |Viy +istj,s1 45| < C. Using these results
we continue (A.97),

2
Aoy < C[ Z (Kiys, — %7;181)2] < Cn;2N4. (A.98)
(il,sl)EN

For evaluation of A1 we can write using the Cauchy inequality,

2
[ Z Hi353'%i454l/i3ii4i]'753i54]
(i3,53),(ia,54)¢N

2 2 —4
< [ Z Hi383|’/i3ii4ij753i84|] <CON™". (A~99)
(i3,83),(14,54)EN

Evaluation of As13 may be converted to the previously considered As1; and
As1o by using the inequality

2| (Kilsl - %7;151 )Ki353 Viytis+j,s1ts3 |

< (Kiysy = Riysy ) Vi biatgoontss| T Fioysy Vi biatisn+ss -

Combining the obtained results in (A.95) we establish the following upper
bound,

E{A3} < Cln 'y ® + niN* + N74). (A.100)

Now we are evaluating the second moment of ZQQ defined in (A.93). We begin
with writing Aoy as

Agy = ! Z Ajoi (X)) (f (X1, Z) — F(X0, 20))°
=1 F(X0, 2) 13(X0, Z)

~

il i A (X)[(f(Xy, Z1) —Af(Xth))S - (f(X1, Z1) = [(Xi, Z1))°]
(X0, Z) f2( X1, Zy)

=: 2221 + ZQQQ. (A.lOl)

Recall that f is bounded below from zero by 1 /In(In(ny + 3)), and according

to Lemma 2 the deviation |f(z,z) — f(z,2)| is larger than Cny"® with the
probability decreasing exponentially in n,. These two facts imply that

E{AZ,,} < ClIn(In(ns + 3))]?n;>*

{ Zn:[ 195 (X0)( (Xl(,Zz)Z) F(X1, 7)))? ] } (A.102)

Then the expectation on the right side of (A 102) is evaluated following the

lines (A.95)-(A.100). Similar] Il that flz,2) % Flz.2) only if Jlz,2
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1/In(In(ny + 3)), and then according to Lemma A.2 that event occurs with the
probability that decreases exponentially in n,. This yields a rough but sufficient
for our purposes inequality E{ A2,,} < Cny 2. Combining the results we conclude
that

E{AZ,} < Cny"""°. (A.103)

Using (A.100) and (A.103) in (A.93) we get
E{A2} < C[n 'ny"/® + n2N* + N~4 4+ 010 (A.104)

Finally, combining (A.92) and (A.104) in (A.49) and recalling the used N =
1+ nl/ |, we get the verified inequality

E{(6; — HN;“)Q} < Cnz' whenever ny > Cn. (A.105)

We conclude that the mean squared error of data-driven Fourier estimator 5
decreases with the same rate as the mean squared error of the oracle-estimator
0, that knows the underlying joint density f*-Z(x, z). Moreover, if ny/n — o0
as n — oo then

E{(0; — 0;)*} < (1 + 0,(1))E{(0% — 0)*} + 0, (1)n~%. (A.106)

We have proved that for MCSC the plug-in methodology works and the
Fourier coefficients can be estimated as well as by the oracle-estimators us-
ing the nuisance bivariate density f*#. The presented results also give us all
technical propositions needed to prove Theorem 4.1 for MCSC.
Now we are in a position to consider CSC. Recall that the studied Fourier
estimator is

S SGi,n, Zo, X) (2 < r)ei(X1) A107
z; F(Xi. 2) ( )
Here ~ _
f(z, 2) == max(1/In(ln(n + 3)), f(z, 2)), (A.108)
Z 2 902 Xl l/fs(Zz)SDz( )ws(’z)a (A109)
=1 (4,8)iN

N ={0,1,...,N}?, N := |1+ n'/4],

S(j,n z,x) -1 2 Z Z Ak(Z) i (X)¥(2)pr(@ >, (A.110)

1=1 ke T (j,n) i=0 F(X0, 2)
and J(j,n) = {0,1,...,¢o}\{j} if 0 < j < b, and J(j,n) = {0,1,...,b,}
otherwise. R
Our aim is to evaluate E{(6; — 6;)?}. Write,
b, =n Z SUn, Z1, X)l(Z) < 1) (X0)

