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Abstract

Imputation is a standard procedure in dealing with missing data and there are many competing imputation methods. It

is proposed to analyze imputation procedures via comparison with a benchmark developed by the asymptotic theory.

Considered model is nonparametric density estimation of the missing right censored lifetime of interest. This model is

of a special interest for understanding imputation because each underlying observation is the pair of censored lifetime

and indicator of censoring. The latter creates a number of interesting scenarios and challenges for imputation when

best methods may or may not be applicable. Further, the theory sheds light on why the effect of imputation depends

on an underlying density. The methodology is tested on real life datasets and via intensive simulations. Data and R

code are provided.
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1. Introduction

We are interested in nonparametric estimation of the probability density f T of a lifetime of interest T over an

interval [0, b] under the mean integrated squared error (MISE) criterion given that observations of the lifetime are right

censored and may be missing. The aim is to develop both theory and methodology of optimal estimation that match

known results for models of direct observations of T , missing T , and right censored T . Then we explore and compare

popular imputation methods using numerical simulations. Accordingly, in the following first subsection a review of

known results for the above-mentioned classical sampling models is presented, and then the second subsection presents

the studied problem as well as the terminology and notations used in the paper.

1.1. Review of known results

A standard statistical model is when estimation of density f T is based on a sample T1, . . . ,Tn of size n of i.i.d.

observations from T . Assuming that the density is α-fold differentiable on [0, b], it is known that the optimal rate of

the MISE convergence is n−2α/(2α+1) and there are many different nonparametric estimators, including kernel, spline

and series ones, that attain this rate, see Wasserman (2005). Further, for the Sobolev class of α-fold differentiable

densities even the smallest constant of the MISE convergence, referred to as the sharp constant, is known. Definition
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of the Sobolev class of densities and formula for the sharp constant will be given shortly in Section 2, and the sharp

constant and the optimal rate are attainable by a special adaptive series estimator proposed in Efromovich (1985), see

also a discussion in Tsybakov (2009). Two classical modifications of the standard sampling are missing lifetimes and

right censored lifetimes that will be reviewed in turn.

The missingness means that we observe a sample from (AT, A) where A is the Bernoulli random variable called the

availability and P(A = 1|T = t) = w(t) ∈ (0, 1] is called the availability likelihood. Accordingly, some observations of

T may be not available and in R they are denoted as “NA” (Not Available) with the corresponding availablity A = 0,

while available observations of T correspond to A = 1. The model with a constant availability likelihood w(t) = w

is called Missing Completely At Random (MCAR), and then consistent estimation of f T is possible. Further, the

above-mentioned α-fold differentiable Sobolev densities can be estimated with the optimal rate n−2α/(2α+1) known for

direct observations, Efromovich (2018). If the availability likelihood depends on t, that is, the probability of missing

T depends on its value, then the missing mechanism is called Missing Not At Random (MNAR) and consistent density

estimation is impossible. In this case, extra information would be needed to estimate the availability likelihood. Now

let us assume that we observe a sample from a triplet (AT, A, X) such that the availability likelihood P(A = 1|T =

t, X = x) = w(x), that is, the missing mechanism is defined by the always observed variable X but not by the missing

T . This missing mechanism is called Missing At Random (MAR), and consistent estimation of the density is possible.

Little and Rubin (2002), Molenberghs and Kenward (2007) and Little (2021) give a nice overview of these three

missing models. Now, let us briefly explain the main approaches for dealing with missing data. (1) Complete data

approach, also referred to as ignore missing approach, discards missing cases and works only with complete ones. This

is the default method in many statistical software including R. For the density estimation and MCAR, this approach is

optimal according to Efromovich (2013). (2) Weighting procedures, and in particular propensity weighting, is another

popular approach. It is a universal method that also can be used for analysis of censored data, see a discussion in Little

and Rubin (2002), Satten and Datta (2001), Rotnitzky and Robins (2005). For instance, let the unbiased estimator

n−1∑n
l=1 g(Tl) of E{g(T )} be recommended for a traditional sample from T . Then for missing data an estimator

[
∑n

l=1 π
−1
nl g(Tl)]/[

∑n
l=1 π

−1
nl ] is used with some specially chosen weights π−1

nl . Examples of using this methodology for

missing censored data will be presented shortly in Section 2. (3) Imputation–Based procedure is another popular

approach for dealing with missing data. The underlying idea is to fill missing values of T using available data and then

analyze the resultant completed data using standard methods, see Rubin (1987), Little and Rubin (2002), Huque et al.

(2018), van Buuren (2018), He et al. (2021), Heymans and Twisk (2022) and Moghaddam et al. (2022). Description

of frequently used imputation procedures can be found in Section 3. (4) Model-Based procedures when an estimator

is based on a known underlying model, and then making inferences using the likelihood or Bayesian approaches, see

a nice discussion in Schafer (1997), Little and Rubin (2002) and Ungolo et al. (2019). Finally, let us comment

about the terminology and notations used in different books. The above-presented terminology and notations follow

Efromovich (2018). At the same time the reader may be familiar with other terminology and notations used in other

books. For instance, M := 1 − A is called the missing data indicator in Little and Rubin (2002), R := A is called

the response indicator and 1 − w is called the missing probability in van Buuren (2018), R is called the missing data

indicator and w is called the density of the missingness process in Molenberghs and Kenward (2007), ξ := A is called
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the missingness indicator and π := w is called a specific nuisance parameter in Comte, Guilloux and Brunel (2014).

Let us note that notation π for availability likelihood is used by many authors, but in this paper π is the Archimedes

constant which is approximately equal to 3.14159.

Next we consider the right censoring when instead of observing a sample from T we have a sample from the pair

(V,∆) := (min(T,C), I(T ≤ C)). Here C is the continuous censoring lifetime independent of T , I(·) is the indicator

function, and ∆ is the indicator of censoring or simply the indicator. It is fair to say that the modern survival analysis,

and nonparametric distribution estimation in particular, are based on the pathbreaking product-limit methodology of

Kaplan and Meier (1958) for nonparametric estimation of survival function. Analogous to the classical empirical sur-

vival function, which is a step function that jumps down by n−1 at each ordered observation, Kaplan-Meier estimator is

a step function that jumps down only at uncensored observations and magnitude of each jump is defined by all obser-

vations, see a discussion and examples in Chapter 2 of Legrand (2021). Further, similar to the empirical cumulative

distribution function, the Kaplan-Meier estimator has optimal asymptotic properties as shown in Wellner (1982). Let

us also note that statistical analysis of product-limit estimators is based on the beautiful and mathematically involved

theory of counting processes and martingales discussed in Flemming and Harington (1991) and Aalen, Borgan and

Gjiessing (2008), and see also interesting results in Tsiatis (2006) and Gijbels, Lin and Ying (2007). There is a vast

literature devoted to density estimation reviewed in Efromovich (2018), with more relevant being Efromovich (2001)

where, using the Kaplan–Meier estimator, it is shown that for α-fold differentiable Sobolev densities the censoring

does not slow down the rate n−2α/(2α+1) of the MISE convergence but affects the sharp constant. Finally, to round

up our discussion of censored data and connect it to the above-discussed missing data, let us note that the popular

Buckley-James imputation methodology, introduced in Buckley and James (1979), treats censored observations as

missing and then replaces them by statistics calculated using uncensored observations, that is, by using the imputation

technique.

Now we are in a position to consider more complicated statistical models where both censoring and missing are

present. We begin with the model of missing indicators of censoring. In this model, using the above-introduced nota-

tions, a sample from the triplet (V, A∆, A) is observed. McKeague and Subramanian (1998) developed a modification

of the Kaplan-Meier estimator for the MCAR model when the availability likelihood w(v, δ) := P(A = 1|V = v,∆ = δ)

is a constant. Subramanian (2004) and Subramanian (2006) introduced survival function estimators for missing

censoring indicators, demonstrating its achievement of the lower bound established in van der Laan and McKeague

(1998). Dikta (1998) proposed a convenient framework for estimating the survival function in cases of missing

censoring indicators, employing a semiparametric random censorship model that assumes a parametric model for the

conditional probability of uncensored observations and estimates the parametric component through maximum likeli-

hood estimation. Subramanian (2003) investigated the semiparametric estimator under MCAR and MAR scenarios,

proving that it is more asymptotically efficient than the nonparametric estimator suggested by van der Laan and McK-

eague (1998). Subramanian (2009) and Subramanian (2011) explored multiple imputation methods where missing

censoring indicators were imputed to form several completed datasets, Kaplan-Meier and semiparametric random cen-

sorship estimators were then averaged, and their asymptotic properties were derived. Subramanian and Zhang (2013)

developed a novel model-based approach for constructing simultaneous confidence bands for the survival function.
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Under the MAR, a conditional mean score and mean score density estimators are proposed and their strong consis-

tency is established in Wang et al. (2009). A thorough statistical analysis of hazard rate projection estimators under

the MAR is performed in Comte, Guilloux and Brunel (2014) where it is established that the rate n−2α/(2α+1) is still

attainable and imputation may be beneficial. Wavelet density estimators are proposed in Zou and Liang (2020), and

an adaptive cosine series density estimator in Efromovich (2018) where the corresponding R software can be found.

Interesting discussion of imputation versus adaptation for testing hypotheses can be found in Cuparic and Milosevic

(2023).

Less is known about a setting when V is missing. Hu, Lawless and Suzuki (1998) consider the case, motivated

by analysis of product warranty data, when sampling is from (AV,∆, A) and the availability likelihood P(A = 1|V,∆ =

0) = 0 and P(A = 1|V,∆ = 1) = 1. In other words, all uncensored lifetimes are available but all censored ones

are missing. Assuming that the distribution of censoring variable C is known, several estimators of the cumulative

distribution function are proposed and analyzed. Further developments can be found in Wang (2008). This is a

practically important model of missing lifetimes but it requires knowledge of the distribution of C. In the paper we are

considering settings with missing V that allow us to propose data-driven estimates, and accordingly it will be always

assumed that the availability likelihood is positive. The next subsection describes studied models.

1.2. Considered models, terminology and notations

Recall that the (right) censoring implies that instead of a sample from the lifetime of interest T there is a sample

from the pair (V,∆) = (min(T,C), I(T ≤ C)) where C is the censoring lifetime. Then the observation V may be missed,

and the presence of the indicator of censoring ∆ creates two interesting and practically important settings. The first

one is when the available sample is from (AV,∆, A), it is referred to as the partial missing model, and recall that A is a

Bernoulli random variable called the availability. The second setting is when the available sample is from (AV, A∆, A)

and it is referred to as the complete missing model. Examples of these two settings will be presented in Section 3.

