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Abstract
Living tissues display fluctuations – random spatial and temporal variations of tissue properties

around their reference values – at multiple scales. It is believed that such fluctuations may enable

tissues to sense their state or their size. Recent theoretical studies developed specific models of fluc-

tuations in growing tissues and predicted that fluctuations of growth show long-range correlations.

Here we elaborated upon these predictions and we tested them using experimental data. We first

introduced a minimal model for the fluctuations of any quantity that has some level of temporal per-

sistence or memory, such as concentration of a molecule, local growth rate, or mechanical property.

We found that long-range correlations are generic, applying to any such quantity, and that growth

couples temporal and spatial fluctuations, through a mechanism that we call ‘fluctuation stretching’

— growth enlarges the lengthscale of variation of this quantity. We then analysed growth data from

sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell

growth using the previously developed Cellular Fourier Transform. Growth appears to have long-

range correlations. We compared different genotypes and growth conditions: mutants with lower

or higher response to mechanical stress have lower temporal correlations and longer-range spatial

correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental

data from all conditions and developmental stages into an unifying curve, validating the notion that

temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic

constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.

Significance Statement

How do organs and organisms grow and achieve robust shapes in the face of subcellular and

cellular variability? In order to address this outstanding mystery, we investigated the variability

of growth at multiple scales and we analysed experimental data from growing plant tissues. Our

results support the prediction that tissue expansion couples temporal memory of growth with spatial

variability of growth. Our work reveals a constraint on the spatial and temporal variability of growth

that may impact the robustness of morphogenesis.
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INTRODUCTION26

The impact of noisy perturbations on organism development is the subject of active re-27

search [1]. Fluctuations – the random spatial and temporal variations of tissue properties28

around their reference values – have been observed at multiple scales, from cytoskeleton [2]29

to cell [3] and tissue [4]. In the fruit fly, for example, actomyosin pulses were shown to cause30

fluctuations of cell shape [5–7], while fluctuations of the position of cell junctions were found31

to favor cell rearrangements during tissue extension [8, 9]. It was proposed that fluctuations32

are required for symmetry breaking and pattern formation during development [10, 11] or33

for cells and tissues to sense their neighbourhood [12] . Fluctuations in gene expression or34

morphogens seems particularly important for cell differentiation. Fluctuations in gene tran-35

scription seem required for the maintenance of pluripotency [13, 14], and specific properties36

of fluctuations are a signature of cell differentiation [15–18]. Nevertheless, the robustness37

of tissue patterning appears sensitive to fluctuations in molecule concentrations [19, 20].38

Fluctuations in growth induce mechanical stress [12, 21–23] because, for instance, cells with39

higher growth rate exert forces on neighbouring cells, which may sense and respond to such40

mechanical stress. Robust development of the fruit fly wing partially relies on cell compe-41

tition, i.e. on mismatch of growth rates between cells, and on the ensuing modulation of42

proliferation and apoptosis [24, 25]. In this context, it is important to understand whether43

fluctuations of a cell affect its local neighbourhood or the whole tissue. Here, we analysed44

the spatial structure of fluctuations in experimental data from growing tissues.45

Recent models of tissue mechanics and growth accounted for temporal and spatial fluctua-46

tions of growth and investigated their role in robustness of morphogenesis [26–28]. Temporal47

fluctuations are characterised by their degree of persistence, quantified with the persistence48

time (or correlation time), the characteristic time over which memory of previous fluctu-49

ations is lost. It could be the time needed for remodelling of the cytoskeleton or of the50

extra-cellular matrix (in animals) / the cell wall (in plants). Spatial fluctuations are char-51

acterised by their degree of spatial consistency, quantified by the correlation length, the52

characteristic length over which cells (or subcellular domains) behave similarly, or by cell-53

to-cell variability over a small neighbourhood. For instance, the shape of a plant organ was54

found to be less robust in a mutant with lower cell-to-cell variability [26]. However, spatial55

fluctuations may have a more complex structure. Indeed, theoretical models of the expand-56
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ing universe [29, 30] and of growing tissues [27, 28] predicted long-range spatial correlations,57

i.e. a significant level of correlations between fluctuations of two distant parts of the system;58

accordingly, growing systems are expected to exhibit fluctuations at multiple scales. Here59

we focus on the underlying mechanism, which we call fluctuation stretching – the increase60

in the lengthscale of fluctuations of a tissue property or of the concentration of a molecule,61

due to tissue expansion.62

To assess the experimental relevance of this mechanism, we analyzed growth fluctuations63

in the model plant Arabidopsis thaliana. We considered the sepal, the green leaf-like organ64

that protects a flower prior to its opening. We characterised sepals from wild-type indi-65

viduals in different culture conditions as well as mutant plants. We considered spiral2 and66

katanin mutant plants since they were found to be less robust to variability in the num-67

ber of trichomes (epidermal hair-like cells) than wild type plants [31], suggesting a greater68

impact of cellular scales on organ ones. The lack of SPIRAL2 and KATANIN function led69

respectively to stronger [31–33] and weaker [31, 32, 34] cortical microtubule co-alignment70

and reorientation in response to mechanical stress [35, 36]. Microtubules guide the deposi-71

tion of cellulose fibers in the cell wall (the plant extra-cellular matrix) [37]. Cellulose fibers72

being the main load-bearing component of the cell wall, the response of microtubules to73

mechanical stress is generally considered as a mechanical feedback on growth and spiral274

and katanin as mutants with altered feedback.75

In this Article, we first present a simple model for fluctuation stretching. We estimate76

spatial and temporal correlations of tissue growth fluctuations in Arabidopsis sepals using77

previous live imaging data [31, 32] and the Cellular Fourier Transform (CFT) [38]. We78

investigate how correlations vary within and between datasets and we test the relevance of79

fluctuation stretching.80

RESULTS81

A minimal models predicts the stretching of fluctuations in growing tissues82

Fluctuation stretching, the enlargement of the lengthscales of fluctuations by medium83

expansion, was predicted by different models of expanding media, the early universe [29, 30]84

and living tissues [27, 28]. Here we introduce a minimal model for fluctuation stretching.85
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FIG. 1. Distinct effects of tissue expansion, time relaxation (loss of memory), and

noise source on the spatial pattern of a tissue property. The figure shows initial spatial

patterns and their temporal evolution under the three mechanisms. The variable property Φ(x) is

plotted as a function of position x and shown in colorscale (blue and yellow for low and high values,

respectively) along a strip standing for the growing tissue. A Tissue expansion induces fluctuation

stretching, defined as the enlargement of the lengthscales of fluctuations. B Relaxation associated

with loss of memory induces a decay in the amplitude of fluctuations (depicted by green arrows).

C Noise causes the superimposition of new fluctuations on the preceding pattern (represented

by a dashed line in the lower panel). We schematically represent stretching, relaxation, and noise

superimposition by function block diagrams containing horizontal red arrows, vertical green arrows,

and a noisy signal, respectively. These block diagrams are used in Fig. 2.

For a primarily mostly interested in experimental data, Eq. 2 is the main theoretical result86

that we test in growing sepals.87

We consider a variable property Φ that is defined on a tissue growing isotropically at88

average rate G and that depends on position vector x and time t. This variable Φ could89

reflect gene expression, signalling, metabolism, cell size, or cell growth, for instance. We90

assume that (i) Φ is inherited through tissue growth, so that it is advected (transported) by91

the average growth velocity Gx/D (D is the space dimension: D=1 in Figures 1-2 and D = 292

for a thin organ like the sepal), (ii) Φ relaxes to its average value 〈Φ〉 with a characteristic93

memory (persistence/correlation) time τ , and (iii) Φ is subject to a source of noise ξ(x, t)94

that is random in space and time. As a consequence,95

∂Φ

∂t
+
Gx

D
· ∂Φ

∂x
= −1

τ
(Φ(x, t)− 〈Φ〉) + ξ(x, t). (1)

In this equation, the first term is the temporal derivative of Φ(x, t). The second term96

(in right-hand side) represents the effect of tissue expansion, i.e. advection by growth, and97

contains the spatial derivative of Φ (the dot · stands for the vectorial product, which reduces98

5



to a multiplication for D = 1). The third term (left-hand side) describes relaxation (loss of99

memory) of Φ.100

The consequences of tissue expansion, loss of memory (time persistence), and noise on101

the variations of Φ are schematized in Fig. 1, for one time step. Tissue expansion induce102