(X, 70)
AR Rt V)
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4 Zn: [S(j,n, Z1, X1) — S(jA, n, Z1, X)) [ 1(Z) < 1), (X0)
-1 [(Xy, Zy)

i S(g,m, Z1, X)) [ 1(Z) < 1) (Xq)
=1 f(Xl7Zl)

L [8G, s Zi, X)) — S(G,n, Z, XOV(Z0 < )i (X3)

~

ZZ F(X1, 2)
i SGi,n, Zo, X)L (Zy < 1) (X)) (f (X0, Z) = F(Xi, Z0))
=1 f2(Xlazl)
ot 37 180 = S m 2 XU < 1) ) (4, 20) = J (X0, )"
=1 f(X0, 20) f2( Xy, Z)
9 +A +Bl + B2 (A.lll)

Recall that 5;" is the oracle’s Fourier estimator that was used in Theorem
3.2. The term ﬁj is the analogue of statistic /Nlj defined in (A.35), it is analyzed
similarly to (A.36)-(A.41), and accordingly ]E{(A;)Q} is in order smaller than

—1. The terms El and ég are analogues of statistics /Tl and ﬁg defined in
(A.49). It was established that E{A2} and E{AZ%} are of order ny'. Here we
need to establish a stronger result and show that the correbpondlng second
moments of B1 and Bg decrease faster.
We are evaluating the second moments of 31 and B2 in turn. Using Remark
A2 we may replace f(ac z) by f(x z) and then denote the new term as By. Let

is rewrite f(z,z) as

f@z)=m-1"" 3 D il XD)Us(Z)pi()is(2)
le{l,....n}\{7} (i,5)eN

+n ! [ —(n-1"" > D1 el XD)s(Z)ei(@)s(2)
le{l,...,n\{5} (i,5)eN

+ Y @) Z)pi@) ()]

(i,8)EN
= Jl@,2,—j) + di (@, 2,j). (A.112)

Here f(x, z,—j) is a density estimate based on all observations apart of (X, Z;),

and Jl (z, z,j) is a small remaining part of the density estimate which is of order
n~'. Similarly, we may separate two pairs (X, Z;) and (X}, Zj,) of observations

and rewrite the estimate f(z,z) as

fa=m-27" Y Y aX)Z)eia)(:)

le{1,...n\{5,k} (i,5)eN
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—2

i S (X (Z)ei ()s(2)

le{1,....n}\{4,k} (i,s)eN
> Y wilX)n(@)eiw)s(2)]
le{j,k} (i,8)eN
=: f~($727 _ja _k>+52($az7j7k)' (A113)
For the second moment of él (recall that according to our notation El is él
with f being replaced by f) we may write using the new notations,
E{B}}

~

1 (LAY = S0, n, 21, X)) (21 < 1) (X0) (f (X1, Z1) — f(X3, Z0)) 72
" E{[ : 72(X1, Z1) ] }

{ﬁ [A] = S, n, Z, X)L (Zi < r)p; (X)) (f (X1, Z1) — (lezl))}
[2(X0, Z)

=1

— n—l]E{ [[Ag — S(j,m, Z1, X0)I(Z1 < r)g;(X1)

~

LU, 2) - (Xl,zl,—m—c%(Xl,Zl,l))]?}

fZ(Xlazl)
2
(n—1) {H S(i,n, Zi, X0V (Z0 < r)p; (X0)
X 2) — [0, 2, -1, -2) JQ<XZ,ZZ,1,2>}
(X1, 2)
= Bll + Blg. (A114)

Using the Cauchy inequality and Lemma A.2 we evaluate By,

Bll < 271_1
(AL = S(j,n, Zy, X0 )I(Z1 < 7)oy (X0)(f (X1, Z1) — F(X1, Z1, —1)) 2
XE{[ 72(X1, Z1) ] }

o ([ = S, n, Z0, XO)(Z1 < 1)y (X)) (X0, Z1,1)) 72
+n 2E{[ s fQ(Xll,Zl) e ] }

< COn™%8, (A.115)