For the both settings the MCAR (missing completely at random) means that P(A = 1|V,∆) = w > 0. The partial

missing model is MAR (missing at random) if P(A = 1|V,∆ = δ) = w(δ) > 0 and it is MNAR (missing not at random)

otherwise. If the complete missing model is not MCAR, then it is MNAR.

We are interested in estimation of the density f T (t), t ∈ [0, b] under the MISE (mean integrated squared error)

criterion for the above-defined partial and complete missing models. The aims are: (1) Develop sharp asymptotic

theory that allows us to propose a data-driven density estimator that attains both the sharp constant and optimal rate

of the MISE convergence; (2) Propose methodology of density estimation for practically important small samples; (3)

Explore popular imputation procedures; (4) Test results on real data and simulated examples.

Let us comment on the first three aims in turn. We know from subsection 1.1 that neither censoring nor MAR

affects the optimal rate n−2α/(2α+1) of MISE convergence for α-fold differentiable densities f T but the sharp constants

are different and reflect the corresponding loss of information. It is of interest to understand how missing censored

lifetimes affect the MISE convergence. Let us also comment on the used MISE criterion. It is a familiar argument in

the literature that imputation is important for unbiased estimation, and this is a valid point for estimation of parameters,

see Rubin (1987), Efron (1994), van Buuren (2018), He et al. (2021), Little (2021), Heymans and Twisk (2022),
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Moghaddam et al. (2022). There are no unbiased nonparametric estimators of the density even for the simplest case

of a fully observed sample from T . This is why the MISE criterion, which balances variance and squared bias, is

used, see a discussion in Wasserman (2005) and Tsybakov (2009). For the second aim we will use an appropriately

modified methodology of E-estimation proposed in Efromovich (2018). For the third aim, recall that even for the

simplest parametric problems with classical point estimators, opinion about what method of imputation is the best

diverges rather dramatically as shown in the literature reviews presented in Little and Rubin (2002), Molenberghs

and Kenward (2007), Bert (2018), Huque et al. (2018), van Buuren (2018), Aust (2021), Little (2021). The

approach used in the paper is to use the above-mentioned methodology of E-estimation for creating a benchmark

estimator that can be used for both missing censored lifetimes and imputed censored lifetimes. This will allow us to

conduct a series of numerical experiments for analysis of different imputation procedures via their comparison with

the Benchmark. Just to warm up the reader’s interest, it will be shown shortly that an imputation procedure may be

good or not so good depending on an underlying density f T . Why? The theory and simulations show that smoothness

of the density plays an important role in performance of imputation, and interestingly enough, the rougher the density

the better performance of imputation is. Further, we will be able to compare both theoretical and numerical effects of

the availability likelihood on the quality of estimation.

The content of the paper is as follows. Section 2 presents the theory that shed light on the problem and justifies

the proposed methodology of numerical analysis of imputation methods. In Section 3 the developed methodology is

tested on simulated examples and then on real-life ones. Proofs are in Section 4 and the Conclusion is in Section 5.

Colored figures of the paper, more simulation results, datasets, and R code are in the online Supplementary Material.

Finally, let us present several general notations used in the paper. The probability density of a continuous life-

time T is denoted as f T . The corresponding survival function and the cumulative hazard are S T (t) :=
∫ ∞

t f T (v)dv

and HT (t) =
∫ t

0 [ f T (v)/S T (v)]dv, respectively. The probability and the expectation are denoted by P and E, re-

spectively. The density of interest f T is estimated over a finite interval [0, b]. The recommended density esti-

mator is a series estimator that approximates an underlying density via the cosine basis on [0, b] with elements

φ0(t) := b−1/2, φ j(t) := (2/b)1/2 cos(π jt/b), j = 1, 2, . . . Namely, the Fourier theorem yields that the density can be

written as f T (t) =
∑∞

j=0 θ jφ j(t), t ∈ [0, b] where θ j :=
∫ b

0 f T (t)φ j(t)dt are called the Fourier coefficients. Now note that

the formula θ j = E{I(T ≤ b)φ j(T )} holds. Accordingly, a series density estimator uses a sample mean Fourier estima-

tor of θ j, and then selects a finite number of significant Fourier coefficients, see Wasserman (2005) and Efromovich

(2018). Further, B denotes a generic positive finite constant, o j(1) denotes a generic vanishing sequence as j → ∞,

qn := ⌈ln(n + 3)⌉ and ⌈x⌉ is the smallest integer larger or equal to x.

2. Theory

The aim is to estimate density f T over an interval [0, b] under the MISE criterion and to understand how missing-

ness of censored lifetimes affects the MISE. We begin with the MCAR setting when P(A = 1|V,∆) = w > 0. The

MCAR allows us to consider both the partial and complete missing models when samples of size n are from (AV,∆, A)

and (AV, A∆, A), respectively, and to develop sharp minimax theory of density estimation matching the results for di-
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rect observations of the lifetime of interest mentioned in the Introduction. Then we consider the MAR setting where

P(A = 1|V,∆ = δ) = w(δ) > 0, and recall that in this case the density is estimable only for the partial missing model.

2.1. MCAR

We begin with assumptions, that are followed by the sharp lower bound for the MISE. Then the proposed method-

ology of density estimation is presented.

Assumption 1. The continuous lifetime of interest T and the continuous censoring lifetime C are independent and

S C(b) > 0. The availability A is Bernoulli(w) with w ∈ (0, 1].

This assumption is necessary for consistent estimation. The next assumption is a classical one about smoothness of

underlying density f T , see Nikolskii (1975), Golubev (1992), Hoffman and Lepski (2002), Section 3.1 in Tsybakov

(2009), Efromovich (2022).

Assumption 2. An underlying density of interest f T belongs to the shrinking, toward continuous anchor density f0(t),

t ∈ [0,∞), local Sobolev class

Fn(α,Q, f0) := { f T : f T (t) = f0(t) + g(t)I(t ∈ [0, b]), max
t∈[0,b]

|g(t)|/ f0(t) ≤ 1/qn, g ∈ S1(α,Q), t ≥ 0}. (1)

Here for k ∈ {0, 1} function classes Sk(α,Q) are defined via corresponding ellipsoids of Fourier coefficients,

Sk(α,Q) := {g : g(t) =
∞∑
j=k

µ jφ j(t), t ∈ [0, b],
∞∑
j=k

(1 + π j/b)2αµ2
j ≤ bQ < ∞}. (2)

Let us make several remarks about Assumption 2. A function from the class S1(α,Q) is integrated to zero over

interval [0, b] because
∫ b

0 φ j(t)dt = 0 for j ≥ 1. The class S0(α,Q) of probability densities is called the global Sobolev

class and it will be used shortly. The class Fn(α,Q, f0) consists of additive perturbations of the anchor density f0, and

all functions f T from this class are bona fide densities because we have
∫ ∞

0 f T (t)dt = 1 and f T (t) ≥ 0. The anchor is

not necessarily the underlying density, its role is to define a sharp constant of the MISE convergence.

To develop the asymptotic theory, we use a so-called oracle approach, discussed in Efromovich (1999) and Tsy-

bakov (2009). The oracle may know everything about the underlying problem and thus helps us to develop a lower

bound for the risk. Namely, the oracle knows all nuisance functions and smoothness of the estimated nonparametric

curve. The oracle also proposes an efficient oracle-estimator that can be mimicked by a data-driven estimator.

Our first theoretical result is about oracle-estimators, and we need the following assumption about the oracle.

Assumption 3. The oracle knows the model of missing, which can be either partial or complete missing. The oracle

also knows the sample of size n, distribution of censoring lifetime C, and Assumptions 1 and 2 including knowing all

of the involved nuisance parameters and functions (w, α,Q, f0).

According to Assumption 3, apart of the underlying density, oracle-estimators know everything about data, even

how smooth the underlying density is and what is the censoring mechanism. The following theorem establishes a
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lower bound for MISEs of oracle-estimators, that is, we will know what the best oracle-estimator can achieve. Then it

will be shown that an estimator can match the best oracle-estimator.

Theorem 1. Let Assumptions 1-3 hold. Then the following lower bound holds,

inf
f̃ ∗

sup
f T∈Fn(α,Q, f0)

[
n−1b−1

∫ b

0

f T (t)
S C(t)

dt
]−2α/(2α+1)

E f T {

∫ b

0
( f̃ ∗(t) − f T (t))2dt}

≥ w−2α/(2α+1)P(α,Q, b)(1 + on(1)). (3)

Here the infimum is over all oracle-estimators f̃ ∗ and

P(α,Q, b) := Q1/(2α+1)b(2α + 1)1/(2α+1)
[ α

π(α + 1)

]2α/(2α+1)
. (4)

Our next theorem shows that the oracle’s lower bound is sharp, that is, attainable by a special orthonormal series

oracle-estimator. Then this oracle-estimator will guide us toward a data-driven estimator that also attains this lower

bound. The underlying motivation of the series oracle-estimator is that the Fourier coefficient θ j :=
∫ b

0 f T (t)φ j(t)dt

can be written as the expectation

θ j = E
{A∆φ j(AV)I(AV ∈ [0, b])

wS C(AV)

}
,

and accordingly may be estimated by the sample mean oracle-estimate

θ̌∗j := n−1
n∑

l=1

Al∆lφ j(AlVl)I(AlVl ∈ [0, b])
wS C(AlVl)

. (5)

Note that if we have a sample T1, . . . ,Tn from T , then the sample mean estimate of θ j is n−1∑n
l=1 φ j(Tl)I(Tl ∈ [0, b]).

Accordingly, (5) can be viewed as a special weighting procedure reviewed in the Introduction.

Now set d := b−1
∫ b

0
f T (t)

wS C (t) dt, Jn :=
⌊[

(2α+1)(α+1)
α

]1/(2α+1)
×
[

b
π

] 2α
2α+1
[

bQn
d

]1/(2α+1)⌋
, σ2

j := E{(θ̌∗j − θ j)2}, and define the

oracle-estimator of the density,

f̌ T
∗ (t) :=

qn∑
j=0

θ̌∗j I([θ̌∗j]
2 > 2qnσ

2
j )φ j(t) +

Jn∑
j=qn+1

(1 − ( j/Jn)α)θ̌∗jφ j(t). (6)

Note that the oracle does not use the anchor density f0 in (6) because the oracle assumes that the anchor is smoother

than an underlying density. Accordingly, one more assumption is needed.

Assumption 4. The anchor density f0 ∈ S0(β,Q′) with β > α, Q′ < ∞.

The following proposition shows that the oracle-estimator (6) is efficient.

