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Abstract: It is known that consistent nonparametric regression for a cur-
rent status censored (CSC) response and a univariate predictor is possible.
The paper, for the first time in the literature, presents sharp minimax the-
ory of mean integrated squared error (MISE) convergence and methodology
of adaptive estimation. Rate of the MISE convergence is classical, the sharp
constant quantifies the effect of CSC, and the results hold under a mild as-
sumption on smoothness of nuisance functions not tied to smoothness of the
regression. Then the setting is extended to a multivariate predictor. Real
and simulated examples are presented, as well as an illuminating compari-
son of theoretical results known for CSC and directly observed data.
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1. Introduction

Consider the problem of estimating a regression function

mpxq :“ EtT |X “ xu, x P r0, 1s (1.1)

where T is the continuous lifetime of interest (time to an event of interest)
and X is the continuous random predictor supported on r0, 1s. It is well known
that if mpxq is α-fold differentiable then, based on a sample of size n from
pX,T q, it can be estimated with optimal rate n´2α{p2α`1q of the MISE (mean
integrated squared error) convergence, see [12,68]. Further, if the density fT

of T is of interest and it is α-fold differentiable, then it can be estimated with
the same optimal rate as the regression, see [9,68]. This is the famous principle
of equivalence between the nonparametric regression and density estimation
problems discussed in [13].

In the paper we consider a setting when the lifetime T is not observed directly.
Instead, there exists a possibility to check status of the event of interest at
some random moment of time Z, called the monitoring time. Then the available
observation is the triplet of random variables pX,Z,∆q where ∆ :“ IpT ď Zq is
the status (indicator) of the event of interest, namely the status is equal to 1 if
the event of interest already occurred at time Z and the status is zero otherwise.
A sample from pX,Z,∆q is called current status censored. Let us also introduce
notation ∆1 :“ 1 ´ ∆ that will be frequently used in the paper. It is known
that for density estimation the CSC dramatically slows down the rate of MISE
convergence, and exact rates will be presented shortly. If the above-mentioned
principle of equivalence between density and regression holds for CSC, then this
is a bad news for the regression. As we will see, the principle breaks down for
CSC data and we will be able to estimate regression with the classical rates and
even evaluate sharp constants for the MISE convergence. At the same time, we
will also see that nonparametric regression is the exemption to the general rule
that CSC slows down rate of convergence. This is an interesting specific of the
CSC because there is no such phenomenon for right censored observations when
the sampling is from pminpT,Cq, IpT ď Cqq and C is the censoring lifetime.

Current status censoring (CSC), also known as “case I” interval censoring,
arises in different applications ranging from biostatistics and engineering to
econometrics. For instance, in a clinical study devoted to the time T from cancer
surgery to cancer reoccurrence, the follow-up examination at time Z after the
surgery determines whether or not the cancer is present. We do not observe T
and instead observe the monitoring time Z and the indicator of cancer ∆ “
IpT ď Zq. Note that ∆1 “ 1 means that at the time of examination the patient
is cancer free. A number of covariates, including age and size of tumor, may
be of interest. In rodent bioassay experiments, when the time from inducing a
chemical to developing a disease is the lifetime of interest T , sacrifices are often
used to detect the disease. Then the available information is the time Z of the
sacrifice and the indicator of disease, as well as some characteristics of rodents
and the chemical. In engineering experiments, destructive tests are used to find
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whether a system has failed. Another large cluster of CSC applications is in
econometrics when the interest is in developing choice models for individual and
household behavior (Nobel Prize in Economic Sciences in 2000). The following
example sheds light on the binary choice model. The interest is in price T

that an individual is ready to pay for an item whose asking price is Z, and
the available observations are the asking price Z and the indicator of sale ∆1 “
IpT ě Zq. Note that in the econometrics the indicator ∆1 is called the observable
binary outcome. This and many other econometric examples can be found in
[7,45,46,63,69].

CSC is a well-known problem in survival analysis, see a discussion in books
[5,16,20,30,33,60], reviews in [22,59], and more recent papers [3,18,38,47] where
further references may be found. Differentiable functionals were studied in [66],
and the theory pointed upon regular and irregular convergence rates for CSC
observations. As we will see shortly, similar phenomena exist for adaptive esti-
mation of nonparametric curves under MISE criterion, and this requires devel-
oping a targeted methodology for a specific problem at hand. Let us also mention
papers devoted specifically to CSC regression models. Proportional and addi-
tive hazards are popular models discussed in [19,27,39]. The accelerated failure
time model is explored in [54]. The proportional odds regression is studied in
[56]. There is a vast literature devoted to semiparametric models. These models
are explored via sieve maximum likelihood, linear and additive transformation
models, ensemble variable selection, EM algorithm, penalized log-likelihood es-
timation in [6,36,41,43,48,49,58,70,71]. Simultaneous estimation and variable
selection with broken adaptive ridge regression are considered in [73]. Linear
regression is studied in [37,50,57]. Interesting results for hazard regression can
be found in [4]. An estimator of regression parameters in the accelerated fail-
ure time model by inverting a Wald-type test for testing a null proportional
hazards model is proposed in [62]. Study of a semiparametric probit model and
its applications can be found in [8,40]. Model with varying-coefficient partially
linear proportional odds is investigated in [42]. Theory of semiparametric linear
regression is developed in [21] where asymptotically normal estimate is pro-
posed. Nonparametric regression of the status on the predictor is explored in
[25] where a modified maximum rank correlation estimator is proposed. There
is a relatively large literature devoted to sieve maximum likelihood regression,
see a discussion and reviews in [44,75]. There is also a rich literature devoted
to estimation of linear functionals like

ş8

0
gptqST ptqdt and

ş8

0
gptqfT ptqdt. The

corresponding theory of efficient estimation, methodology and examples can be
found in [2,23,28,32,72,74].

It is fair to notice that for CSC main theoretical results and a majority of
literature are devoted to estimation of the distribution of T based on a sample
of size n from pZ,∆q. Let us present some known results and compare them with
results for a direct sample from T . For the direct sampling, a ν-fold differentiable
survival function ST ptq :“ PpT ą tq can be estimated with a parametric rate
n´1 regardless of its smoothness (regardless of ν), but CSC slows down the rate
to n´2ν{p2ν`1q and makes the rate depended on the smoothness, [16,18,28,60,68].
Similarly, for a direct sample the optimal MISE rate of estimating an α-fold dif-
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oxygen”. Because an anaerobic digester is sealed, the minimal time T to desired
digestion cannot be directly observed. Instead, an anaerobic process may be ter-
minated at a monitoring time Z, and then a laboratory analysis of the treated
sludge will show its status ∆ “ IpT ď Zq. Results of the BIFAR’s controlled
experiment are shown in Figure 1, and regression analysis of the CSC data will
be presented shortly in Section 5. Let us stress that the example is of interest
because the CSC methodology is the only feasible method to gain access to the
anaerobic process.

It is well known that, for small samples and a nonparametric estimation,
constants of MISE convergence are as important as rates, see a discussion in [13].
This is why the paper develops a sharp minimax theory of regression estimation
which explains how CSC affects regression estimation. Further, the presented in
Section 2 lower bound is developed for oracles that know all nuisance parameters
(like α) and nuisance functions (like fX,Z), and then the aim is to propose an
estimator that matches the oracle under minimal assumptions on smoothness
of nuisance functions.

Now let us explain several related problems explored in the paper. Introduce
the conditional survival function ST |Xpt|xq :“ PpT ą t|X “ xq. Then the
regression (1.1) can be written as

mpxq “
ż 8

0

ST |Xpt|xqdt, x P r0, 1s. (1.2)

Accordingly, regression is the linear functional of the conditional survival. Cen-
soring always causes issues with estimating right tail of the distribution, and to
remedy the issue it has been proposed to consider restricted linear functionals,
like the restricted mean survival time (RMST)

şr
0
ST ptqdt and the conditional

restricted mean survival time (CRMST)

µrpxq :“
ż r

0

ST |Xpt|xqdt, x P r0, 1s, 0 ă r ă 8. (1.3)

To simplify the terminology, in what follows we are referring to the CRMST µr
and the constant r as the restricted regression and the restriction, respectively.
Estimation of more general restricted linear functionals will be also explored.
The first use of the RMST for analysis of tumourless life was in [29], and the
enlightening discussion of the approach can be found in [61]. In [32] estimation
of RMST for right censored data with available covariates is investigated, and
this paper pioneered the methodology of restricted regression. In particular, that
paper presents an interesting discussion of advantages of the restricted regression
with respect to other regression models and the Cox’s model in particular. For
now there is a relatively large literature devoted to these functionals, and reviews
can be found in [23,28,72,74].

If T and Z are conditionally independent given X, and this is a standard
assumption, then the following formula holds,

Pp∆1 “ 1|X “ x, Z “ zq “ ST |Xpz|xq. (1.4)
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This conditional probability, and equivalently the conditional survival function,
is of a special interest in all the above-presented practical examples. For instance,
in the cancer example this is the conditional likelihood to be free of cancer at
time z after the surgery. The probability (1.4) is also of the central interest for
the econometric binary choice model [7,26,45,46]. Accordingly, we will discuss
nonparametric estimation of ST |X .

Another typical complication in CSC is the missingness. In the paper we
are considering a particular missing CSC (MSCS) when the sample is from
p∆1X,∆1Z,∆q. Accordingly, only observations with ∆1 “ 1 are available. For
instance, in the above-mentioned econometrics example the MCSC means that
only information about completed sales is available. Discussion and examples of
the MCSC can be found in [16,18].

The context of the paper is as follows. Section 2 is devoted to sharp minimax
lower bounds for the oracle who knows both CSC data and all nuisance param-
eters and functions. Then the aim is to propose a data-driven estimator that
matches performance of the oracle. Section 3 presents oracle-estimators, as well
as estimators for controlled CSC when the design density of pX,Zq is known.
The latter is relaxed in Section 4. Analysis of real and simulated examples can
be found in Section 5. Multivariate CSC regression, as well as estimation of a
conditional survival function given a vector of predictors, are discussed in Sec-
tion 6. Linear functionals are considered in Section 7. Conclusions and topics
for future research are in Section 8. In particular, it contains an illuminating
comparison between estimation of distributions and regressions for direct and
CSC data. Proofs are placed in the Appendix.

Finally, let us present several notations used in the paper. Recall that ∆1 :“
1 ´ ∆. Pp¨q denotes the probability, fX denotes the density of X, fX,Z denotes
the joint density of pX,Zq, ST |Xpt|xq :“ PpT ą t|X “ xq is the conditional
survival function of T given X, ST |X,ZpT |x, zq :“ PpT ą t|X “ x, Z “ zq is the
conditional survival function of T given X and Z. Et¨u is the expectation, and
we may write EST |X t¨u to stress that the expectation is calculated using the
given ST |X . Notations m and µr are used for the regression (1.2) and restricted
regression (1.3), respectively. The used risk is the mean integrated squared error
(MISE), for instance the MISE of a regression estimate rmpxq, x P r0, 1s is

Et
ş1

0
prmpxq ´mpxqq2dxu. Further, x :“ px1, . . . , xkq denotes a vector, tϕ0pxq :“

1, ϕjpxq :“ 21{2 cospπjxq, j “ 1, 2, . . .u are elements of the cosine trigonometric
orthonormal basis on r0, 1s, Ip¨q is the indicator, and qn :“ 3 ` tlnpnqu where
txu is the largest integer which is smaller or equal to x. C’s denote generic
positive finite constants and c’s denote specific constants, ojp1q’s denote generic
vanishing sequences as the parameter j Ñ 8. Finally, set R :“ r0, 1s ˆ r0,8q
and Rr :“ r0, 1s ˆ r0, rs where the positive constant r is called the restriction.

2. Sharp lower bounds for the MISE of oracle-estimators

The aim of this section is to explain what can and cannot be done, based on CSC
and MCSC samples, for estimating regression (1.2) and restricted regression
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(1.3). Recall that we observe a sample from pX,Z,∆q for CSC and a sample
from p∆1X,∆1Z,∆q for MCSC, here ∆ :“ IpT ď Zq and ∆1 :“ 1 ´ ∆. The
approach is to consider the oracle who knows more than the statistician, and
then develop a sharp lower minimax bound for the mean integrated squared
error (MISE) of oracle-estimators. The idea is that the statistician cannot solve
a problem better than the oracle, but may try to match performance of the
oracle.

Recall that basic notations can be found at the end of the Introduction.
We begin with assumptions. According to the review [30] “... the monitoring
time is almost always assumed independent of the lifetime of interest.” Our first
assumption relaxes that independence by assuming conditional independence.

Assumption 2.1. The predictor X is a continuous random variable supported
on r0, 1s. The monitoring time Z and the lifetime of interest T are nonnegative
continuous random variables. Given predictor X, the lifetime of interest T is
conditionally independent of the monitoring time Z, that is ST |X,Zpt|x, zq “
ST |Xpt|xq. The pair pX,Zq may be dependent.

The next two assumptions allow us to develop oracle’s lower bounds. To
explain the assumptions, we begin with several preliminary remarks. First, note
that the regression and the restricted regression are linear functionals of an
underlying conditional survival function,

mpxq “
ż 8

0

ST |Xpt|xqdt, µrpxq “
ż r

0

ST |Xpt|xqdt, x P r0, 1s. (2.1)

Second, for the oracle a minimax lower bound for estimating µr is always smaller
than for estimating regression m because the oracle may set ST |Xpt|xq to be
known for t ą r (this assertion will be proved in the Appendix). Accordingly,
we begin with a lower bound for restricted regression. Third, it is natural to
obtain a lower bound via appropriate perturbations of ST |Xpt|xq for px, tq P Rr.
Consequently, a minimax lower bound is developed for a special class of con-
ditional survival functions. Further, as we will see shortly, a sharp minimax
constant is a functional of ST |X . This is why a local minimax approach is used
when all considered conditional survival functions converge in L8-norm to an

anchor S
T |X
0

as n Ñ 8. Let us stress that the anchor is not an underlying
conditional survival function and its primary role is to let the oracle know that
all underlying conditional survival functions are near the anchor known to the
oracle. Accordingly, the oracle also knows that all underlying restricted regres-

sions µr are near the anchor µr0 where µr0pxq :“
şr
0
S
T |X
0

pt|xqdt, x P r0, 1s. The

anchor m0 is defined similarly as m0pxq :“
ş8

0
ST |Xpt|xqdt, x P r0, 1s.

The above-made remarks explain the following two assumptions. Recall that
ϕ0pxq “ 1, ϕjpxq “ 21{2 cospπjxq, j “ 1, 2, . . . are elemenst of the cosine basis
on r0, 1s.

Assumption 2.2. The anchor S
T |X
0

pt|xq, px, tq P R is known to the oracle. The
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anchor is continuous in x and differentiable in t on Rr, and

min
px,tqPRr

S
T |X
0

pt|xq ě c1prq ą 0, max
px,tqPRr

BST |X
0

pt|xq
Bt ď ´c2prq ă 0. (2.2)

The next assumption introduces a shrinking (toward the anchor) local Sobolev
class of underlying conditional survival functions. A discussion of Sobolev classes
can be found in [13,24].
Assumption 2.3. An underlying conditional survival function ST |X belongs to
a class

FnpST |X
0

, α,Q, rq :“ tST |Xpt|xq :

ż r

0

ST |Xpt|xqdt P Mnpµr0, α,Q, rqu, (2.3)

where

Mnpµr0, α,Q, rq :“
!
µr : µrpxq “ µr0pxq ` gpxq,

g P Spα,Qq, |gpxq| ď 1{qn, x P r0, 1s
)
. (2.4)

In (2.4) µr0pxq :“
şr
0
S
T |X
0

pt|xqdt and

Spα,Qq :“
!
g : gpxq “

8ÿ

j“0

θjϕjpxq,

8ÿ

j“0

r1 ` pπjq2αsθ2

j ď Q ă 8, α ě 1, x P r0, 1s
)

(2.5)

is the global Sobolev class (ellipsoid).

Remark 2.1. Let us comment on the relationship between ST |X and the re-
stricted regression µr that sheds extra light on Assumption 2.3. For the condi-
tional survival on Rr we can write using the Fourier theorem,

ST |Xpt|xq “
8ÿ

j,i“0

κjiϕjpxqr´1{2ϕipt{rq, px, tq P Rr.

Here

κji :“
ż

Rr

ST |Xpt|xqϕjpxqr´1{2ϕipt{rqdtdx

are Fourier coefficients of the conditional survival. Using
şr
0
ϕipt{rqdt “ 0 for

i ě 1, we conclude that

µrpxq “ r1{2

8ÿ

j“0

κj0ϕjpxq, x P r0, 1s.
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Accordingly, the restricted regression is proportional to the univariate Fourier
component of ST |Xpt|xq in x.

Remark 2.2. In what follows a class FnpST |X
0

, α,Q,8q is formally defined by
replacing in (2.4) the restricted regression µr and the restricted anchor regression
µr0 by the regression m and the anchor regression m0, respectively. This class
will be used for analysis of estimators proposed for unbounded T .

Remark 2.3. Recall that if α is an integer, then Spα,Qq is the global Sobolev
class of α-fold differentiable functions traditionally studied in the classical non-
parametric regression theory devoted to the model T “ mpXq ` σpXqξ where
ξ is independent of X standard normal variable (error), see [12,13,68]. Then it
is known that, based on a direct sample of size n from pX,T q, the regression
function can be estimated with the classical rate n´2α{p2α`1q of the MISE con-
vergence. Note that a real α is also considered in the literature, see [13]. The
global Sobolev class is of interest on its own and will be used in upper bounds.

Our final assumption is devoted to the joint density fX,Zpx, zq which is known
to the oracle and to the statistician for the case of a controlled CSC study.

Assumption 2.4. The joint density fX,Zpx, zq is known, continuous and posi-
tive on Rr.

Now we are in a position to formulate lower bounds for oracle-estimators
using CSC observations.

Theorem 2.1 (Lower bounds for CSC). (1) Suppose that Assumptions 2.1-
2.4 hold and a CSC sample of size n from pX,Z,∆q is given. Then

inf
rµ˚

r

sup
ST |X PFnpS

T |X
0

,α,Q,rq

!
rn{dpST |X , fX,Z , rqs2α{p2α`1q

ˆ EST |X t
ż 1

0

prµ˚
r pxq ´ µrpxqq2dxu

)
ě P pα,Qqp1 ` onp1qq. (2.6)

Here the infimum is taken over all possible oracle-estimators that know data,

the function class FnpST |X
0

, α,Q, rq and the joint design density fX,Zpx, zq,

P pα,Qq :“ rα{pπpα ` 1qs2α{p2α`1qp2α ` 1q1{p2α`1qQ1{p2α`1q, (2.7)

and

dpST |X , fX,Z , rq :“
ż

Rr

p1 ´ ST |Xpt|xqqST |Xpt|xq
fX,Zpx, tq dtdx (2.8)

is the coefficient of difficulty for CSC.
(ii) Let us additionally assume that dpST |X , fX,Z ,8q ă 8 and Assumption 2.4
holds for any finite r. Then

inf
Ăm˚

sup
ST |X PFnpS

T |X
0

,α,Q,8q

!
rn{dpST |X , fX,Z ,8qs2α{p2α`1q



/Regression for CSC 10

ˆ EST |X t
ż 1

0

prm˚pxq ´mpxqq2dxu
)

ě P pα,Qqp1 ` onp1qq. (2.9)

Let us make several comments about the result. First, it will be shown
in the next section that the lower bounds are sharp and attained by oracle-
estimators. Second, similarly to the above-mentioned classical case of a direct
sample from pX,T q and the regression model T “ mpXq ` σpXqξ, rate of the
MISE convergence is the classical n´2α{p2α`1q. In other words, CSC regression
avoids the curse of CSC distribution estimation when the rate is slower than
for direct observations. This also shows that the familiar equivalence between
density and regression estimation, known for direct observations [13], breaks
down for CSC. Third, complexity of a CSC regression model is captured by
its coefficient of difficulty (2.8). Fourth, the coefficients of difficulty shed light
on the role of restriction r which allows us to avoid improper integrals. Fifth,
let us shed an extra light on the coefficient of difficulty (2.8). Consider a well
known problem of estimating the RMST νr :“

şr
0
ST ptqdt using a sample of

size n from pZ,∆q, see a comprehensive discussion in [28]. Under a mild as-
sumption, the nonparametric maximum likelihood estimator pνr is efficient and

n´1{2rpνr ´ νrs LÝÑ Np0, dpST , fZ , rqq where the functional dp¨, ¨, ¨q is defined in
(2.8). The fact that the same functional defines asymptotic efficiency for estima-
tion of RMSR and restricted regression is not surprising because the efficiencies
are established using the same methodology of the local asymptotic normality
and calculation of the Fisher information for CSC observations.

