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Abstract

Living tissues display fluctuations — random spatial and temporal variations of tissue properties
around their reference values — at multiple scales. It is believed that such fluctuations may enable
tissues to sense their state or their size. Recent theoretical studies developed specific models of fluc-
tuations in growing tissues and predicted that fluctuations of growth show long-range correlations.
Here we elaborated upon these predictions and we tested them using experimental data. We first
introduced a minimal model for the fluctuations of any quantity that has some level of temporal per-
sistence or memory, such as concentration of a molecule, local growth rate, or mechanical property.
We found that long-range correlations are generic, applying to any such quantity, and that growth
couples temporal and spatial fluctuations, through a mechanism that we call ‘fluctuation stretching’
— growth enlarges the lengthscale of variation of this quantity. We then analysed growth data from
sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell
growth using the previously developed Cellular Fourier Transform. Growth appears to have long-
range correlations. We compared different genotypes and growth conditions: mutants with lower
or higher response to mechanical stress have lower temporal correlations and longer-range spatial
correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental
data from all conditions and developmental stages into an unifying curve, validating the notion that
temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic

constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.

Significance Statement

How do organs and organisms grow and achieve robust shapes in the face of subcellular and
cellular variability? In order to address this outstanding mystery, we investigated the variability
of growth at multiple scales and we analysed experimental data from growing plant tissues. Our
results support the prediction that tissue expansion couples temporal memory of growth with spatial
variability of growth. Our work reveals a constraint on the spatial and temporal variability of growth

that may impact the robustness of morphogenesis.
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26 INTRODUCTION

27 The impact of noisy perturbations on organism development is the subject of active re-
28 search [1|. Fluctuations — the random spatial and temporal variations of tissue properties
20 around their reference values — have been observed at multiple scales, from cytoskeleton |2]
30 to cell [3] and tissue [1]. In the fruit fly, for example, actomyosin pulses were shown to cause
a1 fluctuations of cell shape [5—7], while fluctuations of the position of cell junctions were found
32 to favor cell rearrangements during tissue extension |2, 9]. It was proposed that fluctuations
33 are required for symmetry breaking and pattern formation during development [10, 11] or
sa for cells and tissues to sense their neighbourhood [12] . Fluctuations in gene expression or
35 morphogens seems particularly important for cell differentiation. Fluctuations in gene tran-
36 scription seem required for the maintenance of pluripotency |13, 14], and specific properties
a7 of fluctuations are a signature of cell differentiation [15—18]. Nevertheless, the robustness
ss of tissue patterning appears sensitive to fluctuations in molecule concentrations [19, 20].

30 Fluctuations in growth induce mechanical stress [12, 21-23| because, for instance, cells with
a0 higher growth rate exert forces on neighbouring cells, which may sense and respond to such
a1 mechanical stress. Robust development of the fruit fly wing partially relies on cell compe-
a2 tition, i.e. on mismatch of growth rates between cells, and on the ensuing modulation of
a3 proliferation and apoptosis [24, 25]. In this context, it is important to understand whether
as fluctuations of a cell affect its local neighbourhood or the whole tissue. Here, we analysed

a5 the spatial structure of fluctuations in experimental data from growing tissues.

ss  Recent models of tissue mechanics and growth accounted for temporal and spatial fluctua-
a7 tions of growth and investigated their role in robustness of morphogenesis [26—258]. Temporal
a8 fluctuations are characterised by their degree of persistence, quantified with the persistence
s time (or correlation time), the characteristic time over which memory of previous fluctu-
so ations is lost. It could be the time needed for remodelling of the cytoskeleton or of the
s1 extra-cellular matrix (in animals) / the cell wall (in plants). Spatial fluctuations are char-
s2 acterised by their degree of spatial consistency, quantified by the correlation length, the
s3 characteristic length over which cells (or subcellular domains) behave similarly, or by cell-
sa to-cell variability over a small neighbourhood. For instance, the shape of a plant organ was
ss found to be less robust in a mutant with lower cell-to-cell variability [26]. However, spatial

s6 fluctuations may have a more complex structure. Indeed, theoretical models of the expand-



s7 ing universe |29, 30| and of growing tissues [27, 28] predicted long-range spatial correlations,
ss i.e. a significant level of correlations between fluctuations of two distant parts of the system:;
so accordingly, growing systems are expected to exhibit fluctuations at multiple scales. Here
eo we focus on the underlying mechanism, which we call fluctuation stretching — the increase
e1 in the lengthscale of fluctuations of a tissue property or of the concentration of a molecule,
62 due to tissue expansion.

63  To assess the experimental relevance of this mechanism, we analyzed growth fluctuations
es in the model plant Arabidopsis thaliana. We considered the sepal, the green leaf-like organ
s that protects a flower prior to its opening. We characterised sepals from wild-type indi-
66 viduals in different culture conditions as well as mutant plants. We considered spiral2 and
67 katanin mutant plants since they were found to be less robust to variability in the num-
ss ber of trichomes (epidermal hair-like cells) than wild type plants [31], suggesting a greater

o impact of cellular scales on organ ones. The lack of SPIRAL2 and KATANIN function led

70 respectively to stronger [31-33] and weaker [31, 32, 34] cortical microtubule co-alignment
71 and reorientation in response to mechanical stress [35, 36]. Microtubules guide the deposi-
72 tion of cellulose fibers in the cell wall (the plant extra-cellular matrix) [37]. Cellulose fibers

73 being the main load-bearing component of the cell wall, the response of microtubules to
74 mechanical stress is generally considered as a mechanical feedback on growth and spiral2
75 and katanin as mutants with altered feedback.

76 In this Article, we first present a simple model for fluctuation stretching. We estimate
77 spatial and temporal correlations of tissue growth fluctuations in Arabidopsis sepals using
78 previous live imaging data [31, 32| and the Cellular Fourier Transform (CEFT) [38]. We
70 investigate how correlations vary within and between datasets and we test the relevance of

g0 fluctuation stretching.

51 RESULTS

&2 A minimal models predicts the stretching of fluctuations in growing tissues

83 Fluctuation stretching, the enlargement of the lengthscales of fluctuations by medium
s« expansion, was predicted by different models of expanding media, the early universe [29, 30|

ss and living tissues |27, 28]. Here we introduce a minimal model for fluctuation stretching.
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FIG. 1. Distinct effects of tissue expansion, time relaxation (loss of memory), and
noise source on the spatial pattern of a tissue property. The figure shows initial spatial
patterns and their temporal evolution under the three mechanisms. The variable property ®(x) is
plotted as a function of position 2 and shown in colorscale (blue and yellow for low and high values,
respectively) along a strip standing for the growing tissue. A Tissue expansion induces fluctuation
stretching, defined as the enlargement of the lengthscales of fluctuations. B Relaxation associated
with loss of memory induces a decay in the amplitude of fluctuations (depicted by green arrows).
C Noise causes the superimposition of new fluctuations on the preceding pattern (represented
by a dashed line in the lower panel). We schematically represent stretching, relaxation, and noise
superimposition by function block diagrams containing horizontal red arrows, vertical green arrows,

and a noisy signal, respectively. These block diagrams are used in Fig. 2.

s For a primarily mostly interested in experimental data, Eq. 2 is the main theoretical result
sz that we test in growing sepals.

ss  We consider a variable property ® that is defined on a tissue growing isotropically at
8o average rate G and that depends on position vector z and time t. This variable ® could
o reflect gene expression, signalling, metabolism, cell size, or cell growth, for instance. We
o1 assume that (i) @ is inherited through tissue growth, so that it is advected (transported) by
o the average growth velocity Go/D (D is the space dimension: D=1 in Figures 1-2 and D = 2
o3 for a thin organ like the sepal), (ii) ¢ relaxes to its average value (®) with a characteristic
o memory (persistence/correlation) time 7, and (iii) ® is subject to a source of noise &(z,t)

os that is random in space and time. As a consequence,

ob  Gux 0> 1

E—FF‘%—_; (@(x,t)—(@})—i—f(x,t). (1)

o6 In this equation, the first term is the temporal derivative of ®(x,t). The second term

o7 (in right-hand side) represents the effect of tissue expansion, i.e. advection by growth, and

o contains the spatial derivative of ® (the dot - stands for the vectorial product, which reduces
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to a multiplication for D = 1). The third term (left-hand side) describes relaxation (loss of
memory) of .