Theorem 2. Suppose that Assumptions 1-4 hold. Then the lower bound (3) is attainable by the oracle-estimator f̌ T
∗ ,

that is, the local lower bound is sharp. Further, this oracle-estimator also attains this lower bound over the global
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Sobolev class S0(α,Q), namely

sup
f T∈{Fn(α,Q, f0)∪S0(α,Q)}

[
n−1b−1

∫ b

0

f T (t)
S C(t)

dt
]−2α/(2α+1)

E f T {

∫ b

0
( f̌ T
∗ (t) − f T (t))2dt} ≤ w−2α/(2α+1)P(α,Q, b)(1 + on(1)). (7)

Let us formulate two important corollaries mentioned in the Introduction. Set w = 1, then no missing occurs, and

according to Theorems 1 and 2 the oracle-estimator (6) is also efficient (sharp-minimax) for the direct sampling from

(V,∆).

Corollary 1. Under Assumptions 1-4, the oracle-estimator (6) is universal, meaning that it is efficient regardless of

presence of missingness.

The second corollary is about the effect of availability likelihood w on the MISE.

Corollary 2. Under Assumptions 1-4, MISE of the efficient oracle-estimator is proportional to w−2α/2(α+1).

Corollary 2 is an important conclusion for understanding the effect of missingness and a possible improvement

in the MISE by imputation. Let us present Table 1 with values of the factor w−2α/(2α+1) which defines the effect of

availability likelihood w and smoothness α of f T on the MISE.

Table 1: Factor w−2α/(2α+1)

α w = 0.3 w = 0.4 w = 0.5 w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1
0.5 1.83 1.58 1.41 1.29 1.20 1.12 1.05 1.00
1 2.23 1.84 1.59 1.41 1.27 1.16 1.07 1.00
2 2.62 2.08 1.74 1.50 1.33 1.20 1.09 1.00
3 2.81 2.19 1.81 1.55 1.36 1.21 1.09 1.00
4 2.92 2.26 1.85 1.57 1.37 1.22 1.10 1.00
10 3.15 2.39 1.94 1.63 1.40 1.24 1.11 1.00

Table 1 clearly indicates that the smoother the estimated density (the larger α) is, the more pronounced the effect

of missingness becomes, while rougher densities “mute” the effect of missing data. This is an interesting and reverse

effect of missing on nonparametric estimation, because for complete data smoother densities are estimated more

accurately, see a nice discussion in Wasserman (2005). Further, the effect of missingness on the MISE accelerates

with higher rates of missingness. We will return to these theoretical conclusions in the next section where we will see

the same outcomes in simulations.

Now let us explain how the oracle-estimator can be mimicked by a data-driven estimator. The simpler problem is

to estimate the unknown availability likelihood w, and this is done by the sample mean estimate n−1∑n
l=1 Al. Next we

are estimating S C . It is possible to use the Kaplan-Meier estimator, but its analysis is relatively complicated as was

explained in the Introduction. Instead, a simpler method of moments estimator is employed. Namely, recall notations

introduced in the Introduction, and write S C(t) = exp{−HC(t)} = exp{−
∫ t

0 [ f C(v)/S C(v)]dv}. For the likelihood we

have

f AV,A∆,A(v, 0, 1) = w f C(v)S T (v), (8)
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and also note that S V (v) = S T (v)S C(v) and

wS V (v) = P(AV ≥ v, A = 1) =: S AV,A(v, 1). (9)

These relations yield

HC(v) =
∫ v

0

f AV,A∆,A(u, 0, 1)
wS V (u)

du = E
{A(1 − A∆)I(AV ≤ v)

S AV,A(AV, 1)

}
. (10)

In its turn, the last formula yields the following method of moments estimate of S C ,

Ŝ C(t) = exp
{
−

n∑
l=1

Al(1 − Al∆l)I(AlVl ≤ t)∑n
i=1 I(AiVi ≥ AlVl)

}
. (11)

Please note that this estimator of the survival function can be used for both partial and complete missing models, and

also it is well defined because all denominators in (11) are at least 1.

Now we plug ŵ and Ŝ C in (5) and get the following data-driven Fourier coefficient estimate

θ̂ j :=
n∑

l=1

Al∆lφ j(AlVl)I(AlVl ∈ [0, b])

[
∑n

k=1 Ak]Ŝ C(AlVl)
. (12)

Note that this estimate can be used for both partial and complete missing models.

Theorem 3. The assertion of Theorem 2 holds if the Fourier coefficient estimate (12) is used in place of the oracle-

estimate (5).

We are left with the case of unknown parameters (α,Q), that is, with the case of adaptation to unknown smoothness

of f T . Fortunately, the blockwise-shrinkage adaptation, which mimics the oracle-estimator, is well known in the

literature, see Efromovich (1999). Here we present its algorithm for small samples. This algorithm mimics the

low-frequency part of the oracle-estimator (6).

Algorithm of density estimation: The estimator depends on three non-negative parameters cT H , cJ0, and cJ1.

Step 1. Set JM := cJ0 + cJ1qn. Calculate the sample mean Fourier estimates θ̂ j for j = 0, 1, . . . , JM using (12). Then

calculate the empirical variances of θ̂ j and denote them as σ̂2
j .

Step 2. Calculate the empirical cutoff Ĵ

Ĵ := argmin0≤J≤JM

J∑
j=1

(2σ̂2
j − θ̂

2
j ). (13)

Step 3. Calculate the series estimate

f̂ T (t) :=
Ĵ∑

j=0

θ̂ jI(θ̂2j > cT Hσ̂
2
j )φ j(t). (14)

Step 4. If the estimate takes on negative values, use the L2-projection on the class of nonnegative densities. Similarly,

if it is known that the density is monotone, use the L2-projection on monotonic densities.The projections are defined

9



in Efromovich (1999).

In what follows the above-defined estimator is referred to as the E-estimator. The included R code of the algorithm

allows the user to change the default values cT H = 4, cJ0 = 4, cJ1 = 0.5, recommended in Efromovich (1999) and

used in the numerical studies of Section 3. The interested reader can also find discussion of E-estimator for the case of

direct and censored observations in Efromovich (1999) and Efromovich (2001), respectively, and theoretical analysis

of hard-threshoding in Johnstone (2023).

2.2. MAR

Suppose that Assumption 1 holds except that now P(A = 1|V,∆ = δ) = w(δ) > 0. The available sample of size n is

from (AV,∆, A), and accordingly we consider the MAR. Our aim is to show that the above-developed methodology of

density estimation for MCAR can be extended to MAR.

Let us show how Fourier coefficients θ j may be estimated under the MAR. Note that

f AV,∆,A(v, δ, 1) = P(A = 1|V = v,∆ = 1) f T (v)S Cv = w(1) f T (v)S C(v). (15)

This formula yields

θ j :=
∫ b

0
f T (t)φ j(t)dt = E{

A∆φ j(AV)I(AV ∈ [0, b])
w(1)S C(AV)

}. (16)

In its turn, (16) yields the sample mean Fourier oracle-estimator

θ̄∗j := n−1
n∑

l=1

Al∆lφ j(AlVl)I(AlVl ∈ [0, b])
w(1)S C(AlVl)

. (17)

Note how this MAR oracle–estimator mimics the MCAR oracle-estimator (5), and we can also present a proposi-

tion that mimics Theorem 2.

Theorem 4. Consider a sample of size n from (AV,∆, A). Suppose that Assumptions 1–4 hold only now in Assumption

1 the MCAR is replaced by the MAR, that is, P(A = 1|V,∆ = δ) = w(δ) > 0. Introduce the density oracle–estimate f̄ T
∗

defined as in (6) only with θ̌∗j being replaced by θ̄∗j . Then

sup
f T∈{Fn(α,Q, f0)∪S0(α,Q)}

[
n−1b−1

∫ b

0

f T (t)
S C(t)

dt
]− 2α

2α+1 E f T {

∫ b

0
( f̄ T
∗ (t) − f T (t))2dt} ≤ [w(1)]−

2α
2α+1 P(α,Q, b)(1 + on(1)). (18)

Now we are in a position to explain how to construct a data-driven Fourier estimator that mimics θ̄∗j . The challeng-

ing part is to estimate S C for the MAR. Our first step is to estimate the availability likelihood w(δ), and we use the

sample mean estimates

w̄(1) = max(q−1
n ,

∑n
l=1 Al∆l

1 +
∑n

l=1 ∆l
), w̄(0) = max(q−1

n ,

∑n
l=1 Al(1 − ∆l)

1 +
∑n

l=1(1 − ∆l)
). (19)

10



Then the proposed estimate of S C is

S̄ C(t) := exp
(
− n−1

n∑
l=1

Al(1 − ∆l)I(AlVl ≤ t)
w̄(0)S̄ V (AlVl)

)
, (20)

where

S̄ V (v) := n−1
∑n

l=1 I(Al∆lVl ≥ v)
w̄(1)

+ n−1
∑n

l=1 I(Al(1 − ∆l)Vl ≥ v)
w̄(0)

. (21)

It will be shown in the Proofs that the assertion of Theorem 4 holds for the density estimator f̄ T defined as the

oracle-estimator f̄ T
∗ only with w(1) and S C being replaced by w̄(1) and S̄ C , respectively. In other words, the classical

plug-in methodology yields the desired result. Note that the estimates (19)–(21) are used in denominators, and this

explains why they are bounded below from zero.

The next section shows that the proposed methodology is feasible for small samples.

3. Numerical study and real data analysis

The aim of this section is two-fold. First, we would like to understand how the proposed E-estimator for missing

censored data, motivated by the asymptotic theory, performs for real–life data. Second, because the E-estimator is also

efficient for complete censored data (no missingness), it can be used for analysis of different imputation methods that

fill-in the values of V that are missed. The following terminology is used in this section. The E-estimator based on

missing censored data (no imputation) is referred to as the Benchmark, and the E-estimator based on imputed data is

referred to according to the name of the imputation method. The term Benchmark is used to stress that in all numerical

studies imputation-based E-estimators are compared with the Benchmark. Let us also note that while the Benchmark

is asymptotically efficient, this does not yield its dominance for small samples, and as we will see shortly, this makes

the numerical analysis both interesting and insightful.

We begin with describing the used imputation procedures, then consider a numerical study of MCAR and MAR

when the underlying f T and S C are known, and finish with analysis of real data.

3.1. Procedures for imputation

The studied imputation procedures, discussed in Rubin (1987), Little and Rubin (2002), van Buuren (2018), He

et al. (2021) and Little (2021), are:

(i) Mean imputation. The method replaces missing values by the mean of observed values. Mean imputation is the

simplest, intuitively appealing, and popular procedure.

(ii) Resampling imputation. The method replaces missing lifetimes by randomly chosen lifetimes from available ones

with replacement. This is a more sophisticated and often more accurate method than the mean imputation.

(iii) Hot deck imputation. This method is similar to the resampling imputation, only now it is done from subsamples

with censored and uncensored lifetimes, that is, from subsamples with the same indicator of censoring ∆. According

to the literature, hot deck imputation is typically more efficient than the two previous ones. On the other hand, it is not

applicable for the complete missing scenario when indicators of censoring are missed.
11



(iv) Multiple resampling imputation. As the name tells us, the resampling imputation is repeated m times, and then

the calculated density estimates are averaged. This is a popular technique among practitioners. In all simulations the

recommended in van Buuren (2018) choice of m = 5 is used, and it will be discussed shortly.