The oracle’s lower bound warns us that even the oracle may not be able
to propose a consistent regression estimator for unbounded lifetimes T or if
the support of Z is a subset of the support of T . A similar warning, based on
analysis of maximum likelihood and Fisher information, is made in [21] for linear
CSC regression. Fortunately, in survival analysis an unbounded lifetime is a rare
phenomenon, and in a majority of statistical applications a lifetime of interest
is bounded by a known value, see the literature cited in the Introduction.

Now let us consider the MCSC sampling.

Theorem 2.2 (Lower bounds for MCSC). Suppose that Assumptions 2.1-
2.4 hold and a MCSC sample of size n from p∆1X,∆1Z,∆q is given. Then the
assertion of Theorem 2.1 holds with dpST |X , fX,Z , rq being replaced by

d˚pST |X , fX,Z , rq :“
ż

Rr

ST |Xpt|xq
fX,Zpx, tqdtdx. (2.10)

Note that the MCSC sampling does not slow down the rate of MISE conver-
gence but makes the sharp constant larger. The ratio pd˚{dq2α{p2α`1q defines the
effect of missing on the accuracy of estimation under the MISE criterion. Here
and in what follows we may use notations d and d˚ for the functionals (2.8) and
(2.10), respectively.

Remark 2.4. In the following section upper bounds for minimax MISEs will
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be presented. Under a minimax approach, like the one in (2.6) or (2.9), the
supremum is taken over a class F of underlying distributions ST |X and the
infimum over a class of estimators. Accordingly, in a lower bound it is desirable
to consider a smaller F and in the upper bound a larger F . In the above-
presented lower bounds we are considering sequences in n of shrinking, toward a
specific anchor distribution, classes Fn of distributions. To establish sharpness
of those lower bounds, we will present oracle-estimators and estimators that
attain the lower bounds for ST |X P Fn. It is also a tradition in nonparametric
curve estimation to analyze MISE over a class of estimands (in our setting over a
class of regressions or restricted regressions). Traditional classes of estimands are
global Sobolev classes Spα,Qq defined in (2.5). Accordingly, in upper bounds we
may simultaneously consider supremums over ST |X P Fn and over an estimand
(m or µr) from Spα,Qq. As an example, we may write supST |X PFn, µrPSpα,Qq.

3. Estimation for a controlled study

A controlled study means that the joint design density fX,Z is known, and
the case of an observational study, when the design density is unknown, will be
considered in the next section. We begin with heuristic of the proposed method-
ology, and then consider efficient estimation for MCSC and CSC samples in turn.
Recall that all general notations may be found at the end of the Introduction.

3.1. Heuristic of oracle-estimators

The aim of this subsection is threefold. First, to explain the underlying idea of
used series estimation. Second, to present oracle-estimators that attain the lower
bounds of Section 2. This will prove sharpness of the minimax lower bounds.
Third, to explain the methodology of adaptation to unknown smoothness of
regression.

We begin with a simple technical result. Recall that Cs are generic positive
constants.

Lemma 3.1. Suppose that function g belongs to the global Sobolev class Spα,Qq
defined in (2.5). Suppose that Fourier coefficients κj :“

ş1

0
gpxqϕjpxqdx of g can

be estimated by qκj satisfying

Etpqκj ´ κjq2u ď Cn´1. (3.1)

Set J˚
n :“ n1{p2α`1q, and introduce the nonparametric oracle-estimator

qg˚pxq “
J˚

nÿ

j“0

qκjϕjpxq. (3.2)

Then

sup
gPSpα,Qq

Et
ż 1

0

pqg˚pxq ´ gpxqq2dxu ď Cn´2α{p2α`1q. (3.3)
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This assertion and its proof are simple and insightful. Note that the oracle-
estimator is rate-optimal and depends only on the nuisance parameter α. Keep-
ing in mind that in statistical practice it is often assumed that α “ 1 or α “ 2,
see [13,68], we get a simple estimator. The proof is based on the Parseval iden-
tity. Write,

sup
gPSpα,Qq

Et
ż 1

0

pqg˚pxq ´ gpxqq2dxu “ sup
gPSpα,Qq

r
J˚

nÿ

j“0

Etpqκj ´ κjq2u `
ÿ

jąJ˚
n

κ2

j s

ď Crn´1J˚
n ` pJ˚

n q´2αs ď Cn´2α{p2α`1q.

What was wished to show.
After this warming up, let us consider a more sophisticated assertion that

will lead us to sharp-minimax estimation for settings considered in Section 2.
Also recall Remark 2.4 about considering both local and global function classes
in upper bounds.

Lemma 3.2. (i) Suppose that a function of interest g belongs to the global
Sobolev class Spα,Qq defined in (2.5). Suppose that Fourier coefficients κj :“ş1

0
gpxqϕjpxqdx of g can be estimated by rκj satisfying

Etrκju “ κj , Etprκj ´ κjq2u ď dn´1p1 ` onp1q ` ojp1qq, 0 ă d ă 8. (3.4)

Introduce the nonparametric oracle-estimator

rgpxq “
qnÿ

j“0

rκjϕjpxq `
Jnÿ

j“qn`1

p1 ´ pj{Jnqαqrκjϕjpxq, (3.5)

where Jn :“ qn`1`trpn{dqQπ´2αpα`1qp2α`1q{αs1{p2α`1qu. Then the following
upper bound is valid for MISE of this oracle-estimator,

sup
gPSpα,Qq

rn{ds2α{p2α`1q
Et

ż 1

0

prgpxq ´ gpxqq2dxu ď P pα,Qqp1 ` onp1qq. (3.6)

Here P pα,Qq is defined in (2.7).
(ii) Let the function of interest be g “ g0 ` g˚ where g0 P Spα1, Q1q, α1 ą α,
Q1 ă 8, is the anchor function and g˚ P Spα,Qq. Suppose that (3.4) holds. Then
MISE of the oracle-estimator (3.5), that does not use the anchor g0, satisfies
the following upper bound,

sup
g˚PSpα,Qq

rn{ds2α{p2α`1q
Et

ż 1

0

prgpxq ´ gpxqq2dxu ď P pα,Qqp1 ` onp1qq. (3.7)

Note that the second part (ii) of the lemma does not follow from the first one
because in part (ii) the estimand g no longer belongs to Spα,Qq. Part (i) sheds
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light on global estimation and part (ii) on local estimation centered around the
anchor. Lemma 3.2 will be proved in the Appendix.

The main conclusion from Lemma 3.2 is that to construct an efficient non-
parametric oracle-estimator it is sufficient to propose Fourier estimates satisfy-
ing (3.4) with d being an appropriate coefficient of difficulty. Let us show how
this can be done for MCSC and CSC sampling models in turn. We are con-
sidering estimation of Fourier coefficients for restricted regression µr, and then
comment on the case of regression.

Suppose that Assumption 2.1 holds and assume that the coefficient of dif-
ficulty d˚ :“ d˚pST |X , fX,Z , rq, defined in (2.10), is finite. Recall our notation
µrpxq :“

şr
0
ST |Xpt|xqdt for restricted regression. Using the Fourier theorem we

get

µrpxq “
ż r

0

ST |Xpt|xqdt “
8ÿ

j“0

θjϕjpxq, x P r0, 1s. (3.8)

Recall that ϕ0pxq “ 1, ϕjpxq “ 21{2 cospπjxq, j “ 1, 2, . . . are elements of the
cosine basis on r0, 1s and θj are Fourier coefficients of µr,

θj :“
ż 1

0

µrpxqϕjpxqdx “
ż 1

0

” ż r

0

ST |Xpt|xqdt
ı
ϕjpxqdx. (3.9)

Using Assumption 2.1 we can write

fX,Z,∆px, t, δq “ fX,Zpx, tqr1 ´ ST |Xpt|xqsδrST |Xpt|xqs1´δ. (3.10)

Note that fX,Z,∆px, t, 0q “ 0 if fX,Zpx, tq “ 0 or ST |Xpt|xq “ 0. This allows us
to continue (3.9),

θj “
ż 1

0

ż r

0

IpfX,Zpx, tq ą 0qfX,Z,∆px, t, 0qϕjpxq
fX,Zpx, tq dtdx

“ E

!∆1IpZ ď rqϕjpXq
fX,ZpX,Zq

)
. (3.11)

The joint density fX,Z is known to the oracle. Accordingly, for MCSC formula
(3.11) yields the sample mean Fourier estimator

qθj :“ n´1

nÿ

l“1

∆1
lIp∆1

lZ ď rqϕjp∆1
lXlq

fX,Zp∆1
lXl,∆1

lZlq
. (3.12)

Further, for the sample mean Fourier estimator we get

Etqθju “ θj , Etpqθj ´ θjq2u “ d˚n
´1p1 ` ojp1qq. (3.13)

Now we can invoke Lemma 2.1 and conclude that the oracle-estimator (3.2),
using Fourier estimates (3.12), is rate optimal. Further, Lemma 3.2 implies that
the oracle-estimator (3.5), using Fourier estimates (3.12), is efficient according
to Theorem 2.2. Further, by setting r “ 8 in (3.12), we get a sample mean
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Fourier estimate for the regression mpxq “ EtT |X “ xu satisfying (3.13) where
the d˚ is replaced by d˚pST |X , fX,Z ,8q.

Now we are considering the CSC sampling. So far, due to the study of MCSC,
we used only a subsample with ∆1 “ 1 to estimate restricted regression µr, and
this is why the variance in (3.13) is larger than the coefficient of difficulty d de-
fined in (2.8). Let us explain how remedy this issue. Consider Fourier coefficients
of the conditional survival function on Rr,

βki :“
ż

Rr

ST |Xpt|xqϕkpxqr´1{2ϕipt{rqdtdx. (3.14)

These Fourier coefficients allow us to introduce a special Fourier approximation
of ST |X with a skipped subset of jth Fourier coefficients βji, i “ 0, 1, . . .,

Spj, n, t, xq :“
ÿ

kPt0,1,...,qnuztju

qnÿ

i“0

βki ϕkpxqr´1{2ϕipt{rq, pt, xq P Rr. (3.15)

Note that
ş1

0
Spj, n, t, xqϕjpxqdx “ 0 and Spj, n, t, xq converges to ST |Xpt|xq as j

and n increase. The oracle suggests a new unbiased Fourier coefficient estimator

rθ˚
j :“ n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsϕjpXlq

fX,ZpXl, Zlq
. (3.16)

The oracle’s rationale is that, as it will be checked in the Proofs,

Etprθ˚
j ´ θjq2u “ dpST |X , fX,Z , rqn´1p1 ` ojp1qq. (3.17)

Accordingly, the modified Fourier estimator rθ˚
j can be used for sharp minimax

estimation of µr. Of course, the conditional survival function ST |X is unknown,
but it may be estimated with sufficient accuracy to match the oracle.

Finally, if mr P Spα,Qq, then how can a series estimate adapt to unknown
nuisance parameters pα,Qq and d? Let us explain the heuristic of blockwise
shrinkage that performs the desired sharp adaptation to the nuisance parame-
ters.

We begin with the following classical result in point estimation. If sθj is
unbiased estimator of parameter θj , then it may be beneficial to look at the
shrinking estimator λjsθj , λj P r0, 1s which minimizes the mean squared error
Etpλjsθj ´ θjq2u. The oracle’s solution, known as the Wiener filter, is

λ˚
j “

θ2
j

θ2
j ` σ2

jn
´1
, σ2

j :“ nEtsθj ´ θjq2u. (3.18)

It may be tempting to plug in appropriate estimates of θ2
j and σ2

j and replace
λ˚
j by the corresponding estimate. Unfortunately, this idea is not feasible because

θ2
j is estimable with the parametric rate n´1. On the other hand, we can see

from (3.5) that the smoothing weights 1 ´ pj{Jnqα are close to each other for
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adjacent indexes j. This leads us to a simple solution when instead of estimating
individual weights θ2

j {pθ2
j ` σ2

jn
´1q we estimate a single optimal weight for a

block of adjacent indexes j. Namely, let B :“ ti ` 1, . . . , i ` Lu be a block of
length L of positive integers. Then the shrinking coefficient Λ˚, which minimizes
Et

ř
jPBpΛsθj ´ θjq2u, is

Λ˚ “
L´1

ř
jPB θ

2
j

L´1
ř
jPB θ

2
j ` rL´1

ř
jPB σ

2
j sn´1

“:
Θ

Θ ` σ2n´1
. (3.19)

In (3.19)

Θ :“ L´1
ÿ

jPB

θ2

j (3.20)

is the classical Sobolev functional which is the focal point of the blockwise
nonparametric adaptation. The theory of estimating Sobolev functionals is well
developed, and while λ˚

j may be estimated with the classical parametric rate

n´1, the Sobolev functional is estimable with the same rate but the constant
decreases as L (the length of block) increases. This is what creates the opportu-
nity for estimating Λ˚ with sufficient accuracy for matching oracle-estimators.
The corresponding theory is well developed [9,10,14,24].

The above-discussed blockwise shrinkage is the adaptation methodology used
in this paper. This is the simplest and universal methodology of adaptation that
matches performance of efficient oracle-estimators. Further, in Section 6 it will
allow us to consider the problem of dimension reduction. Of course, there is a
number of other procedures for adaptation proposed in the literature, but they
are primarily concerned with rate optimal adaptation. The interested reader can
find reviews in [11,13,24,68].

3.2. Efficient estimation of restricted regression for MCSC

In this subsection the lifetime of interest may be bounded or unbounded, and
these two cases are considered simultaneously. Further, recall that for a bounded
lifetime a restricted regression, with the restriction r equal to or larger than that
bound, is the underlying regression. The available sample is MCSC meaning that
we have a sample of size n from p∆1X,∆1Z,∆q. The estimand is the restricted
regression µrpxq “

şr
0
ST |Xpt|xqdt where r is a finite restriction. Because the

restriction is finite, we can simultaneously consider bounded and unbounded
lifetimes T given Assumption 2.4. Indeed, that assumption is not tied to the
support of T and only requires that the known (recall that in this section we
study the controlled sampling) design density fX,Z is continuous and positive
on Rr “ r0, 1s ˆ r0, rs.

Introduce the Fourier coefficient estimator for MCSC observations

rθj :“ n´1

nÿ

l“1

∆1Ip∆1
lZl ď rqϕjp∆1

lXlq
fX,Zp∆1

lXl,∆1
lZlq

. (3.21)
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As we will see shortly, it can be used to construct efficient restricted regression
estimator. Our next step, according to the heuristic of subsection 3.1, is to
define a blockwise adaptive estimator. For j ą qn introduce consecutive and
non-overlapping blocks Bk, k “ 1, 2, . . . of length Lk :“ tp1 ` 1{ lnpqnqqku, that
is B1 :“ tqn ` 1, . . . , qn `L1u, B2 :“ tqn `L1 ` 1, . . . , qn `L1 `L2u, etc. Then
for each block we calculate two statistics. The first one is the U-statistic

rΘk :“ 2

Lknpn´ 1q
ÿ

1ďl1ăl2ďn

ÿ

jPBk

2ź

i“1

∆1
li
Ip∆1

li
Zli ď rqϕjp∆1

li
Xli q

fX,Zp∆1
li
Xli ,∆

1
li
Zli q . (3.22)

The second statistic is based on Fourier estimates rθj defined in (3.21),

rΘ1
r :“ L´1

k

ÿ

jPBk

rθ2

j . (3.23)

Let kn be the smallest integer such that
řkn

k“1
Lk ą n1{p2α0`1q lnpqnq where

α0 is the smallest assumed value of parameter α. Recall that Assumption 2.3 sets
α0 “ 1, but other values also may be specified. For instance, α0 “ 2 implies that
the restricted regression is twice differentiable, and this is another traditional
choice.

The proposed adaptive estimator is

rµrpxq :“ rµrpx, fX,Zq :“
qnÿ

j“0

rθjϕjpxq

`
knÿ

k“1

minp1, rΘk{rΘ1
kqIprΘk ą 1{rn lnpk ` 3qsq

ÿ

jPBk

rθjϕjpxq. (3.24)

Note how simple the adaptive estimator is.

Theorem 3.1. Let Assumptions 2.1 and 2.4 hold, and the anchor µr0 belongs
to a Sobolev class Spα1, Q1q with α1 ą α and Q1 ă 8. Consider a MCSC sample
of size n from p∆1X,∆1Z,∆q. Then the following upper bound holds for MISE
of the adaptive estimator (3.24),

sup
ST |X PFnpS

T |X
0

,α,Q,rq, µrPSpα,Qq

!
rn{d˚s2α{p2α`1q

ˆ Et
ż 1

0

prµrpxq ´ µrpxqq2dxu
)

ď P pα,Qqp1 ` onp1qq. (3.25)

We can conclude that the lower bound of Theorem 2.2 is sharp. Further, that
lower bound is also attainable for µr from the global Sobolev classes Spα,Qq.
Accordingly, we get the same results as for the case of regressions based on direct
observations from pX,T q where efficient adaptive estimators are proposed for
global Sobolev classes.
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3.3. Efficient estimation of restricted regression for CSC

In this subsection the lifetime of interest may be bounded or unbounded, and
these two cases are considered simultaneously. Further, recall that if T is bounded
and we set r to be equal to or larger than the upper bound for the support of
T , then the restricted regression is equal to the regression.

Now let us consider a CSC sample of size n from pX,Z,∆q and propose an
efficient estimator of µr. Set J pj, nq :“ t0, 1, . . . , qnuztju if 0 ď j ď qn and
J pj, nq :“ t0, 1, . . . , qnu otherwise. Introduce the cosine basis tψ0ptq :“ r´1{2,
ψjptq “ p2{rq1{2 cospπjt{rq, j “ 1, 2, . . .u on r0, rs. Following the heuristic of
subsection 3.1, introduce an estimate of ST |X with subtracted projection on ψj ,

rSpj, n, z, xq :“ n´1

nÿ

l“1

ÿ

kPJ pj,nq

qnÿ

i“0

∆1
lIpZl ď rqψipZlqϕkpXlqψipzqϕkpxq

fX,ZpXl, Zlq
, (3.26)

and the Fourier coefficient estimate

pθj :“ n´1

nÿ

l“1

p∆1
l ´ rSpj, n, Zl, XlqqIpZl ď rqϕjpXlq

fX,ZpXl, Zlq
. (3.27)

For adaptation to unknown smoothness of µr, we again use blocks Bk of
length Lk, introduced below line (3.21), and the sequence kn defined below line
(3.23). For each block we calculate two statistics. The first one is the U-statistic

pΘk :“ 2

Lknpn´ 1q

ˆ
ÿ

1ďl1ăl2ďn

ÿ

jPBk

2ź

i“1

p∆1
li

´ rSpj, n, Zli , Xli qqqIpZli ď rqψjpXli q
fX,ZpXli , Zli q . (3.28)

The second statistic is based on Fourier estimates pθj defined in (3.27),

pΘ1
r :“ L´1

k

ÿ

jPBk

pθ2

j . (3.29)

The proposed estimator is

pµrpxq :“ pµrpx, fX,Zq :“
qnÿ

j“0

pθjψjpxq

`
knÿ

k“1

minp1, pΘk{pΘ1
kqIppΘk ą 1{rn lnpk ` 3qsq

ÿ

jPBk

pθjψjpxq. (3.30)

Theorem 3.2. Let Assumptions of Theorem 3.1 hold. Consider a CSC sample
of size n from pX,Z,∆q. Then the following upper bound holds for the MISE of
estimator (3.30),

sup
ST |X PFnpS

T |X
0

,α,Q,rq, µrPSpα,Qq

!
rn{dpST |X , fX,Z , rqs2α{p2α`1q



/Regression for CSC 18

ˆ Et
ż 1

0

ppµrpxq ´ µrpxqq2dxu
)

ď P pα,Qqp1 ` onp1qq. (3.31)

Theorem 3.2, together with the lower bound of Theorem 2.1, allow us to
conclude that not only the optimal rate n´2α{p2α`1q is preserved, but also the
sharp constant is attainable. Further, the proposed estimator attains the same
sharp constant over the global Sobolev classes. In short, we have the same
bouquet of results for CSC as for the case of direct observations.