The consequences of tissue expansion, loss of memory (time persistence), and noise on
the variations of ® are schematized in Fig. 1, for one time step. Tissue expansion induce
‘fluctuation stretching’, i.e. enlarges the lengthscales of spatial variations (panel A). Time
persistence determines how fast fluctuations relax toward their reference level (B). Noise
superimpose new fluctuations on the preceding pattern (C).

When iterated over time, fluctuation stretching and noise give rise to multiscale fluctua-
tions, while the degree of time persistence (or memory level) controls how far fluctuations ex-
tend toward large space-scales. This is illustrated in Fig. 2A. in three regimes: for full, inter-
mediate, and vanishing time persistence. For full time persistence (7G = +o00) the pattern is
stretched, increasing its the lengthscale of variations of ® and fluctuations are added at small
scale. For intermediate time persistence (7G ~ 1), the same process occurs but the preexist-
ing pattern is attenuated due to relaxation. In the absence of temporal persistence (7 = 0),
the preceding pattern disappears and only the newly superimposed noise remains. Mathe-
matically, the solutions to Eq. 1 take the form ®(z,t) = (®)+ f+oo dse /TE(x eGP t—5)
(see Supplementary note, for details). The integral indicates the superimposition while

—s/T

the exponential factor e accounts for time relaxation or loss of memory. Fluctuation

stretching corresponds to the exponential factor e*C/? applied to the spatial variation of the
noise.

The space correlation function, C(I), is the pairwise correlation between the values ®(z)
and ®(z +1) of the variable ® at positions distant of length [, as illustrated in Fig. 2 B. C(I)
generally decrease with the distance I: for [ = 0, ®(x) = ®(x + ) and so the correlation is
complete, C'(0) = 1, while at large distance [, ®(x+1) is expected to be independent of ®(x)
and the correlation vanishes as illustrated in the plot on the right of panel B. In our mini-
mal model, the correlation function takes the form C(I) = ["(2ds/7) e 2*/7g(|l| e*C/P),
assuming the permanent noise source &(z,t) = 0 has zero mean and correlation function
(&(x, t)(x + 1, t + s)) proportional to d(s)g(l) (¢ is the Dirac distribution, see Supplemen-
tary note, for details). Here again C(l) appears as a weighted sum of the space correlation
function g of the noise source stretched at different spatial scales. The correlation function g

is assumed to have a correlation length ¢ that sets the reference scale for spatial variations of

®; ¢ cannot be assumed to be zero without causing issuess of mathematical convergence. In
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FIG. 2. Multiscale fluctuations as a consequence of fluctuation stretching. Spatial correla-
tions of tissue properties depend on the level of temporal persistence of fluctuations. Three levels of
temporal persistence are considered: full (no time relaxation), intermediate (moderate relaxation),
and none (instantaneous relaxation). A Spatial pattern resulting from the iteration of fluctuation
stretching, relaxation, and noise, schematically represented by function block diagrams in series, as
defined in Fig. 1; patterns are represented under the form of plots and color stripes as in Fig. 1.
Top: patterns after n iterations; middle: patterns after one additional iteration of stretching and
(if appropriate) relaxation; bottom: patterns after one additional superimposition of noise. B
Quantification of spatial correlations. Top: This involves comparing the values of the variable at
positions x and x + [, as illustrated in the colored strip. Left: Typical scatter plot showing ®(z +1)
as a function of ®(x) for multiple values of z. Middle: C(I) is defined as the correlation coefficient
between ®(x + 1) and ®(x); () stands for the statistical average of the expression between brackets
and A®(z) = ¢(x) — (®(x)). Right: the correlation C(I) as a function of the distance [. C Spatial
correlation function C(1) for full, partial, and no time persistent fluctuations. Models predict that

the space correlation function is a power-law of I, C'(I) 15,



13 practice, we took g(I) = e */2)(272)~P/2 Because of fluctuation stretching, space corre-
132 lations functions for time persistent fluctuations are predicted to be long-ranged i.e. to have
133 their tails which follow a power law oc [=?. As shown in the Supplementary note, this can
13 be made explicit by rewriting the space correlation function C(1) = |I|"2P/C%h(|1]), where
135 the increasing function h(|l]) = folu duu?P/7G)~1g(y) reaches an asymptotic value when ||
136 becomes large compared to the correlation length ¢ of £&. Therefore, the correlation function
137 O(1) of the variable of interest ® mostly behaves as a power-law C(I) ~ [=# of exponent

2D

5==2. 2)

138
130 This scaling law indicates that the values of the variable ® considered in two distant points
1o decorrelate slowly as their distance is increased, which reflects the fact that fluctuations are
141 & superimposition of patterns with different spatial lengthscales. [ estimates this spatial
12 decrease in correlations, the higher the memory (the larger 7G), the higher correlations
123 between distant regions. Fig. 2 C show the space correlation functions for full, partial,
122 and no memory. Full temporal persistence is simply the limit where the persistence time
a5 is infinite, leading to an accumulation of fluctuations at large lengthscales. The weight of
us large scaled fluctuations continuously increases so that the correlation function tends toward
17 a constant. In contrast, in the absence of temporal persistence, spatial correlations vanish
128 beyond the correlation length of the noise. Hereafter, we tested this prediction using previous

120 experimental data about growing plant organs.

150 Live imaging and spectral analysis provide estimates for spatiotemporal correlations

151 of cell growth

152 Next we aimed at a quantitative description of spatial and temporal correlations of growth
153 fluctuations in expanding tissues. We used experimental data where sepals were imaged live
154 t0 track morphogenesis over time, with similar culture and imaging conditions [31, 32].
155 We examined whether fluctuations stretching applies to cell areal growth rate. Each sepal
156 was imaged at multiple times, labeled ¢ = 0,1,2,... and separated by 24 hours intervals
157 as illustrated by Fig. 3A, which shows an example of cells segmented in a sepal, at three

158 successive time steps t, t+1 and t+2. Growth was defined from cell surface area at successive



A tissue B growth rate Ci harmonics D1 spectra E time correlations
e1

2. 4 gl

FIG. 3. Quantification of spatial and temporal fluctuations in cell growth. Day (d) is
used as a unit of time. A Three snapshots of a plant tissue (abaxial sepal epidermis from wild-type
plant) taken at one-day intervals. Black lines represent cell contours. B Heatmaps of relative areal
growth rate between times ¢ and ¢ 4+ 1, G;4, and between ¢ + 1 and ¢ + 2, G; 441 for cell #i. A
growth rate of 1d~! corresponds to a relative increase of area of 100% in 1 day. Growth rate of white
cells could not be computed because they were not imaged at ¢ + 2. C1-Cs The first 4 harmonics
er (k= 0,1,2, and 3) of the Cellular Fourier Transform (CFT) of the tissue at ¢ and ¢ + 1 (the
white cells in B are not included), represented by a cyan (low value) to magenta (high values) color
scheme. The harmonics e; generalise sinusoidal waves and can be used to decompose the growth
fields G; ¢+ and G; 441 into their respective CFTs G‘k’t and CA}MH. D;-D; Fourier spectra (blue dots)
correspond to the absolute values |Gy ;| and |G ;41| of the CFTs and are shown as function of the
wavenumber ¢ of the harmonics e;. Wavenumbers were non-dimensionalised using mean cell size
le. A representative power-law (solid line) AGq, " /(> quat)l/ ? was obtained as explained in the
text. Each spectrum is then characterised by two numbers, the standard deviation of cell growth
AG; and the spatial exponent of spatial correlations, oy. Here oy = 0.54 + 0.08 (+ standard error
of the mean), a1 = 0.71 £0.08, AG; = 0.157 4+ 0.012d! and AGy41 = 0.134+0.012d~!. E For
temporal analyses, detrended areal growth rate 0G;; was computed as the excess areal growth rate
of a cell with respect to a local neighborhood. The coordinates of each blue dot are the detrended
growth dG;; of a cell i between ¢ to ¢ + 1 (horizontal axis) and the detrended growth 6G', , 141 of
the set J;; of its daughters between ¢+ 1 and ¢ +2 (horizontal axis). The degree of growth temporal
correlation is quantified by the value of the Kendall correlation coefficient, here I'y = 0.400 4 0.052
(+ standard error). Two outliers were excluded from the plot to improve the readability of the

figure.