(v) Multiple hot deck imputation. The above-defined hot-deck imputation is repeated m times, and then the calculated

density estimates are averaged. Following van Buuren (2018), m = 5 is used.

3.2. Numerical study

3.2.1. MCAR simulations

We choose the underlying density of interest f T and the distribution of the censoring lifetime, and then simulate

censored data. Accordingly, we know the underlying density and can calculate the ISE of an estimate. To make the

subsection shorter, here we are presenting results only for two distinct smooth and rougher densities f T supported

on [0, 1], and more experiments can be found in the Supplementary Material. The former density f T is the classical

Uniform(0,1) and the latter is the Bimodal density of Efromovich (2018). In both cases the censoring lifetime is

Uniform(0,2) which yields approximately 25% of censored observations. Results are presented in Tables 2 and 3 and

we discuss them in turn. Additionally, the Supplementary Material contains results for exponential C resulting in 30%

of observations being censored, and C from Uniform(0,1) resulting in 50% of observations being censored.

Table 2: MCAR simulation results for Uniform T ∼ U(0,1) and C ∼ U(0,2)
AIS EB
AIS EM

AIS EB
AIS ER

AIS EB
AIS EHD

AIS EB
AIS EMR

AIS EB
AIS EMHD

n=50 ω = 0.95 0.58 0.60 0.51 0.70 0.76
ω = 0.90 0.41 0.66 0.52 0.92 0.69
ω = 0.85 0.22 0.50 0.53 0.80 0.73
ω = 0.80 0.19 0.59 0.61 0.78 0.74
ω = 0.75 0.12 0.69 0.40 0.81 0.56
ω = 0.70 0.08 0.44 0.32 0.60 0.48

n=100 ω = 0.95 0.66 0.85 0.84 1.08 1.00
ω = 0.90 0.36 0.82 0.67 1.08 0.84
ω = 0.85 0.16 0.64 0.47 0.88 0.67
ω = 0.80 0.10 0.63 0.46 0.88 0.71
ω = 0.75 0.07 0.53 0.46 0.89 0.67
ω = 0.70 0.05 0.61 0.42 0.88 0.63

n=200 ω = 0.95 0.33 0.70 0.63 0.99 0.84
ω = 0.90 0.14 0.68 0.51 0.89 0.78
ω = 0.85 0.07 0.62 0.51 0.90 0.74
ω = 0.80 0.04 0.58 0.42 0.80 0.70
ω = 0.75 0.03 0.49 0.41 0.78 0.62
ω = 0.70 0.02 0.44 0.31 0.64 0.49

n=1000 ω = 0.95 0.09 0.93 0.84 1.00 0.87
ω = 0.90 0.02 0.67 0.50 0.86 0.66
ω = 0.85 0.01 0.42 0.59 0.70 0.66
ω = 0.80 0.01 0.46 0.49 0.74 0.63
ω = 0.75 0.00 0.38 0.31 0.59 0.52
ω = 0.70 0.00 0.43 0.44 0.67 0.56

We begin with the uniform f T which is the example of a smooth density. First of all, note that for the smallest

n = 50 and largest availability likelihood w = 0.95 even the mean imputation performs moderately well, but its
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performance dwindles as the sample size n and the rate of censoring increases. The resampling dominates the hot

deck, and overall the same pattern may be observed for the multiple imputation. In other words, knowing the indicator

∆ does not make a difference. Further, recall that the hot deck cannot be used for completely missing sample from

(AV, A∆, A), and hence we may conclude that among the studied imputation methods the multiple resampling is the

best. As for relative performance with respect to the Benchmark, it gradually decreases for larger sample sizes and

smaller w. At the same time, multiple resampling performs exceptionally well for the sample size n = 100 and w ≥ 0.9.

Table 3: MCAR simulation results for T ∼ Bimodal and C ∼ U(0,2)
AIS EB
AIS EM

AIS EB
AIS ER

AIS EB
AIS EHD

AIS EB
AIS EMR

AIS EB
AIS EMHD

n=50 ω = 0.95 0.96 0.98 1.00 1.04 1.07
ω = 0.90 0.93 0.96 0.96 1.06 1.06
ω = 0.85 0.84 0.97 0.96 1.08 1.08
ω = 0.80 0.80 0.96 0.98 1.12 1.14
ω = 0.75 0.79 0.99 1.03 1.14 1.17
ω = 0.70 0.67 0.96 0.97 1.16 1.12

n=100 ω = 0.95 0.92 0.99 1.02 1.06 1.06
ω = 0.90 0.85 1.02 1.02 1.10 1.10
ω = 0.85 0.75 1.01 1.05 1.14 1.14
ω = 0.80 0.69 1.01 0.98 1.17 1.15
ω = 0.75 0.61 1.04 1.06 1.19 1.24
ω = 0.70 0.49 1.06 1.06 1.25 1.26

n=200 ω = 0.95 0.75 1.01 1.01 1.06 1.08
ω = 0.90 0.56 0.99 1.00 1.07 1.10
ω = 0.85 0.50 1.05 1.06 1.13 1.21
ω = 0.80 0.45 1.03 1.07 1.12 1.24
ω = 0.75 0.36 1.00 1.10 1.14 1.26
ω = 0.70 0.26 1.02 1.17 1.17 1.30

n=1000 ω = 0.95 0.52 0.96 0.97 1.01 1.02
ω = 0.90 0.17 0.95 0.96 1.01 1.02
ω = 0.85 0.09 0.86 0.90 0.94 1.01
ω = 0.80 0.07 0.86 1.00 0.90 1.04
ω = 0.75 0.05 0.81 0.95 0.92 1.13
ω = 0.70 0.03 0.77 0.95 0.87 1.11

Now let us look at results in Table 3 for the rougher Bimodal density f T . We observe a remarkably better relative

performance for all imputation methods. Even the mean imputation performs very well for the smaller sample sizes

and larger w. These outcomes confirm the theory, and the imputation may be a feasible tool for analysis of rough

densities based on small samples. Overall the hot deck is a bit better than the resampling, and multiple imputation is

definitely a plus. The relative performance of the multiple hot deck is very impressive for n = 200 and still very good

even for n = 1000.

One of the typical questions about multiple imputation is how many repetitions m to perform. According to van

Buuren (2018), m = 5 repetitions are deemed sufficient, and this number was used in the study. Some authors propose

20-100 repetitions or choosing m equal to the percentage of missing observations. Table 4 sheds some light on the

issue. An interesting observation is that the improvement is more pronounced for the smoother Uniform density than

for the rougher Bimodal where the effect of m is minor. Overall, the increase in m does not hurt, but the rule of

5-10 repetitions looks reasonable. At the same time, let us stress that no changes in the relative performance of the
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Table 4: Effect of the number m of repetitions on AIS B/AIS MR

Model n m w = 0.95 w = 0.90 w = 0.85 w = 0.80 w = 0.75 w = 0.70
T ∼ Uni f (0, 1) 50 5 0.70 0.92 0.80 0.78 0.81 0.60
C ∼ Uni f (0, 2) 50 10 0.80 0.97 0.85 0.81 0.79 0.69

50 30 0.88 0.96 0.83 0.87 0.78 0.72
100 5 1.08 1.08 0.88 0.88 0.89 0.88
100 10 1.06 1.08 0.97 0.88 0.98 0.95
100 30 1.08 1.18 1.01 0.96 0.99 0.93
200 5 0.99 0.89 0.90 0.80 0.78 0.64
200 10 0.99 0.99 0.95 0.88 0.85 0.71
200 30 1.03 0.99 0.99 0.92 0.92 0.74

T ∼ Bimodal 50 5 1.04 1.06 1.08 1.12 1.14 1.16
C ∼ Uni f (0, 2) 50 10 1.06 1.09 1.11 1.16 1.17 1.19

50 30 1.06 1.09 1.13 1.16 1.18 1.20
100 5 1.06 1.10 1.14 1.17 1.19 1.25
100 10 1.07 1.12 1.17 1.19 1.22 1.28
100 30 1.07 1.12 1.17 1.20 1.25 1.31
200 5 1.06 1.07 1.13 1.12 1.14 1.17
200 10 1.06 1.09 1.16 1.16 1.19 1.21
200 30 1.06 1.09 1.18 1.18 1.22 1.24

imputation methods have been noticed for the larger m.

More simulation results for different distributions of the pair (T,C) can be found in the Supplementary Material.

Overall they are similar to the above-presented.

3.2.2. MAR simulations

As in the previous subsection, here we are presenting the results for the smoother Uniform(0,1) and the rougher

Bimodal underlying densities. In both cases C is generated from Uniform(0,2), leading to approximately 25% of the

observations being censored.

Table 5: MAR simulation results for density estimation, T ∼ U(0,1)

n=50 n=100 n=200 n=1000
C ∼ U(0, 2) IS EF

IS EHD
IS EF

IS EMHD
IS EF

IS EHD
IS EF

IS EMHD
IS EF

IS EHD
IS EF

IS EMHD
IS EF

IS EHD
IS EF

IS EMHD
w(δ) = 0.7(1 − δ) + 0.9δ 0.53 0.73 0.68 0.88 0.50 0.70 0.45 0.66
w(δ) = 0.9(1 − δ) + 0.7δ 0.27 0.39 0.42 0.58 0.28 0.48 0.43 0.58
w(δ) = 0.5(1 − δ) + 0.7δ 0.30 0.39 0.43 0.62 0.33 0.53 0.41 0.52
w(δ) = 0.7(1 − δ) + 0.5δ 0.13 0.18 0.23 0.32 0.25 0.39 0.27 0.39

Table 6: MAR simulation results for density estimation, T ∼ Bimodal

n=50 n=100 n=200 n=1000
C ∼ U(0, 2) IS EF

IS EHD
IS EF

IS EMHD
IS EF

IS EHD
IS EF

IS EMHD
IS EF

IS EHD
IS EF

IS EMHD
IS EF

IS EHD
IS EF

IS EMHD
w(δ) = 0.7(1 − δ) + 0.9δ 0.95 1.06 1.01 1.13 1.02 1.12 0.97 1.01
w(δ) = 0.9(1 − δ) + 0.7δ 0.98 1.11 1.10 1.29 1.16 1.29 0.92 1.10
w(δ) = 0.5(1 − δ) + 0.7δ 0.97 1.11 1.09 1.29 1.14 1.32 0.91 1.12
w(δ) = 0.7(1 − δ) + 0.5δ 0.98 1.15 1.05 1.29 1.23 1.52 1.05 1.28

Four missing scenarios are considered: w(δ) = 0.7(1 − δ) + 0.9δ leads to approximately 15% of observation

being missed, w(δ) = 0.9(1 − δ) + 0.7δ leads to 25% missing, w(δ) = 0.5(1 − δ) + 0.7δ leads to 35% missing and
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w(δ) = 0.7(1 − δ) + 0.5δ leads to 45% missing. Each combination is repeated for samples size n equals to 50, 100,

200 and 1000. Since missing is MAR, we only compare hotdeck and multiple hotdeck with the benchmark as those

are the only imputation methods that take ∆ into account. The multiple hot deck imputation again uses m = 5. Results

are presented in Tables 5 and 6, and they are similar to the MCAR results. Overall, the multiple imputation helps,

and again the imputation methods shine for the rougher Bimodal density. More experiments with different underlying

densities and censoring rates can be found in the Supplementary Material.