3.4. Estimation of regression for unbounded T

We begin with an oracle-estimator and then present an estimator. It will be con-
venient to use notations D :“ dpST |X , fX,Z ,8q and D˚ :“ d˚pST |X , fX,Z ,8q.
Assumption 3.1. Conditional survival function ST |X and joint density fX,Z

satisfy

D˚ :“
ż 1

0

ż 8

0

ST |Xpt|xq
fX,Zpx, tqdtdx ď c3 ă 8. (3.32)

Remark 3.1. Assumption 3.1 yields that D is also bounded. At the same time,
if D is bounded then D˚ may be unbounded if 1{fX,Zpx, tq is not integrable
for small t while p1 ´ ST |Xpt|xqq{fX,Zpx, tq is. The latter is atypical for design
densities. Let is also recall that in [28], where the functional

şr
0
ST ptqdt is the es-

timand, the integral
şr
0
rp1´ST ptqqST ptq{fZptqsdt, called the information bound,

is assumed to be finite. We may conclude that Assumption 3.1 is in line with
known in the CSC literature.

Set J˚
n :“ qn ` 1 ` trpn{D˚qQπ´2αpα ` 1qp2α ` 1q{αs1{p2α`1qu,

sθj :“ n´1

nÿ

l“1

∆1
lϕjp∆1

lXlq
fX,Zp∆1

lXl,∆1
lZlq

, (3.33)

and introduce the regression oracle-estimator motivated by Lemma 3.2,

sm˚pxq :“
qnÿ

j“0

sθjϕjpxq `
J˚

nÿ

j“qn`1

p1 ´ pj{J˚
n qαqsθjϕjpxq. (3.34)

Theorem 3.3. Suppose that Assumptions 2.1 and 3.1 hold, and the anchor
m0 P Spα1, Q1q where α1 ą α and Q1 ă 8. Then MISE of oracle-estimator
(3.34) satisfies the inequality

sup
ST |X PFnpS

T |X
0

,α,Q,8q, mPSpα,Qq

!
rn{D˚s2α{p2α`1q

ˆ Et
ż 1

0

psm˚pxq ´mpxqq2dxu
)

ď P pα,Qqp1 ` onp1qq. (3.35)
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Corollary 3.1. The oracle-estimator (3.34) is asymptotically efficient for MCSC.

Its MISE is also within factor pD˚{Dq 2α
2α`1 from the lower bound (2.9) for CSC.

Accordingly, the rougher the regression the smaller the factor.

Now we are in a position to propose a blockwise adaptive estimator whose
heuristic was explained in subsection 3.1. Recall that blocks Bk with length Lk,
as well as the sequence kn, were introduced below line (3.21). For each block we
calculate statistics

sΘk :“ 2

Lknpn´ 1q
ÿ

1ďl1ăl2ďn

ÿ

jPBk

2ź

i“1

∆1
li
ϕjp∆1

li
Xli q

fX,Zp∆1
li
Xli ,∆

1
li
Zli q . (3.36)

and
sΘ1
r :“ L´1

k

ÿ

jPBk

sθ2

j . (3.37)

The proposed adaptive regression estimator is

smpx, fX,Zq :“
qnÿ

j“0

sθjϕjpxq

`
knÿ

k“1

minp1, sΘk{sΘ1
kqIpsΘk ą 1{rn lnpk ` 3qsq

ÿ

jPBk

sθjϕjpxq. (3.38)

Theorem 3.4. Let Assumption 2.1 hold and

ż 8

0

ST |Xpt|xq
rfX,Zpx, tqs8

dt ă c4 ă 8. (3.39)

Then the assertion of Theorem 3.3 holds for the regression estimator (3.38).

Remark 3.2. Consider a lifetime of interest T supported on r0,8q. For CSC
observations, the regression estimator (3.38) is within factor pD˚{Dq2α{p2α`1q

from the lower bound (2.6). For MCSC observations the estimator is efficient.
Further, we can conclude that the regression function can be estimated with the
classical rate n´2α{p2α`1q known for the case of direct observations. Accordingly,
the nonparametric regression “breaks” the CSC curse known for distribution
estimation, and the CSC does not slow down the optimal rate known for direct
observations.

4. Estimation for an observational study

So far we have considered the case of a known design density fX,Z . In this section
this assumption is relaxed. It will be shown that under a mild assumption a plug
in methodology is feasible. Because both MCSC and CSC are considered, for
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CSC we can use the available sample of size n from pX,Zq to estimate fX,Z .
For MCSC, when we observe a sample from p∆1X,∆1Z,∆q, this sample does
not allow us to estimate fX,Z because the data is biased [16]. Accordingly, for
MCSC it is assumed that an extra sample of size n from pX,Zq is available.

Assumption 4.1. An underlying joint probability density fX,Zpx, zq has a con-
tinuous mixed derivative B2fX,Zpx, zq{BxBz on Rr and

ż

Rr

”
rBfX,Zpx, zq{Bxs2 ` rBfX,Zpx, zq{Bzs2 ` rB2fX,Zpx, zq{BxBzs2

ı
dxdz

ď c5 ă 8. (4.1)

An underlying conditional survival function ST |Xpt|xq has a continuous mixed
derivative B2ST |Xpt|xq{BtBx on Rr and

ż

Rr

”
rBST |Xpt|xq{Bxs2 ` rBST |Xpt|xq{Bts2 ` rB2ST |Xpt|xq{BtBxs2

ı
dxdt

ď c6 ă 8. (4.2)

The left sides of (4.1) and (4.2) are classical Sobolev functionals. They do
not involve second-order derivatives with respect to either of the arguments. As
we will see shortly, this mild differentiability allows us to match performance of
the oracle who knows joint density fX,Z .

Recall that tψsptq, s “ 1, 2, . . . , t P r0, rsu is the cosine basis on r0, rs defined
above line (3.26). For CSC model introduce the joint density estimator

pfX,Zpx, zq :“ max
´ 1

lnplnpn` 3qq ,

1

n

t1`n1{4uÿ

i,s“0

nÿ

l“1

ϕipXlqψspZlqϕipxqψspzq
¯
. (4.3)

For MCSC the same estimator is used only it is based on an extra sample from
pX,Zq. We use (4.3) in place of an underlying fX,Z . Note that the estimate is
separated from zero by the iterated logarithm 1{ lnplnpn ` 3qq and hence may
be used in a denominator.

Theorem 4.1. Let Assumption 4.1 and the assumption of Theorem 3.1 hold,
only now the joint density fX,Z is unknown and α ě α0 “ 2. Introduce the
plug-in estimators rµrpx, pfX,Zq and pµrpx, pfX,Zq defined in (3.24) and (3.30),
respectively. Then the assertions of Theorems 3.1 and 3.2 hold for the plug-in
estimators.

We may conclude that the data-driven estimation is possible and the lower
bounds of Section 2 are sharp. Further, neither CSC not MCSC slow down rate
of the regression estimation with respect to direct data observations.

Now we are in a position to complement the theory by examples.



/Regression for CSC 21

5. Analysis of real and simulated examples

The context of this section is as follows. Subsection 5.1 begins with a visual
analysis of two simulated CSC datasets when we know the underlying regression
function. In the former simulation X and Z are independent , and in the latter
they are dependent. For these simulations the above-presented estimates are
shown and discussed. Then the more complicated simulation with dependent
predictor and monitoring time is repeated 10 times and residuals of the data-
driven CSC estimator are shown. This experiment sheds light on the bias and
variance of the regression estimator. Results of an intensive numerical study are
presented in subsection 5.2 via histograms of ratios between integrated squared
errors of the proposed estimates. The study supports the proposed methodology
of plugged in estimates of the design density fX,Z . Regression analysis of the
environmental CSC data, presented in the Introduction, can be found in the
last subsection.

5.1. Two simulated CSC regressions

The aim of this subsection is to shed light on CSC regression via visual analy-
sis of simulated datasets and performance of the proposed estimates. Particular
simulations for two regression experiments are shown in the two columns of Fig-
ure 2. The top diagrams show by crosses the underlying direct observations of
pX,T q. The bottom diagrams show corresponding CSC samples from pX,Z,∆q
with triangles and circles indicating observations with ∆ “ 0 and ∆ “ 1, re-
spectively. Full description of the underlying experiments and the diagrams can
be found in the caption.

Let us comment on the scattergrams and the estimates shown in Figure 2.
The direct data scattergrams are complicated due to the strong heteroscedas-
ticity. Still, it is possible to visualize the underlying regression as a curve that
goes through the “middle” of data. The reader may try to make a guess about
the regression, and then compare the guess with the solid line (the underlying
regression) and the dashed line (the data-driven nonparametric estimate). Note
how the estimates fit the data. The bottom diagrams show CSC modifications
of direct data. Overall, if not due to the indicators of censoring, shown by the
triangles (∆ “ 0) and the circles (∆ “ 1), it is impossible to visualize the un-
derlying regression. Indeed, in the both bottom diagrams the observations are
spread over the unit square and the best bet may be a horizontal line. Now let
us look at the underlying regression (the solid line) and the data paying atten-
tion to the triangles and circles. Overall, with the help of the solid line, it is
possible to appreciate the special structure of CSC scattergrams and even get
a “feeling” of the underlying regression. With some training in visualization of
different CSC scattergrams, it is possible to get a general feeling of the shape of
an underlying regression, but overall this is a complicated task. Only a special
software can estimate the CSC regression because here one needs first to figure
out an underlying conditional survival and then evaluate its integral.
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regression function is mpxq “ EtT |X “ xu, x :“ px1, . . . , xkq P r0, 1sk. Its
smoothness (the number of derivatives) may be different for each covariate,
namely it is assumed that the regression function belongs to an anisotropic
Sobolev class

Spα1, . . . , αkq :“
!
mpxq : mpxq “

8ÿ

i1,...,ik“0

θiϕipxq,

8ÿ

i1,...,ik“0

θ2

i
r1 `

kÿ

s“1

i2αs

s s ď Q ă 8
)
, (6.1)

where i “ pi1, . . . , ikq, and ϕipxq “
śk
s“1

ϕis pxis q are elements of the cosine
tensor-product basis on r0, 1sk. Introduce an effective multivariate smoothness

α˚ :“ r
řk
s“1

α´1
s s´1. The pioneering result of [24] shows that for a sample of

size n from pX, T q the optimal rate of MISE convergence is n´2α˚{p2α˚`1q, and
in particular if α1 “ . . . “ αk “ α then the rate is n´2α{p2α`kq. Recall that k
is dimensionality of the regression, and the decreased rate defines the curse of
multidimensionality.

Let us show that this rate is also achievable for a CSC sample of size n

from pX, Z,∆q, and hence we again can break the curse of CSC in terms of
slower rates of convergence for nonparametric estimation of distributions. The
following result matches [14,24].

Theorem 6.1. Consider a controlled CSC sampling from pX, Z,∆q where X “
pX1, . . . , Xkq is supported on r0, 1sk. Suppose that ST |X,Zpt|x, zq “ ST |Xpt|xq
and ż 8

0

” ż

r0,1sk

ST |Xpz|xq
fX,Zpx, zqdx

ı
dz ă 8. (6.2)

Introduce a multivariate regression estimator

pmpxq :“
ÿ

iPJ

rθiϕipxq, (6.3)

where J :“ t0, 1, . . . , J1ubt0, 1, . . . , J2ub. . .bt0, 1, . . . , Jku, Js :“ 1`tn

α´1
s

2`α
´1

˚ u,

rθi :“ n´1

nÿ

l“1

∆1
lϕipXlq

fX,ZpXl, Zlq
. (6.4)

Then the estimator is rate optimal and

sup
mPSpα1,...,αkq

E

!ż

r0,1sk

ppmpxq ´mpxqq2dx
)

ď Cn´2α˚{p2α˚`1q. (6.5)

We may conclude that even for the case of anisotropic multivariate regression
the CSC does not slow down rates known in the theory of regression for direct
observations.
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Let us complement the theory by example of bivariate regression for anaer-
obic digestion. Additions of microorganisms to industrial sludges for improving
anaerobic digestion have been explored intensively in recent years, see a review
in [52]. When the process of anaerobic digestion is improved by the microbes, it
is referred to as bioaugmentation. BIFAR is interested in how thickness (recall
our discussion of Figures 1 and 7) and concentration of added microbes affect
time T of digestion. BIFAR conducted a controlled CSC experiment similar to
the one described in the Introduction only now with a pair of predictors pX1, X2q
where X1 is thickness and X2 is concentration of microbes. The bottom diagram
in Figure 7 exhibits three slices of estimated bivariate regression for a small con-
centration (the solid line), a moderate concentration (the dashed line), and a
large concentration (the dotted line). As we see, addition of microbes is more
beneficial for sludges with lower thickness (implies active bioaugmentation), and
the effect diminishes as thickness increases but it is still clearly present. The re-
gression sheds light on how performance of anaerobic digestion can be regulated
by enriching the microbial community and by thickening sludges.

6.2. Several topics in multivariate regression

In this section several topics, suggested by the reviewers, are discussed. They
are the adaptation to smoothness of continuous covariates, dimension reduction,
categorical covariates, and a special setting with necessity of adding a covariate
that makes T and Z conditionally independent but which by itself is not of
interest for the regression.

We begin with adaptation and dimension reduction. In general these are two
different topics. The former is to match performance of the oracle who knows
smoothness of the regression function. For the setting of Theorem 6.1 the adap-
tation means that an estimator yields the rate n´2α˚{p2α˚`1q without knowing
nuisance parameters pα1, . . . , αkq. Dimension reduction is when an estimator
matches performance of the oracle who knows that only a subset of covariates
defines the regression. To make the presentation shorter, we are considering
these two problems together. Namely, the estimator should match the oracle
who knows the subset of covariates that define the regression and also knows
the corresponding smoothness of regression in those covariates.

It is sufficient to explain the heuristic for the case of a bivariate regression,
the general case is considered absolutely similarly. Introduce the tensor-product
cosine basis tϕjpx1qϕipx2q, j, i “ 0, 1, . . .u on r0, 1s2, and write down a bivariate
regression as the Fourier series,

mpx1, x2q “
8ÿ

j,i“0

θjiϕjpx1qϕipx2q, px1, x2q P r0, 1s2. (6.6)

Next, we rewrite (6.6) as the sum of four terms,

mpx1, x2q “ θ00ϕ0px1q
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`
8ÿ

j“1

θj0ϕjpx1q `
8ÿ

i“1

θ0iϕipx2q `
ÿ

j,iě1

θjiϕjpx1qϕipx2q. (6.7)

Following the blockwise adaptation methodology explained in Section 3, we
introduce blocks for Fourier coefficients θj0, θ0i, and θji with indexes j, i ě 1.
Blocks Bk of length Lk, defined in subsection 3.2, are used for the first and
second sums in (6.7). Tensor-product blocks Bk1k2

:“ Bk1
b Bk2

are used for

the third sum. Let rθji be the Fourier estimator (6.4). Then, following (3.19),
the blockwise oracle-estimator is

rm˚px1, x2q “ rθjiϕ0pxq `
knÿ

k“1

ř
jPBk

θ2
j0ř

jPBk
rθ2
j0 ` Etprθj0 ´ θj0q2us

rθj0ϕjpx1q

`
knÿ

k“1

ř
iPBk

θ2
0iř

iPBk
rθ2

0i ` Etprθ0i ´ θ0iq2us
rθ0iϕipx2q

`
k1

nÿ

k1,k2“1

ř
pj,iqiPBk1k2

θ2
ji

ř
pj,iqPBk1k2

rθ2
ji ` Etprθji ´ θjiq2us

rθjiϕjpx1qϕipx2q. (6.8)

Here, similarly to subsection 3.2, sequences kn and k1
n are chosen based on the

assumption about minimal smoothness of the regression.
Now let us look at the three sums in (6.8). If the regression mpx1, x2q depends

only on x1, then the second and third sums are equal to zero. If the regression
mpx1, x2q depends only on x2, then the first and third sums are equal to zero.
Further, it is known from [13,14,24] that the oracle’s blockwise shrinkage can be
mimicked by statistics with accuracy preserving the oracle’s rate of the MISE
convergence. Accordingly, this special blockwise shrinkage allows us to solve the
adaptation and dimension reduction problems.

Next we are considering the case of a categorical covariate Y supported on
t0, 1, . . . ,K ´ 1u. It is natural to incorporate the Y into a series estimator by
using a discrete cosine basis on t0, 1, . . . ,K ´ 1u,

ζ0pyq :“ 1, ζkpyq :“ 21{2 cospπp2y ` 1qk{p2Kqq, k “ 1, . . . ,K ´ 1. (6.9)

The used inner product for this basis is xg1, g2y “ K´1
ř
yPt0,1,...,K´1u g1pyqg2pyq.

As an example, consider a regression mpx, yq “ EtT |X “ x, Y “ yu where X
is a continuous predictor supported on r0, 1s and Y is categorical. The regression

can be written as the Fourier series mpx, yq “
ř8
j“0

řK´1

k“0
θjkϕjpxqζkpyq, and

the Fourier coefficients θjk can be estimated by unbiased sample mean estimates
(compare with (6.4))

qθjk :“ K´1n´1

nÿ

l“1

∆1
lϕjpXlqζkpYlq

fX,Y,ZpXl, Yl, Zlq
. (6.10)

Finally, let us consider the following situation. Recall that the developed
theory of regression estimation for the CSC is based on the assumption that the
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lifetime of interest T and the monitoring time Z are conditionally independent
given covariates. Consider the case of two continuous covariates X1 and X2

supported on r0, 1s2. We are interested in regression mpX1q :“ EtT |X1u but
need to consider the bivariate regression mpX1, X2q :“ EtT |X1, X2u because T
and Z are independent only given the pair pX1, X2q. Two possible scenarios are
discussed.

First, suppose that mpx1, x2q “ mpx1q. Then we are dealing with the already
discussed problem of dimension reduction. In other words, we treat the problem
as a bivariate regression and use the above-described estimator that adapts to
the underlying univariate dimensionality.

Second, suppose that the regression mpx1, x2q is bivariate but we are inter-
ested in the univariate regression mpx1q “ EtT |X1 “ x1u. For simplicity, assume
that the CSC is controlled and hence we know the joint density fX1,X2,Z . Write,

mpx1q “
ż 8

0

ST |X1 pt|x1qdt

“
ż 8

0

ż 1

0

fX2|X1 px2|x1qST |X1,X2 pt|x1, x2qdx2dt. (6.11)

Fourier coefficients of the univariate regression of interest can be written as

θj :“
ż 1

0

mpx1qϕjpx1qdx1

“
ż 8

0

ż

r0,1s2

fX2|X1 px2|x1qST |X1,X2 pt|x1, x2qϕjpx1qdx1dx2dt. (6.12)

Note that ST |X1,X2 pt|x1, x2q “ fX1,X2,Z,∆
1 px1, x2, t, 1q{fX1,X2,Zpx1, x2, tq and

continue (6.12),

θj “ Et∆1fX2|X1 pX2|X1qϕjpX1q
fX1,X2,ZpX1, X2, Zq u “ Et ∆1ϕjpX1q

fX1 pX1qfZ|X1,X2 pZ|X1, X2qu.

This formula yields the unbiased sample mean Fourier coefficient estimator

rθj :“ n´1

nÿ

l“1

∆1
lϕjpX1lq

fX1 pX1lqfZ|X1,X2 pZl|X1l, X2lq
. (6.13)

Finally, the methodology of Section 3 can be used to calculate a series regression
estimator.

6.3. Estimation of conditional survival function

Following the above-presented setting of a multivariate regression, let us consider
estimation of a conditional survival function ST |Xpt|xq :“ PpT ą t|X “ xq. Note
that now we are estimating a p1`kq-dimensional function in t and x. Recall that,
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according to [18], estimation of a survival function ST ptq based on a CSC sample
from pZ,∆q is ill-posed, no longer the classical rate n´1 is achievable, and for
α-fold differentiable survival function the optimal rate of MISE convergence is
n´2α{p2α`1q. As we will see shortly, estimation of a conditional survival function
is also ill-posed with respect to its direct data counterpart. To make presentation
of the following proposition shorter, let us assume that T is supported on r0, 1s
and that ST |Xpt|xq, as a p1 ` kq-dimensional function in pt,xq, belongs to a
Sobolev class Spα1, . . . , αk`1q defined in (6.1).