‘fluctuation stretching’, i.e. enlarges the lengthscales of spatial variations (panel A). Time103

persistence determines how fast fluctuations relax toward their reference level (B). Noise104

superimpose new fluctuations on the preceding pattern (C).105

When iterated over time, fluctuation stretching and noise give rise to multiscale fluctua-106

tions, while the degree of time persistence (or memory level) controls how far fluctuations ex-107

tend toward large space-scales. This is illustrated in Fig. 2A. in three regimes: for full, inter-108

mediate, and vanishing time persistence. For full time persistence (τG = +∞) the pattern is109

stretched, increasing its the lengthscale of variations of Φ and fluctuations are added at small110

scale. For intermediate time persistence (τG ∼ 1), the same process occurs but the preexist-111

ing pattern is attenuated due to relaxation. In the absence of temporal persistence (τ = 0),112

the preceding pattern disappears and only the newly superimposed noise remains. Mathe-113

matically, the solutions to Eq. 1 take the form Φ(x, t) = 〈Φ〉+
∫ +∞

0
ds e−s/τξ(x e−sG/D, t−s)114

(see Supplementary note, for details). The integral indicates the superimposition while115

the exponential factor e−s/τ accounts for time relaxation or loss of memory. Fluctuation116

stretching corresponds to the exponential factor esG/D applied to the spatial variation of the117

noise.118

The space correlation function, C(l), is the pairwise correlation between the values Φ(x)119

and Φ(x+ l) of the variable Φ at positions distant of length l, as illustrated in Fig. 2 B. C(l)120

generally decrease with the distance l: for l = 0, Φ(x) = Φ(x + l) and so the correlation is121

complete, C(0) = 1, while at large distance l, Φ(x+ l) is expected to be independent of Φ(x)122

and the correlation vanishes as illustrated in the plot on the right of panel B. In our mini-123

mal model, the correlation function takes the form C(l) =
∫ +∞

0
(2 ds/τ) e−2 s/τg(|l| e−sG/D),124

assuming the permanent noise source ξ(x, t) = 0 has zero mean and correlation function125

〈ξ(x, t)ξ(x + l, t + s)〉 proportional to δ(s)g(l) (δ is the Dirac distribution, see Supplemen-126

tary note, for details). Here again C(l) appears as a weighted sum of the space correlation127

function g of the noise source stretched at different spatial scales. The correlation function g128

is assumed to have a correlation length ` that sets the reference scale for spatial variations of129

Φ; ` cannot be assumed to be zero without causing issuess of mathematical convergence. In130
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FIG. 2. Multiscale fluctuations as a consequence of fluctuation stretching. Spatial correla-

tions of tissue properties depend on the level of temporal persistence of fluctuations. Three levels of

temporal persistence are considered: full (no time relaxation), intermediate (moderate relaxation),

and none (instantaneous relaxation). A Spatial pattern resulting from the iteration of fluctuation

stretching, relaxation, and noise, schematically represented by function block diagrams in series, as

defined in Fig. 1; patterns are represented under the form of plots and color stripes as in Fig. 1.

Top: patterns after n iterations; middle: patterns after one additional iteration of stretching and

(if appropriate) relaxation; bottom: patterns after one additional superimposition of noise. B

Quantification of spatial correlations. Top: This involves comparing the values of the variable at

positions x and x+ l, as illustrated in the colored strip. Left: Typical scatter plot showing Φ(x+ l)

as a function of Φ(x) for multiple values of x. Middle: C(l) is defined as the correlation coefficient

between Φ(x+ l) and Φ(x); 〈〉 stands for the statistical average of the expression between brackets

and ∆Φ(x) = Φ(x)− 〈Φ(x)〉. Right: the correlation C(l) as a function of the distance l. C Spatial

correlation function C(l) for full, partial, and no time persistent fluctuations. Models predict that

the space correlation function is a power-law of l, C(l) ∝ l−β .
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practice, we took g(l) = e−|l|
2/(2`2)(2π`2)−D/2. Because of fluctuation stretching, space corre-131

lations functions for time persistent fluctuations are predicted to be long-ranged i.e. to have132

their tails which follow a power law ∝ l−β. As shown in the Supplementary note, this can133

be made explicit by rewriting the space correlation function C(l) = |l|−2D/(τG)h(|l|), where134

the increasing function h(|l|) =
∫ |l|

0
du u2D/(τG)−1g(u) reaches an asymptotic value when |l|135

becomes large compared to the correlation length ` of ξ. Therefore, the correlation function136

C(l) of the variable of interest Φ mostly behaves as a power-law C(l) ∼ l−β of exponent137

β =
2D

τG
. (2)

138

This scaling law indicates that the values of the variable Φ considered in two distant points139

decorrelate slowly as their distance is increased, which reflects the fact that fluctuations are140

a superimposition of patterns with different spatial lengthscales. β estimates this spatial141

decrease in correlations, the higher the memory (the larger τG), the higher correlations142

between distant regions. Fig. 2 C show the space correlation functions for full, partial,143

and no memory. Full temporal persistence is simply the limit where the persistence time144

is infinite, leading to an accumulation of fluctuations at large lengthscales. The weight of145

large scaled fluctuations continuously increases so that the correlation function tends toward146

a constant. In contrast, in the absence of temporal persistence, spatial correlations vanish147

beyond the correlation length of the noise. Hereafter, we tested this prediction using previous148

experimental data about growing plant organs.149

Live imaging and spectral analysis provide estimates for spatiotemporal correlations150

of cell growth151

Next we aimed at a quantitative description of spatial and temporal correlations of growth152

fluctuations in expanding tissues. We used experimental data where sepals were imaged live153

to track morphogenesis over time, with similar culture and imaging conditions [31, 32].154

We examined whether fluctuations stretching applies to cell areal growth rate. Each sepal155

was imaged at multiple times, labeled t = 0, 1, 2, ... and separated by 24 hours intervals156

as illustrated by Fig. 3A, which shows an example of cells segmented in a sepal, at three157

successive time steps t, t+1 and t+2. Growth was defined from cell surface area at successive158

8



0. 2. 4.

0.02

0.04

0. 2. 4.

0.02

0.04

0.6

0.

A B C1

C2

D1

D2

Etissue growth rate harmonics spectra time correlations

0.3

FIG. 3. Quantification of spatial and temporal fluctuations in cell growth. Day (d) is

used as a unit of time. A Three snapshots of a plant tissue (abaxial sepal epidermis from wild-type

plant) taken at one-day intervals. Black lines represent cell contours. B Heatmaps of relative areal

growth rate between times t and t + 1, Gi,t, and between t + 1 and t + 2, Gi,t+1 for cell #i. A

growth rate of 1d−1 corresponds to a relative increase of area of 100% in 1 day. Growth rate of white

cells could not be computed because they were not imaged at t+ 2. C1-C2 The first 4 harmonics

ek (k = 0, 1, 2, and 3) of the Cellular Fourier Transform (CFT) of the tissue at t and t + 1 (the

white cells in B are not included), represented by a cyan (low value) to magenta (high values) color

scheme. The harmonics ek generalise sinusoidal waves and can be used to decompose the growth

fields Gi,t and Gi,t+1 into their respective CFTs Ĝk,t and Ĝk,t+1. D1-D2 Fourier spectra (blue dots)

correspond to the absolute values |Ĝk,t| and |Ĝk,t+1| of the CFTs and are shown as function of the

wavenumber qk of the harmonics ek. Wavenumbers were non-dimensionalised using mean cell size

lc. A representative power-law (solid line) ∆Gtq
−αt
k /(

∑
k q
−2αt
k )1/2 was obtained as explained in the

text. Each spectrum is then characterised by two numbers, the standard deviation of cell growth

∆Gt and the spatial exponent of spatial correlations, αt. Here αt = 0.54± 0.08 (± standard error

of the mean), αt+1 = 0.71± 0.08, ∆Gt = 0.157± 0.012 d−1 and ∆Gt+1 = 0.134± 0.012 d−1. E For

temporal analyses, detrended areal growth rate δGi,t was computed as the excess areal growth rate

of a cell with respect to a local neighborhood. The coordinates of each blue dot are the detrended

growth δGi,t of a cell i between t to t+ 1 (horizontal axis) and the detrended growth δGJi,t,t+1 of

the set Ji,t of its daughters between t+1 and t+2 (horizontal axis). The degree of growth temporal

correlation is quantified by the value of the Kendall correlation coefficient, here Γt = 0.400± 0.052