Next we are considering Bi,. Write,

~

L

+2E{[A] = S(i.n. Z1, X)) (Z1 < 1)p;(X1)
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o (f(X1,21) — f(X1,Z1,—1,-2))d2(X2, Z2,1,2) }
F2(X1, Z21) f2( X2, Z2)

+ CE{‘JQ(Xl’ Zl, 1, Q)JQ(XQ, 227 1, 2)|} =: 3121 + 3122 + 3123. (A116)

Note that |(§2 (7,2,1,2)] < Cn~'¢2 almost sure, and this together with Lemma
A.2 imply
Bis + Biag < Cn™10°. (A.117)

Now we are evaluating Bis;. This term is the analogue of IE{‘N/Q} intro-
duced in (A.75)-(A.76). In what follows we are using notation ;s := (n —
2) 7130 s 0i(X0)Ys(Z;) for Fourier estimates of fl(x,2,—1,-1). It reflects the
fact that f(x, z,—1,—2) is based on pairs (X3, Z3),...,(Xn, Z,) but otherwise
it is our density estimator based on n — 2 pairs of observations, check (A.113).
Then we may write for the integral in Byoq,

‘[ f S(j,n,z x))f_l(x,z)%(x)[f(x,z) - ~(96,2,—1,—2)]d33dz

- j = SGim o) @ e @] Y (s — Fasdpi(e)a(2)

(i,8)eN
+ Z Kiswi(T )]dxdz
(i,8)¢N
= Z (Kis — Ris)Vitjs + Z KisVitj,s, (A.118)
(i,8)eN (i,8)EN

where here (compare with (A.77))

Vitjs i= J f S(j,n,z,x))

% F 7@, )y (@)1 (05 (2) dadz. (A.119)

Recall that this notation is motivated by the trigonometric identity

vi(z)pj(x) = 271/2[%’—;‘ () + pigj(w)]. (A.120)

Recall that in the first step of the proof the key property of v;; was (see (6.85))

max ZO Z [Vitjs| < (A.121)
It is also valid for (A.119) with formally setting S(j,n,z,2) = 0 when the
corresponding functional Gy of Lemma A.1 is bounded by a constant. In our

case, because the Fourier projection approximation S(j,n,z,z) is subtracted
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from the underlying conditional survival function S(z|z), in Lemma A.1 the
functional G is defined by the bivariate function

g(x,2) := (S(z]2) = 8(j,n, 2,2))/ f ¥4 (x, 2),

and accordingly the functional is bounded by 0;(1) 4+ 0,,(1). This and (A.58)
yield

maXZ Z Witis| = 0;(1) + 0n(1). (A.122)

=0
J 1=0s5=

This relation explains why the sample size n is sufficient for estimating the
underlying joint density fXZ with the accuracy yielding

Bia1 = [0j(1) + on(1)]n ", (A.123)
This result, together with (A.115)—(A.117), yield
E{B}} = [0;(1) + 0a(1)]n"". (A.124)

Now we are evaluating E{B2} where B, is defined in (A.111). Write,

~

LA = SO, Z X2 < ) (XD (F(X0 Z) — F(X0 Z0))?
32:n12[z (.n, Zi l](lfgggi(Zl)l)((l 1) — f(X1, 1))

=1

~

-1 i [A] = S(4,n, Z, X)) (21 < )i (X)) (f (Xu, Z0) — (X0, Z0))°

= égl + Bas. (A125)

Recall Remark A.1 which explains that according to Lemma A.2 we may
replace in 321 the density estimate f by f Denote the corresponding modified
term as B21 and explore it using Lemma A.3 and the equality

~

fla,2) = flaz) = Y (kis — Ris)pi(@)s(2)

(i,8)eEN
+ Z Kisi(X)s(z/a). (A.126)
(i,8)¢N

We may write,

E{B}) - nflm{[[ﬁ’ = SGn 2, Xl)]I(fo(TX)g()X)(f(X, 2) - JO5 2y

—9/8 ~ ~
<Cn 4 JE{[ > (Kivsy = Fiysy ) (Kizsy — Rigso)Via tiatjsr +s2

: \ (4 YeA
1,51/, (t2,52)</V
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+2 ) D0 (Kivss = Riys, JRigsgVististsnts
(il,sl)EN (i3,53)$N