Theorem 6.2. Suppose that assumptions of Theorem 6.1 hold and ST p1q “ 0.
Introduce an estimator

pST |Xpt|xq :“
ÿ

iPJ

pθiϕipt,xq. (6.14)

Here i :“ pi1, . . . , ik`1q, J :“ t0, 1, . . . , J1ubt0, 1, . . . , J2ub. . .bt0, 1, . . . , Jk`1u,

Js :“ 1 ` tn

α´1
s

2`α
´1

˚ u, α˚ “ r
řk`1

s“1
α´1
s s´1, ϕipt,xq “ ϕ1ptq

śk`1

s“2
ϕis pxis´1q, and

pθi :“ n´1

nÿ

l“1

∆1
lϕipZl,Xlq

fX,ZpXl, Zlq
. (6.15)

Then the estimator (6.14) is rate optimal and

sup
ST |XPSpα1,...,αk`1q

E

!ż

r0,1sk`1

ppST |Xpt|xq ´ ST |Xpt|xqq2dtdx
)

ď Cn´2α˚{p2α˚`1q. (6.16)

To get a feeling of the rate and compare it with a regression setting of the
previous subsection, let us assume that all αs are the same and equal to α, that is
ST |Xpt|xq and mpxq are α-fold differentiable with respect to each variable. Then
the optimal rate for regression is n´2α{p2α`kq versus a slower n´2α{p2α`k`1q for
the conditional survival function. The difference in one dimension is explained
by the integral mpxq “

ş8

0
ST |Xpt|xqdt. On the other hand, because ST |Xpt|xq “

EtIpT ą tq|X “ xu, for direct data conditional survival is estimated with the
classical rate n´2α{p2α`kq.

7. Conditional linear functionals

Recall formula (1.2) and write

mpxq :“ EtT |X “ xu “
ż 8

0

ST |Xpt|xqdt. (7.1)

We also have

mpxq “
ż 8

0

tfT |Xpt|xqdt. (7.2)
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As we see, the regression can be considered as a linear functional of the con-
ditional survival or of the conditional density. There is a rich survival analysis
literature devoted to linear functionals [23,28,29,31,32,61,66,72,74]. As we will
see shortly, in general it is preferable to work with linear functionals of ST |X

because they may be more accurately estimated.
In what follows we assume that ψ is a known and continuous on r0,8q func-

tion, and Ψptq :“
şt
0
ψpuqdu. Introduce a restricted linear functional

Mrpxq :“ Mrpx, ψ, ST |Xq :“
ż r

0

ψptqST |Xpt|xqdt. (7.3)

Note that ψptq “ 1 yields the restricted regression µr, while the power function
ψptq “ ktk´1, k “ 2, 3, . . . is often used to evaluate higher moments [28,32,72].

To present results for estimation of Mr, it is convenient to use Assumption

2.3 where µr and µr0pxq are replaced by Mr and Mr0pxq :“
şr
0
ψptqST |X

0
pt|xqdt,

respectively. To stress the change, the modified function class (2.3) is denoted

as FnpST |X
0

, α,Q, r, ψq.
Theorem 7.1 (Lower bounds for oracle-estimators). Suppose that As-
sumptions 2.1-2.4 hold. Suppose that a CSC sample of size n from pX,Z,∆q is
given. Then

inf
ĂM˚

r

sup
ST |X PFnpS

T |X
0

,α,Q,r,ψq

!
rn{d1pST |X , fX,Z , r, ψqs2α{p2α`1q

ˆ EST |X t
ż 1

0

pĂM˚
r pxq ´Mrpxqq2dxu

)
ě P pα,Qqp1 ` onp1qq. (7.4)

Here P is defined in (2.7) and

d1pST |X , fX,Z , r, ψq :“
ż

Rr

ψ2ptqp1 ´ ST |Xpt|xqqST |Xpt|xq
fX,Zpx, tq dtdx. (7.5)

Now suppose that a MCSC sample of size n from p∆1X,∆1Z,∆q is given. Then

inf
ĂM˚

r

sup
ST |X PFnpS

T |X
0

,α,Q,r,ψq

!
rn{d1

˚pST |X , fX,Z , r, ψqs2α{p2α`1q

ˆ EST |X t
ż 1

0

pĂM˚
r pxq ´Mrpxqq2dxu

)
ě P pα,Qqp1 ` onp1qq. (7.6)

Here

d1
˚pST |X , fX,Z , r, ψq :“

ż

Rr

ψ2ptqST |Xpt|xq
fX,Zpx, tq dtdx. (7.7)

In (7.4) and (7.6) the infimum is taken over all oracle-estimators that know the

corresponding sample, FnpST |X
0

, α,Q, r, ψq, fX,Z and ψ.

Let us present an oracle-estimator that attains the lower bound (7.6), and it
is within a constant factor from (7.4).
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Theorem 7.2. Let Assumptions 2.1 and 2.4 hold. Consider the oracle-estimator

ĎM˚
r pxq :“

qnÿ

j“0

sθjϕjpxq `
J˚

nÿ

j“qn`1

p1 ´ pj{J˚
n qαqsθjϕjpxq. (7.8)

Here J˚
n :“ qn ` 1 ` trpn{d1

˚qQπ´2αpα ` 1qp2α ` 1q{αs1{p2α`1qu, and

sθj :“ n´1

nÿ

l“1

∆1Ip∆1
lZl ď rqψp∆1

lZlqϕjp∆1
lZlq

fX,Zp∆1
lXl,∆1

lZlq
. (7.9)

The MISE of this oracle-estimator attains the lower bound (7.6).

We can also use the blockwise shrinkage methodology of Section 3 to prove
that the adaptive estimator is also efficient.

Now let us look at linear functionals of fT |X . Write,

Mrpx,Ψ, fT |Xq “
ż r

0

ΨptqfT |Xpt|xqdt

“ r
ż r

0

ψptqST |Xpt|xqdts ´ rΨprqST |Xpr|xqs

“ Mrpx, ψ, ST |Xq ´ rΨprqST |Xpr|xqs. (7.10)

A particular example is Mbpx, tk, fT |Xq “ EtT k|X “ xu where b is the endpoint
of the support of T , see an interesting discussion in [64,65]. Let us look at the
two terms on the right side of (7.10). Suppose that Ψprq ‰ 0 to avoid triviality.
The first term is the already studied linear functional of ST |X , and we know
that it can be estimated with the univariate rate defined by smoothness of the
conditional survival in x. The second term, unless ST |Xpr|xq “ 0 due to r ě b,
is the bivariate function in pr, xq, and it is estimated with a slower bivariate rate
[65].

The latter is not the only complication in estimating linear functionals of
fT |X . First, recall that adaptive nonparametric pointwise estimation triggers
the Lepski’s penalty for the rate of convergence [13,68]. Second, an intriguing
outcome may occur if b “ bpxq, that is when the endpoint of the support of
T depends on X. In this case for some x we may have a univariate rate of
estimating Mrpx,Ψ, fX|T q and for others a bivariate rate.

In conclusion, the survival analysis uses the above-discussed linear functionals
as interpretable and meaningful survival metrics [28,32,72,74]. It is reasonable
to conclude that, whenever it is possible to choose between linear functionals of
ST |X or fT |X , it is prudent to choose the former.

8. Conclusions and further research

1. Under current status censoring (CSC), the lifetime of interest T to the event
of interest is not observed. Instead, there is a possibility to know at a monitoring
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time Z if the event of interest already occurred or not. Accordingly, under CSC
we observe a sample of size n from pair pZ,∆q where ∆ :“ IpT ď Zq is the
status, and if a predictor X of T is available, then we observe a sample of size n
from the triplet pX,Z,∆q. The CSC literature is primarily devoted to estima-
tion of the distribution of T , and it is shown that the problem is ill-posed and all
traditional rates for estimating the survival function and density of T dramati-
cally slow down. In particular, under CSC the rate of estimating the density is
the same as estimating a trivariate density based on direct observations. This
is why CSC is considered as an extremely complicated problem.

2. For directly observed data there is a familiar principle of equivalence be-
tween nonparametric regression and density estimation problems. In particular,
the principle implies that rates of the MISE convergence must be the same.
Fortunately, the paper shows that CSC limits applicability of the equivalence
principle, and CSC nonparametric regression can be estimated with the same
rate as a nonparametric regression based on direct observations. This is a dra-
matic relief for CSC because it has a wide range of applications where T cannot
be observed directly.

3. The established fact that rate of a multivariate CSC regression is the
same as for the case of direct observations is of a key importance due to the
familiar curse of dimensionality. At the same time, unfortunately the outcome
is worse for estimating conditional survival functions that suffer slower rates
than estimates based on direct observations. On the other hand, there is an
interesting theoretical situation with the survival functions. Namely, consider
a conditional survival function ST |Xpt|xq. This is a bivariate function, but for
direct data it is estimated with a univariate rate, but CSC “corrects” that and
it is estimated with a classical bivariate rate.

4. Nuisance functions and their required smoothness are a hot topic in modern
nonparametric literature. It is shown, for the first time in the literature, that
a very mild assumption that does not involve second derivatives, is sufficient
for a data-driven estimation of regression mpxq :“ EtT |X “ xu that may be as
smooth as desired. Accordingly, it is possible to untie smoothness of nuisance
functions and smoothness of the regression.

5. Presented in Theorem 1 coefficient of difficulty sheds additional light on
CSC via explanation of how an underlying conditional survival function, to-
gether with nuisance functions, affect regression estimation. The latter allows
us, at least theoretically, compare regressions for direct and CSC data. Namely,
consider a classical normal regression model Y “ mpXq ` σpXqξ. Here a stan-
dard normal regression error ξ is independent of predictor X, σpxq is the scale
function, and density fXpxq is continuous, positive and supported on r0, 1s. For

direct data the coefficient of difficulty for this regression is
ş1

0

σ2pxq
fX pxqdx, and note

that it does not depend on an underlying regression function, see [12,13]. This
nonparametric result mimics a familiar one in the theory of point estimation.
Namely, consider a sample of size n from a Normal variable with mean θ and
variance σ2. Then the sample mean is efficient estimator of θ and its variance
σ2{n attains the famous Cramer-Rao lower bound. We may say that for this
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classical parametric problem the coefficient of difficulty is σ2 (of course, it is
the reciprocal of Fisher information), and similarly to the normal regression the
coefficient of difficulty does not depend on the estimand. Now let us return to
our CSC regression and write down coefficient of difficulty (2.8) as

d “
ż 1

0

şr
0

ST |X pz|xqp1´ST |X pz|xqq
fZ|X pz|xq

dz

fXpxq dx “:

ż 1

0

σ2
CSCpxq
fXpxq dx. (8.1)

The expression on the right side of (8.1) is motivated by the above-presented
coefficient of difficulty for the normal regression. If one would like to think about
equivalence between the two nonparametric models, then (8.1) sheds light on
how CSC “creates” a scale function. Further, note how coefficient of difficulty σ2

for the classical parametric model transfers into
ş1

0

σ2pxq
fX pxqdx for the direct-data

nonparametric regression, and then into (8.1) for CSC regression.
6. What will be if the support of Z is a subset of the support of T , say T is

supported on r0, as while Z is supported on r0, bs with b ă a? Then no consistent
estimation of the regression is possible. A feasible ad hoc remedy is to estimate
the distribution over r0, bs and then test reasonable parametric models.

7. Anaerobic digestion of organic municipal solid waste is a key element in
sustainable municipal waste management due to its benefits for energy, environ-
ment, and economy. This process dramatically reduces emission of greenhouse
gases, generates renewable natural gas, and produces fertilizers and soil amend-
ments. At the same time, it is impossible to directly evaluate the minimal time
of digestion but collecting CSC observations is possible. Then the nonparametric
CSC regression has allowed the environmental company BIFAR to “look” at the
hidden minimal time and choose optimal parameters for anaerobic digestion.

8. Let us compare what we know about rates of estimation of parameters and
nonparametric functions for directly observed and CSC data. In what follows
by a rate we mean an optimal rate under MSE or MISE for a sample of size n.
Further, for a multivariate function it is assumed that it has the same number
α of derivatives for each variable. We begin with estimation of a population
mean µ “ EtT u and a survival function ST ptq “ EtIpT ą tqu. Note that
the first estimand is a parameter and the second is a function of one variable.
Nonetheless, for direct observations of T the rate of their estimation is the same
n´1 because the estimands are expectations of observable variables T and IpT ą
tq, respectively. For CSC the situation changes, and while the population mean is
still estimated with the parametric rate n´1, the survival function is estimated
with the rate n´2α{p2α`1q which is the same as for estimation of an α-fold
differentiable univariate regression mpxq based on direct observations. Relation
µ “

ş8

0
ST ptqdt sheds light on why the parametric rate for µ is preserved,

and the fact that indicator IpT ą tq is no longer directly observed explains
“return to normality” in estimation of a univariate survival function ST ptq.
The interested reader may find an insightful theory of estimating functionals in
[66]. After this warm-up let us turn our attention to nonparametric estimation
of a k-variate regression function mpxq “ EtT |X “ xu and a corresponding
conditional survival function ST |Xpt|xq “ EtIpT ą tq|X “ xu. The regression
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function is k-variate, the conditional survival function is pk` 1q-variate, but for
direct observations they are estimated with the same optimal k-dimensional rate
n´2α{p2α`kq. The fact that conditional survival is the conditional expectation
of an observed indicator IpT ą tq explains the result. For CSC the outcome
changes. Because the indicator IpT ą tq is no longer observed, for the survival
function the rate slows down to the classical pk` 1q-dimensional n´2α{p2α`k`1q,
and note that the rate “fits” the dimensionality of ST |X. The integral formula
mpxq “

ş8

0
ST |Xpt|xqdt explains the faster rate n´2α{p2α`kq for CSC regression,

and note that the integral effectively performs one dimension reduction with
respect to the conditional survival. Let us also stress that while there exists
the asymptotic equivalence between density and regression settings for direct
data, see [13], there is no such equivalence for CSC data. In other words, the
CSC limits the classical theory of asymptotic equivalence between density and
regression problems.

9. Let us present several open problems that may be solved via further devel-
oping of the presented nonparametric methodology. (i) Regression with doubly
CSC data is a practically important topic where the interest is in the length
of time between two events that occur sequentially. Classical examples are the
length of time between: The infection and its diagnosis; The infection of an indi-
vidual and the subsequent infection of another individual; Marriage and divorce.
Under the doubly CSC, lifetimes of the two consecutive events of interest are
not available and instead, at a monitoring time Z, statuses of the two events are
observed. An excellent overview of the doubly CSC regression can be found in
[55,65], and more recent results in [67]. (ii) Another closely related problem is re-
gression with interval-censored data when survival times are not known exactly,
but are only known to have occurred between intermittent examination times,
see a discussion in the book [60]. (iii) An interesting developing of the considered
CSC regression is a sequential sampling with assigned risk and minimal cost of
the sampling. (iv) Efficient nonparametric estimation of the hazard rate is an-
other feasible expansion of the developed theory, see a discussion of the problem
for right-censored observations in [15]. It may be expected that the problem is
ill-posed, and this presents new challenges for small samples. (v) A CSC prob-
lem becomes extremely complicated when T and Z are dependent given X. A
straightforward calculation shows that in this case the proposed regression es-
timators are biased and they estimate a function gpxq :“

ş8

0
ST |X,Zpz|x, zqdz.

Because in a CSC sample the lifetime of interest is never observed, it is impos-
sible to use CSC data for testing the conditional independence. To tackle the
dependence, one of the possible approaches is to use parametric models that
define the dependence, see a discussion and interesting results in [44] where
the case of a known copula model is explored. An appropriate alternative is
to develop an adaptive nonparametric approach based on an extra experiment
devoted to exploring the dependence. (vi) It is of interest to consider other non-
parametric estimators like kernels, splines and series estimators with wavelet
and other bases considered in the literature, explore different loss functions like
L8 and MSE at a point, develop confidence bands, explore more general Sobolev
classes using the methodology of [17]. (vii) An open and interesting topic is to
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explore a vast class of known dimension-reduction techniques for multivariate
CSC regressions. (viii) Case-control study is another interesting and related
problem where sampling is done from subpopulations with ∆ “ 1 and ∆ “ 0,
see [34]. No optimal nonparametric results have been developed so far. (ix) It
is an open and interesting problem to consider a restricted regression with the
restriction r being a function of the predictor. (x) Missing data is a familiar
complication in survival analysis, see [16]. Theory of nonparametric regression
with missing predictors and responses is well developed for direct data, and it
will be of interest to test robustness of the standard approaches to the CSC.
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Appendix: Proofs

Recall that all basic definitions can be found at the end of the Introduction.
Whenever it is not confusing, in what follows we may skip subscripts.

Proof of Theorem 2.1. It is worthwhile to begin with explanation of the
proof’s heuristic. Let us present it via classical example of nonparametric regres-
sion [11,12]. We begin with the nonparametric regression Y “ mpXq `σξ where
ξ is standard normal and independent of the predictor X supported on r0, 1s, σ
is a positive constant (the scale). A sample of size n from pX,Y q is available and
it is known that the regression m belongs to the global Sobolev class Spα,Qq.
The idea of obtaining a sharp minimax lower bound is as follows. First, the
nonparametric problem of estimating m is replaced by considering a parametric
regression mpxq “ m0pxq `

řJ2

j“J1
θjϕjpxq with some specially chosen sequences

J1 and J2. Then a Bayesian approach is used with special Gaussian distribu-
tions for the Fourier coefficients θj , and Fisher informations for each Fourier
coefficient are calculated. The Fisher informations yield the desired coefficient
of difficulty σ2 that can be attained by estimators. Now consider a more com-
plicated heteroscedastic regression Y “ mpXq ` σpXqξ where σpxq is the scale
function. We can use the above-described approach, but it yields the coefficient

of difficulty d1 “ r
ş1

0

fX pxqpxq
σ2pxq dxs´1. This coefficient of difficulty is too small. Best

regression estimators can attain a larger coefficient of difficulty d “
ş1

0

σ2pxq
fX pxqdx

(the relation between d1 and d follows from the Cauchy-Schwarz inequality). To
get the larger coefficient of difficulty, a less favorable prior should be proposed.
The idea is to divide the support r0, 1s into a slowly increasing in n number
of subintervals, on each subinterval approximate mpxq by its own Fourier se-
ries, apply to that series the above-presented Bayes approach, and then add the
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lower bounds for each subinterval. This is how we get the larger coefficient of
difficulty d. Finally, for the CSC regression we can employ the above-described
methodology of obtaining a lower bound, but it yields the coefficient of difficulty
d1 “ r

ş
Rr

pfX,Zpx, zq{rp1 ´ST |Xpt|xqqST |Xpt|xqsqdtdx which is too small. Again,
the idea is to propose a less favorable prior. We divide the rectangle Rr into
a slowly increasing sequence of subrectangles, on each subrectangle consider its
own Fourier series, calculate Fisher informations and finish with local Bayes
lower bounds. Then we add together obtained lower bounds for the subrectan-
gles and get the wished coefficient of difficulty. This is the approach used in the
following proof.

We begin with introducing several new notations, and also note that we are
interested in asymptotic in n. In the proof (and only in this proof) we use the
sequence s :“ sn :“ 5`tlnpqnqu, divide the interval r0, 1s (the support of X) into
s subintervals, and then use an additive perturbation only at the inner intervals.
Set

Ms :“ tµrpxq : µrpxq :“ µr0pxq`
s´2ÿ

k“1

gkpxqIp1{s ď x ď 1´1{sq, gkpxq P Msku.

To define the above-mentioned function classes Msk, we need more definitions.
Let φpxq :“ φpn, xq be a sequence of flattop kernels defined on a real line such
that for a given n it is zero beyond p0, 1q, it is α-fold continuously differentiable
on p´8,8q, 0 ď φpxq ď 1, φpxq “ 1 for 2plnpnqq´2 ď x ď 1 ´ 2plnpnqq´2,
and |φpαq| ď Cplnpnqq2α, see Section 7.1 in [13]. Set φskpxq :“ φpsx ´ kq
and recall that ϕ0pxq :“ 1, ϕjpxq :“ 21{2 cospπjxq, j “ 1, 2, . . . For 1 ď
k ď s ´ 2 define: ϕskjpxq :“ ?

sϕjpsx ´ kq, grkspxq :“
řJpkq
j“J 1pkq νskjϕskjpxq,

gpkqpxq :“ grkspxqφskpxq, Jpkq :“ rrnp2α` 1qpα` 1qs´2αQskpαπ2αq´1s1{p2α`1qs,

J 1pkq :“ rJpkq{ lnpnqs, Qsk :“ pQ ´ 1{sqpI´1
s Iskq´1, I´1

sk :“
şr
0
rST |X

0
pt|k{sqr1 ´

S
T |X
0

pt|k{sqs{fX,Zpk{s, tqsdt, I´1
s :“

řs´2

k“1
I´1

sk .
Using the above-introduced definitions we set

Msk :“
!
g : gpxq “ gpkqpxqIpk{s ď x ď pk ` 1q{sq,

Jpkqÿ

j“J 1pkq

pπjq2αν2

skj ď s´2αQsk, |grkspxq|2 ď s3 lnpnqJpkqn´1

)
.