(± standard error). Two outliers were excluded from the plot to improve the readability of the

figure.
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time steps. Fig. 3B shows cell areal relative growth rate Gi,t and Gi,t+1 from t to t+ 1 and159

from t + 1 to t + 2 respectively, deduced from segmentation of sepals into cells, as showed160

in panel A and mapped on the reference tissues at t and t + 1, respectively. When a cell161

has divided between t to t + 1, we used the total surface area of its daughter cells at t + 1162

to define Gi,t, see Datasets ans Methods for details.163

To dissect spatial variations of growth in the tissue, we used the Cellular Fourier Trans-164

form (CFT) [38]. The CFT consists of decomposing the signal into a linear combination of165

ad hoc harmonics that account for the subdivision of the tissue into cells of variable size166

and shape. These harmonics are the equivalent of sinusoidal waves in an infinite continuous167

medium. The k-th harmonic, ek, has wavenumber qk, and varies on a lengthscale that de-168

creases with the rank k. The CFT coefficients Ĝk,t give the weights with which cell relative169

areal growth is decomposed into the harmonics ek. The Fourier spectrum is obtained by170

plotting the amplitude |Ĝk,t| as a function the corresponding wave number qk. This spectrum171

is well-suited to describe fluctuations of G at multiple scales.172

We investigated spatial correlations from Fourier spectra such as those shown in Fig. 3.D.173

The amplitudes of spectra appear significantly higher for low wave numbers, suggesting174

long-range correlations. To further test this, we sought a characteristic lengthscale for175

fluctuations and we considered the smallest index K for which
∑K

k=1 Ĝ
2
k ≥ 1/2

∑N−1
k=1 Ĝ

2
k, so176

as to quantify the repartition of fluctuations between low and large scales. If fluctuations177

were short-ranged, then the ratio of largest to characteristic wavenumbers, q1/qK , would178

be a good estimate of the ratio of correlation length to sample size, and would therefore179

be small compared to 1. In contrast, we found the ratio q1/qK to be 0.54 on average180

(standard deviation 0.29 and range 0.086 – 1, over all study samples), indicating long-range181

correlations. This qualitative agreement with the predictions of the minimal model prompted182

us to use power-laws to represent Fourier spectra. We note that the prediction C(l) ∼ l−β183

corresponds to a spectrum scaling like q−α, with α = 1 − β/2 (see section Datasets and184

Methods). Although the limited range of wavenumbers did not allow us to test the power-185

law behavior, we obtained a representative power-law as follows. As the CFTs can be186

positive or negative, we assumed each CFT to follow a Gaussian distribution of zero mean187

and of standard deviation σk,t, which was fitted to the equation ∆Gtq
−αt
k /(

∑
k q
−2αt
k )1/2.188

Each spectrum is then characterised by two numbers, its amplitude ∆Gt and its exponent,189

αt. The specific choice made for the fit is such that, following the Parseval theorem, ∆Gt190
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measures the standard deviation of growth while αt measures its spatial correlations. We191

used statistical inference to estimate αt and ∆Gt. The scaling exponent, αt, is expected192

to vary between 0 and 1, which correspond to short-range and to extremely long-range193

correlations, respectively. We found αt to approximately range between 0.1 to 0.9, indicating194

large differences between samples and time points in terms of range of correlations (but see195

below for the comparison between genotypes). We found the standard deviation of growth196

∆Gt to range between 0.1 and 0.6 d−1, values that are of the order of half the growth rate197

of a sample averaged over all cells between two time points, indicating relatively strong198

fluctuations of cell growth rate.199

The temporal resolution (1d) and the number of consecutive images of a sample (3 to 7)200

were in general too low to compute persistence time from experimental data. We therefore201

estimated temporal persistence of growth using correlation coefficients. We considered the202

correlations between relative areal cell growth Gi,t from t to t+ 1 and GJi,t,t+1 from t+ 1 to203

t+2, where the set Ji,t in subscript contains the labels of all daughters of cell i at time t and204

GJi,t,t+1 is their areal growth rate, see section Datasets and Methods for details. To avoid205

any bias due to overall gradients in growth rate [32], we computed detrended cell growth206

δGi,t by substracting from the areal growth rate of a cell the average areal growth in a local207

neighborhood, see Supplementary note. The scatter plot in Fig. 3E of δGJi,t,t+1 as a function208

of δGi,t shows that growth is relatively persistent in time: For instance cells that grow more209

than their neighbors between t and t + 1 tend to remain so between t + 1 and t + 2. We210

quantified temporal correlations of growth using Kendall’s correlation coefficient, Γt, because211

it is based on the rank of data and is less sensitive to outliers than the more classical rank-212

based Spearman correlation coefficient [39]. Over all sepals and time points considered, Γt213

approximately ranges from −0.1 to 0.6. Almost all values of Γt were positive, while the214

negative values of Γt were not significantly different from zero (see below), indicating that,215

in general, growth is persistent over a time comparable to experimental time resolution (1d).216

We thus obtained a minimal set of parameters to describe growth fields and their fluc-217

tuations: average growth rate, Gt, extent (exponent) of spatial correlations, αt, amplitude218

of spatial correlations, ∆Gt, and temporal correlation coefficient Γt. Next, we analysed219

differences and common features between sepals based on this minimal set of parameters.220
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FIG. 4. Parameters that characterise growth fields in sepals from wild-type and mutant

plants. The sequences were temporally aligned and parameters are shown as a function of the

synchronized time Tt. AGrowth rate averaged over the tissueGt. B Temporal correlation coefficient

Γt. C Dimensionless amplitude of the Cellular Fourier Transform (CFT) ∆Gt/Gt (also coefficient

of variation of growth). D Scaling exponent of the CFT αt. The two datasets correspond to

two slightly different culture conditions. Black, blue, orange and, red symbols/lines correspond

respectively to wild-type, spr2 mutant, mad5 mutant, and bot1 mutant from the first dataset, while

gray symbols/lines correspond to wild-type plants from the second set. Error bars indicate the 90%

confidence intervals; error bars are not shown in A because they are comparable to symbol size.

Temporal and spatial correlations of cell growth vary across genotypes and culture221

conditions222

We analyzed growth fluctuations in several genotypes and culture conditions. As ex-223

plained in the introduction, we chose to focus on mutants affected in responses to mechani-224

cal stress, spiral2 (spr2 ) and katanin (two alleles, bot1 and mad5 ), in addition to wild-type225

plants. We analyzed sepals from 4 genotypes in 2 culture conditions and at different devel-226

opmental stages. In order to enable the comparison between several sepals that were imaged227

starting from different stages, we temporally aligned live imaging sequences along a common228

time frame using sepal width, building upon the approach developed in [40], see Datasets229
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and Methods. The parameters that characterise growth fields in all these sequences are230

shown in Fig. 4.231

We first noticed a significant variability within and between genotypes/conditions and232

trajectories that seem heterogeneous in time. Some of this variability might be due to ex-233

perimental constraints; for instance, the imaged regions of sepals varied in time and between234

individuals. We nevertheless observed a few trends that hold for several genotypes and con-235

ditions. Mean growth rate (panel A) decreases in time for trajectories that are long enough236

(spr2, mad5 and wild-type in dataset 2), which is a general trend in organ morphogenesis.237

Temporal correlations (panel B) decrease between the first and the second time point, possi-238

bly associated with the strong decrease in growth anisotropy observed after the second time239

interval [32]. The relative amplitude of growth fluctuations (panel C) decreases for the first240

stages in mutants before stabilizing around 0.4. The extent of spatial correlations (panel D)241

tends to decrease with time in dataset 1.242

In order to quantify differences induced by mutations or culture conditions, we used wild-243

type plants from dataset 1 as a reference and we estimated the shift in growth parameters244

between the reference and other genotypes or culture condition, see Fig. 5. As the amount245

of information available varied with genotype, culture condition, or temporal stage, we de-246

veloped a method that enables a consistent comparison of differences by taking into account247

developmental stages, see Datasets and Methods for details. Briefly, we considered all pairs248

formed by a reference sepal (wild-type from dataset 1) and another sepal. We computed the249

shift between a reference sepal to another sepal at a given temporal stage and we averaged250

shifts over time and sepal pairs to obtain a mean shift, shown in Fig. 5 for all comparisons.251