10 time steps. Fig. 3B shows cell areal relative growth rate G;; and G; 41 from ¢ to ¢t + 1 and
160 from ¢ + 1 to t + 2 respectively, deduced from segmentation of sepals into cells, as showed
161 in panel A and mapped on the reference tissues at ¢ and ¢ + 1, respectively. When a cell
162 has divided between t to t 4+ 1, we used the total surface area of its daughter cells at ¢ + 1

163 to define G, see Datasets ans Methods for details.

16a 1o dissect spatial variations of growth in the tissue, we used the Cellular Fourier Trans-
16s form (CFT) [38]. The CFT consists of decomposing the signal into a linear combination of
166 ad hoc harmonics that account for the subdivision of the tissue into cells of variable size
167 and shape. These harmonics are the equivalent of sinusoidal waves in an infinite continuous
168 medium. The k-th harmonic, e, has wavenumber ¢, and varies on a lengthscale that de-
160 creases with the rank k. The CFT coefficients ék,t give the weights with which cell relative
170 areal growth is decomposed into the harmonics e;. The Fourier spectrum is obtained by

171 plotting the amplitude |Gy .| as a function the corresponding wave number q,. This spectrum
p g p k.t p g qk p

~

172 is well-suited to describe fluctuations of G at multiple scales.

s We investigated spatial correlations from Fourier spectra such as those shown in Fig. 3.D.
174 The amplitudes of spectra appear significantly higher for low wave numbers, suggesting
175 long-range correlations. To further test this, we sought a characteristic lengthscale for
176 fluctuations and we considered the smallest index K for which Y10 G2 > 1/23°N ' G2, s0
177 as to quantify the repartition of fluctuations between low and large scales. If fluctuations
17 were short-ranged, then the ratio of largest to characteristic wavenumbers, ¢;/qx, would
179 be a good estimate of the ratio of correlation length to sample size, and would therefore
180 be small compared to 1. In contrast, we found the ratio ¢;/qx to be 0.54 on average
181 (standard deviation 0.29 and range 0.086 — 1, over all study samples), indicating long-range
182 correlations. This qualitative agreement with the predictions of the minimal model prompted
183 US to use power-laws to represent Fourier spectra. We note that the prediction C(I) ~ =7
184 corresponds to a spectrum scaling like ¢~%, with @ = 1 — 3/2 (see section Datasets and
1ss Methods). Although the limited range of wavenumbers did not allow us to test the power-
186 law behavior, we obtained a representative power-law as follows. As the CFTs can be
187 positive or negative, we assumed each CFT to follow a Gaussian distribution of zero mean
18 and of standard deviation oy, which was fitted to the equation AG.q, /(> , q,fo“)l/ 2,
180 Each spectrum is then characterised by two numbers, its amplitude AG; and its exponent,

10 ;. The specific choice made for the fit is such that, following the Parseval theorem, AG,

10



101 measures the standard deviation of growth while a; measures its spatial correlations. We
102 used statistical inference to estimate a; and AG;. The scaling exponent, a4, is expected
103 to vary between 0 and 1, which correspond to short-range and to extremely long-range
102 correlations, respectively. We found oy to approximately range between 0.1 to 0.9, indicating
105 large differences between samples and time points in terms of range of correlations (but see
106 below for the comparison between genotypes). We found the standard deviation of growth
107 AG, to range between 0.1 and 0.6 d~!, values that are of the order of half the growth rate
108 of a sample averaged over all cells between two time points, indicating relatively strong

100 fluctuations of cell growth rate.

200 The temporal resolution (1d) and the number of consecutive images of a sample (3 to 7)
201 Were in general too low to compute persistence time from experimental data. We therefore
202 estimated temporal persistence of growth using correlation coefficients. We considered the
203 correlations between relative areal cell growth G;; from ¢ to ¢ +1 and G, , 41 from £ +1 to
200 t+ 2, where the set J;; in subscript contains the labels of all daughters of cell ¢ at time ¢ and
205 G, , 141 1s their areal growth rate, see section Datasets and Methods for details. To avoid
206 any bias due to overall gradients in growth rate [32], we computed detrended cell growth
201 0G4 by substracting from the areal growth rate of a cell the average areal growth in a local
208 neighborhood, see Supplementary note. The scatter plot in Fig. 3E of 0G j, , 141 as a function
200 of 0G;; shows that growth is relatively persistent in time: For instance cells that grow more
210 than their neighbors between ¢ and ¢ + 1 tend to remain so between ¢t + 1 and ¢ + 2. We
a1 quantified temporal correlations of growth using Kendall’s correlation coefficient, I';, because
212 it is based on the rank of data and is less sensitive to outliers than the more classical rank-
213 based Spearman correlation coefficient [39]. Over all sepals and time points considered, T’y
214 approximately ranges from —0.1 to 0.6. Almost all values of I'; were positive, while the
215 negative values of I'; were not significantly different from zero (see below), indicating that,

216 in general, growth is persistent over a time comparable to experimental time resolution (1d).

217 We thus obtained a minimal set of parameters to describe growth fields and their fluc-
215 tuations: average growth rate, Gy, extent (exponent) of spatial correlations, oy, amplitude
210 of spatial correlations, AG,, and temporal correlation coefficient I';. Next, we analysed

20 differences and common features between sepals based on this minimal set of parameters.

11
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FIG. 4. Parameters that characterise growth fields in sepals from wild-type and mutant
plants. The sequences were temporally aligned and parameters are shown as a function of the
synchronized time T;. A Growth rate averaged over the tissue G;. B Temporal correlation coefficient
I';. C Dimensionless amplitude of the Cellular Fourier Transform (CFT) AG,/G; (also coefficient
of variation of growth). D Scaling exponent of the CFT «;. The two datasets correspond to
two slightly different culture conditions. Black, blue, orange and, red symbols/lines correspond
respectively to wild-type, spr2 mutant, mad5 mutant, and botl mutant from the first dataset, while
gray symbols/lines correspond to wild-type plants from the second set. Error bars indicate the 90%

confidence intervals; error bars are not shown in A because they are comparable to symbol size.

221 Temporal and spatial correlations of cell growth vary across genotypes and culture

222 conditions

223 We analyzed growth fluctuations in several genotypes and culture conditions. As ex-
224 plained in the introduction, we chose to focus on mutants affected in responses to mechani-
225 cal stress, spiral2 (spr2) and katanin (two alleles, bot! and mad5), in addition to wild-type
26 plants. We analyzed sepals from 4 genotypes in 2 culture conditions and at different devel-
227 opmental stages. In order to enable the comparison between several sepals that were imaged
228 starting from different stages, we temporally aligned live imaging sequences along a common

220 time frame using sepal width, building upon the approach developed in [10], see Datasets

12



230 and Methods. The parameters that characterise growth fields in all these sequences are
231 shown in Fig. 4.

232 We first noticed a significant variability within and between genotypes/conditions and
233 trajectories that seem heterogeneous in time. Some of this variability might be due to ex-
234 perimental constraints; for instance, the imaged regions of sepals varied in time and between
235 individuals. We nevertheless observed a few trends that hold for several genotypes and con-
236 ditions. Mean growth rate (panel A) decreases in time for trajectories that are long enough
237 (spr2, mad5 and wild-type in dataset 2), which is a general trend in organ morphogenesis.
238 Temporal correlations (panel B) decrease between the first and the second time point, possi-
230 bly associated with the strong decrease in growth anisotropy observed after the second time
220 interval [32]. The relative amplitude of growth fluctuations (panel C) decreases for the first
21 stages in mutants before stabilizing around 0.4. The extent of spatial correlations (panel D)
202 tends to decrease with time in dataset 1.