The class Ms of considered regression functions is defined, and note that any
µr from this class may be written as

µrpxq “ µr0pxq `
s´2ÿ

k“1

Jpkqÿ

j“J 1pkq

νskjϕskjpxqφskpxq. (A.1)

Now recall that the class Mnpµr0, α,Q, rq of underlying µr is introduced
in Assumption 3. Our next step is to show that for large n the considered
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in Theorem 1 function class Mnpµr0, α,Q, rq includes the above-defined class
Ms. If the latter is correct, then we will be able to replace the larger class by
the smaller one in establishing the lower bound. To check this fact, we first
note that using the flattop kernel implies that µrpxq ´ µr0pxq is α-fold con-
tinuously differentiable over r0, 1s. Now we are exploring the derivatives. By

Leibniz rule
ş1

0
rpgrkspxqφskpxqqpαqs2dx “

ş1

0
r
řα
l“0

Cα
l g

pα´lq
rks pxqφplq

sk pxqs2dx where

Cα
l :“ α!{ppα´ lq!l!q. Note that max0ďlďα

ş1

0
pφplq
sk pxqq2dx ă Cpsplnpnqq2q2α, and

for 0 ă l ď α we can write,

|gpα´lq
rks pxq|2 “ |

Jpkqÿ

j“J 1pkq

νskjϕ
pα´lq
skj pxq|2

ď Cs2pα´lq`1p
Jpkqÿ

j“J 1pkq

j2αν2

skjqp
Jpkqÿ

j“J 1pkq

j´2lq ď C ln2pnq{Jpkq.

Further, ż 1

0

rgpαq
rks pxqφskpxqs2dx ď

ż pk`1q{s

k{s

pgpαq
rks pxqq2dx ď Qsk.

What was wished to check.
Following [10,16] and using [31], let us introduce specific parameters

τskj :“ rn´1p1 ´ 3ρ´1qI´1

sk maxpρ´1,minpρ, pJpkq{jqα ´ 1qqs1{2,

where ρ ą 3 is a constant that may be as large as desired. A direct calculation
(see the above-mentioned references) shows that if we set νskj “ τskj , then these
particular parameters satisfy the definition of classes Msk. Namely, introduce
the class of vectors (recall that functions grkspxq are used in the definition of
Msk)

Θsk :“
!
~νsk :

Jpkqÿ

j“J 1pkq

pπjq2αν2

skj ď s´2αQsk,

|grkspxq|2 ď s3 lnpnqJpkqn´1

)
, k “ 1, . . . , s´ 2, (A.2)

where ~νsk :“ tνskJ 1pkq, . . . , νskJpkqu, then ~τsk :“ tτskJ 1pkq, . . . , τskJpkqu P Θsk.
Now recall that the oracle knows the anchor µr0, and hence we can write

down an oracle-estimator as rµ˚
r pxq “ µr0pxq ` rg˚pxq, x P r0, 1s and convert the

considered problem into estimation of the additive perturbation g. Using this
fact, the already established Ms Ă Mnpµr0, α,Q, rq, and the Parseval identity
we can write,

sup
µrPMnpµr0

,α,Q,rq

E

"ż 1

0

prm˚pxq ´mpxqq2dx

*
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ě sup
mPMs

E

"ż 1

0

prm˚pxq ´mpxqq2dx

*

“
s´2ÿ

k“1

sup
~νskPΘsk

E

#ż pk`1q{s

k{s

prg˚pxq ´ gpkqpxqq2dx

+
. (A.3)

Next we are evaluating a particular integral on the right side of (A.3),

ż pk`1q{s

k{s

prg˚pxq ´ gpkqpxqq2dx

ě p1 ´ s´1q
ż pk`1q{s

k{s

prg˚pxq ´ grkspxqq2dx

´s
ż pk`1q{s

k{s

rgrkspxqp1 ´ φskpxqqs2dx

ě p1 ´ s´1q
ż pk`1q{s

k{s

prg˚pxq ´ grkspxqq2dx

` onp1qsplnpnqq´1{2n´2α{p2α`1q . (A.4)

By using this lower bound in (A.3) and with the help of the Parseval’s identity
we conclude that

sup
µrPMnpµr0,α,Q,rq

E

"ż 1

0

prµ˚
r pxq ´ µrpxqq2dx

*

ě p1 ´ s´1q
s´2ÿ

k“1

sup
~νskPΘsk

Jpkqÿ

j“J 1pkq

E
 

prν˚
skj ´ νskjq2

(
` op1qn´2α{p2α`1q, (A.5)

where rν˚
skj :“

şpk`1q{s

k{s
rg˚pxqϕskjpxqdx. The last term on the right side of (A.5)

is in order smaller than the verified lower bound, and hence we can concentrate
on the s´ 2 sums.

To estimate a particular sum, we use a classical minimax theory technique
when a minimax risk is bounded from below by a Bayesian risk. To do this, we
need to introduce a prior distribution for ~νsk. Let us explain how this may be
done. Introduce independent and zero mean normal random variables ζskj with
the above-defined corresponding variances τ2

skj . To use that normal distribution
for creating a bona fide prior on Θsk, it is projected onto Θsk, and then we are
dealing with random vector ~η such that Pp~η P Aq :“ Pp~ζ P A|~ζ P Θskq, A P Θsk.
If we were dealing with a traditional regression, then we could calculate Fisher
information corresponding to each νskj and then follow the proof in [10]. Here,
because we are dealing with CSC regression when the response is not observed
directly, that path should be modified. Below two steps are proposed and they
include: (1) New method of defining normal variables ζskj via a vector of other
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independent normal variables; (2) Calculation of Fisher information matrices
for the new variables.

For px, tq P R :“ r0, 1s ˆ r0,8q introduce a function

S
T |X
˚ pt|xq :“ S

T |X
0

pt|xq

`
s´2ÿ

k“1

Jpkqÿ

j“J 1pkq

s´2ÿ

v“1

rlnpsqsÿ

i“1

κkjviϕskjpxqφskpxqψskviptq, (A.6)

where S
T |X
0

is introduced in Assumption 2.2, ψskviptq :“ ps{rq1{2ψipst{r ´ vq,
and ψiptq “ 21{2 sinpπitqIpt P r0, 1sq. Denote by S˚px, tq, px, tq P Rr the sum on
the right side of (A.6). The function S˚ is continuous in t due to the used sine
bases on the subintervals of r0, rs, and it is also differentiable in t P r0, rs with the
exception of the end points of the subintervals where S˚ is equal to zero. Now
note that if |κkjvi| ď n´1{3{s5 (and compare this bound with τskj being of order
n´1{2), then for all inner points of the subintervals maxxPr0,1s |BS˚px, tq{Bt| “
onp1q. Combining these properties, we conclude that according to Assumption

2.2 the function S
T |X
˚ pt|xq is a bona fide survival function for all large n. Further,

under this assumption we get a bona fide regression

m˚pxq “ m0pxq `
s´2ÿ

k“1

Jpkqÿ

j“J 1pkq

” s´2ÿ

v“1

rlnpsqsÿ

i“1

bskviκkjvi

ı
ϕskjpxqφskpxq. (A.7)

Here bskvi :“
şr
0
ψskviptqdt, and then the Parseval identity implies that

8ÿ

i“1

b2

skvi “ r{s. (A.8)

Now we can compare terms in the square brackets on the right side of (A.7)
with νskj in (A.1). Recall that we used a zero-mean normal prior for νskj
with standard deviation τskj :“ rn´1p1´3ρ´1qI´1

sk maxpρ´1,minpρ, pJpkq{jqα´
1qqs1{2, where I´1

sk :“
şr
0
rST |X

0
pt|k{sqp1´ST |X

0
pt|k{sqq{fX,Zpk{s, tqsdt. Introduce

independent normal random variables ζskjvi with zero mean and variance

rST |X
0

pv{s|k{sqp1 ´ S
T |X
0

pv{s|k{sqq{fX,Zpk{s, v{sqs

ˆrn´1p1 ´ 3ρ´1q maxpρ´1,minpρ, pJpkq{jqα ´ 1qqs
(compare with τ2

skj). Then using (A.8) we get

E

!´ s´2ÿ

v“1

rlnpsqsÿ

i“1

bskviζskjvi

¯2)
“ τ2

skjp1 ` onp1qq. (A.9)

We conclude that the above-defined more complicated model of generating
priors for Fourier coefficients νskj of the regression function yields asymptotically
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the same prior as the above-described ζskj used in [10]. This finishes the first
above-outlined step.

The second step is to calculate Fisher matrices Iskj for vector-parameter
~κskj :“ tκkjvi, v “ 1, . . . , s ´ 2, i “ 1, . . . , rlnpsqsu. For two particular pairs of
indexes pv1, i1q and pv2, i2q the corresponding element Iskjpv1, i1, v2, i2q of the
Fisher matrix is

Iskjpv1, i1, v2, i2q :“ E

! 2ź

u“1

rB lnpfX,Z,∆pX,Z,∆q{Bκkjvuiu s
)
. (A.10)

To simplify notation, set θu :“ κkjvuiu , u “ 1, 2. Also recall that φskpxq and
ψskviptq are supported on pk{s, pk ` 1q{sq and prv{s, rpv ` 1q{sq, respectively.
This allows us to write for the considered indexes,

Iskjpv1, i1, v2, i2q “ E

!
p1 ´ ∆q

2ź

u“1

”
rBST |XpZ|Xq{Bθus{rST |XpZ|Xq

ı)

`E

!
∆

2ź

u“1

”
rBp1 ´ ST |XpZ|Xqq{Bθus{r1 ´ ST |XpZ|Xq

ı)

“
ż 1

0

ż r

0

rfX,Zpx, tqp 1

ST |Xpt|xq ` 1

1 ´ ST |Xpt|xq qs

ˆ ψskv1i1 ptqψskv2i2 ptqϕ2

skjpxqφ2

skpxqdtdx. (A.11)

To evaluate the right side of the last equality we use Assumptions 2.1-2.3 and
relations

ż pk`1q{s

k{s

rϕskjpxqφskpxqs2dx “ 1 `
ż pk`1q{s

k{s

ϕ2

skjpxqpφ2

skpxq ´ 1qdx,

|
ż pk`1q{s

k{s

ϕ2

skjpxqpφ2

skpxq ´ 1qdx| “ onp1qs´1,

and

|
ż pk`1q{s

k{s

ϕskjpxqφskpxqdx| “ |
ż pk`1q{s

k{s

ϕskjpxq ˆ rφskpxq ´ 1sdx| “ onp1qs´1.

Further, we have
şr
0
wptqψskjv1i1 ptqψskjv2i2 ptqdt “ 0 for any integrable function

wptq whenever v1 ‰ v2 (note that in this case supports of the two basis func-
tions are disjoint), and the Cauchy-Schwarz inequality yields

şr
0

|ψskjviptq|dt ď
Cs´1{2. We may conclude that the above-defined Fisher matrix Iskj is a block-
diagonal matrix and Iskj “ diagpA1, . . . , As´2q where each blockAv is a rlnpsqsˆ
rlnpsqs matrix with diagonal elements

Avpi1, i1q “
”
S
T |X
0

prv{s|k{sq
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ˆ p1 ´ S
T |X
0

prv{s|k{sqq{fX,Zpk{s, rv{sq
ı´1

p1 ` onp1qq, (A.12)

where |onp1q| ă C{s for all considered parameters. Further, absolute values of
all other elements in a block-matrix are bounded by Cs´1. Now recall that
s :“ sn Ñ 8 as n Ñ 8 and that the inverse of a block-diagonal matrix is again
a block-diagonal matrix created by corresponding inverses of the blocks. This
and (A.8) allow us to conclude that the inverse Fisher matrix I´1

skj satisfies for

the vector-row ~bsk :“ pbsk11, . . . , bskps´2qrlnpsqsq and its transpose ~b1
sk the relation

~bskI´1

skj
~b1
sk “

ż r

0

rST |X
0

pt|k{sqp1 ´ S
T |X
0

pt|k{sqq{fX,Zpk{s, tqsdtp1 ` onp1qq

“ I´1

sk p1 ` onp1qq. (A.13)

Now we are ready to straightforwardly follow the proof of Theorem 1 in [10]
and conclude that

inf sup
~νskPΘsk

Jpkqÿ

j“J 1pkq

Etprν˚
skj ´ νskjq2u ě pnIskq´2α{p2α`1qP˚p1 ` onp1qq, (A.14)

where the infimum is over all possible oracle-estimators of ~νsk considered in
Theorem 1 and P˚ :“ pα{πpα`1qq2α{p2α`1qp2α`1q1{2α`1q. Using (A.14) on the
right side of (A.5) we can write,

inf
rµ˚

r

sup
µrPMnpµr0,α,Q,rq

Et
ż 1

0

prµ˚
r pxq ´ µrpxqq2dxu

ě rs´1

s´2ÿ

k“1

I´1

sk s2α{p2α`1qn´2α{p2α`1q P˚Q
1{p2α`1qp1 ` onp1qq

“
” s´2ÿ

k“1

ż pk`1q{s

k{s

ż r

0

rST |X
0

pt|xqp1 ´ S
T |X
0

pt|xqq{fX,Zpx, tqsdtdx
ı2α{p2α`1q

ˆn´2α{p2α`1qP˚Q
1{p2α`1qp1 ` onp1qq

“
´ ż 1

0

ż r

0

rST |X
0

pt|xqp1 ´ S
T |X
0

pt|xqq{fX,Zpx, tqsdtdx
¯2α{p2α`1q

ˆ n´2α{p2α`1qP pα,Qqp1 ` onp1qq. (A.15)

This proves the lower bound (2.6).
Now note that in the proof proof of (2.6) we considered only conditional

survival functions ST |Xpt|xq “ S
T |X
0

pt|xq, px, tq P r0, 1s ˆ rr,8q. Thus that
proof also verifies (2.7).

The assumed in part (ii) of Theorem 2.1 inequality dpST |X , fX,Z ,8q ă 8
yields that dpST |X , fX,Z , rq Ñ dpST |X , fX,Z ,8q as r Ñ 8. This and (2.6) verify
(2.9). Theorem 2.1 is proved.
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Proof of Theorem 2.2. The proof follows along line of the proof of Theorem

2.1 with the following two changes. The new I´1

sk :“
şr
0
rST |X

0
pt|k{sq{fX,Zpk{s, tqsdt

are used. Then we repeat the already made calculations in (A.10)–(A.13) only
now, due to the MCSC, in place of the sum rST |Xpt|xqs´1 ` r1 ´ ST |Xpt|xqs´1

in (A.11) we have only the first term rST |Xpt|xqs´1. This is how the new Isk is
calculated in (A.13). Theorem 2.2 is proved.

Proof of Lemma 3.2. Recall that C denotes a generic positive constant. Using
the Parseval identity we can write for all sufficiently large n,

E

!ż 1

0

prgpxq ´ gpxqq2u

“
qnÿ

j“0

Etprκj ´ κjq2u `
Jnÿ

j“qn`1

Etp1 ´ pj{Jnqαqrκj ´ κjq2u `
ÿ

jąJn

κ2

j

ď Cqnn
´1 `

Jnÿ

j“qn`1

Etrp1´ pj{Jnqαqprκj ´κjq ´ pj{Jnqακjs2s `
ÿ

jąJn

κ2

j . (A.16)

Using (3.4) we continue (A.16),

E

!ż 1

0

prgpxq ´ gpxqq2u ď Cqnn
´1

` n´1dpgq
Jnÿ

j“qn`1

p1 ´ pj{Jnqαq2p1 ` onp1qq ` pπJnq´2α
ÿ

jąqn

pπjq2ακ2

j . (A.17)

Now we are evaluation the two sums on the right side of (A.17). A direct calcu-
lation yields

Jnÿ

j“qn`1

p1 ´ pj{Jnqαq2 “ 2α2

pα ` 1qp2α ` 1qJnp1 ` onp1qq. (A.18)

Definition (2.5) of the global Sobolev class yields

sup
gPSpα,Qq

ÿ

jąqn

pπjq2ακ2

j ď Q. (A.19)

Using (A.18), (A.19) and the definition of Jn proves part (i) of Lemma 3.2.
Now let us verify part (ii) of Lemma 3.2. Denote by κ0j and κ˚j Fourier

coefficients of g0 and g˚, respectively. Now note that the underlying g affects
only the second sum on the right side of (A.17). Let us evaluate it for the
considered g “ g0 ` g˚. Write for some γ ą 0,

ÿ

jąqn

pπjq2ακ2

j ď
ÿ

jąqn

pπjq2αrp1 ` γqκ2

˚j ` p1 ` γ´1qκ2

0js
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ď p1 ` γqQ` p1 ` γ´1q
ÿ

jąqn

pπjq2pα´α1qpπjq2α1

κ2

0j

ď p1 ` γqQ` p1 ` γ´1qq2pα´α1q
n Q1.

Set γ :“ qα´α1

n and get

sup
g˚PSpα,Qq

ÿ

jąqn

pπjq2ακ2

j ď Qp1 ` onp1qq. (A.20)

Using (A.20) in place of (A.19) in (A.17) verifies part (ii) of Lemma 3.2. Lemma
3.2 is proved.

Proof of Theorem 3.1. Recall that the lifetime of interest T may be un-
bounded, the sample is MCSC and the joint design density fX,Z is known. The
proof is based on using Lemma 3.2.

We begin with analysis of the proposed Fourier estimator

rθj :“ n´1

nÿ

l“1

∆1
lIp∆1

lZl ď rqϕjp∆1
lXlq

fX,Zp∆1
lXl,∆1

lZlq
.

Using fX,Z,∆px, t, 0q “ fX,Zpx, tqST |Xpt|xq we get

Etrθju “ E

!∆1Ip∆1Z ď rqϕjp∆1Xq
fX,Zp∆1X,∆1Zq

)

“
ż 1

0

r
ż r

0

ST |Xpt|xqdtsϕjpxqdx “
ż 1

0

mpxqϕjpxqdx “ θj . (A.21)

We conclude that the Fourier estimator is unbiased. For its variance we may
write,

Etrθj ´ θjq2u “ n´1rE
!”∆1Ip∆1Z ď rqϕjp∆1Xq

fX,Zp∆1X,∆1Zq
ı2)

´ θ2

j s.

To evaluate the last expectation we use ϕ2
j pxq “ 1 ` ϕ2jpxq, j ě 1 and get

E

!”∆1Ip∆1Z ď rqϕjp∆1Xq
fX,Zp∆1X,∆1Zq

ı2)

“
ż

Rr

ST |Xpt|xqϕ2
j pxq

fX,Zpx, tq dtdx “ d˚pST |X , fX,Z , rq ` ojp1q.

Further, we have θ2
j Ñ 0, j Ñ 8.

Now we are ready to evaluate MISE of the blockwise-shrinkage estimator
(3.24). Ee begin with analysis of the oracle-estimator

pm˚
r pxq :“

qnÿ

j“0

rθjϕjpxq `
knÿ

k“1

Θk

Θk ` d˚n´1

ÿ

jPBk

rθjϕjpxq (A.22)
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is sharp-minimax, that is its MISE attains the lower bound of Theorem 2.2.
In (A.22) we used notation Θk :“ L´1

k

ř
jPBk

θ2
j for Sobolev functionals. Note

that the studied adaptive estimator (3.24) mimics the oracle. To make formulae
shorter, set Λk :“ Θk{pΘk ` d˚n

´1q and write,

ÿ

jPBk

EtpΛkrθj ´ θjq2u

“
ÿ

jPBk

rΛ2

kEtprθj ´ θjq2u ` p1 ´ Λkq2θ2

j ´ 2θjΛkp1 ´ ΛkqEtppθj ´ θjqus. (A.23)

To simplify further references on the proof, note that the Fourier estimator
rθj satisfies the inequalities

|Etrθj ´ θju| ď Cn´1q2

n, Etprθj ´ θjq2u ď n´1rd˚ ` oip1q ` onp1qs. (A.24)

These inequalities will be sufficient.
Using (A.24) and Cauchy inequality |2θjΛrp1 ´ Λrq| ď n´1{2Λ2

k ` n1{2θ2
j p1 ´

Λkq2, we continue (A.23)

ÿ

jPBk

EtpΛkrθj ´ θjq2u

ď Λ2

kLkn
´1d˚ ` p1 ´ Λkq2LkΘk `

ÿ

jPBk

rΛ2

kn
´1 ` p1 ´ Λkq2θ2

j sponp1q ` ojp1qq

“ rΛ2

kLkn
´1d˚ ` p1 ´ Λkq2LkΘksp1 ` onp1q ` ojp1qq.