This mean shift can be understood as the representative vertical difference between refer-252

ence wild-type curves and mutant or dataset 2 curves from Fig. 4. We then estimated the253

standard error of these shifts, which results from the uncertainties of both reference sepals254

(wild-type from dataset 1) and sepals of the condition of interest.255

In wild-type, datasets 1 and 2 do not differ in temporal correlations (panel B) and256

amplitude of fluctuations (Fig. 5.C) within the range of uncertainty on these parameters.257

Average growth rate (Fig. 5.A) and extent of spatial correlations (Fig. 5.D) are lower in258

dataset 2, indicating that these two parameters are more sensitive to culture conditions.259

Average growth Gt is higher in mutants than in wild-type (Fig. 5.A) over the temporal260

window considered; this might be compensated by lower growth in mutants at later stages261
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or by earlier growth arrest in mutants, because mutant sepals are about 20% smaller in262

area than wild type sepals [31]. The amplitude of fluctuations ∆Gt is smaller in spiral2,263

but it is not possible to conclude about katanin, because the two alleles (bot1 and mad5 )264

show different trends (Fig. 5.C). When comparing mutants to wild-type plants, temporal265

correlations are lower (Fig. 5.B), suggesting lower persistence time in mutants. The changes266

in temporal correlations Γt are lower than in growth rates, so that the changes in non-267

dimensional persistence time τtGt are expected to be dominated by those in growth Gt, with268

higher τtGt in mutants. This might be ascribed to differences in mechanical responses in269

these mutants — assuming wild-type plants to have optimal mechanical responses, both over-270

reaction and under-reaction to mechanical stress would increase the timescale of changes in271

growth rates [27]. Based on our minimal model of fluctuation stretching (see Eq. 2), smaller272

non-dimensional persistence time τtGt would yield higher extent αt of spatial correlations.273

Indeed, the exponent of the Fourier specrum appears higher in mutants (Fig. 5.D), although274

the level of uncertainty makes it difficult to draw a firm conclusion. In the following section,275

we further test whether fluctuations stretching applies to cell growth in sepals.276

A conserved relation between growth parameters supports fluctuation stretching277

We sought relations between growth parameters that would hold across genotypes, data278

sets, and developmental stages. We first considered the pairwise relations between the growth279

parameters defined for each sepal: mean growth rate, Gt, temporal correlation coefficient,280

Γt, normalised amplitude of spatial fluctuations, ∆Gt/Gt, and extent (exponent) of spatial281

fluctuations, αt. The corresponding scatter plots are shown in Fig. 6.A-F. To assess these282

pairwise relations, we computed Kendall’s correlation coefficient between pairs of parame-283

ters. We found rather weak trends overall. The strongest trends were between the exponent,284

αt, and the temporal correlation coefficient, Γt, and between αt and the average growth Gt.285

Interestingly, these trends are consistent with fluctuation stretching: larger spatial extent of286

fluctuations is favored by higher growth rate and by higher temporal persistence, see Eq. 2.287

We therefore tested more directly the predictions of fluctuation stretching.288

Fluctuation stretching does not reduce to a pairwise relation between growth parameters289

because it relates spatial correlations to time persistence and growth rate. If this phe-290

nomenon is at play in sepals, then Eq. 2 and the relation α = 1− β/2 (see section Datasets291
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FIG. 5. Differences in growth parameters due to mutations or to change in culture

conditions. Data are shown for mutants from dataset 1 and wild-type (WT) from dataset 2; wild-

type from dataset 1 was used as a reference in all cases. Symbols show the mean shifts DG, DΓ,

D∆G/G and Dα of : A, growth rates averaged over sepals, Gt, B, temporal correlation coefficients,

Γt, C, dimensionless amplitudes of growth fluctuations, ∆Gt/Gt, and D, exponents quantifying

spatial extents of growth fluctuations, αt, respectively. Symbols and errors bars correspond to the

mean and standard error of the difference, respectively; error bars correspond to the errors on the

shifts DΦ computed from the error on the data of interest (mutants or WT dataset 2) and on the

reference one (WT dataset 1).

and Methods) imply αt = 1− 2/(τtGt), where τt is the persistence time. We could measure292

all parameters of this relation but τt. Nevertheless the temporal correlation coefficient, Γt,293

should be a decreasing function of ∆t/τt, Γt = f(∆t/τt), where f is an unknown function and294

∆t = 1d is the time delay between two steps of live imaging, because correlations between295

states of the sepal at consecutive time steps are higher if the time delay is small compared296

to the persistence time. By eliminating τt from the preceding equations, we found that the297

time correlation coefficient depends on a combination of the other parameters,298

Γt = f
(
∆tGt(1− αt)/2

)
. (3)

We plotted in Fig. 6G. the time correlation coefficient Γt as a function of ∆tGt(1− αt)/2.299

15



a

b
c

d

data set 1 :

WT: spr2 :

mad5 : bot1 :

data set 2 :

WT :

0.5 10

0

0.4

0.5 10 0.5 10

0.25

0.5

0.75

0

0.4

0

0.4

0

0.25

0.5

0.75

0.50

0

0.4

0.6

0.2

-0.2

-0.4

0-0.1 0.1 0.2 0.3 0.4

A B C

D E F

G

0.2 0.4 0.6 0.2 0.4 0.6

0.2

0.4

0.6

a

b
c

a

b
c

a

b
c

a

b

FIG. 6. Relations between parameters of growth (fluctuations). A-F Pairwise scatter plots of all

growth parameters. A-C Temporal correlation coefficient Γt, exponent of spatial fluctuations αt,

and dimensionless amplitude of spatial fluctuations, ∆Gt/Gt, respectively, as function of average

growth Gt. D-E Temporal correlation coefficient, Γt, as function of exponent of spatial fluctuations,

αt, and dimensionless amplitude of spatial fluctuations, ∆Gt/Gt, respectively. F Exponent of spatial

fluctuations, αt, as function of their dimensionless amplitude, ∆Gt/Gt. G Test of the coupling

between temporal and spatial fluctuations, as resulting from fluctuation stretching. Temporal

correlation coefficient Γt as a function of the combination ∆tGt(1 − αt)/2 where ∆t = 1 d is the

time step of live imaging. The dashed line corresponds to a linear fit, Γt = β0 + β1∆tGt(1−αt)/2,

with fit parameters β0 = 0.596 ± 0.024 and β1 = −1.87 ± 0.15. The analysis of the fit residuals

supports a deterministic relation between the two, see Supplementary note. In all panels, error bars

show the 90 % confidence intervals; black, blue, orange, and red symbols correspond to wild-type,

spr2, mad5 and bot1 sepals from dataset 1, respectively, while gray symbols correspond to wild-type

sepals from dataset 2. Kendall’s correlation coefficient, κ, is shown above each plot.
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The trend is much clearer than in all other panels of Fig. 6 (Kendall’s coefficient κ = −0.48)300

and the data seem to collapse along a line. We used statistical inference to perform a301

linear fit of the data, Γt = β0 + β1∆tGt(1 − αt)/2, see Supplementary note. We obtained302

fit parameters β0 = 0.596 ± 0.024 and β1 = −1.87 ± 0.15, with relatively small standard303

deviations. We then confirmed with a Kolmogorov-Smirnov test that the residuals (the304

spread of the data around the fit) could be explained by the uncertainty on the estimates of305

τt and Γt, see Supplementary note, while the same analysis for the other plots (Fig. 6A-F)306

confirmed that none of these plots was consistent with a linear behavior. Altogether these307

results support the hypothesis of a deterministic relation between Γt and ∆tGt(1 − αt)/2308

and therefore indicate that fluctuation stretching is at play in growing sepals.309

DISCUSSION310

Our analysis provides evidence that growth stretches temporally persistent fluctuations:311

while no clear pairwise relation could be made among the different growth parameters, see312

Fig. 6A-F, the clear trend of panel G suggest that the persistence time can be deduced313

from space correlations and tissue growth. This phenomenon explains why higher correla-314

tion between cells (higher spatial correlations) may induce more variable organ shape and315

size [26]. Fluctuation stretching gives a prominent role to the persistence time (correlation316

time) in controlling spatial correlations in the tissue. Any mechanism that would decrease317

persistence time would reduce spatial correlations and, as a consequence, variability of organ318

contours. Accordingly, reducing persistence time would yield robust morphogenesis.319