203 In order to quantify differences induced by mutations or culture conditions, we used wild-
24 type plants from dataset 1 as a reference and we estimated the shift in growth parameters
25 between the reference and other genotypes or culture condition, see Fig. 5. As the amount
2e6 Of information available varied with genotype, culture condition, or temporal stage, we de-
247 veloped a method that enables a consistent comparison of differences by taking into account
2a8 developmental stages, see Datasets and Methods for details. Briefly, we considered all pairs
220 formed by a reference sepal (wild-type from dataset 1) and another sepal. We computed the
250 shift between a reference sepal to another sepal at a given temporal stage and we averaged
251 shifts over time and sepal pairs to obtain a mean shift, shown in Fig. 5 for all comparisons.
252 This mean shift can be understood as the representative vertical difference between refer-
253 ence wild-type curves and mutant or dataset 2 curves from Fig. 4. We then estimated the
254 standard error of these shifts, which results from the uncertainties of both reference sepals
255 (wild-type from dataset 1) and sepals of the condition of interest.

6 In wild-type, datasets 1 and 2 do not differ in temporal correlations (panel B) and
2s7 amplitude of fluctuations (Fig. 5.C) within the range of uncertainty on these parameters.
2ss Average growth rate (Fig. 5.A) and extent of spatial correlations (Fig. 5.D) are lower in
250 dataset 2, indicating that these two parameters are more sensitive to culture conditions.
260 Average growth G, is higher in mutants than in wild-type (Fig. 5.A) over the temporal

261 window considered; this might be compensated by lower growth in mutants at later stages

13



262 or by earlier growth arrest in mutants, because mutant sepals are about 20% smaller in
263 area than wild type sepals [31]. The amplitude of fluctuations AG; is smaller in spiral2,
26+ but it is not possible to conclude about katanin, because the two alleles (bot! and mad5)
26s show different trends (Fig. 5.C). When comparing mutants to wild-type plants, temporal
266 correlations are lower (Fig. 5.B), suggesting lower persistence time in mutants. The changes
267 in temporal correlations I'; are lower than in growth rates, so that the changes in non-
26s dimensional persistence time 7,G; are expected to be dominated by those in growth G, with
260 higher 7,G; in mutants. This might be ascribed to differences in mechanical responses in
270 these mutants — assuming wild-type plants to have optimal mechanical responses, both over-
on reaction and under-reaction to mechanical stress would increase the timescale of changes in
272 growth rates [27]. Based on our minimal model of fluctuation stretching (see Eq. 2), smaller
273 non-dimensional persistence time 7,G; would yield higher extent «; of spatial correlations.
272 Indeed, the exponent of the Fourier specrum appears higher in mutants (Fig. 5.D), although
275 the level of uncertainty makes it difficult to draw a firm conclusion. In the following section,

276 we further test whether fluctuations stretching applies to cell growth in sepals.

277 A conserved relation between growth parameters supports fluctuation stretching

2.s We sought relations between growth parameters that would hold across genotypes, data
279 sets, and developmental stages. We first considered the pairwise relations between the growth
280 parameters defined for each sepal: mean growth rate, G, temporal correlation coefficient,
251 Iy, normalised amplitude of spatial fluctuations, AG,/G;, and extent (exponent) of spatial
22 fluctuations, ay. The corresponding scatter plots are shown in Fig. 6. A-F. To assess these
283 pairwise relations, we computed Kendall’s correlation coefficient between pairs of parame-
24 ters. We found rather weak trends overall. The strongest trends were between the exponent,
285 oy, and the temporal correlation coefficient, I';, and between «; and the average growth G,.
26 Interestingly, these trends are consistent with fluctuation stretching: larger spatial extent of
2g7 fluctuations is favored by higher growth rate and by higher temporal persistence, see Eq. 2.
238 We therefore tested more directly the predictions of fluctuation stretching.

280 Fluctuation stretching does not reduce to a pairwise relation between growth parameters
200 because it relates spatial correlations to time persistence and growth rate. If this phe-

201 nOMenon is at play in sepals, then Eq. 2 and the relation & = 1 — /2 (see section Datasets
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FIG. 5. Differences in growth parameters due to mutations or to change in culture
conditions. Data are shown for mutants from dataset 1 and wild-type (WT) from dataset 2; wild-
type from dataset 1 was used as a reference in all cases. Symbols show the mean shifts Dg, Dr,
Drg Ve and D, of : A, growth rates averaged over sepals, Gy, B, temporal correlation coefficients,
I'y, C, dimensionless amplitudes of growth fluctuations, AG;/G;, and D, exponents quantifying
spatial extents of growth fluctuations, oy, respectively. Symbols and errors bars correspond to the
mean and standard error of the difference, respectively; error bars correspond to the errors on the
shifts Dg computed from the error on the data of interest (mutants or WT dataset 2) and on the

reference one (WT dataset 1).

and Methods) imply a; = 1 — 2/(7;G;), where 7; is the persistence time. We could measure
all parameters of this relation but 7;. Nevertheless the temporal correlation coefficient, I';,
should be a decreasing function of At/7, I'y = f(At/7), where f is an unknown function and
At = 1d is the time delay between two steps of live imaging, because correlations between
states of the sepal at consecutive time steps are higher if the time delay is small compared
to the persistence time. By eliminating 7; from the preceding equations, we found that the

time correlation coefficient depends on a combination of the other parameters,
We plotted in Fig. 6G. the time correlation coefficient I'; as a function of At G(1 — ay)/2.
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FIG. 6. Relations between parameters of growth (fluctuations). A-F Pairwise scatter plots of all
growth parameters. A-C Temporal correlation coefficient I'y, exponent of spatial fluctuations ay,
and dimensionless amplitude of spatial fluctuations, AGy/G}, respectively, as function of average
growth G;. D-E Temporal correlation coefficient, I';, as function of exponent of spatial fluctuations,
a, and dimensionless amplitude of spatial fluctuations, AGy /G, respectively. F Exponent of spatial
fluctuations, a4, as function of their dimensionless amplitude, AG;/G;. G Test of the coupling
between temporal and spatial fluctuations, as resulting from fluctuation stretching. Temporal
correlation coefficient I'; as a function of the combination AtG¢(1 — ay)/2 where At = 1d is the
time step of live imaging. The dashed line corresponds to a linear fit, I'y = By + B1 AtGy(1 — i) /2,
with fit parameters By = 0.596 + 0.024 and By = —1.87 + 0.15. The analysis of the fit residuals
supports a deterministic relation between the two, see Supplementary note. In all panels, error bars
show the 90 % confidence intervals; black, blue, orange, and red symbols correspond to wild-type,
spr2, madb and bot1 sepals from dataset 1, respectively, while gray symbols correspond to wild-type

sepals from dataset 2. Kendall’s correlation coefficient, k, is shown above each plot.
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s00 The trend is much clearer than in all other panels of Fig. 6 (Kendall’s coefficient k = —0.48)
s and the data seem to collapse along a line. We used statistical inference to perform a
s02 linear fit of the data, Iy = By + B1AtG(1 — ay)/2, see Supplementary note. We obtained
303 fit parameters fy = 0.596 £+ 0.024 and [, = —1.87 + 0.15, with relatively small standard
soa deviations. We then confirmed with a Kolmogorov-Smirnov test that the residuals (the
s0s spread of the data around the fit) could be explained by the uncertainty on the estimates of
s06 7; and 'y, see Supplementary note, while the same analysis for the other plots (Fig. 6A-F)
307 confirmed that none of these plots was consistent with a linear behavior. Altogether these
s0s Tesults support the hypothesis of a deterministic relation between I'; and At Gy(1 — «y)/2

300 and therefore indicate that fluctuation stretching is at play in growing sepals.

si0  DISCUSSION

su  Our analysis provides evidence that growth stretches temporally persistent fluctuations:
s12 while no clear pairwise relation could be made among the different growth parameters, see
s13 Fig. 6A-F, the clear trend of panel G suggest that the persistence time can be deduced
s14 from space correlations and tissue growth. This phenomenon explains why higher correla-
a1s tion between cells (higher spatial correlations) may induce more variable organ shape and
a16 size [20]. Fluctuation stretching gives a prominent role to the persistence time (correlation
17 time) in controlling spatial correlations in the tissue. Any mechanism that would decrease
a18 persistence time would reduce spatial correlations and, as a consequence, variability of organ
10 contours. Accordingly, reducing persistence time would yield robust morphogenesis.