2
+ Z “i383”i4S4Vi3ii4ij,S3iS4] }
(i3,53),(i4,54)¢N

<O B4 B{l Y (hias — Five) (izss — FiaeaVis intsor s |
(1,51),(i2,52)EN

2
+[ Z Hizss’%i484yisii4ij,53i84]
(i3,53),(i4,52) N

+E{[ Z Z (K/ilsl - %hsl)ﬁi?,ssyiliisij,slise,]Q}]
(i1,81)€N (13733)¢N
=: C[n™"® + By11 + Baia + Bois). (A.127)
In (A.127) we used notation

Vi +iz+j,s1+s2
- j Z X ] 7 [ S1 ED)
Rr f (LC, Z)
Now note that similarly to (A.122) we have

0

max > Vititjss = 05(1) +on(1). (A.129)

12,82 .
’ 11781:0

Next we are evaluating terms on the right side of (A.127) in turn. Applying
the Cauchy-Schwarz inequality and E{(ki,s, — Ri,s, )%} < Cn~2 we get

2
~ 2
Bon < E{[ Z (Hilsl - Hi181) ‘Vi1ii2ij,s1i52|] }
(i1,81),(i2,52)EN

— los()+on(ME{[ 3 (nilsl—%ilsl)f}:[oj(1)+on(1)]n*1. (A.130)

(il,Sl)EN
Term Bspo is evaluated with the help of the Cauchy-Schwarz inequality,

2
[ Z K‘i383Hi454yi3ii4ij753i54]
(i3,53),(ia,54)¢N

2

<| Y Rl =) Tl (A131)
(i3,83),(i4,54)¢N

Term Bsjs is evaluated via the Cauchy inequality and then using (A.130)-

(A.131), and this yields E{Ba13} = [0;(1) + 0,(1)]n~!. Combining the obtained

results in (A.127) we get

n2 3 _ D2 . -1
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Next we are considering Bss on the right side of (A.125). Write,

~

Boy = ! Zn: [A] — S(jan,ZlaXl)]IA(Zl <) (X)) (f (X1, Z1) — f(Xi, Zy))3
-1 F(Xa0, ) f3(X0, Z1)

+n’71 Z[AE - S(jana Zlel)]I(Zl < T)@J(Xl)
=

=

~ ~

[(f(X1,2)) — [(X0, Z)))° — (f( X0, Z1) — f( X0, Z1))?]

X =

[(Xy, Z)) f3( X0, Z1)
= §221 + §222- (A.133)

We begin with analysis of Eggg. The estimate fA is bounded below from zero by
1/In(In(n + 3)), according to Lemma 2 the deviation |f(z, z) — f(x, z)| is larger
than Cn~'/8 with the probability decreasing exponentially inn, f(z,z) # f(x, z)

only if f(z,z) < 1/In(In(n + 3)) and according to Lemma 2 the event occurs

with the probability that decreases exponentially in n. This yields E{§§22} =
on(1)n~t. Next,

E{B2,,} <Cn~® + C[In(In(n + 3))]%*2/81@{71*1 DA = S(in, Zi, X1)]
=1

~

X [[(Zl < ) (X)) (f (X1, Z1) — f(XuZz))Q]Q}
f3(X,2) '

The expectation on the right side of (A.134) is evaluated in (A.127)-(A.132),
and we conclude that

(A.134)

E{B2,} < Cn™%8, (A.135)
Using (A.131) and (A.135) in (A.125) we conclude that
E{B2} = [0;(1) + 0,(1)]n"". (A.136)
Combining the obtained results we get
E{(0; — 0%)*} = [0;(1) + 0,(1)]n"". (A.137)

This is the result that shows feasibility of the plug-in methodology. The rest
of the proof follows along lines of the proof of Theorem 3.2.
Theorem 4.1 is verified.