Surprisingly, we found that the temporal correlation coefficient, Γt, is generally not much320

smaller than unity, implying that the persistence time, τt, is not much smaller than the time321

scale of growth 1/Gt. This might be specific to plants. The cell wall sets the local growth322

rate, and, at the same time, is remodelled at the pace of growth, so that the persistence323

time of fluctuations of cell wall properties is given by the time scale of growth. It would324

be worthwhile to extend our study to expanding animal tissues imaged live such as the325

imaginal disc of the fruit fly [41]. In animal tissues that undergo convergent extension, we326

would expect fluctuation stretching to operate only in the direction of extension, and so327

spatial correlations to be highly anisotropic.328

As a consequence of fluctuation stretching, the level of time persistence, or more rigorously329
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its product with average growth rate τG, has a strong impact on variability of organ shape330

and size variability. Indeed, the shape and size of an organ result from the growth of its cells331

(or of its subcellular elements) integrated over time. If cell growth has a random component,332

well-defined shape and size may still be obtained through spatiotemporal averaging [26], the333

cancellation of random effects over large samples (number of cells or time points) — a local334

excess of growth may be compensated by lower growth later or elsewhere in the tissue.335

Higher temporal or spatial correlations reduce spatiotemporal averaging since an excess of336

growth is less likely to be compensated. Accordingly, higher temporal persistence (scaled337

with growth rate) reduces the robustness of organ shape and size.338

We found a higher spatial extent of correlations (higher αt) in mutant genotypes, suggest-339

ing higher τG. This means that these mutants potentially have more variable shapes or are340

less robust to perturbations, consistent with the observation that the width of sepals in bot1341

and spr2 varies more with trichome number in WT plants [31]. We previously predicted342

that variability of organ contours is minimal for a well-defined level of feedback from me-343

chanical stress to cellulose synthesis [27], leading to the hypothesis that in wild-type sepals344

the level of mechanical feedback is optimised so as to reduce variability of sepal shape, com-345

pared to mutants with lower (bot1 ) or with higher (spr2 ) mechanical feedback. This level of346

mechanical feedback also corresponds to a minimum of the persistence time of fluctuations347

(scaled with average growth rate), τG, highlighting the importance of this factor in setting348

the robustness of organ shape and size.349

Fluctuation stretching is a kinematic phenomenon: properties of cells or of regions of350

cells are carried (advected) by tissue growth and deformation; the persistence time of these351

properties sets how they are carried to larger or smaller spatial scales, in the case of tissue352

expansion or tissue shrinkage, respectively. This kinematic phenomenon applies to any353

type of property or field as long as it is carried by tissue growth and deformation, such as354

protein concentrations in cells. Although fluctuation stretching not only applies to scalar355

quantities but also to vector fields (e.g. cell polarity) or tensorial fields (e.g. organisation of356

cytoskeleton), we limited our study to a scalar (areal growth) and did not consider growth357

anisotropy to avoid the difficulty of taking into account the curved geometry of sepals.358

Mathematical formalisms such as quasiconformal transforms [42] may nevertheless help to359

circumvent this difficulty. In the case of complex advective flows, effects associated to co-360

rotation may arise for non scalar fields. Advection also applies to non-random properties,361
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in line with theoretical models of polarity fields showing that a combination of morphogens,362

advection, and time persistence can reproduce the shapes of leaves [43], or with models of363

leaf vasculature that show that areole (region delimited by veins) shape is advected by leaf364

growth [44].365

Altogether, our work sheds light on the role of persistence time, that is the memory of366

previous states of a given property, in the robustness of morphogenesis. The investigation of367

spatiotemporal fluctuations may provide a new avenue to characterize organ development.368
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DATASETS AND METHODS381

Model for fluctuation stretching382

We introduced a simple model for the dynamics of a quantity Φ(x, t) that varies with383

position vector, x, in D-dimensional Cartesian space and with time, t. We assumed Φ to384

be advected by tissue growth at rate G, to have a persistence time τ , relaxing towards its385

reference value 〈Φ〉, and to be driven by a stochastic source ξ(x, t), so that386

∂tΦ(x, t) +G/D x · ∂xΦ(x, t) = −(Φ(x, t)− 〈Φ〉)/τ + ξ(x, t). (4)
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This equation can be solved as shown in the Supplementary note.387

Experimental datasets388

In order to reliably analyse fluctuations of growth rate, we chose datasets of sepals imaged389

with the highest spatial resolution possible among those published. We used live imaging se-390

quences from [32] (dataset 1) and from [31] (dataset 2). Voxel size was 0.12×0.12×0.50µm3.391

All plant lines in these sequences were crosses between Ws-4 and Col-0 ecotypes, harbour-392

ing respectively the microtubule reporter p35S::GFP-MBD and the membrane reporter393

pUQ10::Lti6b-2xmCherry [32]. The two datasets had slightly different culture conditions394

(type of lighting). Dataset 1 contained wild-type plants, the spr2-2 allele of SPIRAL2 that395

was originally obtained in a Col-0 background, the bot1-7 allele of Katanin that was orig-396

inally obtained in a Ws-4 background, and the mad5 allele of Katanin that was originally397

obtained in a Col-0 background (for mad5, unpublished sequences were obtained in parallel398

with those from [32]).399

Segmentation400

For sepals not already processed in [31, 32], cells of the abaxial epidermis were segmented401

and tracked in time using MorphoGraphX [45]. A triangular mesh was obtained for the402

outer organ surface in which cells were identified and well-delimited.403

Computation of growth rates404

We aimed at analysing fluctuations of cell relative areal growth rates tangentially to the405

sepal and therefore to get rid of the curvature of the outer surface of cells. To do so, we406

redefined the surface of cells from the linear interpolation of their contours by a flat surface.407

Areal growth rate was computed from the cell surface area at successive time steps. At time408

t, each cell is labeled by an index i and has surface area Si,t. Cell i may divide between t409

and t+1; the set Ji,t contains the labels of all daughters of cell i at time t+1 (Ji,t is reduced410

to a single label if cell i has not divided). We only consider cells which or whose daugthers411

remain in the segmented region from t to t+ 1. The areal growth rate of the cell i at a time412
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t is then defined as413

Gi,t =
( ∑
j∈Ji,t

Sj,t+1

)
/Si,t − 1. (5)

Average (tissular) growth is in turn defined as Gt = (
∑

i

∑
j∈Ji,t Sj,t+1)/(

∑
i Si,t)− 1.414

Cellular Fourier Transforms415

The Fourier harmonics are built from a coarse and discreet version of the Laplace oper-416

ator. To compute this operator we triangularized cell surfaces using the ‘MESH2D’ matlab417

algorithm [46, 47]. More details can be found in the Supplementary note. The Cellu-418

lar Fourier Transform (CFT) Ĝk,t of cell relative areal growth gives the weights by which419

growth is decomposed over the harmonics ek of the CFT. In this paper, the definition of420

the CFT differ from the one in [38] by a prefactor 1/
√
St where St is the total surface area.421

This change simplifies the interpretation of Fourier spectra: the coefficients have the same422

physical dimension as the original signal and the first coefficient is the average of the signal.423

Scaling exponent and amplitude of fluctuations424

We quantified spatial correlations in the tissue by fitting the spectral density with a power425

law. To do so, we assumed a Gaussian distribution for the CFT, centred around 0 with a426

standard deviation verifying,427

σk,t = ∆Gtq
−αt
k /

√∑
l

q−2αt
l (6)

where ∆Gt and the scaling exponent αt are the fit parameters characterizing respectively428

the amplitude and the extent of spatial correlation of growth fluctuations. For the fit, we429

used statistical inference as detailed in the Supplementary note. Doing so, we estimated a430

probability for the parameters ∆Gt and αt, their expected value, their standard error, and431

median values. We also estimated the 90% confidence interval, from the fifth to the ninety432

fifth percentiles.433
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Temporal correlations434

We estimated temporal correlations of relative areal growth in considering cell growth435

Gi,t from t to t+ 1 and cells growth GJi,t,t+1 from t+ 1 to t+ 2. GJi,t,t+1 is simply the areal436

growth rate from t to t+ 1 of the descendants of the cell i in the segmentation at t:437

GJi,t,t+1 =

∑
j∈Ji,t

∑
l∈Jj,t+1

Sl,t+2∑
j∈Ji,t Sj,t+1

− 1. (7)