20 Surprisingly, we found that the temporal correlation coefficient, I';, is generally not much
sz smaller than unity, implying that the persistence time, 7, is not much smaller than the time
s22 scale of growth 1/G;. This might be specific to plants. The cell wall sets the local growth
223 rate, and, at the same time, is remodelled at the pace of growth, so that the persistence
324 time of fluctuations of cell wall properties is given by the time scale of growth. It would
325 be worthwhile to extend our study to expanding animal tissues imaged live such as the
32 imaginal disc of the fruit fly [11]. In animal tissues that undergo convergent extension, we
327 would expect fluctuation stretching to operate only in the direction of extension, and so
328 spatial correlations to be highly anisotropic.

120 Asa consequence of fluctuation stretching, the level of time persistence, or more rigorously
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330 its product with average growth rate 7G, has a strong impact on variability of organ shape
331 and size variability. Indeed, the shape and size of an organ result from the growth of its cells
a2 (or of its subcellular elements) integrated over time. If cell growth has a random component,
333 well-defined shape and size may still be obtained through spatiotemporal averaging [26], the
a3 cancellation of random effects over large samples (number of cells or time points) — a local
335 excess of growth may be compensated by lower growth later or elsewhere in the tissue.
;36 Higher temporal or spatial correlations reduce spatiotemporal averaging since an excess of
s37 growth is less likely to be compensated. Accordingly, higher temporal persistence (scaled

s3s with growth rate) reduces the robustness of organ shape and size.

;30 We found a higher spatial extent of correlations (higher a;) in mutant genotypes, suggest-
sa0 ing higher 7G. This means that these mutants potentially have more variable shapes or are
sa1 less robust to perturbations, consistent with the observation that the width of sepals in bot1
a2 and spr2 varies more with trichome number in WT plants [31]. We previously predicted
a3 that variability of organ contours is minimal for a well-defined level of feedback from me-
sas chanical stress to cellulose synthesis [27], leading to the hypothesis that in wild-type sepals
ass the level of mechanical feedback is optimised so as to reduce variability of sepal shape, com-
s pared to mutants with lower (bot!) or with higher (spr2) mechanical feedback. This level of
;a7 mechanical feedback also corresponds to a minimum of the persistence time of fluctuations
s (scaled with average growth rate), 7G, highlighting the importance of this factor in setting

a0 the robustness of organ shape and size.

0 Fluctuation stretching is a kinematic phenomenon: properties of cells or of regions of
ss1 cells are carried (advected) by tissue growth and deformation; the persistence time of these
352 properties sets how they are carried to larger or smaller spatial scales, in the case of tissue
353 expansion or tissue shrinkage, respectively. This kinematic phenomenon applies to any
354 type of property or field as long as it is carried by tissue growth and deformation, such as
355 protein concentrations in cells. Although fluctuation stretching not only applies to scalar
36 (quantities but also to vector fields (e.g. cell polarity) or tensorial fields (e.g. organisation of
ss7 cytoskeleton), we limited our study to a scalar (areal growth) and did not consider growth
sss anisotropy to avoid the difficulty of taking into account the curved geometry of sepals.
350 Mathematical formalisms such as quasiconformal transforms [12] may nevertheless help to
360 circumvent this difficulty. In the case of complex advective flows, effects associated to co-

361 rotation may arise for non scalar fields. Advection also applies to non-random properties,
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362 in line with theoretical models of polarity fields showing that a combination of morphogens,
363 advection, and time persistence can reproduce the shapes of leaves [13], or with models of
sss leaf vasculature that show that areole (region delimited by veins) shape is advected by leaf
3es growth [11].

6 Altogether, our work sheds light on the role of persistence time, that is the memory of
367 previous states of a given property, in the robustness of morphogenesis. The investigation of

368 spatiotemporal fluctuations may provide a new avenue to characterize organ development.
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3s1 DATASETS AND METHODS
ss2 Model for fluctuation stretching

;3 We introduced a simple model for the dynamics of a quantity ®(z,t) that varies with
3g4 position vector, x, in D-dimensional Cartesian space and with time, t. We assumed & to
sss be advected by tissue growth at rate G, to have a persistence time 7, relaxing towards its

sss reference value (@), and to be driven by a stochastic source £(z,t), so that
0,®(z,t) +G/Dx-0,®(x,t) = —(P(z,t) — (®)) /7 + &(w, 1). (4)
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sg7 This equation can be solved as shown in the Supplementary note.

sss  Experimental datasets

;0 In order to reliably analyse fluctuations of growth rate, we chose datasets of sepals imaged
300 with the highest spatial resolution possible among those published. We used live imaging se-
so1 quences from [32] (dataset 1) and from [31] (dataset 2). Voxel size was 0.12 % 0.12 x 0.50 pm?.
302 All plant lines in these sequences were crosses between Ws-4 and Col-0 ecotypes, harbour-
303 ing respectively the microtubule reporter p35S::GFP-MBD and the membrane reporter
s0a pUQ10::Lti6b-2emCherry [32]. The two datasets had slightly different culture conditions
s0s (type of lighting). Dataset 1 contained wild-type plants, the spr2-2 allele of SPIRAL2 that
306 was originally obtained in a Col-0 background, the bot1-7 allele of Katanin that was orig-
so7 inally obtained in a Ws-4 background, and the mad5 allele of Katanin that was originally
308 Obtained in a Col-0 background (for mad5, unpublished sequences were obtained in parallel

300 With those from [32]).

400 Segmentation

a1 For sepals not already processed in [31, 32], cells of the abaxial epidermis were segmented
s02 and tracked in time using MorphoGraphX [15]. A triangular mesh was obtained for the

a03 outer organ surface in which cells were identified and well-delimited.

104  Computation of growth rates

a5 We aimed at analysing fluctuations of cell relative areal growth rates tangentially to the
a06 sepal and therefore to get rid of the curvature of the outer surface of cells. To do so, we
a07 redefined the surface of cells from the linear interpolation of their contours by a flat surface.
a8 Areal growth rate was computed from the cell surface area at successive time steps. At time
a0 ¢, each cell is labeled by an index ¢ and has surface area S;;. Cell 7 may divide between ¢
a0 and ¢+ 1; the set J;; contains the labels of all daughters of cell ¢ at time ¢ +1 (J;; is reduced
a1 to a single label if cell ¢ has not divided). We only consider cells which or whose daugthers

a12 remain in the segmented region from ¢ to ¢t + 1. The areal growth rate of the cell i at a time
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413 t is then defined as

Gie= (2 Siena)/Suu— 1. (5)

JE€Jit

aa Average (tissular) growth is in turn defined as G; = (3, dies, Siwr1)/ (D2 Sig) — 1.

415 Cellular Fourier Transforms

a6 The Fourier harmonics are built from a coarse and discreet version of the Laplace oper-
a7 ator. To compute this operator we triangularized cell surfaces using the ‘MESH2D’ matlab
ais algorithm [16, 17]. More details can be found in the Supplementary note. The Cellu-
a10 lar Fourier Transform (CFT) Gk,t of cell relative areal growth gives the weights by which
a20 growth is decomposed over the harmonics e; of the CFT. In this paper, the definition of
1 the CFT differ from the one in [35] by a prefactor 1/4/S; where S; is the total surface area.
a22 This change simplifies the interpretation of Fourier spectra: the coefficients have the same

23 physical dimension as the original signal and the first coefficient is the average of the signal.

24  Scaling exponent and amplitude of fluctuations

25 We quantified spatial correlations in the tissue by fitting the spectral density with a power

a26 law. To do so, we assumed a Gaussian distribution for the CFT, centred around 0 with a

okt = DGy ™/ > a7 (6)
\

a8 where AG; and the scaling exponent o are the fit parameters characterizing respectively

a2z standard deviation verifying,

a20 the amplitude and the extent of spatial correlation of growth fluctuations. For the fit, we
a30 used statistical inference as detailed in the Supplementary note. Doing so, we estimated a
31 probability for the parameters AG; and oy, their expected value, their standard error, and
32 median values. We also estimated the 90% confidence interval, from the fifth to the ninety

a33 fifth percentiles.
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434 Temporal correlations

a3 We estimated temporal correlations of relative areal growth in considering cell growth
ase Gy from ¢ to t + 1 and cells growth G, , ;11 from ¢ +1 to t +2. G, 41 is simply the areal

a37 growth rate from ¢ to ¢ 4+ 1 of the descendants of the cell 7 in the segmentation at ¢:

G o ZjEJLt ZlEJ]’,Hl Sl7t+2
Ji g, t+1 — 2 S, -
jeJi7t ]at+1

a3s To avoid any bias due to systematic variation of growth at organ scale [32], we used the

(7)

a30 detrended cell growth 0G;,, which can be defined by subtracting average growth in a lo-
as0 cal neighborhood from cell growth, see Supplementary note. Temporal correlations were
sar computed as Kendall’s correlation coefficient I'y of 0G;; and 0G 7, , 111. Kendall’s correlation
aa2 coefficient is rank-based and so is less sensitive to outliers [39]. We used boostrapping to
a3 obtain confidence intervals and uncertainties.

ss  We note that I'; tends to be underestimated: A positive error on Sy, , ;41 leads to an
as overestimation of 0G;; and an underestimation of G, , 141, inducing a negative correlation
as between 0G;; and 0G, ;1. This may explain the few negative values of I';. We found
aa7 this negative bias to be stronger when we defined growth from the cells outer surface area,

s leading us to use the interpolation of cell contours instead (see above).