Proof of Theorem 6.1 Recall that for CSC triplet (X, Z, A) the following
formula is valid,

fX’Z’A(X,Z,O) = fX’Z(X,Z)IP(A = 0|X = X7Z = Z)

= X7 (x,2)ST7 (2]x, 2). (A.138)
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Using the assumption about conditional independence of T' and Z given X, we
continue (A.138) and get

fx,Z,A(X7 2,0) = fX4(x, Z)ST|X(z|x). (A.139)

This formula allows us to evaluate the mean and variance of the proposed
Fourier estimator (6.4). We begin with the mean. Write,

E{f;} = E{m} = J;) J[o " STIX (2]x) ;i (x)dxdz. (A.140)
Now note that -
m(x) = E{T|X =x} = L STX (2|x)dz. (A.141)

Using this relation in (A.140) yields

E{f;)} = J[ . [ LOO ST\X(z|x)dz]<pi(x)dX

_ J m(x)gi(x)dx = 6. (A.142)
[0.1]"

We conclude that the proposed Fourier estimator is unbiased. Next we evaluate
the variance,

V@) =BG - 00%) - o (B [ i 5] ) - #2]

- n_l[Jooo ”}0,1]’“ de]dz B 9‘2] <On. (A.143)

In the last inequality we used the assumed inequality (6.2).
Now we can verify (6.5). First of all, note that ¢; are elements of the cosine
tensor-product basis on [0, 1]*. Then the Parseval identity yields,

~ — m(XxX 2 X = N__ )2 2 .
]E{ J[o,l]k(m(x) (x))°d } E{)(6: — 6:)*} + > 6; (A.144)

ies i¢J

Here the first term is the integrated variance and the second term is the in-
tegrated squared bias of the proposed projection regression estimator. Using
(A.143) we can bound the integrated variance,

k

E{ (0 — 0y <Cn ' [ Js

ieJ s=1

< COn~tnf /o) = 2o/ Qast1) (A.145)
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The integrated squared bias is evaluated using (6.1),

k
sup Z 0? <C max J;2 Z[l + Z iz 107
meS(ai,...,a : se{l,...,k} s —

(a1,e0m) g 7 igJ r=1

< O~ Y@roy) = o200/ (a5 +1) (A.146)
Using (A.145) and (A.146) in (A.144) verifies (6.5). Theorem 6.1 is proved.

Proof of Theorem 6.2. For the considered setting formula (A.139) holds.
Using it we get
STX(t]x) = E{A|Z = t,X = x}. (A.147)

What we see in (A.147) is the classical Bernoulli regression of A’ on k + 1
covariates (Z,X). Accordingly, we cannot estimate ST (¢|x) with a rate faster
than the optimal n~2%#/(e+1) for the (k+ 1)-dimensional regression E{A’|Z =
t,X = x} based on direct observations from ((Z,X), A’). This yields the lower
bound for rate of the MISE. Next we show that our estimator attains this rate.
‘We begin with analysis of the proposed Fourier estimator (6.15). For its mean
we can write,

Api(Z,X)

E{6;} = E{ifxz(X’ 7)

} = J[o - STX (2|x)pi(z, x)dzdx =: 6;.  (A.148)
J1]Rrt

We conclude that the proposed Fourier estimator is unbiased. Next we evaluate
its mean squared error,

2 (x,2)

Now we can use the Parseval identity and write,

T|X . 2
[0)1]k+1

E{ J[o,l]kﬂ (57X (1) — ™% (1]x))dzdlx

=E{D (0 —6:)% + . 6. (A.150)

ieJ i¢J
Using (A.149) we get
N k+1
E{> (6 — 0:)*} < Cn ' [ [ Jo < O 20/ CGostl), (A.151)
ie7 s=1
and following (A.146) we get
sup Z 07 < On~ 20/ Cas+l) (A.152)
STIXeS(a; )

Qo1 1 2t
¢
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Using the last two inequalities in (A.150) finishes the proof of Theorem 6.2.

Proof of Theorem 7.1. The assertion is established similarly to the proofs of]
Theorems 2.1 and 2.2. The only remark to make is that in line (A.3) the factor
[ (k/s)]? appears in each sum. Theorem 7.1 is verified.

Proof of Theorem 7.2. Note that éj is unbiased estimator of #; and
E{(0; — 0;)%} < di (ST, 57 i p)n ™ (1 + 0(1)). (A.153)

Then the assertion follows from Lemma 3.1. Theorem 7.2 is proved.
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