To avoid any bias due to systematic variation of growth at organ scale [32], we used the438

detrended cell growth δGi,t, which can be defined by subtracting average growth in a lo-439

cal neighborhood from cell growth, see Supplementary note. Temporal correlations were440

computed as Kendall’s correlation coefficient Γt of δGi,t and δGJi,t,t+1. Kendall’s correlation441

coefficient is rank-based and so is less sensitive to outliers [39]. We used boostrapping to442

obtain confidence intervals and uncertainties.443

We note that Γt tends to be underestimated: A positive error on SJi,t,t+1 leads to an444

overestimation of δGi,t and an underestimation of δGJi,t,t+1, inducing a negative correlation445

between δGi,t and δGJi,t,t+1. This may explain the few negative values of Γt. We found446

this negative bias to be stronger when we defined growth from the cells outer surface area,447

leading us to use the interpolation of cell contours instead (see above).448

Comparing genotypes449

To describe the impact of mutations or culture conditions on growth parameters, we com-450

pared tissues at equivalent developmental stages. We first synchronized all the live imaging451

sequences from a dataset by building upon the approach developed in [40]. We considered452

the time curves of organ width for every sepal and finding the time delays ensuring the best453

superposition between width vs. time curves, leading to a corrected time Tt. We checked454

that this temporal alignment was consistent with stages of guard cell differentiation, indi-455

cating that sepal width is a good proxy of developmental stage in the genotypes/conditions456

that we studied. We defined the mean shift of a quantity Φt as457

DΦ =

∑
n′,t′
∑

n,tW
(n′,n)
t′,t (Φ

(n′)
t′ − Φ

(n)
t )∑

n′,t′
∑

n,tW
(n′,n)
t′,t

, (8)

where n′ and n label the pair of sepals compared (e.g. one mutant and the reference wild-458

type) and t′ and t correspond to the time in the sequence of live-imaging of those two sepals.459
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The sums
∑

n′,t′ and
∑

n,t are over all sequences of the mutant and the WT respectively.460

W
(n′,n)
t′,t gives the weights at which each pair is considered. A weight differs from 0 only if461

the values of synchronized times Tt of the pair are close, see Supplementary note for details.462

DΦ quantifies how much, in average, the quantities Φt for the mutants (or for WT in dateset463

2) are shifted from the reference WT.464
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I. MODEL FOR FLUCTUATION STRETCHING23

A. Model24

In line with the explanation of fluctuation stretching proposed in Figs. 1-2, we model the dynamics of a quantity25

Φ advected in a growing medium. If the medium grows isotropically and uniformly, its strain rate tensor in the26

D-dimensional space is G/Dδij where G is the line, surface or volume growth for D = 1, 2, or 3 respectively and δij27

is the Kronecker delta tensor. We assume the dynamics of the quantity Φ to be ruled by intrinsic cellular processes28

among which some are stochastic. For simplicity, we restrict our model to lowest order and consider a linear partial29

differential equation. Denoting time by t and the Cartesian space coordinate vector by x, we assume the evolution of30

Φ(x, t) to be given by31

∂tΦ(x, t) +G/Dx · ∂xΦ(x, t) = −(Φ(x, t)− 〈Φ〉)/τ + ξ(x, t), (1)

where the material point at x = 0 serves as the origin of the spatial coordinate system. ∂t and ∂x respectively stand32

for the partial derivative with respect to time and for the gradient. The left hand side of (1) corresponds to the33

material time derivative. The first term in the right hand side ensures the relaxation of Φ toward its reference value34

〈Φ〉 with a time scale τ , while the second term accounts for stochasticity through the noise ξ.35
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B. Linear response36

We denote the deviation of Φ from its reference value by ∆Φ(x, t) = Φ(x, t)− 〈Φ〉. The persistence time τ sets the37

memory of the system as can be seen in the explicit solution of (1),38

∆Φ(x, t) = e−t/τ∆Φ(x e−tG/D, 0) +

∫ t

0

ds

τ
e−(t−s)/τ ξ(x e−(t−s)G/D, s). (2)

In this equation, τ sets the time over which initial conditions persist and the delay over which the noise impacts the39

value of Φ.40

C. Spatial correlation function41

To describe the statistical properties of Φ, we assume the noise to be Gaussian, with 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x+42

l, t+ s)〉 = Kδ(s)g(|l|). 〈.〉 stands for an ensemble average, K is the noise strength, and δ(.) is the Dirac distribution.43

The function g(l) = 〈ξ(x, t)ξ(x+ l, t)〉/〈|ξ(x, t)|2〉 describes the spatial correlations of ξ, assumed to be regular and to44

vanish at infinity. As a consequence of the long-ranged correlations that we predict, small scales cannot be neglected45

and a Dirac distribution cannot be substituted to g without causing problems of convergence, unless a cutoff is46

introduced by hand. The correlations of Φ can be computed using (2) with t = −∞ as initial time. The space47

correlation function C(l) = 〈∆Φ(x, t)∆Φ(x+ l, t)〉/〈|∆Φ(x, t)|2〉 can then be written as,48

C(l) =

∫ +∞

0

(2 ds/τ) e−2 s/τg(|l| e−sG/D). (3)

The space correlation function C(l) is obtained by stretching the variation lengthscales of g by a factor sG/D and49

summing the stretched functions with weights e−2 s/τ . Changing the integration variable, we rewrite (3) as,50

C(l) = |l|−2D/(τG)h(|l|), (4)

where the increasing function h(|l|) =
∫ |l|

0
duu2D/(τG)−1g(u) is expected to reach an asymptotic value as |l| is large51

compared to the correlation length of ξ. (4) makes therefore explicit the long-ranged property of C, characterized by52

the scaling exponent β = 2D/(τG).53

D. Fourier spectrum54

The Fourier transform Φ̂(q, t) =
∫
dxe−Iq·xΦ(x, t) can be used to estimate the space correlation function C(l). More55

exactly, the mean squared spectrum 〈|Φ̂(q, t)|2〉 is proportional to the Fourier transform Ĉ(q) =
∫
dle−Iq·lC(l) =56

|q|β−Dh(|q|) with h(|q|) =
∫
dDu|u|−βf(|u|/|q|)eIu·ŷ and ŷ a unit vector. It exhibits a singularity for |q| → 0 where it57

scales like |q|−2α, with58

α = D/2− β/2 = D/2−D/(τG). (5)

If the correlation length of the noise source is small with respect to system size, the root mean squared spectrum can59

be approximated by a power law whose amplitude relate to the standard deviation through Parseval’s theorem and60

whose exponent α is given by the persistence time τ and growth rate G according to (5).61

II. CELLULAR FOURIER TRANSFORM62

Here we present the computation of cell surface area, we define the discrete Laplace operator, we explain how we63

built the Fourier harmonics based on this Laplace operator, and we define the Cellular Fourier Transform (CFT). The64

theoretical basis of the CFT may be found in [1].65
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A. Cell area and discrete Laplace operator66

We compute cell area from the linear interpolation of cell contour. More precisely, we project the contour on a67

plane that is perpendicular to the surface vector. The contour being polygonal, the surface factor can be written68

1/2
∑
n ~rn ∧ ~rn+1 where the sum is over the contour vertexes, ~rn is their position, n indexes the position around the69

contour and ∧ is the exterior product. We then triangulate the surface enclosed in the projected contour using the70

MESH2D Matlab package [2, 3]. To obtain a 3D mesh and determine the position of the mesh along the surface71

vector, we performed a linear interpolation of the cell contours. The area Si,t for cell i at time t is then computed as72

the sum of areas of triangles in the triangulation, Si,t =
∑(i,t)
m dSm, where m spans triangles of cell i at time t and73

dSm is the area of triangle #m. The tissue is made of N cells that are followed from t to t+ 1.74

The discrete Laplace operator is a square matrix of size N ×N and its components are given by75

L̄ij,t = δij − W̄ij,t, with, W̄ij,t =

√
Si,t
Sj,t

∑(i,t)
m dSm

∑(j,t)
n dSn exp(−dmn/(5 `c))∑(i,t)

m dSm
∑
j

∑(j,t)
n dSn exp(−dmn/(5 `c))

, (6)

where indices i = 0, 1, ..N − 1 and j = 0, 1, ..N − 1 span the N cells of the tissue. dmn is the distance between76

triangle m from cell i and triangle n from cell j, both considered at time step t. The unit of length is mean cell size77

`c =
√
St/N , where St is the surface of the tissue at time t and N is the number of cells. Here we took the width 5lc78

for the coarse Laplace operator.79

B. Fourier harmonics80

We define Fourier harmonics as the right singular vectors of the discrete Laplace operator L̄ defined in81