449 Comparing genotypes

a0 'To describe the impact of mutations or culture conditions on growth parameters, we com-
51 pared tissues at equivalent developmental stages. We first synchronized all the live imaging
ss2 sequences from a dataset by building upon the approach developed in [40]. We considered
as3 the time curves of organ width for every sepal and finding the time delays ensuring the best
asa superposition between width vs. time curves, leading to a corrected time T;. We checked
ass that this temporal alignment was consistent with stages of guard cell differentiation, indi-
sss cating that sepal width is a good proxy of developmental stage in the genotypes/conditions
as7 that we studied. We defined the mean shift of a quantity ®; as
S e Wi " (@5 — @)
e T W

sss where ' and n label the pair of sepals compared (e.g. one mutant and the reference wild-

Dy

, (8)

ss0 type) and ¢’ and ¢ correspond to the time in the sequence of live-imaging of those two sepals.
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a0 The sums > ,,, and ) , are over all sequences of the mutant and the WT respectively.

461

t/

(n',n)

gives the weights at which each pair is considered. A weight differs from 0 only if

a62 the values of synchronized times 7T} of the pair are close, see Supplementary note for details.

a63 Dg quantifies how much, in average, the quantities ®; for the mutants (or for WT in dateset

asa 2) are shifted from the reference WT.
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23 I. MODEL FOR FLUCTUATION STRETCHING

24 A. Model

2s  In line with the explanation of fluctuation stretching proposed in Figs. 1-2, we model the dynamics of a quantity
26 ¢ advected in a growing medium. If the medium grows isotropically and uniformly, its strain rate tensor in the
27 D-dimensional space is G/ Dé;; where G is the line, surface or volume growth for D = 1, 2, or 3 respectively and dij
2s is the Kronecker delta tensor. We assume the dynamics of the quantity ® to be ruled by intrinsic cellular processes
20 among which some are stochastic. For simplicity, we restrict our model to lowest order and consider a linear partial
30 differential equation. Denoting time by ¢ and the Cartesian space coordinate vector by x, we assume the evolution of
a1 ®(x,t) to be given by

Or®(z,t) + G/Dx - 0,0 (w,t) = —((x,t) — (®))/7 + &(,1), (1)

32 where the material point at = 0 serves as the origin of the spatial coordinate system. 0; and J, respectively stand
a3 for the partial derivative with respect to time and for the gradient. The left hand side of (1) corresponds to the
3 material time derivative. The first term in the right hand side ensures the relaxation of ® toward its reference value
35 (@) with a time scale 7, while the second term accounts for stochasticity through the noise &.

* : : YN fel
antoine.fruleux@universite-paris-saclay.fr t arezki.boudaoud@polytechnique.edu



36 B. Linear response

sz We denote the deviation of ® from its reference value by A®(x,t) = ®(x,t) — (P). The persistence time 7 sets the
ss memory of the system as can be seen in the explicit solution of (1),

t
AD(z,t) = e /TAD(z e /P 0) + / —se_(t_é)/Té“(x e~ (t=8)G/D gy, (2)

o T

3o In this equation, 7 sets the time over which initial conditions persist and the delay over which the noise impacts the
20 value of ®.

a1 C. Spatial correlation function

2 To describe the statistical properties of ®, we assume the noise to be Gaussian, with (£(z,t)) = 0 and (¢{(x,t)é(z +
alt+s)) =Ko(s)g(]l]). (.) stands for an ensemble average, K is the noise strength, and §(.) is the Dirac distribution.
as The function g(1) = (£(x,t)é(z +1,t))/{|&(x,t)|?) describes the spatial correlations of £, assumed to be regular and to
45 vanish at infinity. As a consequence of the long-ranged correlations that we predict, small scales cannot be neglected
s and a Dirac distribution cannot be substituted to g without causing problems of convergence, unless a cutoff is
«7 introduced by hand. The correlations of ® can be computed using (2) with ¢ = —oo as initial time. The space
as correlation function C(1) = (A®(x,t)A®(z + 1,t))/{|A®(z,t)|?) can then be written as,

+o00 _
() = / (2ds/7) e/ g(|1] = T/P). 3)

0

4 The space correlation function C(1) is obtained by stretching the variation lengthscales of g by a factor sG/D and
so summing the stretched functions with weights e=2%/7. Changing the integration variable, we rewrite (3) as,

C@) = U722/ TDn()1)), (4)

s where the increasing function h(|l|) = fol” duuP/(T@) =14 (y) is expected to reach an asymptotic value as |I| is large
s2 compared to the correlation length of . (4) makes therefore explicit the long-ranged property of C, characterized by
s3 the scaling exponent 8 = 2D/(7G).

54 D. Fourier spectrum

ss The Fourier transform ®(q,t) = [ dze™'9*®(z,t) can be used to estimate the space correlation function C(1). More
se exactly, the mean squared spectrum <|<i>(q, t)|?) is proportional to the Fourier transform é(q) = [dle”17!C(l) =
lg|?~Ph(|q|) with h(|q|) = [ dPulu|=? f(Ju|/|g])e!™? and § a unit vector. It exhibits a singularity for |g| — 0 where it
scales like |g| =2, with

5

~N

5

©

a=D/2—B/2=D/2— D/(rC). (5)

so If the correlation length of the noise source is small with respect to system size, the root mean squared spectrum can
eo be approximated by a power law whose amplitude relate to the standard deviation through Parseval’s theorem and
e whose exponent « is given by the persistence time 7 and growth rate G according to (5).

62 II. CELLULAR FOURIER TRANSFORM

es Here we present the computation of cell surface area, we define the discrete Laplace operator, we explain how we
es built the Fourier harmonics based on this Laplace operator, and we define the Cellular Fourier Transform (CFT). The
es theoretical basis of the CFT may be found in [1].



66 A. Cell area and discrete Laplace operator

e  We compute cell area from the linear interpolation of cell contour. More precisely, we project the contour on a
s plane that is perpendicular to the surface vector. The contour being polygonal, the surface factor can be written
oo 1/2% " 7 Ayy1 where the sum is over the contour vertexes, 7, is their position, n indexes the position around the
o contour and A is the exterior product. We then triangulate the surface enclosed in the projected contour using the
+ MESH2D Matlab package [2, 3]. To obtain a 3D mesh and determine the position of the mesh along the surface
72 vector, we performed a linear interpolation of the cell contours. The area §;; for cell ¢ at time ¢ is then computed as

-3

~

~

73 the sum of areas of triangles in the triangulation, S;: = ZSL’” dSy,, where m spans triangles of cell ¢ at time ¢ and
7a dS,, is the area of triangle #m. The tissue is made of N cells that are followed from ¢ to ¢ + 1.

7= The discrete Laplace operator is a square matrix of size N x N and its components are given by

o e[S S50 dS, U dSy exp(—dimn /(5 L)
Bt =0 = Wt e g ) 15, 530 S, exp( e/ (51,))

(6)

ze  where indices i = 0,1,..N — 1 and j = 0,1,..N — 1 span the N cells of the tissue. d,,, is the distance between
77 triangle m from cell ¢ and triangle n from cell j, both considered at time step t. The unit of length is mean cell size
78 {. = /Si/N, where S; is the surface of the tissue at time ¢t and N is the number of cells. Here we took the width 51,
7o for the coarse Laplace operator.