Using definition of Λk we continue,
ÿ

jPBk

EtpΛkrθj ´ θjq2u

ď Lk

” Θ2

kn
´1d˚

pΘk ` d˚n´1q2
` d2

˚n
´2Θk

pΘk ` d˚n´1q2

ı
r1 ` onp1q ` okp1qs

“ Lk
Θkn

´1d˚

Θk ` d˚n´1
r1 ` onp1q ` okp1qs. (A.25)

Now we may return to the MISE of the oracle-estimator and write using the
Parseval identity and (A.24),

Et
ż 1

0

ppm˚
r pxq ´mrpxqq2dxu

“
bnÿ

j“0

Etrθj ´ θjq2u `
knÿ

k“1

EtpΛkrθj ´ θjq2u `
ÿ

kąkn

LkΘk

ď Cbnn
´1 `

knÿ

k“1

Lk
Θrn

´1d˚

Θr ` d˚n´1
r1 ` onp1q ` okp1qs `

ÿ

kąkn

LrΘr. (A.26)
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Next, a direct calculation shows that

sup
mrinSpα,Qq

” knÿ

k“1

Lk
Θkn

´1d˚

Θk ` d˚n´1
r1 ` onp1q ` okp1qs `

ÿ

kąkn

LkΘk

ı

ď P pα,Qqpd˚n
´1q2α{p2α`1qp1 ` onp1qq. (A.27)

Using the proof of Lemma 3.2, the same upper bound holds for the supremum

over FnpST |X
0

, α,Q, rq. This verifies that the oracle-estimator is sharp-minimax
over the local and global Sobolev classes.

Note that the proposed estimator (3.24) mimics the oracle-estimator’s smooth-
ing coefficients Θk{pΘk ` d˚n

´1q by statistic

minp1, rΘk{rΘ1
kqIprΘk ą 1{rn lnpk ` 3qq.

This mimicking is well-known in the literature and the proof that it preserves the
verified sharp-minimaxity of the oracle-estimator may be found in [12]. Theorem
3.1 is verified.

Proof of Theorem 3.2. The proposed Fourier estimator (3.27) is motivated
by the oracle-estimator

pθ˚
j :“ n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlq

fX,ZpXl, Zlq
, (A.28)

where (recall our notation J pj, nq :“ t0, 1, . . . , qnuztju)

Spj, n, z, xq

:“
ÿ

kPJ pj,nq

qnÿ

i“0

” ż 1

0

ż r

0

ST |Xpz|xqψipuqϕkpvqdudv
ı
ψipzqϕkpxq. (A.29)

Note that Spj, n, z, xq is a special Fourier series approximation of ST |Xpz|xq
with deleted jth Fourier component.

Recall that t1, ϕjpxq, j “ 1, 2, . . .u is the orthonormal basis on r0, 1s and write,

Etpθ˚
j u “ θj ´

ż 1

0

ż r

0

Spj, n, z, xqϕjpxqdzdx “ θj ´ 0 “ θj . (A.30)

We conclude that the oracle’s Fourier estimator is unbiased.
Next we evaluate the variance of pθ˚

j . Write,

nEtppθ˚
j ´ θjq2u “ Et

” r∆1 ´ Spj, n, Z,XqsIpZ ď rqϕjpXq
fX,ZpX,Zq

ı2)
´ θ2

j . (A.31)

Consider the expectation on the right side of (A.31). Note that p∆1q2 “ ∆1 and
write,

Et
” r∆1 ´ Spj, n, Z,XqsIpZ ď rqϕjpXq

fX,ZpX,Zq
ı2)
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“ E

! r∆1 ´ 2∆1Spj, n, Z,Xq ` S2pj, n, Z,XqsIpZ ď rqϕ2
j pXq

rfX,ZpX,Zqs2

)

“
ż 1

0

” ż r

0

ST |Xpz|xq ´ 2ST |Xpz|xqSpj, n, z, xq ` S2pj, n, z, xq
fX,Zpx, zq dz

ı
ϕ2

j pxqdx

“
ż 1

0

” ż r

0

ST |Xpz|xq ´ pST |Xpz|xqq2

fX,Zpx, zq dz
ı
ϕ2

j pxqdx

`
ż 1

0

” ż r

0

r2ST |Xpz|xqpST |Xpz|xq ´ Spj, n, z, xqq
fX,Zpx, zq dz

ı
ϕ2

j pxqdx

`
ż 1

0

” ż r

0

S2pj, n, z, xq ´ pST |Xpz|xqq2

fX,Zpx, zq dz
ı
ϕ2

j pxqdx. (A.32)

The first integral on the right side of (A.32) can be evaluated as

ż 1

0

” ż r

0

ST |Xpz|xqr1 ´ pST |Xpz|xqs
fX,Zpx, zq dz

ı
ϕ2

j pxqdx “ d` ojp1q. (A.33)

Here d “ dpST |X , fX,Z , rq. The second and third integrals, using definition
(A.29), can be evaluated as onp1q. We conclude that

Etppθ˚
j ´ θjq2u “ n´1rd` ojp1q ` onp1qs. (A.34)

Now note that the proposed Fourier estimator pθj mimics the oracle’s Fourier
estimator by replacing unknown function Spj, n, z, xq by its estimate

rSpj, n, z, xq :“ n´1

nÿ

l“1

ÿ

kPJ pj,nq

qnÿ

i“0

∆1
lψipZlqϕkpXlqψipzqϕkpxq

fX,ZpXl, Zlq
.

Further, we may write,

pθj “ pθ˚
j ` n´1

nÿ

l“1

Spj, n, Zl, Xlq ´ rSpj, n, Zl, Xlq
fX,ZpXl, Zlq

ϕjpXlq “: pθ˚
j ` rAj . (A.35)

Now we evaluate the mean and variance of rAj . Set N plq :“ t1, 2, . . . , nuztlu
and write

Et rAju “ E

! pSpj, n, Z1, X1q ´ rSpj, n, Z1, X1qqϕjpX1q
fX,ZpX1, Z1q

)

“ ´E

!ř
lPN p1q

ř
kPJ pj,nq

řqn

i“0

∆
1
lψipZlqϕkpXlqψipZ1qϕkpX1q

fX,Z pXl,Zlq ´ Spj, n, Z1, X1q
nfX,Y pX1, Z1q

ˆ ϕjpX1q
)

´ n´1
E

! ÿ

kPJ pj,nq

qnÿ

i“0

∆1
1ψ

2
i pZ1qϕ2

kpX1q
rfX,ZpX1, Z1qs2

ϕjpX1q
)
. (A.36)
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The first expectation on the right side of (A.36) is zero because

EtϕjpX1qrfX,ZpX1, Z1qs´1u “ 0,

and the second is of order n´1q2
n. We conclude that

|Et rAju| ď Cn´1q2

n. (A.37)

Next we evaluate the second moment of rAj . Write,

Et rA2

ju “ n´2

nÿ

l,u“1

E

! rSpj, n, Zl, Xlq ´ Spj, n, Zl, Xlq
fX,ZpXl, Zlq

ϕjpXlq

ˆ
rSpj, n, Zu, Xuq ´ Spj, n, Zu, Xuq

fX,ZpXu, Zuq ϕjpXuq
)
. (A.38)

There are two types of terms in the double sum. The first one is when u “ l and
the second when u ‰ l. We explore them in turn. For the case u “ l we note
that

E

!” rSpj, n, Zl, Xlq ´ Spj, n, Zl, Xlq
fX,ZpXl, Zlq

ϕjpXlq
ı2)

ď Cn´1q2

n. (A.39)

If u ‰ l, set N pu, lq :“ t1, 2, . . . , nuztu, lu and write,

rSpj, n, z, xq “ n´1
ÿ

sPN pu,lq

ÿ

kPJ pj,nq

qnÿ

i“0

∆1
sψipZsqϕkpXsqψipzqϕkpxq

fX,ZpXs, Zsq

`n´1
ÿ

sPtu,lu

ÿ

kPJ pj,nq

qnÿ

i“0

∆1
sψipZsqϕkpXsqψipzqϕkpxq

fX,ZpXs, Zsq

“: rS1pj, n, z, xq ` rS2pj, n, z, xq. (A.40)

Using the new notation we can write (recall that we are considering r ‰ l)

E

! rSpj, n, Zl, Xlq ´ Spj, n, Zl, Xlq
fX,ZpXl, Zlq

ϕjpXlq

ˆ
rSpj, n, Zu, Xuq ´ Spj, n, Zu, Xuq

fX,ZpXu, Zuq ϕjpXuq
)

“ E

! rrS1pj, n, Zl, Xlq ´ Spj, n, Zl, Xlqs ` rS2pj, n, Zl, Xlq
fX,ZpXl, Zlq

ϕjpXlq

ˆrrS1pj, n, Zu, Xuq ´ Spj, n, Zu, Xuqs ` rS2pj, n, Zu, Xuq
fX,ZpXu, Zuq ϕjpXuq

)

“ E

! rS1pj, n, Zl, Xlq ´ Spj, n, Zl, Xlq
fX,ZpXl, Zlq

ϕjpXlq
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ˆ
rS1pj, n, Zu, Xuq ´ Spj, n, Zu, Xuq

fX,ZpXu, Zuq ϕjpXuq
)

`2E
! rS1pj, n, Zl, Xlq ´ Spj, n, Zl, Xlq

fX,ZpXl, Zlq
ϕjpXlq

rS2pj, n, Zu, Xuq
fX,ZpXu, Zuq ϕjpXuq

)

`E

! rS2pj, n, Zl, Xlq
fX,ZpXl, Zlq

ϕjpXlq
rS2pj, n, Zu, Xuq
fX,ZpXu, Zuq ϕjpXuq

)

“: B1 `B2 `B3. (A.41)

Term B1 on the right side of (A.41) is zero because
ş1

0
ϕjpxqdx “ 0. Using

(A.39), EtrS2pj, n,Xl, Zjqs2u ď Cn´2q4
n and Cauchy-Schwarz inequality we get

|B2| ď Cn´3{2q2
n. Finally, |B3| ď Cn´2q4

n. Combining these results in (A.41),
and then using the obtained relation and (A.39) in (A.38) we conclude that

Et rA2

ju ď Cn´3{2q4

n. (A.42)

Now we can combine the obtained results and conclude that

|Etpθju ´ θj | ď Cn´1q2

n, Etppθj ´ θjq2u “ n´1rd` ojp1q ` onp1qs. (A.43)

Properties (A.43) of the Fourier coefficient estimator pθj are the same as (A.24)
used in the proof of efficiency of the blockwise shrinkage estimator, recall the
proof of Theorem 3.1. This finishes the proof of Theorem 3.2.

Remark A.1 It follows from the established properties of the Fourier estima-
tor pθj that it matches performance of the oracle’s Fourier estimator pθ˚

j with
sufficient accuracy for the efficient nonparametric estimation.

Proof of Theorem 3.3 Fourier estimator (3.33) is the sample mean estimator.
Accordingly, we get Etsθju “ θj and Etpsθj ´ θjq2|s “ D˚p1 ` ojp1qq. These
relations allow us to use Lemma 3.2, and it proves Theorem 3.3.

Proof of Theorem 3.4. The proof follow the steps of the proof of Theorem 3.1.
First, it follows from Theorem 3.3 that the smoothing oracle (3.34) is efficient for
MCSC and within factor pD˚{Dq2α{p2α`2q from being efficient for CSC. Second,
introduce the blockwise oracle-estimator

sm˚pxq :“
qnÿ

j“0

sθjϕjpxq `
knÿ

k“1

Θk

Θk ` d˚n´1

ÿ

jPBk

sθjϕjpxq. (A.44)

Here Θk :“ L´1

k

ř
jPBk

θ2
j are Sobolev functionals. Note that the studied adap-

tive estimator (3.38) mimics the oracle. Directly following the proof of Theorem
3.1 we establish that the blockwise oracle estimator sm˚ is efficient for MCSc
and that (3.38) is also efficient. Theorem 3.4 is verified.

Proof of Theorem 4.1. We are considering MCSC and CSC samplings in
turn. For MCSC there is an extra sample of size n˚ (we are considering a more
general setting than just sample size n) from pX,Zq that is used to estimate
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the joint density fX,Z . Due to the extra sample, we can separate observations
used to estimate the nuisance function and the regression, and at the same time
prove a number of needed technical propositions. Then we explore the CSC
when the same observations are used to estimate the nuisance joint density and
the regression.

For MCSC the Fourier estimator is

rθj :“ n´1

nÿ

l“1

∆1
lIp∆lZl ď rqϕjp∆1

lXlq
pfp∆1

lXl,∆1
lZlq

“ n´1

nÿ

l“1

∆1
lIpZl ď rqϕjpXlq

pfpXl, Zlq
. (A.45)

Note that we skipped some factors ∆1
l to simplify the formula. In (A.45)

pfpx, zq :“ maxp1{ ln lnpn˚ ` 3q, rfpx, zqq (A.46)

and rfpx, zq is the projection density estimate

rfpx, zq :“ n´1

˚

nÿ̊

r“1

ÿ

pi,sqPN

ϕipXErqψspZErqϕipxqψspzq. (A.47)

In (A.47) pXE1, ZE1q, . . . , pXEn˚ , ZEn˚ q is the extra sample from pX,Zq, N :“
t0, 1, . . . , t1 `n

1{4

˚ uu2, tϕju and tψsu are cosine bases on r0, 1s and r0, rs, respec-

tively. The truncation from below in (A.46) allows us to use pf in the denomi-
nators of (A.45).

Recall that the nuisance joint density fX,Zpx, zq is supported and bounded
below from zero on Rr :“ r0, 1s ˆ r0, rs, and in what follows we are considering
only px, zq P Rr.

The following elementary relation will be useful (to simplify formulae in what
follows we may write fpx, zq :“ fX,Zpx, zq)

1

pfpx, zq
“ 1

fpx, zq ` fpx, zq ´ pfpx, zq
f2px, zq ` pfpx, zq ´ pfpx, zqq2

pfpx, zqf2px, zq
. (A.48)

Using this relation we can rewrite (A.45) as

rθj “ n´1

nÿ

l“1

∆1
lϕjpXlq

fpXl, Zlq
` n´1

nÿ

l“1

∆1
lϕjpXlqpfpXl, Zlq ´ pfpXl, Zlqq

f2pXl, Zlq

`n´1

nÿ

l“1

∆1
lϕjpXlqpfpXl, Zlq ´ pfpXl, Zlqq2

pfpXl, Zlqf2pXl, Zlq

“: rθ˚
j ` rA1 ` rA2. (A.49)

Note that rθ˚
j is the Fourier estimator (3.21) used in Theorem 3.1, and hence

we only need to explore terms rA1 and rA2. We begin with the following technical
result.
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Lemma A.1. Suppose that a bivariate function gpx, zq, px, zq P Rτ has a con-
tinuous mixed derivative B2fpx, zq{BxBz. Set

γis :“
ż r

0

ż 1

0

gpx, zqϕipxqψspzqdxdz

for Fourier coefficients of the function. If

ż r

0

ż 1

0

rB2gpx, zq{BxBzs2dxdz ă 8, (A.50)

then
8ÿ

i,s“0

pisq2γ2

is “ pr2{π4q
ż r

0

ż 1

0

rB2gpx, zq{BxBzs2dxdz. (A.51)

If ż r

0

ż 1

0

rBgpx, zq{Bxs2dxdz ă 8, (A.52)

then
8ÿ

i,s“0

i2γ2

is “ π´2

ż r

0

ż 1

0

rBgpx, zq{Bxs2dxdz. (A.53)

If ż r

0

ż 1

0

rBgpx, zq{Bzs2dxdz ă 8, (A.54)

then
8ÿ

i,s“0

s2γ2

is “ pr2{π2q
ż a

0

ż 1

0

rBgpx, zq{Bzs2dxdz. (A.55)

If (A.50), (A.52) and (A.54) hold, then

8ÿ

i,s“0

p1 ` i2qp1 ` s2qγ2

is “ Gg, (A.56)

where

Gg :“
ż r

0

ż 1

0

”
rgpx, zqs2 ` π´2rBgpx, zq{Bxs2

` pr2{π2qrBgpx, zq{Bzs2 ` pr2{π4qrB2gpx, zq{BxBzs2

ı
dxdz, (A.57)

and for any pair pi0, s0q of nonnegative integers

ÿ

iěi0,sěs0

|γis| ď c˚p1 ` i0q´1{2p1 ` s0q´1{2 lnp3 ` i0q lnp3 ` s0qG1{2

g , (A.58)

where c˚ is an absolute finite constant.
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Proof of Lemma A.1. We begin with (A.51). Using the Parseval identity, the
sine basis t21{2 sinpπjxq, j “ 1, 2, . . .u on r0, 1s, and integration by parts we can
write for any z P r0, rs,

ż 1

0

rB2gpx, zq{BxBzs2dx “
8ÿ

i“1

” ż 1

0

rB2gpx, zq{BxBzs21{2 sinpπixqdx
ı2

“
8ÿ

i“1

”
rBgpx, zq{Bzs21{2 sinpπixq

ˇ̌
ˇ
x“1

x“0

´ pπiq
ż 1

0

rBgpx, zq{Bzs21{2 cospπixqdx
ı2

“
8ÿ

i“1

pπiq2

” ż 1

0

rBgpx, zq{Bzsϕipxqdx
ı2

“:
8ÿ

i“1

pπiq2φ2

i pzq. (A.59)

Using the Leibnitz theorem we note that

φipzq “
ż 1

0

rBgpx, zq{Bzsϕipxqdx “
d
ş1

0
gpx, zqϕipxqdx

dz
“:

dGipzq
dz

, (A.60)

where Gipzq :“
ş1

0
gpx, zqϕipxqdx.

By repeating steps made in (A.59), only now using the sine basis
tp2{rq1{2 sinpπsz{rq, s “ 1, 2, . . .u on r0, rs, we can write for φi defined in (A.60),

ż r

0

φ2

i pzqdz “
8ÿ

s“1

” ż r

0

φipzqp2{rq1{2 sinpπsz{rqdz
ı2

“
8ÿ

s“1

”
Gipzqp2{rq1{2 sinpπsz{rq

ˇ̌
ˇ
z“r

z“0

´ pπs{rq
ż r

0

Gipzqp2{rq1{2 cospπsz{rqdz
ı2

“
8ÿ

s“1

pπs{rq2

” ż r

0

Gipzqr´1{2ϕspz{rqdz
ı2

. (A.61)

Recall that Gipzq :“
ş1

0
gpx, zqϕipxqdx, and using the Fubini theorem we con-

clude that ż r

0

ż 1

0

rB2gpx, zq{BxBzs2dxdz

“
8ÿ

i,s“1

pπ2is{rq2

” ż r

0

r
ż 1

0

gpx, zqϕipxqdxsr´1{2ϕspz{aqdz
ı2

“ pπ4{r2q
8ÿ

i,s“0

pisq2γ2

is.

Equality (A.51) is proved.
Now we verify (A.53). Following (A.59) we can write,

ż 1

0

rBgpx, zq{Bxs2dx “
8ÿ

i“1

” ż 1

0

rBgpx, zq{Bxs21{2 sinpπixqdx
ı2
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“
8ÿ

i“1

”
gpx, zq21{2 sinpπixq

ˇ̌
ˇ
x“1

x“0

´ pπiq
ż 1

0

gpx, zq21{2 cospπixqdx
ı2

“
8ÿ

i“1

pπiq2

” ż 1

0

gpx, zqϕipxqdx
ı2

. (A.62)

Next, using the Parseval identity we get

ż r

0

” ż 1

0

gpx, zqϕipxqdx
ı2

dz

“
8ÿ

s“0

” ż r

0

ż 1

0

gpx, zqϕipxqr´1{2ϕspz{rqdxdz
ı2

“
8ÿ

s“0

γ2

is. (A.63)

Combining (A.62) and (A.63) we may write,

ż r

0

” ż 1

0

rBgpx, zq{Bxs2dx
ı
dz “

8ÿ

i“1

pπiq2

ż r

0

” ż 1

0

gpx, zqϕipxqdx
ı2

dz

“
8ÿ

i“1

pπiq2

” 8ÿ

s“0

γ2

is

ı
“

8ÿ

i,s“0

pπiq2γ2

is.