3.3. Real data examples

Analyzed datasets, their sources, the literature, and colored copies of all figures can be found in the Supplementary

Material.

3.3.1. Liver cancer

The dataset, shown in Figure 1, is a sample from (AV,∆, A). It contains survival status and time to death/censoring

for 903 patients with liver cancer. Rate of censoring is 35%, the indicator of censoring is available for all observations,

the overall rate of missing is 6.5%. Out of the missing observations, 55 are uncensored and 4 are censored. Recall

that the missing is MCAR if w(1) = w(0) and the missing is MAR otherwise. In this example, estimated availability

likelihoods are w̄(1) = 0.905 and w̄(0) = 0.988. Accordingly, we can consider the sample as MAR and the Benchmark

is the MAR E-estimate. At the same time, because the availability likelihoods are relatively close to each other, we

can use the sample mean estimate w̄ = 0.935 of P(A = 1) and compare the MAR Benchmark with MCAR estimate.

Figure 1 allows us to compare the MAR Benchmark (the solid line) with the MCAR E-estimate (the dotted line)

and with the naive E-estimate (the dashed line) based only on complete uncensored cases. The MCAR and MAR

E-estimates are close due to the above-presented estimate of the availability likelihood. At the same time, the naive

estimator yields the dramatically higher mortality during the first 20 days, and this stresses importance of using appro-

priate statistical tools for survival analysis.

The Benchmark and E-estimates, based on filled-in missing observations by the above-outlined imputation meth-

ods, can be found in the colored Figure 1.b presented in the Supplementary Material. The estimates are too close to

each other to be recognizable in a black-white figure. The conclusion from that figure is as follows. The multiple

hotdeck starts slightly above the Benchmark and becomes undistinguishable after day 20. Multiple resampling and

resampling are almost identical until day 20, but start to deviate afterwards. The same outcome is obtained if the num-

ber of simulations m = 5 is increased to m = 100. Overall, in terms of L2-closeness to the Benchmark, the multiple

hotdeck estimator is the closest, followed by the hotdeck, multiple resampling and resampling (performances of the

last two are almost identical), and the mean imputation. This conclusion is similar to simulation results where multiple

hotdeck also performed the best. However, let us stress that for a real data we do not know the underlying density f T ,

and hence can only report on relative performance with respect to the Benchmark.

3.3.2. Breast cancer

The dataset is an example of the complete missing model when sampling is from the triplet (AV, A∆, A). Here

V is the time in months from surgery to either cancer recurrence or end of study, n = 212. As we know from
15
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Figure 1: Density estimates for liver cancer data, n = 903. The triangles indicate uncensored available lifetimes, the stars indicate censored
available lifetimes. The vertical lines are proportional to the number of lifetimes found in the dataset, e.g. at time of 1 month there are 55
uncensored observations and 5 censored observations. The solid line is the MAR E-estimate (the Benchmark), the dotted line is the MCAR E-
estimate, the dashed line is the naive estimator which is the E-estimator based only on complete uncensored cases. The density f T is estimated
other the interval [0, b] where b = 83 is the largest observed lifetime. The colored figure with added imputation–based estimates can be found in
the Supplementary Material.

Section 2, for consistent density estimation of the time to cancer recurrence we need to assume MCAR, meaning that

P(A = 1) = w > 0. The missing rate is 34%, the censoring rate is 74.8%.

Figure 2 exhibits data and density estimates. The Benchmark is the MCAR E-estimate. As in the previous example,

the naive estimator, which ignores both missingness and censoring, is dramatically more pessimistic about the breast

cancer recurrence. The imputation-based estimates are relatively close to the Benchmark. Note that the hotdeck and

multiple hotdeck imputations are not applicable in this example because the indicator of censoring is missing.
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Figure 2: Density estimates for breast cancer data, n = 212. The triangles indicate uncensored lifetimes, the stars indicate censored lifetimes. The
vertical lines are proportional to the number of lifetimes found in the dataset, e.g. at one month there are 1 uncensored observation and 1 censored
observation. There are 35 available uncensored and 105 available censored observations. The solid line is the MCAR E-estimate (the Benchmark),
the dashed line is the naive estimator based on uncensored cases, the dotted line is the mean imputation estimator, the long-dashed line is resampling
estimator and the dot-dashed line is the multiple resampling estimator.

3.3.3. Mortality of infants

This is the example of a sample from (AV,∆, A) with MAR missing, n = 810. The data is for infant (up to 90

days old) mortality in Ethio-Swedish Children’s Hospital in Addis Ababa. For each infant patient, the number of

days to death/discharge and the corresponding indicator were collected with some lifetimes being missed. The rate

of missing is 66% and the censoring rate is 89.6%. The sample mean availability likelihoods are w̄(1) = 0.08 and

w̄(0) = 0.73. Accordingly, the time to death is missed extremely rare, the time to discharge is missed often, and there

is no missingness in the indicator of death/discharge.

The time is in days, in the dataset the time begins with day 0, and the density is estimated over the interval [0, 10]

because an overwhelming majority of observations falls within this interval. Accordingly, the lifetime V is discrete,

takes on only M = 11 possible values, and we are estimating the probability mass function P(T = t), t ∈ {0, 1, . . . , 10}.

To apply the developed E-estimation methodology to this case, the discrete cosine basis {ϕ0(x) = (1/
√

M), ϕ j(x) =
√

2/M cos(π(2x + 1) j/(2M)), j = 1, ...,M − 1, x ∈ {0, 1, . . . , 10}} is used.

Figure 3 exhibits the data and three probability mass function estimates whose values are connected to simplify

visualization. The solid line is the MAR Benchmark, the dashed line is the E-estimate that uses the complete-case

approach, and the dotted line is the naive E-estimate that uses only complete and uncensored observations. Comparing

the solid line with the dashed and dotted ones, we may conclude that the Benchmark yields the least pessimistic

assessment for the survival of infants. Note that because P(A = 1|∆ = 0) < P(A = 1|∆ = 1), there is more missing
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among the infants who were discharged. Accordingly, the complete-case approach leads to ignoring more of the cases

where infants survived, that is, for whom ∆ = 0. Hence, we are left with more cases of infants who died, and this

skews distribution to the left and yields the more pessimistic estimator.
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Figure 3: Young infants data. The triangles indicate uncensored available lifetimes, the stars indicate censored available lifetimes in the considered
interval. The vertical lines are proportional to the frequency of survival times found in the dataset, e.g. at day 0 there are 26 uncensored observations
and 2 censored observations. The curves show connected estimates of the underlying probability mass function P(T = t), t ∈ {0, 1, . . . , 10}. The
solid line is the MAR E-estimate, the dashed line is the naive estimator which ignored censoring and only involves uncensored cases, the dotted line
is the naive estimate which ignored both missing and censoring. A color version of the plot is in the Supplementary Material.

3.3.4. Lung cancer data

A clinical study of patients with small cell lung cancer is described in Maksymiuk et al. (1994), the right censored

lifetimes are published in Ying et al. (1995) and Bayes density estimates can be found in Poynor and Kottas (2019).

Small cell lung cancer is the most aggressive type of lung cancer, and the study was devoted to comparison between

two sequences of treatments. Namely, participants were randomly divided into Arm A and Arm B groups. Arm

A received cisplatin followed by etoposide while Arm B received the treatment in reverse order. For each patient,

either the death time or the time of right censoring due administrative reasons are recorded, the unit for time is a day.

According to Ying et al. (1995), the lifetime of interest and the censoring lifetime are independent.

Arm A contains 62 observations with 15 being censored. Arm B contains 59 observations with 8 being censored.

Both datasets are complete (no missingness), the data and the density E-estimates are shown in Figure 4. The densities

are estimated over interval [0, b], b = 1400 because no deaths occurred after that time. The densities are calculated

on full data, and in what follows we will treat them as underlying densities. For Arm A the larger left mode is at

about 440 days, and there is a 29.2% 2-year survival. For Arm B the larger left mode is at about 297 days, and there

is a 16.5% 2-year survival. These characteristics agree with those previously published in the literature. A plausible
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Figure 4: Density estimates for lung cancer data. The triangles indicate uncensored lifetimes, the stars indicate censored lifetimes.

explanation of the multimodality can found in the original publication Maksymiuk et al. (1994). According to the

publication, the survival is primarily defined by the stage of cancer (limited or extensive) and by Eastern Cooperative

Oncology Group performance status (0, 1, or 2). This is what the multimodality tells us about.

Now the main part of our study begins. We begin with MCAR and simulate samples from (AV,∆, A), then use the

imputation procedures, calculate ISEs of the corresponding E-estimators, and compare them with ISE of the Bench-

mark, that is the E-estimator (12) for missing data. Let us stress that we are considering partial missing because, as

we will see shortly, the better imputation procedures are not applicable for complete missing. Table 7 summarizes

results of the numerical study when for each availability likelihood w and the imputation method we repeat a simu-

lated partial missing 1000 times, calculate and then average integrated squared errors of the density estimates with

respect to the densities shown in Figure 4. Then we compare the calculated average ISE (AISE) of the benchmark

E-estimate for missing data described in Section 2, denoted as AISEB, with corresponding AISEs of the E-estimates

based on the imputations. For the above-introduced five imputation procedures we denote the corresponding AISEs as

AISEM, AISER, AISEHD, AISEMR, and AISEMHD. Let us note one more time that the same E-estimator method-

ology, developed for right-censored data with no missingness, is used for all five imputation methods, and then their

performances are compared with the Benchmark which is the E-estimator of Section 2 developed for missing censored

data.