Eq. 6. We showed in [1] that L̄ is a good representation of the coarse Laplace operator L[f ](x) =82 ∫
dy exp (|x− y|/(5 `c)) (f(x)− f(y)), applying to real functions f of the position vector. The singular vectors of L̄ij,t83

are, for example, expected to have the same oscillatory nature as the eigenfunctions of L and their associated wave84

number qk to relate to their singular values through the same relation qk = 1/(5lc)Q(λk), withQ(l) =
√

(1− l)−2/3 − 185

associated to the kernel of the coarse Laplace operator [1]. The singular value decomposition of the Laplace operator86

L̄, which yields left singular vectors V , right singular vectors U , and the singular values L̂k, is:87

L̄ij,t =
N−1∑
k=0

L̂k VkiUkj . (7)

The value taken by the kth-harmonic in cell i at time step t is 1/Si,tUki, and its wave number is given by qk =88

1/5Q(L̂k). The harmonics are indexed so that their index grows with the wave number.89

C. Calculation of the CFT of cell growth90

The areal growth rate of cell i at time step t is defined as Gi,t =
((∑

j∈Ji,t Sj,t+1

)
/Si,t − 1

)
/∆t where Ji,t is91

either the new label of cell i at time t + 1 or the set of labels of the daughters of cell i if it has divided, while the92

time step is always ∆t = 1d. The kth CFT coefficient is then Ĝk,t =
∑
i UkiGi,t

√
Si,t/St where St is the total area93

St =
∑
i Si,t. Here we use a convention that differs from [1] by a multiplicative factor 1/

√
St in the definition of the94

CFT. This makes the interpretation of CFTs simpler: they have the same dimensions (units) as the original signal95

(here growth) and the first coefficient is equal to the average signal.96

III. SPATIAL CORRELATIONS97

We estimated spatial correlations of growth from the Fourier spectra i.e. from the distribution of Fourier transforms98

Ĝk,t and associated wavenumbers qk. For this we used Bayesian inference.99
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A. Inference methods applied to Fourier spectra100

To quantify spatial correlations, we assumed the CFT coefficients, Ĝk,t for k ≥ 2, to be independent random101

Gaussian variables whose mean squared deviation follows a power law with respect to the wave number qk,102

σk,t = ∆G2
t q
−2αt
k /

(
N−1∑
l=2

q−2αt
l

)
, (8)

with the parameters ∆Gt and αt quantifying the amplitude of growth fluctuations and their space correlations,103

respectively. We made the choice not to consider the first two CFT coefficients to avoid potential bias related to large104

scale growth patterns, which should not be considered as fluctuations. For the derivation of the equations, it is more105

convenient to rewrite (8) as σk,t = Q−2αt
k /ξ, where Qk = qk/(

∏N−1
l=2 ql)

1/(N−2) and ξ =
∑N−1
k=2 Q−2αt

k /(2∆G2
t ). We106

write the probability distribution fucntion of Ĝk,t as107

pk(Ĝ|ξ, αt) = e−ξĜ
2Q

2αt
k

√
ξQ2αt

k

π
. (9)

We use Bayesian inference to estimate ξ and αt, assuming a flat prior distribution for ξ ∈ [0,+∞[ and αt ∈ [0, 1],108

which are the relevant range of parameters for (9). The posterior distribution for ξ and αt takes the form109

P(ξ, αt) =

∏N−1
k=2 pk(Ĝk|ξ, αt)∫ +∞

0
dξ′
∫ 1

0
dα
∏N−1
l=2 pl(Ĝl|ξ′, α)

. (10)

We then substitute the probabilities pk by their explicit form, noting that, by construction,
∏N−1
k=2 Qk = 1, and,110

computing the first integral in the denominator, we get111

P(ξ, αt) =
e−ξ

∑N−1
k=2 Ĝ2

k,tQ
2αt
k

ξ Γ(N/2)
∫ 1

0
dα(ξ

∑N−1
k=2 Ĝ2

k,tQ
2α
k )−N/2

, (11)

where Γ is Euler’s gamma function.112

B. Estimating amplitude of fluctuations and exponent of spatial correlations113

To estimate ∆Gt, αt and their uncertainty, we consider the joint cumulative distribution function F(∆G,α), of114

having ∆Gt and αt smaller than the values ∆G and α, respectively. This function can be written in terms of P(ξ, α)115

as116

F(∆G,α) =

∫ α

0

dα′
∫ +∞

∑N−1
k=2 Q−2α′

k /(2∆G2)

dξ P(ξ, α′). (12)

By using the expression P(ξ, α) in (11) and computing the second integral, we then get117

F(∆G,α) =

∫ α
0
dα′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′

k )−N/2Γ
(
N/2,

∑N−1
k=2

Ĝ2
k,t

2∆G2q−2α′
k

/
∑N−1
l=2

q−2α′
l

)
∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′
k )−N/2Γ

(
N/2

) , (13)

where Γ(a, z) =
∫ +∞
z

dt ta−1e−t is the incomplete gamma function.118

We used the median as a representative value of the different quantities we considered. We estimated ∆Gt from the119

median F(∆Gt, 2) = .5 and the 90% confidence interval [∆G1,t,∆G2,t] from the 5th, F(∆G1,t, 2) = .05, and the 95th
120

percentile, F(∆G2,t, 2) = .95. Similarly, we estimate αt from the median F(+∞, αt) = .5 and the 90% confidence121

interval [α1,t, α2,t] from the 5th, F(+∞, α1,t) = .05, and the 95th percentile, F(+∞, α2,t) = .95.122

When we approximated their distributions by Gaussians (for fits or to estimate shifts from WT to mutants tissues),123

we used the the expected value and the standard deviations of αt and ∆Gt. We estimated the expected value of αt,124

〈αt〉 =

∫ α
0
dα′ α′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′

k )−N/2∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′
k )−N/2

, (14)
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its standard deviation δα =
√
〈α2
t 〉 − 〈αt〉2 with,125

〈α2
t 〉 =

∫ 1

0
dα′ (α′)2 (

∑N−1
k=2 Ĝ2

k,tQ
2α′

k )−N/2∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′
k )−N/2

, (15)

the expected value of ∆Gt,126

〈∆Gt〉 =

∫ 1

0
dα′

√
1/2

(∑N−1
k=2 Ĝ2

k,t. ∗Q2α
k

)(∑N−1
l=2 Ql.−2α

)
(
∑N−1
k=2 Ĝ2

k,tQ
2α′

k )−N/2Γ
(
N/2− 1/2

)
∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′
k )−N/2Γ

(
N/2

) (16)

and the standard deviation δ(∆Gt) =
√
〈∆G2

t 〉 − 〈∆Gt〉2127

〈∆G2
t 〉 =

∫ 1

0
dα′

(
1/(N − 2)

∑N−1
k=2 Ĝ2

k,t. ∗Q2α
k

)(∑N−1
l=2 Ql.

−2α
)

(
∑N−1
k=2 Ĝ2

k,tQ
2α′

k )−N/2∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′
k )−N/2

. (17)

IV. TEMPORAL CORRELATIONS128

To quantify temporal correlations, we detrended growth from large-scale spatial patterns and we calculated Kendall’s129

correlation coefficient of detrended growth.130

A. Detrending131

Before estimating time correlations, we corrected cellular growth using a local average of growth, aiming to detrend132

our estimate from large-scale deterministic spatial variations. We thus avoid potential bias induced by large scale133

growth variations that should not be considered as fluctuations. We use growth rate Gi,t of cell i between t and134

t+ 1, as defined in Sec. IIA. Computing local excess of growth is equivalent to apply a smooth Laplace operator to135

growth [1]. For convenience, we use the Laplace operator defined in (6), and we define δGi,t =
∑
j Lij,t

√
Sj,t/Si,tGj,t,136

where j spans cells that can be tracked from t to t+2. Detreneded growth at time t needs to be compared to detrended137

growth at time t+ 1, δGJi,t,t+1 =
∑
k∈Ji,t

∑
j Lkj,t+1

√
Sk,t+1Sj,t+1Gj,t+1/(

∑
l∈Ji,t Sl,t+1).138

B. Kendall’s correlation coefficient139

Time correlations are quantified by Kendall’s correlation coefficient Γt between δGi,t and δGJi,t,t+1. We used a140

bootstrap approach with 104 resamplings to quantify the statistical properties of Γt. We estimated Γt from the median141

of the boostrap distribution and the bounds of the confidence interval are its 5th and its 95th percentile. Finally, we142

also considered 〈Γt〉 and δΓt the expected value and the standard error of the distribution.143