Relation (A.53) is verified. Relation (A.55) is verified similarly to (A.53).
To verify (A.56), note that p1 ` i2qp1 `s2q “ 1 ` i2 `s2 ` i2s2. This, together

with the Parseval identity, (A.45), (A.53), and (A.55), verify (A.56).
Now we are verifying (A.52). Using the Cauchy-Schwartz inequality and

(A.56) we may write,

” ÿ

iěi0,sěs0

|γis|
ı2

ď
” ÿ

iěi0,sěs0

p1 ` i2q´1{2p1 ` s2q´1{2rlnp3 ` iq lnp3 ` sqs´2

ı

ˆ
” ÿ

iěi0,sěs0

p1 ` i2q1{2p1 ` s2q1{2rlnp3 ` iq lnp3 ` sqs2γ2

is

ı
(A.64)

Because
ř
iě2

i´1rlnpiqs´2 ă 8, the first factor on the right side of (A.64)
is bounded from above by a finite absolute constant calculated for the case
i0 “ s0 “ 0 (recall that To evaluate the second factor, we note that p1 `
i2q1{2 ln2p3`i0q{p1`i20q1{2 ě ln2p3`iq for any i ě i0 ě 0, and that p1`i20q´1{2 ď
21{2p1 ` i0q´1. This and (A.56) allow us to write for the second factor on the
right side of (A.64),

ÿ

iěi0,sěs0

p1 ` i2q1{2p1 ` s2q1{2rlnp3 ` iq lnp3 ` sqs2γ2

is

ď p1 ` i20q´1{2 ln2p3 ` i0qp1 ` s2

0q´1{2 ln2p3 ` s0q
ÿ

iěi0,sěs0

p1 ` i2qp1 ` s2qγ2

is

ď 2p1 ` i0q´1p1 ` s0q´1 ln2p3 ` i0q ln2p3 ` s0qGg.
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Combining the obtained results in (A.62) we verify (A.58). Lemma A.1 is proved.

We need one more technical result about the proposed density estimate.

Lemma A.2. Let density fX,Zpx, zq satisfies the assumption

GfX,Z ă 8, (A.65)

where GfX,Z is defined in (A.57). Then, for some positive constants c0 and c1,

the defined in (A.47) estimate rfpx, zq satisfies the exponential inequality

P

´
max

px,zqPRr

| rfpx, zq ´ fX,Zpx, zq| ą c1n
´1{8

˚

¯
ď 2n2

˚e
´c0n

1{4

˚ . (A.66)

Proof of Lemma A.2. We begin with the following relation,

rfpx, zq ´ fX,Zpx, zq “ ´
ÿ

pi,sqRN

κisϕipxqa´1{2ϕspz{aq

`
ÿ

i,sPN

rn´1

˚

nÿ̊

l“1

ϕipXElqψspZElq ´ κissϕipxqψspzq

“: D1px, zq ` rD2px, zq “: D1 ` rD2. (A.67)

Here N :“ t0, 1, . . . , Nu2 with N :“ t1 ` n
1{4

˚ u. The first term D1 is evaluated
using Assumption 4.1, Lemma A.1, and the Cauchy-Schwarz inequality (below
a more general than needed relation is presented for future use)

|D1| “ |
ÿ

pi,sqRN

κisϕipxqa´1{2ϕspz{aq| ď 2a´1{2
ÿ

pi,sqRN

|κis|

ď 2a´1{2

” ÿ

pi,sqRN

p1 ` i2q´1p1 ` s2q´1
ÿ

pi,sqRN

p1 ` i2qp1 ` s2qκ2

iss1{2

ď CN´1{2 ď Cn
´1{8

˚ . (A.68)

Recall that Cs denote generic constants.
Analysis of the second term in (A.67) is more involved. We begin with a

remark that we may rewrite rD2 as

rD2 “ n´1

˚

nÿ̊

l“1

”
r

ÿ

pi,sqPN

ϕipXElqψspZElqϕipxqϕspzqs

´ r
ÿ

pi,sqPN

κisϕipxqψspzqs
ı

“: n´1

˚

nÿ̊

l“1

”
rD2l ´D2l

ı
. (A.69)
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Note that Et rD2l´D2lu “ 0. To evaluate the second moment of the difference
we note that Lemma 1 yields

8ÿ

i,s“0

|κis| ă C. (A.70)

Next, using the fact that the basis functions are bounded, (A.70) and the ele-
mentary trigonometric identity

ϕipxqϕspxq “ 2´1{2rϕi´spxq ` ϕi`spxqs,

we can write,
Etp rD2l ´D2lq2u

“
ÿ

pi,sqPN

ÿ

pi1,s1qPN

”
EtpϕipXElqψspZElq ´ κisqpϕi1 pXElqψs1 pZElq ´ κi1s1 qu

ˆϕipxqψspzqϕi1 pxqϕs1 pz{aq
ı

ď C
ÿ

pi,sqPN

ÿ

pi1,s1qPN

r|κi˘i1,s˘s1 | ` |κisκi1s1 |s ď CN2 ă Cn
1{2

˚ . (A.71)

Here κi˘i1,s˘s1 denotes any possible plus or minus combination of the indexes
which is created by the above-mentioned trigonometric identity. Let us also note
that

| rD2l ´D2l| ď CN2 ă Cn
1{2

˚ . (A.72)

These results allow us to use the Bernstein exponential inequality [18], p.19
and conclude that

P

´
| rD2| ě u

¯
ď 2 exp

!
´ C

n˚u
2

n
1{2

˚ ` tn
1{2

˚

)
ď 2 exp

!
´ C

n
1{2

˚ u2

1 ` u

)
. (A.73)

Set u :“ c1n
´1{8

˚ for some positive constant c1. Also recall notations rD2 “
rD2px, zq introduced in (A.67), that px, zq P Rτ , and then conclude with the
help of (A.73) that for any k pairs pxi, ziq P r0, 1s ˆ r0, as we have

kÿ

i“1

P

´
| rD2pxi, ziq| ě c1n

´1{8

˚

¯
ď 2k expt´c0n

1{4

˚ u. (A.74)

The inequality (A.72), together with (A.68), is “almost” what we want to
prove, only additionally we need to check that a similar inequality holds simul-
taneously for all points px, zq P Rτ . To check this we use a rough inequality

|B2 rD2px, zq{BxBz| ď CN4 ă Cn˚ a.s. (it is indeed a rough but sufficient for
our purposes inequality, and a better result may be obtained via analog of the
generalized Bernstein inequality for the derivative of a trigonometric polynomial
discussed in [41], p.96. Keeping in mind the maximum value of the derivative,
we divide the rectangle r0, 1s ˆ r0, as into k :“ n2

˚ identical sub-rectangles, note
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that if pxi, ziq belongs to a sub-rectangle and | rD2pxi, ziq| ď c1n
´1{8

˚ , then the
mean value theorem implies that for all points from this sub-rectangle we have

| rD2px, zq| ď c0n
´1{8

8
for some finite c0. This concludes the proof of Lemma A.2.

Remark A.2 The exponential inequality of Lemma A.2 allows us, whenever it
is convenient in a proof, to replace the density estimate pfpx, zq by rfpx, zq and
vise versa. Indeed, it is known that the underlying bivariate density fpx, zq is

bounded below from zero on Rr, and hence probability of the event rfpx, zq ‰
pfpx, zq is exponentially small in n˚ (and hence in n) while all the studied risks
decrease as some power of n.

Following Remark 6.2, denote by rA1 and rA2 the expressions for pA1 and pA2,
defined in (6.55), only with pf being replaced by rf , and recall that definitions of
these joint density estimates are presented in (6.52) and (6.53). We begin with

evaluation of second moments of rA1 and rA2 in turn. Recall that to simplify
formulae we may write fpx, zq in place of fX,Zpx, zq. For the second moment of
rA1 we get

Et rA2

1u “ n´1
Et

”∆1ϕjpXqpfpX,Zq ´ rfpX,Zqq
f2pX,Zq

ı2

u

` n´2npn´ 1qEtrV 2u “: A11 ` n´2npn´ 1qA12. (A.75)

Here

rV :“
ż r

0

ż 1

0

ST |Xpz|xqf´1px, zqϕjpxqrfpx, zq ´ rfpx, zqsdxdz

“
ż r

0

ż 1

0

ST |Xpz|xqf´1px, zqϕjpxq
” ÿ

pi,sqPN

pκis ´ rκisqϕipxqψspzq

`
ÿ

pi,sqRN

κisϕipxqψspzq
ı
dxdz

“
ÿ

pi,sqPN

pκis ´ rκisqνi˘j,s `
ÿ

pi,sqRN

κisνi˘j,s, (A.76)

and we used notation

νi˘j,s :“
ż a

0

ż 1

0

ST |Xpz|xqf´1px, zqψjpxqϕipxqψspzqdxdz. (A.77)

This notation is motivated by the trigonometric identity (recall that we already
used it before)

ϕipxqϕjpxq “ 2´1{2rϕi´jpxq ` ϕi`jpxqs. (A.78)

Further, for the considered bivariate functions Spz|xq and fpx, zq, with the help
of Lemma A.1, we get

max
jě0

8ÿ

i“0

8ÿ

s“0

|νi˘j,s| ď C. (A.79)



/Regression for CSC 59

Also, recall our notations for Fourier coefficients of the density and its estimate,

κis :“
ż r

0

ż 1

0

fpx, zqϕipxqϕspzqdxdz, (A.80)

and

rκis :“
ż r

0

ż 1

0

rfpx, zqϕipxqϕspzqdxdz

“ n´1

˚

nÿ̊

r“l

ϕipXElqϕspZElq. (A.81)

Now we are in a position to evaluate the two terms on the right side of (A.75).
For the first term we get using Lemma A.2 that

A11 ď Cn
´1{4

˚ n´1. (A.82)

Evaluation of A12 is more involved, and we begin with the following useful
proposition.

Lemma A.3. Let Assumption 4.1 hold. Consider κis and rκis defined in (A.80)
and (A.81), respectively. Then

Etrκisu “ κis, (A.83)

Etprκis ´ κisq2u ď Cn´1

˚ , (A.84)

and using notations ϕ˚
i˘i1 pxq :“ ϕjpxqϕi1 pxq and ψ˚

i˘i1 pxq :“ ψjpxqψi1 pxq, we
have

|Etprκis ´ κisqprκi1s1 ´ κi1s1 qu|

“ n´1

˚

” ż r

0

ż 1

0

fpx, zqϕ˚
i˘i1 pxqψ˚

s˘s1 pzqdxdz ´ κisκi1s1

ı

“: n´1

˚ rκi˘i1,s˘s1 ´ κisκi1s1 s, (A.85)

where
8ÿ

i,s“1

r|κi˘i1,s˘s1 | ` |κisκi1s1 |s ă C. (A.86)

Proof of Lemma A.3. Recall that

rκis :“ n´1

˚

nÿ̊

l“1

ϕipXErqψspZErq,

and this yields (A.83) because κis “ EtϕipXqψspZqu. Relation (A.84) follows
from (A.83) and independence of pairs pXEl, ZElq in the extra sample. To check
(A.85) we write using (A.83),

Etprκis ´ κisqprκi1s1 ´ κi1s1 qu
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“ n´2

˚

nÿ̊

l1,l2“1

EtpϕipXEl1 qψspZEl1 q ´ κisqpϕi1 pXEl2 qϕs1 pZEl2 q ´ κi1s1 qu

“ n´1

˚ EtpϕipXqψspZq ´ κisqpϕi1 pXqψs1 pZq ´ κi1s1 qu

“ n´1

˚

” ż a

0

ż 1

0

fpx, zqϕi˘i1 pxqψs˘s1 pzqdxdz ´ κisκi1s1

ı

“: n´1

˚ rκi˘i1,s˘s1 ´ κisκi1s1 s. (A.87)

This relation and (A.71) verify (A.85). Lemma A.3 is proved.

Using Lemma A.3 and (A.76)-(A.81) we can evaluate A12 defined in (A.75).
Write,

A12 “ EtrV 2u

“ E

! ÿ

pi,sq,pi1,s1qPN

pκis ´ rκisqpκi1s1 ´ rκi1s1 qνi˘j,sνi1˘j,s1

)
`
” ÿ

pi,sqRN

κisνi˘j,s

ı2

“: A121 `A122. (A.88)

For the first term, using (A.70), (A.79) and (A.87), we conclude that

A121 “ n´1

˚

ÿ

pi,sq,pi1,s1qPN

rκi˘i1,s˘s1 ´ κisκi1s1 sνi˘j,sνi1˘j,s1 ď Cn´1

˚ . (A.89)

To evaluate A122 we recall that an underlying parameter α is at least α0 “ 2.
This yields that for all sufficiently large considered in Theorem 4.1 sample sizes
n˚ and n we have j ď N{2 (we have even stronger relation j ď on˚ p1qN). Then,
using Lemma A.1 and the Cauchy-Schwarz inequality we get,

A122 “
” ÿ

pi,sqRN

κisνi˘j,s

ı2

ď
ÿ

pi,sqRN

κ2

is

ÿ

pi,sqRN

ν2

i˘j,s ď N´4. (A.90)

This yields that
A12 ď Crn´1

˚ `N´4s, (A.91)

which in its turn, together with (A.82) and (A.75), yield the following result for
rA1,

Et rA2

1u ď Crn´1

˚ `N´4s. (A.92)

Now we are evaluating the second moment of rA2. Recall that this statistic is
defined in (A.49) and we can write it as a sum of two terms,

rA2 “ n´1

nÿ

l“1

∆1
lϕjpXlqpfpXl, Zlq ´ pfpXl, Zlqq2

f3pXl, Zlq

`n´1

nÿ

l“1

∆1
lϕjpXlqpfpXl, Zlq ´ pfpXl, Zlqq3

pfpXl, Zlqf3pXl, Zlq
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“ rA21 ` rA22. (A.93)

Recall our earlier explanation that for the purpose of estimating moments
with the desired accuracy, and according to Lemma A.2 we may replace in rA21

the density estimate pf by rf . Let us denote this modified term as pA21 and explore
the second moment of pA21. Using Lemma A.3 and formula

fpx, zq ´ rfpx, zq

“
ÿ

pi,sqPN

pκis ´ rκisqϕipxqψspzq `
ÿ

pi,sqRN

κisϕipxqψspzq, (A.94)

we may write,

Et pA2

21u “ n´1
E

!”∆1ϕjpXqpfpX,Zq ´ rfpX,Zqq2

f3pX,Zq
ı2)

`n´2npn´ 1qE
!” ż r

0

ż 1

0

ST |Xpz|xqϕjpxqpfpx, zq ´ rfpx, zqq2

f2px, zq dxdz
ı2)

ď Cn´1n
´1{8

˚ ` E

!” ÿ

pi1,s1q,pi2,s2qPN

pκi1s1
´ rκi1s1

qpκi2s2
´ rκi2s2

qνi1˘i2˘j,s1˘s2

`2
ÿ

pi1,s1qPN

ÿ

pi3,s3qRN

pκi1s1
´ rκi1s1

qκi3s3
νi1˘i3˘j,s1˘s3

`
ÿ

pi3,s3q,pi4,s4qRN

κi3s3
κi4s4

νi3˘i4˘j,s3˘s4

ı2)

ď C
”
n´1n

´1{8

˚ `E

!
r

ÿ

pi1,s1q,pi2,s2qPN

pκi1s1
´ rκi1s1

qpκi2s2
´ rκi2s2

qνi1˘i2˘j,s1˘s2
s2

)

`r
ÿ

pi3,s3q,pi4,s4qRN

κi3s3
κi4s4

νi3˘i4˘j,s3˘s4
s2

`r
ÿ

pi1,s1qPN

ÿ

pi3,s3qRN

pκi1s1
´ rκi1s1

qκi3s3
νi1˘i3˘j,s1˘s3

s2

ı

“: Crn´1n
´1{8

˚ `A211 `A212 `A213s. (A.95)

Here
νi1˘i2˘j,s1˘s2

:“
ż r

0

ż 1

0

ST |Xpz|xqϕjpxqϕi1 pxqϕi2 pxqψs1
pzqψs2

pzq
f2px, zq dxdz. (A.96)

Applying the Cauchy inequality we evaluate A211,

A211 ď E

!” ÿ

pi1,s1q,pi2,s2qPN

pκi1s1
´ rκi1s1

q2|νi1˘i2˘j,s1˘s2
|
ı2)

. (A.97)
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Now note that Etpκi1s1
´rκi1s1

q4u ď Cn´2
˚ and relation (A.79) holds for parame-

ters defined in (A.96), namely
ř8
i2,s2“0

|νi1˘i2˘j,s1˘s2
| ď C. Using these results

we continue (A.97),

A211 ď C
” ÿ

pi1,s1qPN

pκi1s1
´ rκi1s1

q2

ı2

ď Cn´2

˚ N4. (A.98)

For evaluation of A212 we can write using the Cauchy inequality,

” ÿ

pi3,s3q,pi4,s4qRN

κi3s3
κi4s4

νi3˘i4˘j,s3˘s4

ı2

ď
” ÿ

pi3,s3q,pi4,s4qRN

κ2

i3s3
|νi3˘i4˘j,s3˘s4

|
ı2

ď CN´4. (A.99)

Evaluation of A213 may be converted to the previously considered A211 and
A212 by using the inequality

2|pκi1s1
´ rκi1s1

qκi3s3
νi1˘i3˘j,s1˘s3

|

ď pκi1s1
´ rκi1s1

q2|νi1˘i3˘j,s1˘s3
| ` κ2

i3s3
|νi1˘i3˘j,s1˘s3

|.
Combining the obtained results in (A.95) we establish the following upper

bound,

Et pA2

21u ď Crn´1n
´1{8

˚ ` n´2

˚ N4 `N´4s. (A.100)

Now we are evaluating the second moment of rA22 defined in (A.93). We begin

with writing rA22 as

rA22 “ n´1

nÿ

l“1

∆1
lϕjpXlqpfpXl, Zlq ´ rfpXl, Zlqq3

pfpXl, Zlqf3pXl, Zlq

`n´1

nÿ

l“1

∆1
lϕjpXlqrpfpXl, Zlq ´ pfpXl, Zlqq3 ´ pfpXl, Zlq ´ rfpXl, Zlqq3s

pfpXl, Zlqf3pXl, Zlq

“: rA221 ` rA222. (A.101)

Recall that pf is bounded below from zero by 1{ lnplnpn˚ ` 3qq, and according

to Lemma 2 the deviation |fpx, zq ´ rfpx, zq| is larger than Cn
´1{8

˚ with the
probability decreasing exponentially in n˚. These two facts imply that

Et rA2

221u ď Crlnplnpn˚ ` 3qqs2n
´2{8

˚

ˆ E

!
n´1

nÿ

l“1

”∆1
lϕjpXlqpfpXl, Zlq ´ rfpXl, Zlqq2

f3pX,Zq
ı2)

. (A.102)

Then the expectation on the right side of (A.102) is evaluated following the

lines (A.95)-(A.100). Similarly, recall that pfpx, zq ‰ rfpx, zq only if rfpx, zq ă
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1{ lnplnpn˚ ` 3qq, and then according to Lemma A.2 that event occurs with the
probability that decreases exponentially in n˚. This yields a rough but sufficient
for our purposes inequality Et rA2

222u ď Cn´2
˚ . Combining the results we conclude

that
Et rA2

22u ď Cn
´10{9

˚ . (A.103)

Using (A.100) and (A.103) in (A.93) we get

Et rA2

2u ď Crn´1n
´1{8

˚ ` n´2

˚ N4 `N´4 ` n
´10{9

˚ s. (A.104)

Finally, combining (A.92) and (A.104) in (A.49) and recalling the used N “
t1 ` n

1{4

˚ u, we get the verified inequality

Etprθj ´ rθ˚
j q2u ď Cn´1

˚ whenever n˚ ą Cn. (A.105)

We conclude that the mean squared error of data-driven Fourier estimator pθj
decreases with the same rate as the mean squared error of the oracle-estimator
rθj that knows the underlying joint density fX,Zpx, zq. Moreover, if n˚{n Ñ 8
as n Ñ 8 then

Etprθj ´ θjq2u ď p1 ` onp1qqEtprθ˚
j ´ θq2u ` onp1qn´1. (A.106)

We have proved that for MCSC the plug-in methodology works and the
Fourier coefficients can be estimated as well as by the oracle-estimators us-
ing the nuisance bivariate density fX,Z . The presented results also give us all
technical propositions needed to prove Theorem 4.1 for MCSC.