Table 7: Comparison of MCAR imputation methods for lung cancer data
AIS EB
AIS EM

AIS EB
AIS ER

AIS EB
AIS EHD

AIS EB
AIS EMR

AIS EB
AIS EMHD

Arm A ω = 0.95 0.17 0.34 0.40 0.64 0.71
ω = 0.9 0.11 0.36 0.37 0.59 0.60
ω = 0.8 0.12 0.53 0.50 0.74 0.85

Arm B ω = 0.95 0.17 0.47 0.52 0.75 0.75
ω = 0.9 0.12 0.45 0.66 0.85 0.92
ω = 0.8 0.08 0.57 0.61 0.97 0.98

Let us look at the results. We begin with a general comment and then rank the imputation procedures. What we
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clearly observe is that, apart from the mean imputation method, the imputation performs better for Arm B than for Arm

A, that is it performs better for the rougher density. We know from the theory why this is the case. Further, apart from

the mean imputation, which is a clear outlier for the data at hand, the imputation improves its relative performance with

respect to the Benchmark as the rate of missingness increases. The latter is an important outcome because literature,

cited in the Introduction, often recommends against using imputation when more than 5-10% of observations are

missed. Next, let us look at the individual imputation methods. The mean imputation does not perform well here, and

this is due to the complicated shapes of the densities. Resampling and hot deck perform similarly for Arm A, but hot

deck is better for Arm B. This is due to the above-explained rougher underlying density for the Arm B. Both multiple

imputations dominate all other procedures, and for w = 0.8, when 20% of observations are missed, these imputation

procedures are comparable with the Benchmark. Multiple hot deck outperforms multiple resampling, but there is a

caveat. Indeed, multiple hot deck cannot be used for complete missing while multiple resampling can. Let us also

stress that we will see shortly examples where imputation outperforms the Benchmark.

Figure 5: Density estimates for Arm A lung cancer data with various degrees of MCAR missingness. For each missing scenario, the circles and
crosses show available and not available censored lifetimes. The solid line is the E-estimate shown in Figure 4. The dashed line is the Benchmark.
The dotted line and the dot-dashed line are multiple resampling and multiple hot deck imputation E-estimates, respectively.

Figure 5 complements results of Table 7 by presenting particular simulations and estimates for Arm A data. The

four diagrams show outcomes for different rates of missingness. Interestingly, we see how imputation highlights the
20



second mode, and the resampling does that more aggressively.

Table 8: Comparison of MAR imputation methods for lung cancer data
AIS EB
AIS EM

AIS EB
AIS ER

AIS EB
AIS EHD

AIS EB
AIS EMR

AIS EB
AIS EMHD

Arm A w(δ) = 0.7(1 − δ) + 0.9δ 0.06 0.14 0.21 0.21 0.34
w(δ) = 0.9(1 − δ) + 0.7δ 0.12 0.31 0.41 0.44 0.62

Arm B w(δ) = 0.7(1 − δ) + 0.9δ 0.07 0.25 0.29 0.39 0.44
w(δ) = 0.9(1 − δ) + 0.7δ 0.09 0.55 0.50 0.74 0.86

Next we consider simulations of MAR and analysis of the imputation method. Table 8 presents the corresponding

results. Here w(δ) = 0.7(1 − δ) + 0.9δ and w(δ) = 0.9(1 − δ) + 0.7δ yield approximately 15% and %25 of observations

being missed. The results show that MAR and MCAR yield a similar pattern in the relative performance of the

imputation methods, and the multiple hotdeck is again the better imputation procedure.

4. Proofs

Recall that B’s denote generic positive constants that may be different even in the same line, sequences on(1) tend to

zero as n→ ∞ uniformly over all parameters introduced during a proof, qn := ⌈ln(n+3)⌉, and set s := sn := 1+⌈ln(qn)⌉.

Proof of Theorem 1. Let us begin with heuristic of the proof. Similarly to other known lower bounds for nonpara-

metric curve estimates, the nonparametric problem is converted into a sequence in n of least favorable parametric

problems, see an excellent overview in Tsybakov (2009). The traditional approach for Sobolev classes is to use the

parametric classes created by the series perturbations gn(t) :=
∑Jn

j=1 θ jφ j(t), t ∈ [0, b] for some appropriately chosen

Jn proportional to n1/(2α+1). Then, following Tsybakov (2009), namely using the Parseval identity, a Bayes approach

and a Cramer–Rao type inequality, we can establish the optimal rate n−2α/(2α+1) of the MISE convergence. We also

get a constant in the lower bound, but unfortunately it is smaller than the sharp one in Theorem 1. This implies that

the classical parametric approach is not least favorable for the studied problem with missing censored lifetimes. To

make the parametric approximation of an underlying density f T more challenging, it is suggested to divide the inter-

val of interest [0, b] into s subintervals, and on each subinterval use the above-described method of finding a lower

bound for the local MISE. This is a feasible approach but it requires solving two technical problems. First, the power

Q of the Sobolev class (2) should be spread between the subintervals. Second, the underlying density f T must be

α-fold differentiable on [0, b]. To solve the first technical problem, let us note that the MISE may only increase if Q

increases. Accordingly, for each subinterval the classical Fisher information is calculated, and then the total power Q

is spread between the subintervals inversely proportional to the local Fisher informations. To solve the second techni-

cal problem, we “sew” local perturbations using special flattop nonnegative kernels that preserve the required α-fold

differentiability over the interval [0, b]. Now we are ready to proceed to the proof.

To implement the above-introduced idea of converting the problem of estimating density f T over interval [0, b] into

its estimation over a sequence in n of subintervals of [0, b], we introduce the following sequence of function classes

Hs = { f : f (t) = f0(t) + [
s−2∑
k=0

gk(t) −
s−2∑
k=0

∫ b

0
gk(u)du]I(0 ≤ t ≤ b), gk(t) ∈ Hsk, f ≥ 0}.
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Here the function classesHsk are defined as follows. Denote by ϕ(t) = ϕ(n, t) a sequence of flattop nonnegative kernels

defined on a real line such that for a given n: the kernel is zero beyond (0, 1), it is α-fold continuously differentiable

on (−∞,∞), 0 ≤ ϕ(t) ≤ 1, ϕ(t) = 1 for 2(ln(n))−2 ≤ t ≤ 1 − 2(ln(n))−2, and |ϕ(α)(t)| ≤ B(ln(n))2α. For instance, such

a kernel may be constructed using a mollifier, see Chapter 7 in Efromovich (1999). Then set ϕsk(t) = ϕ(sb−1t − k).

For a kth subinterval, 0 ≤ k ≤ s − 2, define: φsk j(t) =
√

2s/b cos(π j[sb−1(t − b) − k]), g[k](t) =
∑J(k)

j=⌈J(k)/ ln(n)⌉ νsk jφsk j(t),

g(k)(t) = g[k](t)ϕsk(t), J(k) = ⌈[n(2α + 1)(α + 1)α−1s−2αQskπ
−2αb]1/(2α+1)⌉ + 1, Qsk = (Q − 1/s)(I−1

s Isk)−1, Isk =

wS C(bk/s)/ f0(bk/s), I−1
s =

∑s−2
k=0(1/Isk). We set

Hsk := { f : f (t) = g(k)(t),
J(k)∑

j=⌈J(k)/ ln(n)⌉

(π j)2αν2sk j ≤ s−2αQsk, |g[k](t)|2 ≤ s3 ln(n)J(k)n−1}.

We do not use a permutation for the last right subinterval because this allows us to bound from below S T (b − 1/s) by∫ b
b−1/s f0(t)dt ≥ mint∈[0,b]( f0(t))/s. The latter will be used shortly in evaluation of Fisher information.

Note that we have defined a new function class where additive perturbations for each subinterval are mutually

independent, and then the perturbations are sewed together using the flattop kernel. The latter preserves α-fold differ-

entiability of the perturbations over the interval of interest [0, b] as well as smoothness of f0(t) for t ≥ b.

Now we are in a position to verify that for sufficiently large n the new set of densities is a subset of the studied class

Fn. Definition of the flattop kernel implies that f − f0 is α-fold continuously differentiable on the interval of interest

[0, b]. Let us show that for f ∈ Hs the difference f − f0 belongs to S1(α,Q). By Leibniz rule
∫ b

0 [(g[k](t)ϕsk(t))(α)]2dt =∫ b
0 [
∑α

l=0 Cαl g(α−l)
[k] (t)ϕ(l)

sk(t)]2dx where Cαl = α!/((α − l)!l!). Using max0≤l≤α
∫ 1

0 (ϕ(l)
sk(t))2dt < B(s(ln(n))2)2α and Cauchy-

Schwarz inequality we can write for 0 < l ≤ α,

|g(α−l)
[k] (t)|2 = |

J(k)∑
j=⌈J(k)/ ln(n)⌉

νsk jφ
(α−l)
sk j (x)|2 ≤ Bs2(α−l)+1(

J(k)∑
j=⌈J(k)/ ln(n)⌉

j2αν2sk j)(
J(k)∑

j=⌈J(k)/ ln(n)⌉

j−2l) = on(1)(J(k))−1/2.

Further, we have ∫ b

0
[g(α)

[k] (t)ϕsk(t)]2dt ≤
∫ b(k+1)/s

bk/s
[g(α)

[k] (t)]2dx ≤ Qsk ,

and recall that
∑s−2

k=0 Qsk = Q − 1/s. Combining the results we verify that f − f0 ∈ S1(α,Q) for f ∈ Hs and large n.

This is what was wished to show, and from now on we can use the smaller function class in verifying the lower bound.

Set f̂ = f0 + f̃ and ρs :=
∑s−2

k=0

∫ b
0 g(k)(u)du. For any f ∈ Hs, any positive γ, and a kth subinterval we can write,

∫ b(k+1)/s

bk/s
( f̂ (t) − f (t))2dt =

∫ b(k+1)/s

bk/s
( f̃ (t) − g(k)(t) + ρs)2dt

≥ (1 − γ)
∫ b(k+1)/s

bk/s
( f̃ (t) − g[k](t))2dt − γ−1

∫ b(k+1)/s

bk/s
[g[k](t)(1 − ϕsk(t)) + ρs]2dt

≥ (1 − γ)
∫ b(k+1)/s

bk/s
( f̃ (t) − g[k](t))2dt + on(1)γ−1(ln(n))−1/2n−2α/(2α+1) .
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Set ν̃sk j :=
∫ b(k+1)/s

bk/s f̃ (t)φsk j(t)dt and choose γ = s−1. Then we can continue the previous relation and write,

sup
f∈Fn(α,Q, f0)

E
{∫ b

0
( f̂ (t) − f (t))2dt

}
≥ sup

f∈Hs

E
{∫ b

0
( f̂ (t) − f (t))2dt

}
= sup

f∈Hs

s−2∑
k=0

E
{∫ b(k+1)/s

bk/s
( f̂ (t) − f (t))2dt

}

≥ (1 − s−1)
s−2∑
k=0

sup
f∈Hsk

J(k)∑
j=⌈J(k)/ ln(n)⌉

E
{
(ν̃sk j − νsk j)2

}
+ on(1)n−2α/(2α+1) =: (1 − s−1)

s−2∑
k=0

rk + on(1)n−2α/(2α+1).