80 B. Fourier harmonics

e1 We define Fourier harmonics as the right singular vectors of the discrete Laplace operator L defined in
2 BEq. 6.  We showed in [1] that L is a good representation of the coarse Laplace operator L[f](z) =
s [dyexp (lz —y|/(5.)) (f(z) — f(y)), applying to real functions f of the position vector. The singular vectors of L;; ¢
sa are, for example, expected to have the same oscillatory nature as the eigenfunctions of £ and their associated wave
ss number ¢y, to relate to their singular values through the same relation g, = 1/(51.)Q(A\x), with Q(1) = /(1 —1)=2/3 —

s associated to the kernel of the coarse Laplace operator [1]. The singular value decomposition of the Laplace operator
sz L, which yields left singular vectors V, right singular vectors U, and the singular values ﬁk, is:

[

3

L VieiUg;j. (7)

I
g5

k=0

[

« The value taken by the k*P-harmonic in cell i at time step ¢ is 1 /Si1 Ui, and its wave number is given by ¢ =
1/5Q(Ly). The harmonics are indexed so that their index grows with the wave number.

0
©

90 C. Calculation of the CFT of cell growth

o1 The areal growth rate of cell ¢ at time step ¢ is defined as G;; = ((ZjeJ LS5, t+1) /St — 1) /At where J; 4 is
o2 either the new label of cell 7 at time ¢ + 1 or the set of labels of the daughters of cell 4 if it has divided, while the
o3 time step is always At = 1d. The k*" CFT coefficient is then Gk ¢ = > UriGir\/Sit/ St where Sy is the total area
oa S¢ =Y., 5;+. Here we use a convention that differs from [1] by a multiplicative factor 1/4/S; in the definition of the
os CFT. This makes the interpretation of CFTs simpler: they have the same dimensions (units) as the original signal
es (here growth) and the first coefficient is equal to the average signal.

o7 III. SPATIAL CORRELATIONS

ss  We estimated spatial correlations of growth from the Fourier spectra i.e. from the distribution of Fourier transforms
90 G+ and associated wavenumbers gj. For this we used Bayesian inference.
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A. Inference methods applied to Fourier spectra

To quantify spatial correlations, we assumed the CFT coefficients, CA?;M for k > 2, to be independent random
Gaussian variables whose mean squared deviation follows a power law with respect to the wave number gy,

one = AGFq 2/ (Z qzat> (8)

with the parameters AG; and a; quantifying the amplitude of growth fluctuations and their space correlations,
respectively. We made the choice not to consider the first two CFT coefficients to avoid potential bias related to large
scale growth patterns, which should not be considered as ﬁuctuations For the derivation of the equations, it is more

convenient to rewrite (8) as oy, = Q> /¢, where Q) = Qk/(Hl Sla)V N2 and ¢ = Zk 5 Q2% /(2AG?). W
write the probability distribution fucntion of kat as

2y
pr(Cle an) = e €0 S (9)

We use Bayesian inference to estimate ¢ and oy, assuming a flat prior distribution for £ € [0, +o00[ and oy € [0, 1],
which are the relevant range of parameters for (9). The posterior distribution for £ and «; takes the form

L pe(Caléiar)
Jo = de' [y da TS p(Gilg' o)

We then substitute the probabilities py by their explicit form, noting that, by construction, HkN:_21 Qr = 1, and,
computing the first integral in the denominator, we get

P& ar) = (10)

e—E TN GRLQy

NNmuwmgleGaQ?er )

P(§7 at) = 5

where T' is Euler’s gamma function.

B. Estimating amplitude of fluctuations and exponent of spatial correlations

To estimate AGy, «; and their uncertainty, we consider the joint cumulative distribution function F(AG, «), of
having AG; and a; smaller than the values AG and «, respectively. This function can be written in terms of P (¢, «)
as

F(AG, a) / da’ / ) dEP(E, ). (12)
Yl Q1 /(2A6?)

By using the expression P(&, «) in (11) and computing the second integral, we then get

a N—1 A o\ — N— G2,
fO dO/( k:21 Gi,tQi ) N/QF(N/2’ Zk:; ’ " N-—1 72.1')

2AG2‘1;2a /Y= q

Jy do (205 G3,Q3)=N/eT (N)2)

F(AG, a) = : (13)

where I'(a, z) = f;oo dtt*~1le~! is the incomplete gamma function.

We used the median as a representative value of the different quantities we considered. We estimated AG; from the
median F(AGy,2) = .5 and the 90% confidence interval [AG1 4, AG2¢] from the 5 F(AG; 4, 2) = .05, and the 95
percentile, F(AGy4,2) = .95. Similarly, we estimate a; from the median F(+o00, ;) = .5 and the 90% confidence
interval [a 4, @2] from the 5% F (400, a1,) = .05, and the 95" percentile, F (400, aa ;) = .95.

When we approximated their distributions by Gaussians (for fits or to estimate shifts from WT to mutants tissues),
we used the the expected value and the standard deviations of «; and AG;. We estimated the expected value of oy,

foado/a( kN21th k )7N/2

fol da” ( kN:21 Gk,tha”)fN/Q

(ag) = : (14)
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its standard deviation da = /{a?) — (a;)? with,

Ji da! ()% (05 G Q3 )N/

(af) A ” ; (15)
fol da” ( sz21 Gi,t RN/
the expected value of AGy,
1 —1 A - —1 A o\ —
Jy de \/1/2( G @) (D @) (05 63 L@) VD (/2 - 172)
(AG:) = " (16)
o da (51, 67, @2 ~Ver (N 2)
and the standard deviation §(AG;) = /(AG?) — (AG})?
1 N—-1 A a N—-1 24 N-1 A aly—
) fo do/ (1/(N_2) k=2 G%,t' *Q% ) (21:2 172 ) (k=2 Gi,tQ% ) N/2
(AG?) = . (17)

fol da” ( fevz_; éi,tQi o")=N/2

IV. TEMPORAL CORRELATIONS

To quantify temporal correlations, we detrended growth from large-scale spatial patterns and we calculated Kendall’s
correlation coefficient of detrended growth.

A. Detrending

Before estimating time correlations, we corrected cellular growth using a local average of growth, aiming to detrend
our estimate from large-scale deterministic spatial variations. We thus avoid potential bias induced by large scale
growth variations that should not be considered as fluctuations. We use growth rate G;: of cell ¢ between ¢t and
t + 1, as defined in Sec. ITA. Computing local excess of growth is equivalent to apply a smooth Laplace operator to
growth [1]. For convenience, we use the Laplace operator defined in (6), and we define 6G; ; = Zj Lijir/Sit/S:1Gjt,
where j spans cells that can be tracked from ¢ to t42. Detreneded growth at time ¢ needs to be compared to detrended

growth at time ¢ + 1, 0G . , 141 = > _pey, , 2o Lrjar1y/Ski+185,e41Gj401/ Qe g, , Stt1)-

B. Kendall’s correlation coefficient

Time correlations are quantified by Kendall’s correlation coefficient I'y between dG;; and 6Gy, , t+1. We used a
bootstrap approach with 10* resamplings to quantify the statistical properties of I';. We estimated I'; from the median
of the boostrap distribution and the bounds of the confidence interval are its 5" and its 95*" percentile. Finally, we
also considered (I';) and dT'; the expected value and the standard error of the distribution.

V. ANALYSIS OF TEMPORAL VARIATIONS IN GROWTH PAREMETERS

We analyzed two datasets, the first containing wild-type and mutant plants while the second group contained wild-
type plants grown in different conditions. We first synchronised the time series of the two datasets. We then compared
mutants to wild-type sepals from plants cultured in the same conditions, or wild type sepals from plant cultured in
different conditions.