Now we are in a position to consider CSC. Recall that the studied Fourier
estimator is

pθj :“ n´1

nÿ

l“1

r∆1
l ´ pSpj, n, Zl, XlqsIpZl ď rqϕjpXlq

pfpXl, Zlq
. (A.107)

Here
pfpx, zq :“ maxp1{ lnplnpn` 3qq, rfpx, zqq, (A.108)

rfpx, zq “ n´1

nÿ

l“1

ÿ

pi,sqiN

ϕipXlqψspZlqϕipxqψspzq, (A.109)

N “ t0, 1, . . . , Nu2, N :“ t1 ` n1{4u,

pSpj, n, z, xq :“ n´1

nÿ

l“1

ÿ

kPJ pj,nq

qnÿ

i“0

∆1
lψkpZlqϕipXlqψkpzqϕkpxq

pfpXl, Zlq
, (A.110)

and J pj, nq “ t0, 1, . . . , qnuztju if 0 ď j ď bn and J pj, nq “ t0, 1, . . . , bnu
otherwise.

Our aim is to evaluate Etppθj ´ θjq2u. Write,

pθj “ n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlq

pfpXl, Zlq



/Regression for CSC 64

`n´1

nÿ

l“1

rSpj, n, Zl, Xlq ´ pSpj, n, Zl, XlqsIpZl ď rqϕjpXlq
pfpXl, Zlq

“ n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlq

fpXl, Zlq

`n´1

nÿ

l“1

rSpj, n, Zl, Xlq ´ pSpj, n, Zl, XlqsIpZl ď rqϕjpXlq
pfpXl, Zlq

`n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlqpfpXl, Zlq ´ pfpXl, Zlqq

f2pXl, Zlq

`n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlqpfpXl, Zlq ´ pfpXl, Zlqq2

pfpXl, Zlqf2pXl, Zlq

“: pθ˚
j ` pAj ` pB1 ` pB2. (A.111)

Recall that pθ˚
j is the oracle’s Fourier estimator that was used in Theorem

3.2. The term pAj is the analogue of statistic rAj defined in (A.35), it is analyzed

similarly to (A.36)-(A.41), and accordingly Etp pA1
jq2u is in order smaller than

n´1. The terms pB1 and pB2 are analogues of statistics rA1 and rA2 defined in
(A.49). It was established that Et pA2

1u and Et pA2
2u are of order n´1

˚ . Here we
need to establish a stronger result and show that the corresponding second
moments of pB1 and pB2 decrease faster.

We are evaluating the second moments of pB1 and pB2 in turn. Using Remark
A.2 we may replace pfpx, zq by rfpx, zq and then denote the new term as rB1. Let

is rewrite rfpx, zq as

rfpx, zq “ pn´ 1q´1
ÿ

lPt1,...,nuztju

ÿ

pi,sqPN

ϕipXlqψspZlqϕipxqψspzq

`n´1

”
´ pn´ 1q´1

ÿ

lPt1,...,nuztju

ÿ

pi,sqPN

ϕipXlqψspZlqϕipxqψspzq

`
ÿ

pi,sqPN

ϕipXjqψspZjqϕipxqψspzq
ı

“: rfpx, z,´jq ` rd1px, z, jq. (A.112)

Here rfpx, z,´jq is a density estimate based on all observations apart of pXr, Zjq,
and rd1px, z, jq is a small remaining part of the density estimate which is of order
n´1. Similarly, we may separate two pairs pXj , Zjq and pXk, Zkq of observations

and rewrite the estimate rfpx, zq as

rfpx, zq “ pn´ 2q´1
ÿ

lPt1,...,nuztj,ku

ÿ

pi,sqPN

ϕipXlqψspZlqϕipxqψspzq
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`
” ´2

npn´ 2q
ÿ

lPt1,...,nuztj,ku

ÿ

pi,sqPN

ϕipXlqψspZlqϕipxqψspzq

`n´1a´1
ÿ

lPtj,ku

ÿ

pi,sqPN

ϕipXlqψspZlqϕipxqψspzq
ı

“: rfpx, z,´j,´kq ` rd2px, z, j, kq. (A.113)

For the second moment of rB1 (recall that according to our notation rB1 is pB1

with pf being replaced by rf) we may write using the new notations,

Et rB2

1u

“ n´1
E

!” r∆1
1 ´ Spj, n, Z1, X1qsIpZ1 ď rqϕjpX1qpfpX1, Z1q ´ rfpX1, Z1qq

f2pX1, Z1q
ı2)

`p1 ´n´1qE
! 2ź

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlqpfpXl, Zlq ´ rfpXl, Zlqq

f2pXl, Zlq
)

“ n´1
E

!”
r∆1

1 ´ Spj, n, Z1, X1qsIpZ1 ď rqϕjpX1q

ˆ pfpX1, Z1q ´ rfpX1, Z1,´1q ´ rd1pX1, Z1, 1qq
f2pX1, Z1q

ı2)

`n´1pn´ 1qE
! 2ź

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlq

ˆ pfpXl, Zlq ´ rfpXl, Zl,´1,´2q ´ rd2pXl, Zl, 1, 2q
f2pXl, Zlq

)

“: B11 `B12. (A.114)

Using the Cauchy inequality and Lemma A.2 we evaluate B11,

B11 ď 2n´1

ˆE

!” p∆1
1 ´ Spj, n, Z1, X1qqIpZ1 ď rqϕjpX1qpfpX1, Z1q ´ rfpX1, Z1,´1qq

f2pX1, Z1q
ı2)

`n´12E
!” p∆1

1 ´ Spj, n, Z1, X1qqIpZl ď rqϕjpX1qrd1pX1, Z1, 1qq
f2pX1, Z1q

ı2)

ď Cn´9{8. (A.115)

Next we are considering B12. Write,

B12 ď E

!” ż r

0

ż 1

0

pSpz|xq ´ Spj, n, z, xqqϕjpxqpfpx, zq ´ rfpx, z,´1,´2qq
fpx, zq

ı2)

`2E
!

r∆1
1 ´ Spj, n, Z1, X1qsIpZ1 ď rqϕjpX1q
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ˆ pfpX1, Z1q ´ rfpX1, Z1,´1,´2qqrd2pX2, Z2, 1, 2q
f2pX1, Z1qf2pX2, Z2q

)

` CEt|rd2pX1, Z1, 1, 2qrd2pX2, Z2, 1, 2q|u “: B121 `B122 `B123. (A.116)

Note that |rd2px, z, 1, 2q| ď Cn´1q2
n almost sure, and this together with Lemma

A.2 imply
B122 `B123 ď Cn´10{9. (A.117)

Now we are evaluating B121. This term is the analogue of EtrV 2u intro-
duced in (A.75)-(A.76). In what follows we are using notation rκis :“ pn ´
2q´1

řn
l“3

ϕipXlqψspZlq for Fourier estimates of rfpx, z,´1,´1q. It reflects the

fact that rfpx, z,´1,´2q is based on pairs pX3, Z3q, . . . , pXn, Znq but otherwise
it is our density estimator based on n ´ 2 pairs of observations, check (A.113).
Then we may write for the integral in B121,

ż r

0

ż 1

0

pSpz|xq ´ Spj, n, z, xqqf´1px, zqϕjpxqrfpx, zq ´ rfpx, z,´1,´2qsdxdz

“
ż r

0

ż 1

0

pSpz|xq ´ Spj, n, z, xqqf´1px, zqϕjpxq
” ÿ

pi,sqPN

pκis ´ rκisqϕipxqψspzq

`
ÿ

pi,sqRN

κisϕipxqψspzq
ı
dxdz

“
ÿ

pi,sqPN

pκis ´ rκisqνi˘j,s `
ÿ

pi,sqRN

κisνi˘j,s, (A.118)

where here (compare with (A.77))

νi˘j,s :“
ż r

0

ż 1

0

pSpz|xq ´ Spj, n, z, xqq

ˆ f´1px, zqϕjpxqϕipxqψspzqdxdz. (A.119)

Recall that this notation is motivated by the trigonometric identity

ϕipxqϕjpxq “ 2´1{2rϕi´jpxq ` ϕi`jpxqs. (A.120)

Recall that in the first step of the proof the key property of νis was (see (6.85))

max
jě0

8ÿ

i“0

8ÿ

s“0

|νi˘j,s| ď C. (A.121)

It is also valid for (A.119) with formally setting Spj, n, z, xq “ 0 when the
corresponding functional Gg of Lemma A.1 is bounded by a constant. In our
case, because the Fourier projection approximation Spj, n, z, xq is subtracted
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from the underlying conditional survival function Spz|xq, in Lemma A.1 the
functional Gg is defined by the bivariate function

gpx, zq :“ pSpz|xq ´ Spj, n, z, xqq{fX,Zpx, zq,

and accordingly the functional is bounded by ojp1q ` onp1q. This and (A.58)
yield

max
jě0

8ÿ

i“0

8ÿ

s“0

|νi˘j,s| “ ojp1q ` onp1q. (A.122)

This relation explains why the sample size n is sufficient for estimating the
underlying joint density fX,Z with the accuracy yielding

B121 “ rojp1q ` onp1qsn´1. (A.123)

This result, together with (A.115)–(A.117), yield

Et rB2

1u “ rojp1q ` onp1qsn´1. (A.124)

Now we are evaluating Et pB2
2u where pB2 is defined in (A.111). Write,

pB2 “ n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlsIpZl ď rqϕjpXlqpfpXl, Zlq ´ pfpXl, Zlqq2

f3pXl, Zlq

`n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlqpfpXl, Zlq ´ pfpXl, Zlqq3

pfpXl, Zlqf3pXl, Zlq

“ pB21 ` pB22. (A.125)

Recall Remark A.1 which explains that according to Lemma A.2 we may
replace in pB21 the density estimate pf by rf . Denote the corresponding modified
term as rB21 and explore it using Lemma A.3 and the equality

fpx, zq ´ rfpx, zq “
ÿ

pi,sqPN

pκis ´ rκisqϕipxqψspzq

`
ÿ

pi,sqRN

κisϕipxqψspz{aq. (A.126)

We may write,

Et rB2

21u “ n´1
E

!” r∆1 ´ Spj, n, Zl, XlqsIpZ ď rqϕjpXqpfpX,Zq ´ rfpX,Zqq2

f3pX,Zq
ı2)

`p1´n´1qE
!” ż r

0

ż 1

0

rSpz|xq ´ Spj, n, Zl, Xlqsϕjpxqpfpx, zq ´ rfpx, zqq2

f2px, zq dxdz
ı2)

ď Cn´9{8 ` E

!” ÿ

pi1,s1q,pi2,s2qPN

pκi1s1
´ rκi1s1

qpκi2s2
´ rκi2s2

qνi1˘i2˘j,s1˘s2



/Regression for CSC 68

`2
ÿ

pi1,s1qPN

ÿ

pi3,s3qRN

pκi1s1
´ rκi1s1

qκi3s3
νi1˘i3˘j,s1˘s3

`
ÿ

pi3,s3q,pi4,s4qRN

κi3s3
κi4s4

νi3˘i4˘j,s3˘s4

ı2)

ď C
”
n´9{8 ` E

!
r

ÿ

pi1,s1q,pi2,s2qPN

pκi1s1
´ rκi1s1

qpκi2s2
´ rκi2s2

qνi1˘i2˘j,s1˘s2
s2

)

`r
ÿ

pi3,s3q,pi4,s4qRN

κi3s3
κi4s4

νi3˘i4˘j,s3˘s4
s2

`E

!
r

ÿ

pi1,s1qPN

ÿ

pi3,s3qRN

pκi1s1
´ rκi1s1

qκi3s3
νi1˘i3˘j,s1˘s3

s2

)ı

“: Crn´9{8 `B211 `B212 `B213s. (A.127)

In (A.127) we used notation
νi1˘i2˘j,s1˘s2

:“
ż

Rr

rSpz|xq ´ Spj, n, Zl, Xlqsϕjpxqϕi1 pxqϕi2 pxqψs1
pzqϕs2

pzq
f2px, zq dxdz. (A.128)

Now note that similarly to (A.122) we have

max
i2,s2

8ÿ

i1,s1“0

νi1˘i2˘j,s1˘s2
“ ojp1q ` onp1q. (A.129)

Next we are evaluating terms on the right side of (A.127) in turn. Applying
the Cauchy-Schwarz inequality and Etpκi1s1

´ rκi1s1
q4u ď Cn´2 we get

B211 ď E

!” ÿ

pi1,s1q,pi2,s2qPN

pκi1s1
´ rκi1s1

q2|νi1˘i2˘j,s1˘s2
|
ı2)

“ rojp1q`onp1qsE
!” ÿ

pi1,s1qPN

pκi1s1
´rκi1s1

q2

ı2)
“ rojp1q`onp1qsn´1. (A.130)

Term B212 is evaluated with the help of the Cauchy-Schwarz inequality,

” ÿ

pi3,s3q,pi4,s4qRN

κi3s3
κi4s4

νi3˘i4˘j,s3˘s4

ı2

ď
” ÿ

pi3,s3q,pi4,s4qRN

κ2

i3s3
|νi3˘i4˘j,s3˘s4

|
ı2

“ rojp1q ` onp1qsn´1. (A.131)

Term B213 is evaluated via the Cauchy inequality and then using (A.130)-
(A.131), and this yields EtB213u “ rojp1q ` onp1qsn´1. Combining the obtained
results in (A.127) we get

Et pB2

21u “ r1 ` onp1qsEt rB2

21u “ rojp1q ` onp1qsn´1. (A.132)
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Next we are considering pB22 on the right side of (A.125). Write,

pB22 “ n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlqpfpXl, Zlq ´ rfpXl, Zlqq3

pfpXl, Zlqf3pXl, Zlq

`n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, XlqsIpZl ď rqϕjpXlq

ˆrpfpXl, Zlq ´ pfpXl, Zlqq3 ´ pfpXl, Zlq ´ rfpXl, Zlqq3s
pfpXl, Zlqf3pXl, Zlq

“: pB221 ` pB222. (A.133)

We begin with analysis of pB222. The estimate pf is bounded below from zero by
1{ lnplnpn` 3qq, according to Lemma 2 the deviation |fpx, zq ´ rfpx, zq| is larger

than Cn´1{8 with the probability decreasing exponentially in n, pfpx, zq ‰ rfpx, zq
only if rfpx, zq ă 1{ lnplnpn ` 3qq and according to Lemma 2 the event occurs

with the probability that decreases exponentially in n. This yields Et pB2
222u “

onp1qn´1. Next,

Et pB2

221u ď Cn´9{8 ` Crlnplnpn` 3qqs2n´2{8
E

!
n´1

nÿ

l“1

r∆1
l ´ Spj, n, Zl, Xlqs

ˆ
”IpZl ď rqϕjpXlqpfpXl, Zlq ´ rfpXl, Zlqq2

f3pX,Zq
ı2)

. (A.134)

The expectation on the right side of (A.134) is evaluated in (A.127)-(A.132),
and we conclude that

EtB2

22u ď Cn´9{8. (A.135)

Using (A.131) and (A.135) in (A.125) we conclude that

Et pB2

2u “ rojp1q ` onp1qsn´1. (A.136)

Combining the obtained results we get

Etprθj ´ rθ˚
j q2u “ rojp1q ` onp1qsn´1. (A.137)

This is the result that shows feasibility of the plug-in methodology. The rest
of the proof follows along lines of the proof of Theorem 3.2.

Theorem 4.1 is verified.

Proof of Theorem 6.1 Recall that for CSC triplet pX,Z,∆q the following
formula is valid,

fX,Z,∆px, z, 0q “ fX,Zpx, zqPp∆ “ 0|X “ x, Z “ zq

“ fX,Zpx, zqST |X,Zpz|x, zq. (A.138)



/Regression for CSC 70

Using the assumption about conditional independence of T and Z given X, we
continue (A.138) and get

fX,Z,∆px, z, 0q “ fX,Zpx, zqST |Xpz|xq. (A.139)

This formula allows us to evaluate the mean and variance of the proposed
Fourier estimator (6.4). We begin with the mean. Write,

Etrθiu “ E

! ∆1ϕipXq
fX,ZpX, Zq

)
“
ż 8

0

ż

r0,1sk

ST |Xpz|xqϕipxqdxdz. (A.140)

Now note that

mpxq “ EtT |X “ xu “
ż 8

0

ST |Xpz|xqdz. (A.141)

Using this relation in (A.140) yields

Etrθiu “
ż

r0,1sk

” ż 8

0

ST |Xpz|xqdz
ı
ϕipxqdx

“
ż

r0,1sk

mpxqϕipxqdx “ θi. (A.142)

We conclude that the proposed Fourier estimator is unbiased. Next we evaluate
the variance,

Vprθiq “ Etprθi ´ θiq2u “ n´1

”
E

!” ∆1ϕipXq
fX,ZpX, Zq

ı2)
´ θ2

i

ı

“ n´1

” ż 8

0

” ż

r0,1sk

ST pz|xqrϕipxqs2

fX,Zpx, zq dx
ı
dz ´ θ2

i

ı
ď Cn´1. (A.143)

In the last inequality we used the assumed inequality (6.2).
Now we can verify (6.5). First of all, note that ϕi are elements of the cosine

tensor-product basis on r0, 1sk. Then the Parseval identity yields,

E

!ż

r0,1sk

ppmpxq ´mpxqq2dx
)

“ Et
ÿ

iPJ

prθi ´ θiq2u `
ÿ

iRJ

θ2

i
. (A.144)

Here the first term is the integrated variance and the second term is the in-
tegrated squared bias of the proposed projection regression estimator. Using
(A.143) we can bound the integrated variance,

Et
ÿ

iPJ

prθi ´ θiq2u ď Cn´1

kź

s“1

Js

ď Cn´1nα
´1

˚ {p2`α´1

˚ q “ Cn´2α˚{p2α˚`1q. (A.145)
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The integrated squared bias is evaluated using (6.1),

sup
mPSpα1,...,αkq

ÿ

iRJ

θ2

i
ď C max

sPt1,...,ku
J´2αs

s

ÿ

iRJ

r1 `
kÿ

r“1

i2αr

r sθ2

i

ď Cn´2{p2`α´1

˚ q “ Cn´2α˚{p2α˚`1q. (A.146)

Using (A.145) and (A.146) in (A.144) verifies (6.5). Theorem 6.1 is proved.

Proof of Theorem 6.2. For the considered setting formula (A.139) holds.
Using it we get

ST |Xpt|xq “ Et∆1|Z “ t,X “ xu. (A.147)

What we see in (A.147) is the classical Bernoulli regression of ∆1 on k ` 1
covariates pZ,Xq. Accordingly, we cannot estimate ST |Xpt|xq with a rate faster
than the optimal n´2α˚{p2α˚`1q for the pk`1q-dimensional regression Et∆1|Z “
t,X “ xu based on direct observations from ppZ,Xq,∆1q. This yields the lower
bound for rate of the MISE. Next we show that our estimator attains this rate.
We begin with analysis of the proposed Fourier estimator (6.15). For its mean
we can write,

Etpθiu “ E

!∆1ϕipZ,Xq
fX,ZpX, Zq

)
“
ż

r0,1sk`1

ST |Xpz|xqϕipz,xqdzdx “: θi. (A.148)

We conclude that the proposed Fourier estimator is unbiased. Next we evaluate
its mean squared error,

Etppθi ´ θiq2u “ n´1

”
E

!”∆1ϕipZ,Xq
fX,ZpX, Zq

ı2)
´ θ2

i

ı

“ n´1

” ż

r0,1sk`1

ST |Xpz|xqrϕipz,xqs2

fX,Zpx, zq dzdx ´ θ2

i

ı
ď Cn´1. (A.149)

Now we can use the Parseval identity and write,

E

!ż

r0,1sk`1

ppST |Xpt|xq ´ ST |Xpt|xqq2dzdx
)

“ Et
ÿ

iPJ

ppθi ´ θiq2u `
ÿ

iRJ

θ2

i
. (A.150)

Using (A.149) we get

Et
ÿ

iPJ

prθi ´ θiq2u ď Cn´1

k`1ź

s“1

Js ď Cn´2α˚{p2α˚`1q, (A.151)

and following (A.146) we get

sup
ST |XPSpα1,...,αk`1q

ÿ

iRJ

θ2

i
ď Cn´2α˚{p2α˚`1q. (A.152)
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Using the last two inequalities in (A.150) finishes the proof of Theorem 6.2.

Proof of Theorem 7.1. The assertion is established similarly to the proofs of
Theorems 2.1 and 2.2. The only remark to make is that in line (A.3) the factor
rψpk{sqs2 appears in each sum. Theorem 7.1 is verified.

Proof of Theorem 7.2. Note that sθj is unbiased estimator of θj and

Etpsθj ´ θjq2u ď d1
˚pST |X , fX,Z , r, ψqn´1p1 ` ojp1qq. (A.153)

Then the assertion follows from Lemma 3.1. Theorem 7.2 is proved.
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