We converted the verification of the lower bound for the studied minimax MISE into establishing lower bounds

for parametric mean squared errors. The latter is a familiar problem in mathematical statistics, and to make the

proof shorter we are using the proof of Theorem 1 in Efromovich (1989). To employ it we first need to verify the

validity of two relations, and then calculate parametric Fisher informations. Consider independent normal random

variables ζsk j with zero mean and variance (1 − µn)η2
sk j where µn tends to zero as slowly as desired and η2

ski :=

n−1 max(1/B∗,min(B∗, [(J(k)/ j)α − 1])) with B∗ ≥ 1 being a constant that can be as large as desired.

Now introduce a stochastic process f ∗(t), t ∈ [0, b] defined as the studied f (t), t ∈ [0, b] but with ζsk j being used

in place of νsk j. Then Theorem 6.2.2 in Kahane (1985) yields that P( f ∗ ∈ Hs) = 1 + on(1). This is the first verified

relation. The second relation also follows from that theorem, and for a similarly defined stochastic process g∗[k] we get

P(supt∈[0,b] |g
∗
[k](t)|

2 ≤ s3 ln(n)J(k)n−1) = 1 + on(1).

Next we calculate classical parametric Fisher informations. Recall that the underlying likelihood function is

f AV,∆,A(v, δ, a) =
[
w[ f T (v)S C(v)]δ[ f C(v)S T (v)]1−δ

]a[
(1 − w)P(∆ = δ)

]1−a
,

and that functions f0(t), f C(t) and parameter w are known to the oracle. Set

Isk j := E f0, f C ,w

{[ ∂
∂νsk j

[A∆ ln(w f T (V)S C(V)) + A(1 − ∆) ln(w f C(V)S T (V))

+(1 − A)∆ ln((1 − w)P(∆ = 1)) + (1 − A)(1 − ∆) ln((1 − w)P(∆ = 0))]
]2}
. (22)

Note that the four addends in the expectation are mutually exclusive and this allows us to simplify the formula. Also,

let us use notation θ := νsk j, and we may write f T
θ , S T

θ and Pθ to stress that these characteristics depend on the

underlying parameter θ. Using these remarks we continue formula (22) for the Fisher information,

Isk j = E f0, f C ,w{A∆[∂ ln(w f T
θ (V)S C(V))/∂θ]2} + E f0, f C ,w{A(1 − ∆)[∂ ln(w f C(V)S T

θ (V))/∂θ]2}

+E f0, f C ,w{(1 − A)∆[∂ ln((1 − w)Pθ(∆ = 1))/∂θ]2} + E f0, f C ,w{(1 − A)(1 − ∆)[∂ ln((1 − w)Pθ(∆ = 0))/∂θ]2}

=: I1 + I2 + I3 + I4. (23)

As we will see shortly, only the first component I1 of the Fisher information is not vanishing as n → ∞. The

latter explains why the verified lower bound is valid both for all observations and for a subset of observations with
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A∆ = 1, that is, for a subset with not missed and uncensored observations. Let us present a heuristic explanation

of this phenomenon interesting in its own right. If A∆ = 1, then the likelihood is proportional to an underlying

density f T
θ which depends on the parameter of interest θ. This is a classical statistical model and we will calculate the

corresponding Fisher information shortly. If A(1 − ∆) = 1, then the likelihood is proportional to the survival function

S T
θ (t) =

∫ ∞
t f T

θ (u)du. This integration of the very special density, written as a high-frequency Fourier series, yields the

vanishing Fisher information. To see that, recall that θ = νsk j, j is the frequency,
∫ z

0 cos(u jt)dt = (u j)−1 sin(π jz) = on(1)

for considered j > Bn1/(2α+1)/ ln(n) and u > 0. Overall, in mathematical statistics, it is a familiar fact that it is more

difficult to estimate a parameter when the likelihood depends on an integral of the underlying density. If (1− A)∆ = 1,

then we get a similar conclusion because the likelihood is proportional to Pθ(∆ = 1) =
∫ ∞

0 f T
θ (t)S C(t)dt, that is,

we again integrate the density. Finally, if (1 − A)(1 − ∆) = 1, then the likelihood is proportional to Pθ(∆ = 0) =∫ ∞
0 f C(t)S T

θ (t)dt, and again we are dealing with the integral S T
θ (t) =

∫ ∞
t f T

θ (u)du.

Next we get several technical formulas for the used cosine elements of the basis and the flattop kernels that are

instrumental in evaluating the four components of the Fisher information. Note that ϕsk(x) is zero beyond interval

[bk/s, b(k + 1)/s], φsk j(t) are elements of the cosine basis on [bk/s, b(k + 1)/s], and write for 0 ≤ k ≤ s − 2,

∫ b(k+1)/s

bk/s
[φsk j(t)ϕsk(t)]2dt = 1 +

∫ b(k+1)/s

bk/s
φ2

sk j(t)(ϕ
2
sk(t) − 1)dt.

Then, recalling that ϕsk(t) is the special flattop kernel, we get

|

∫ b(k+1)/s

bk/s
φ2

sk j(t)(ϕ
2
sk(t) − 1)dt| = on(1)(ln(n))−1 .

Using the same technique we get

|

∫ b(k+1)/s

bk/s
φsk j(t)ϕsk(t)dt| = |

∫ b(k+1)/s

bk/s
φsk j(t)[ϕsk(t) − 1]dt| = on(1)(ln(n))−1.

Further, for bk/s ≤ z ≤ b(k + 1)/s and j ≥ J(k)/ ln(n), we get using
∫ z

0 cos(u jt)dt = (u j)−1 sin(u jz), u > 0 that

|

∫ z

bk/s
φsk j(t)ϕsk(t)dt| = |

∫ z

bk/s
φsk j(t)dt −

∫ z

bk/s
φsk j(t)[1 − ϕsk(t)]dt| = on(1)(ln(n))−1,

and similarly for z > b(k + 1)/s

( ∫ z

0
[φsk j(t)ϕsk(t) −

∫ b(k+1)/s

bk/s
φsk j(u)ϕsk(u)du]I(0 ≤ t ≤ b)dt

)2
= on(1)(ln(n))−2.

Using these relations we can make the following calculations. For component I1 of the Fisher information, that

considers the case A∆ = 1 of not missed and uncensored observations, we can write using the above-made technical

relations,

I1 = E f0, f C ,w{A∆[∂ ln(w f T
θ (V)S C(V))/∂θ]2} =

∫ b(k+1)/s

bk/s
[w f0(t)S C(t)/ f 2

0 (t)][φsk j(t)ϕsk(t)
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−

∫ b(k+1)/s

bk/s
φsk j(u)ϕsk(u)du]2dt(1 + on(1)) = [wS C(bk/s)/ f0(bk/s)](1 + on(1)) = Isk(1 + on(1)).

For component I2, that considers the case A(1 − ∆) = 1 of not missed censored observations, we can write using the

above-made technical relations,

I2 = E f0, f C ,w{A(1 − ∆)[∂ ln(w f C(V)S T
θ (V))/∂θ]2}

= E f0, f C ,w

{
(S T
θ (V))−1

( ∫ V

0

[
φsk j(t)ϕks(t) −

∫ b(k+1)/s

bk/s
φsk j(u)ϕsk(u)du

]
1(0 ≤ t ≤ b)dt

)2}
(1 + on(1)) = on(1).

In the last equality we used the above-mentioned inequality FT
θ (b(s − 1)/s) > Bs−1 which holds due to the assumed

mint∈[0,b] f0(t) > 0.

Now we are considering I3. We have formula Pθ(∆ = 1) =
∫ ∞

0 f T
θ (t)S C(t)dt, which in its turn, with the help of the

above-presented technical relations for the cosine basis and flattop kernels, yields

∂ ln(Pθ(∆ = 1))
∂θ

=

∫ b(k+1)/s
bk/s [φsk j(t)ϕsk(t) −

∫ b(k+1)/s
bk/s φsk j(u)ϕsk(u)du]S C(t)dt

Pθ(∆ = 1)
= on(1) ln−1(n).

We conclude that I3 = on(1). Absolutely similarly we get I4 = on(1). Combining the obtained results in (22) we get

Isk j = [wS C(bk/s)/ f0(bk/s)](1 + on(1)) = Isk(1 + on(1)). (24)

Now we can straightforwardly follow the proof of Theorem 1 in Efromovich (1989). This yields for k ∈

{0, 1, . . . , s − 2} that

inf rk ≥ (s−2αQsk)1/(2α+1)(nIsk)−2α/(2α+1)P(α, 1, b)(1 + on(1)),

where the infimum is over all possible nonparametric oracle-estimators of f considered in the theorem. Using this

lower bound, definitions of Qsk and Isk, and the assumed S C(b) > 0 we continue,

inf
s−2∑
k=0

rk ≥ P(α,Q, b)
[
s−1

s−2∑
k=0

f0(bk/s)/[wS C(bk/s)]
]2α/(2α+1)

n−2α/(2α+1)(1 + on(1))

= P(α,Q, b)
[ s−2∑

k=0

b−1
∫ b(k+1)/s

bk/s
( f0(t)/[wS C(t)])dt

]2α/(2α+1)
n−2α/(2α+1)(1 + on(1))

= P(α,Q, b)
(
n/[b−1

∫ b

0
( f0(t)/[wS C(t)])dt]

)−2α/(2α+1)
(1 + on(1)).

Theorem 1 is proved.

Proof of Theorem 2. First of all, a direct calculation verifies that the Fourier estimator θ̌∗j is unbiased, namely

E{θ̌∗j} = E
{A∆φ j(V)I(V ∈ [0, b])

wS C(V)

}
=

∫ b

0

w f T (t)S C(t)φ j(t)
wS C(t)

dt =
∫ b

0
f T (t)φ j(t)dt = θ j.
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Second, using the trigonometric formula φ2
j (t) = b−1 + (2b)−1/2φ2 j(t) and the fact that Fourier coefficients of a differ-

entiable function vanish as the frequency j increases, see Chapter 2 in Efromovich (1999), we conclude that

E{(θ̌∗j − θ j)2} = n−1[E
{A∆φ2

j (V)I(V ∈ [0, b])

[wS C(V)]2

}
− θ2j ] = n−1d(1 + o j(1)).

Now we can explore MISE of the density estimator (6) for the considered class Fn(α,Q, f0)∪S0(α,Q) of densities.