A. Registration

To synchronize (register) the different time series (labeled with an upper index (n)), we looked for the temporal

shifts At(™ that maximise the overlap of curves of width vs. time w§”>. The perfect overlap being, in general, not

possible, we define a distance between pairs of curves, and we choose the delays which minimise the quadratic sum
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over all possible pairs S =Y, d? ,, of these distances. For two time series wﬁ") and w§" ), the distance from n to

n' is defined as dy,,, = Apn — Anrn, where Ay, is the area of the region in the Cartesian plane that is delimited to
the left by the linear interpolation of wt(") versus ¢ and to the right by the linear interpolation of wt(n/)
distance depends linearly on the the time-shifts, dn, = apn — Gnin + hnpe (At(”/) - At(”)) where a,,» and a,/, are
the areas A,,» and A,, before synchronization. The minimization problem is then simply quadratic and the shifts
are given by the solution of

versus t. This

Z Mnn’At(n/) = Yn,
n

with Mpn = 0nn/ (O, Anm) — hons and Yy, = 23" (Gpn/ — Gnin)hnn. The matrix M is not invertible due to
invariance by translations in time, but this system can be solved by adding the condition that the smallest temporal

shift (the smallest At(™)) has a value of 0. We denote by Tt(") the new temporal coordinate for live-imaging series n
following registration. We checked that this temporal alignment was consistent with stages of guard cell differentiation,
indicating that sepal width is a good proxy of developmental stage in the genotypes/conditions that we studied.

B. Differences between mutant and wild-type growth parameters

To compare a quantity ®; (which could be Ty, AGy, a; or Gy = (Y, ZjeJi,t Sjt+1)/(32; Sit) — 1) between mutant
sepals or wild-type from dataset 2 and wild-type sepals from dataset 1, we defined the mean difference Dg as,
Zn/,t’ Zn,t Wt(’? ™ ((I)i(;l ) - q)gn))

Zn’,t’ Zn,t W(’rtl i’

where the upper indices (n') and (n) label the mutant and wild-type live-imaging sequences, respectively. The sums
> and >, are over all the time points of the mutant and the wild-type, respectively. Dg quantifies how much,

Dy = (18)

on average, the quantities ®; for the mutants differ from the WT. The weights Wt(,ilt/ ™) are defined as

wim = AT - T, (19)

where A(x) = max(1 — |z|,0) is the triangle function. This definition ensures that only differences between sepals of
comparable stages are considered in the distance Dg.
Approximating the distribution of ®; to Gaussian, D¢ has a Gaussian distribution and its expected value is

(Day — Lt T Wity " (@) — (@17))
d) — ' n ’
St S Wil

where <<I>§,"/)> and (@g")> are the expected values of ® for the mutants and the wild-type tissues. The standard

deviation is
, NN\ 2 2
\/Zn,t Zn/,t’ Wt(’T,Lt’n) <<§(I)§7 )> - (6(1)1(5n)) )
6’D(I> = (n’,n)
Zn7t Zn’,t’ Wt’,t,

where 5@%7/) and 5<I>§n) are the standard error of ® for the mutants and the WT tissues.

VI. LINEAR FIT AND RESIDUALS

We used statistical inference to determine which linear relation is the most likely to fit our data. We did this to test
if the master curve of T'; as function At/7; can well be fitted by a linear relation. We also estimated the uncertainty
of the fit itself and tested whether the distribution of data around the fit can be explained by the data uncertainty,
in coherence with the hypothesis of a linear and deterministic relation between the two.



160 A. Linear fit

1o We performed this analysis to fit the master curve I'; as function of At/7, but since we applied the same analysis
11 to other scatter plots, we considered here the relation between generic variables, = and y. To each measurement
172 performed (indexed ) is associated a probability p;(z;,y;) of finding a certain quantity x; associated to the quantity
173 Y;. Approximating p; to a Gaussian distribution, and assuming no specific correlations for the error on x; and y;, we
174 can write

pi(xs, yi) = exp <—; ((z" ;g»ﬂ + W ;;3”2)) J(2mbz:0y;), (20)

1

J

s where (z;) and (y;) are the expected values of x; and y; and dx;, and dy; are their standard errors. The probability of
s finding the z-coordinate in x; and of being on the line y = Sy + 1 is then, p;(x;, Bo + B12;) which can be written as

1 1 1 i) — Bo — )\ i) — Bo — i)
pilas, fo + frirs) = exp (‘z ((5 ! 5y> (””‘ﬂl . Eyzﬁ)ﬁ%fiéx >) L /sfsiff ! )) /(@mbzidys),
(21)

177 where we rearranged the argument of the exponential to write the dependence with x as a square. Integrating over
s i, we obtain the probability that the data measured in 4 falls on the line y = Gy + G1a as

I
3

1

3

_ <<y,:>—ﬁ20—gl<réi>)2
pi(y = Po+ Prx) =e  CvFD [y [om(dy? + Bioa), (22)

170 The probability of having the n, assumed independent, measurements falling on y = Sy + 1z is then [ pi(y =
180 fp + f12), and using flat prior for 8y and a Cauchy distribution as a prior for 81, which is equivalent to assume a flat
181 prior for the orientation of the line y = By + (1, we get

_1yn (wp)—Bo-BieN?
2

i=1 T 32522
e ‘ SyF+B1owy

(1+ B7)v2r [Limy v/ oy + Bioas

P(Bo, B1) = 7 (23)

182 where the constant Z given below is defined so that fj—;o dfo _+;O dB1P(Bo,%1) = 1. Introducing a(B;) =
ws > 1/(0y7 + BR0x?), b(Br) = 0L, (Bilwa) — (va))/(0yF + Biox}), c(B1) = 2o (Bulw:) — (wi))?/(0yF + Biowf) +

1sa In(8y? + Bidx?), we can write

e—1/2(B3a(B1)+2B0b(B1)+<(B1))

P = 24
—1 2, c
1es Then, 7 = fjocf dfBo fjocf dB ¢ [200% (B(ll)fﬁio)bmlH P) can be rewritten, computing the first integral, as
1
+oo e—1/2(c(B1)=b(B1)*/a(B1))
Z:/ dpy 5 . (25)
—o0 (1+B7)va(B1)
186 The expected value for 3 is thus
) /+°° 48,3 e~ 1/2(c(B1)—b(B1)?/a(B1)) (26)
1) = 1h1 26
—o0 Z(1+ Bf)/a(B)
17 and the standard deviation is 681 = /(%) — (81)2, where
8 /+0° 6,5 e—1/2(c(81)=b(B1)?/a(B1)) (27)
1/ = 1M1 :
—o0 Z(1+ B})v/a(B)
18 The expected value for fJy is
+oo b(B;) e~ L/2(c(B1)=b(B1)* /a(B1))
o) =— [ as : 7 (28)
—o0 a(ﬁl) Z(l‘f’ﬂl) a(ﬂl)



1

)

o and the standard deviation 681 = \/(87) — (51)?, where

. 400 1 b(ﬁl) 2 671/2(6(51)*b(ﬁ1)2/a(51))
““/md&<wm+<wm>> 20+ B)alB) .

100 We computed these integrals numerically to estimate the fitting parameters and their standard deviations.

101 B. residuals

12 We would like to test whether the expected values (5p) and (f;) enable to adequately fit the set of data. We gave
103 in Eq. 22 the probability of having a linear relation y = 3y + 812 in measurement i. For 8y = (By) and 81 = (B1),
« this probability is

1

©

7<<yi>f<§o>—<a21><;i>>2
pily) = (Bo) + (Br)r) = ¢ I fan(ay? + (81)26a2), (30)
10s We see that this probability follows a standard normal distribution with respect to the parameter r; =
106 W. If our assumptions are consistent, and notably the assumption that a linear relation exists be-
Y3 1 i

107 tween y; and x; is correct, then the distribution of r; over all the measurements should be close to a standard normal
108 distribution. To assess this, we performed a Kolmogorow-Smirnov test at the 5% significance level. We concluded
100 that, in the case of the master curve, the distribution of data around the fit can be explained by the uncertainty on
200 the estimates, and that the data are compatible with the hypothesis of a linear and deterministic relation between
201 Iy and At/7y, while we could not draw the same conclusions for any of the other pairwise trends. The p-values of
202 the Kolmogorow-Smirnov test for the residuals of the linear fits of all the plots of Fig. 6. of the main are given in the
203 table below.

Plot p-value

I; vs Gy 221071
ar vs Gy 431072
AG/Gyvs Gy |3.31077
Iy vs oy 2.01072

I': vs AG,/Gy 8.71073
at vs AGy /Gy 1.6107°
Ft VS Ath/2(1 — at) 2.5

TABLE I. p-value for the Kolmogorow-Smirnov test of the residuals of the linear fits of all the plots in Fig. 6.
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