Recall that B denotes generic constants. Write using the Parseval identity,

E{
∫ b

0
( f̌ T
∗ (t) − f T (t))2dt} =

qn∑
j=0

E{(θ̌∗j I(θ̌∗j ≥ 2qnσ
2
j ) − θ j)2} +

[ Jn∑
j=qn+1

[(1 − ( j/Jn)α)θ̌∗j − θ j]2 +
∑
j>Jn

θ2j
]
. (25)

We are considering the two terms on the right side of (25) in turn. For the first one we write using the Cauchy

inequality,
qn∑
j=0

E{(θ̌∗j I(θ̌∗j ≥ 2qnσ
2
j ) − θ j)2} =

qn∑
j=0

E{[(θ̌∗j − θ j) − θ̌ jI((θ̌∗j)
2 < 2qnσ

2
j )]

2}

≤ 2
qn∑
j=0

[E{(θ̌∗j − θ j)2} + 4q2
nσ

4
j ] ≤ Bq2

nn−1.

For the second term on the right side of (25), using notation d := b−1
∫ b

0
f T (t)

wS C (t) dt, we can write,

Jn∑
j=qn+1

[(1 − ( j/Jn)α)θ̌∗j − θ j]2 +
∑
j>Jn

θ2j

≤

Jn∑
j=qn+1

[(1 − ( j/Jn)α)2E{(θ̌∗j − θ j)2} + ( j/Jn)2αθ2j ] + [
b
πJn

]2α
∑
j>Jn

[π j/b]2αθ2j

= dn−1
Jn∑

j=qn+1

(1 − ( j/Jn)α)2(1 + o j(1)) + [
b
πJn

]2α
∑
j>qn

[π j/b]2αθ2j .

Using f T ∈ {Fn(α,Q, f0) ∪ S0(α,Q)}, together with elementary calculations and (25), we conclude that

E{
∫ b

0
( f̌ T
∗ (t) − f T (t))2dt} ≤ dn−1

Jn∑
j=0

[1 − ( j/Jn)α] + [
b
πJn

]2αQ + on(1)n−2α/(2α+1)

= [n/d]−2α/(2α+1)P(α,Q, b)(1 + on(1)).

Note that on(1) is a generic vanishing sequence that does not depend on (α,Q, f0), and this proves the verified upper

bound. Theorem 2 is proved.

Proof of Theorem 3. We need to verify that if the estimates Ŝ C and w̄ are used in place of unknown S C and w, then
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the upper bound of Theorem 2 is still valid. Consider the data-driven Fourier estimate

θ̂ j := n−1
n∑

l=1

Al∆lφ j(AlVl)I(AlVl ∈ [0, b])

w̄Ŝ C(AlVl)
. (26)

Here w̄ = n−1∑n
l=1 Al, Ŝ C(v) := e−ĤC (v), ĤC(v) := n−1∑n

l=1
Al(1−∆l)I(AlVl≤v)

Ŝ AV,A(AlVl,1)
, and Ŝ AV,A(v, 1) := n−1∑n

l=1 I(AlVl ≥ v).

According to the proof of Theorem 2, to verify validity of Theorem 3 it is sufficient to show that

|E{θ̂ j − θ j}| ≤ Bn−1, E{(θ̂ j − θ j)2} ≤ dn−1(1 + on(1)). (27)

Let us verify (27). Note that w̄ is the classical sample mean estimate of the probability of success for Bernoulli

random variable A whose statistical properties are well known, see Serfling (1980). Analysis of Ŝ C is more involved,

and we are presenting properties of the involved statistics one by one. The statistic Ŝ AV,A(v, 1) is the sample mean

estimate of the probability S AV,A(v, 1) = P(V ≥ v, A = 1) with the following properties highlighted in Serfling

(1980). We have E{[Ŝ AV,A(v, 1) − S AV,A(v, 1)]2} = n−1S AV,A(v, 1)[1 − S AV,A(v, 1)], E{[Ŝ AV,A(v, 1) − S AV,A(v, 1)]2k} ≤

Bkn−kS AV,A(v, 1)[1− S AV,A(v, 1)], P(supv |Ŝ
AV,A(v, 1)− S AV,A(v, 1)| > ϵ) ≤ Be−2nϵ2 for ϵ > 0, and recall that B and Bk are

generic finite constants. Next, using the Taylor formula we get

Ŝ C(x) − S C(x) = e−ĤC (x) − e−HC (x) = [HC(x) − ĤC(x)]S C(x) + (1/2)[HC(x) − ĤC(x)]2S C(x) + µ(x), (28)

where |µ(x)| ≤ |HC(x)−ĤC(x)|3S C(x). Analysis of these terms is based on the above-presented properties of Ŝ AV,A(v, 1)

and straightforward calculations. We get that |E{[Ŝ C(V1)− S C(V1)|V1 = v]}| ≤ Bn−1, E{[Ŝ C(V1)− S C(V1)]2k |V1 = v} ≤

Bkn−k, and P(|Ŝ C(V1) − S C(V1)| > ϵ|V1 = v) ≤ Bn2e−nϵ2/B. Using these relations, (28), the elementary relation

1
x
=

1
y
+

y − x
y2 +

(y − x)2

y2x
where xy , 0,

and a straightforward calculation we verify (27). Theorem 3 is proved.

Proof of Theorem 4. We begin with several calculations that shed light on the oracle’s Fourier estimate θ̄∗j defined in

(17). First, using (15) and (16), let us show that θ̄∗j is unbiased estimate of θ j. Indeed,

E{θ̄∗j} = E{
A∆φ j(AV)I(AV ∈ [0, b])

w(1)S C(AV)
} =

∫ b

0

f AV,∆,A(v, 1, 1)φ j(v)
w(1)S C(v)

dv =
∫ b

0

w(1) f T (v)S C(v)φ j(v)
w(1)S C(v)

dv = θ j.

Next the variance of θ̄∗j is evaluated. Set d1 := b−1
∫ b

0
f T (t)

w(1)S C (t) dt, and write using (15),

E{(θ̄∗j − θ j)2} = n−1E{(
A∆φ j(AV)I(AV ∈ [0, b])

w(1)S C(AV)
− θ j)2} = n−1[

∫ b

0

f T (v)φ2
j (v)

w(1)S C(v)
dv − θ2j ] = n−1d1(1 + o j(1)).

Now we can follow the proof of Theorem 2 with the only change in replacing parameter d by d1. Theorem 4 is

verified.
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Now let us check the assertion in the paragraph below line (21), which states that the estimate (19) of w(δ) and

the estimate (20) of S C can be used by the plug-in density estimator. We begin with w̄(1) defined in (19). Because

w(1) > 0, the estimate w̄(1) dominates w̃(1) :=
∑n

l=1 Al∆l/[1 +
∑n

i=1 ∆i] = n−1∑n
l=1 Al∆l/[n−1 + n−1∑n

i=1 ∆i]. Now

recall that w(1) := P(A = 1|∆ = 1) = P(A∆ = 1|∆ = 1) = P(A∆ = 1)/P(∆ = 1). Further, a direct calculation allows

us to conclude that E{n−1 + n−1∑n
l=1 Al − P(A = 1)} = n−1. Combining the above-presented formulas we get that the

moment inequality E{[w̃(1) − w(1)]2k} ≤ Bkn−k, Bk < ∞ holds for any integer k. This is the desired property of the

estimate. Due to the symmetry in the right censoring between censored and uncensored observations, the estimate

w̄(0) is analyzed similarly and its satisfies the same moment inequality.

Next we are considering the estimator S̄ V (v) of S V (v) defined in (21). Recall that V := min(T,C) is a continuous

lifetime and write, S V (v) = P(V ≥ v) = P(V ≥ v,∆ = 1) + P(V ≥ v,∆ = 0). Now we need to understand how to

express events in the two last probabilities via the observed MAR variables. Write

P(V ≥ v,∆ = 1, A = 1) = P(A = 1|V ≥ v,∆ = 1)P(V ≥ v,∆ = 1) = w(1)P(V ≥ v,∆ = 1).

Further, we have P(V ≥ v,∆ = 1, A = 1) = P(AV ≥ v,∆ = 1, A = 1). Accordingly, the first sum on the right side of

(21) is the plug-in sample mean estimate of P(V ≥ v,∆ = 1). Absolutely similarly we conclude that the second sum

on the right side of (21) is the plug-in sample mean estimate of P(V ≥ v,∆ = 0). Accordingly, S̄ V is the empirical

survival function for the MAR, and note that this estimate is the sum of two independent statistics based on uncensored

and censored observations, respectively. Next, to shed light on the estimate S̄ C defined in (20), let us compare it with

the MCAR estimate Ŝ C defined in (11). Let w be given, then (8) and (9) imply that (wn)−1∑n
l=1 I(AlVl ≥ v) is the

MCAR empirical survival estimate of S V . This sheds light on the estimate (20) and allows us to analyze the MAR

case similarly to the above-presented analysis of the MCAR case.

5. Conclusion

The developed theory of efficient density estimation explains what can and cannot be achieved for missing censored

data, and it also quantifies how smoothness of an estimated density, the rate of censoring and the missingness affect the

estimation. An interesting corollary of the theory is that the rougher the density, the less sensitive density estimation

is to the missingness. The theory also motivated the proposed methodology of E-estimation for small samples. The

E-estimator can be used for both missing and complete (no missingness) censored data. The former E-estimator,

based on missing censored data and which is of interest on its own, can be also used as the benchmark to study

different imputation procedures using the same E-estimator based on imputed (filled in) missing censored observations.

The estimators were studied via analysis of real and simulated missing censored datasets. Among tested imputation

methods, multiple resampling can be recommended for the complete missing model and multiple hot deck for the

partial missing model. Datasets and R code are provided.

Let us mention several open topics for future research: (i) Missing not at random, discussed in the Introduction,

prevents us from consistent density estimation. It is of interest to understand what additional information is necessary

for consistent estimation, and then develop the corresponding theory and methodology of estimation. (ii) Analysis of
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the more complicated missing left truncated and right censored (LTRC) data is another interesting and open problem.

Discussion and known results for the case of no missing LTRC can be found in Efromovich (2018). In LTRC without

missing we observe (V,∆) only if V exceeds a truncation lifetime Z and then we observe (Z,V,∆), otherwise we

even do not know that there was a realization of (V,∆). This model, due to the extra truncating lifetime Z, creates

many interesting missing mechanisms. (iii) Another practically important model of missing censored data is when the

availability A depends on an auxiliary variable X. For consistent estimation, this variable either must be observed or

an extra sample from (X, A) should be available. Then the main issue is how well the availability likelihood can be

estimated and what quality of estimation is sufficient for matching the oracle who knows the availability likelihood.

(iv) It is of interest to test the Kaplan–Meier estimator and its modifications suggested for small samples in Efron

(1967), Lagakos (1979), Dinse (1985) and Meier et al. (2004). (v) Even for the case of no missing, estimation of

a bivariate density for censored data is an extremely complicated problem, see Efromovich (2022). It is of interest

to understand what may be done for missing censored bivariate data. (vi) Hazard rate estimation is another classical

topic to explore.
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