V. ANALYSIS OF TEMPORAL VARIATIONS IN GROWTH PAREMETERS144

We analyzed two datasets, the first containing wild-type and mutant plants while the second group contained wild-145

type plants grown in different conditions. We first synchronised the time series of the two datasets. We then compared146

mutants to wild-type sepals from plants cultured in the same conditions, or wild type sepals from plant cultured in147

different conditions.148

A. Registration149

To synchronize (register) the different time series (labeled with an upper index (n)), we looked for the temporal
shifts ∆t(n) that maximise the overlap of curves of width vs. time w(n)

t . The perfect overlap being, in general, not
possible, we define a distance between pairs of curves, and we choose the delays which minimise the quadratic sum
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over all possible pairs S =
∑
n,n′ d

2
nn′ , of these distances. For two time series w(n)

t and w(n′)
t , the distance from n to

n′ is defined as dnm = Ann′ − An′n, where Ann′ is the area of the region in the Cartesian plane that is delimited to
the left by the linear interpolation of w(n)

t versus t and to the right by the linear interpolation of w(n′)
t versus t. This

distance depends linearly on the the time-shifts, dnn′ = ann′ − an′n + hnn′(∆t
(n′) −∆t(n)) where ann′ and an′n are

the areas Ann′ and An′n before synchronization. The minimization problem is then simply quadratic and the shifts
are given by the solution of ∑

n′

Mnn′∆t
(n′) = Yn,

with Mnn′ = δnn′(
∑
m hnm) − hnn′ and Yn = 2

∑
n′(ann′ − an′n)hnn′ . The matrix M is not invertible due to150

invariance by translations in time, but this system can be solved by adding the condition that the smallest temporal151

shift (the smallest ∆t(n)) has a value of 0. We denote by T (n)
t the new temporal coordinate for live-imaging series n152

following registration. We checked that this temporal alignment was consistent with stages of guard cell differentiation,153

indicating that sepal width is a good proxy of developmental stage in the genotypes/conditions that we studied.154

B. Differences between mutant and wild-type growth parameters155

To compare a quantity Φt (which could be Γt, ∆Gt, αt or Gt = (
∑
i

∑
j∈Ji,t Sj,t+1)/(

∑
i Si,t)− 1) between mutant156

sepals or wild-type from dataset 2 and wild-type sepals from dataset 1, we defined the mean difference DΦ as,157

DΦ =

∑
n′,t′

∑
n,tW

(n′,n)
t′t (Φ

(n′)
t′ − Φ

(n)
t )∑

n′,t′
∑
n,tW

(n′,n)
t′t

(18)

where the upper indices (n′) and (n) label the mutant and wild-type live-imaging sequences, respectively. The sums158 ∑
n′,t′ and

∑
n,t are over all the time points of the mutant and the wild-type, respectively. DΦ quantifies how much,159

on average, the quantities Φt for the mutants differ from the WT. The weights W (n′,n)
t′,t are defined as160

W
(n′,n)
t′,t = Λ(T

(n′)
t′ − T (n)

t ), (19)

where Λ(x) = max(1 − |x|, 0) is the triangle function. This definition ensures that only differences between sepals of161

comparable stages are considered in the distance DΦ.162

Approximating the distribution of Φt to Gaussian, DΦ has a Gaussian distribution and its expected value is

〈DΦ〉 =

∑
n,t

∑
n′,t′W

(n′,n)
t′,t (〈Φ(n′)

t′ 〉 − 〈Φ
(n)
t 〉)∑

n,t

∑
n′,t′W

(n′,n)
t′,t

,

where 〈Φ(n′)
t′ 〉 and 〈Φ

(n)
t 〉 are the expected values of Φ for the mutants and the wild-type tissues. The standard

deviation is

δDΦ =

√∑
n,t

∑
n′,t′W

(n′,n)
t′,t

((
δΦ

(n′)
t′

)2

−
(
δΦ

(n)
t

)2
)

∑
n,t

∑
n′,t′W

(n′,n)
t′,t

,

where δΦ(n′)
t′ and δΦ(n)

t are the standard error of Φ for the mutants and the WT tissues.163

VI. LINEAR FIT AND RESIDUALS164

We used statistical inference to determine which linear relation is the most likely to fit our data. We did this to test165

if the master curve of Γt as function ∆t/τt can well be fitted by a linear relation. We also estimated the uncertainty166

of the fit itself and tested whether the distribution of data around the fit can be explained by the data uncertainty,167

in coherence with the hypothesis of a linear and deterministic relation between the two.168
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A. Linear fit169

We performed this analysis to fit the master curve Γt as function of ∆t/τt, but since we applied the same analysis170

to other scatter plots, we considered here the relation between generic variables, x and y. To each measurement171

performed (indexed i) is associated a probability pi(xi, yi) of finding a certain quantity xi associated to the quantity172

yi. Approximating pi to a Gaussian distribution, and assuming no specific correlations for the error on xi and yi, we173

can write174

pi(xi, yi) = exp

(
−1

2

(
(xi − 〈xi〉)2

δx2
i

+
(yi − 〈yi〉)2

δy2
i

))
/(2πδxiδyi), (20)

where 〈xi〉 and 〈yi〉 are the expected values of xi and yi and δxi, and δyi are their standard errors. The probability of175

finding the x-coordinate in xi and of being on the line y = β0 + β1x is then, pi(xi, β0 + β1xi) which can be written as176

pi(xi, β0 + β1xi) = exp

(
−1

2

((
1

δx2
i

+
1

δy2
i

)(
x− β1

〈yi〉 − β0 − β1〈xi〉
δy2
i + β2

1δx
2
i

)2

+
(〈yi〉 − β0 − β1〈xi〉)2

δy2
i + β2

1δx
2
i

))
/(2πδxiδyi),

(21)
where we rearranged the argument of the exponential to write the dependence with x as a square. Integrating over177

xi, we obtain the probability that the data measured in i falls on the line y = β0 + β1x as178

pi(y = β0 + β1x) = e
− (〈yi〉−β0−β1〈xi〉)

2

2(δy2
i
+β21δx

2
i
) /

√
2π(δy2

i + β2
1δx

2
i ), (22)

The probability of having the n, assumed independent, measurements falling on y = β0 + β1x is then
∏n
i=1 pi(y =179

β0 + β1x), and using flat prior for β0 and a Cauchy distribution as a prior for β1, which is equivalent to assume a flat180

prior for the orientation of the line y = β0 + β1x, we get181

P (β0, β1) =
e
− 1

2

∑n
i=1

(〈yi〉−β0−β1〈xi〉)
2

δy2
i
+β21δx

2
i

Z(1 + β2
1)
√

2π
∏n
i=1

√
δy2
i + β2

1δx
2
i

(23)

where the constant Z given below is defined so that
∫ +∞
−∞ dβ0

∫ +∞
−∞ dβ1P (β0, β1) = 1. Introducing a(β1) =182 ∑n

i=1 1/(δy2
i + β2

1δx
2
i ), b(β1) =

∑n
i=1(β1〈xi〉 − 〈yi〉)/(δy2

i + β2
1δx

2
i ), c(β1) =

∑n
i=1(β1〈xi〉 − 〈yi〉)2/(δy2

i + β2
1δx

2
i ) +183

ln(δy2
i + β2

1δx
2
i ), we can write184

P (β0, β1) =
e−1/2(β2

0a(β1)+2β0b(β1)+c(β1))

Z(1 + β2
1)

. (24)

Then, Z =
∫ +∞
−∞ dβ0

∫ +∞
−∞ dβ1

e−1/2(β20a(β1)+2β0b(β1)+c(β1))

(1+β2
1)

can be rewritten, computing the first integral, as185

Z =

∫ +∞

−∞
dβ1

e−1/2(c(β1)−b(β1)2/a(β1))

(1 + β2
1)
√
a(β1)

. (25)

The expected value for β1 is thus186

〈β1〉 =

∫ +∞

−∞
dβ1β1

e−1/2(c(β1)−b(β1)2/a(β1))

Z(1 + β2
1)
√
a(β1)

. (26)

and the standard deviation is δβ1 =
√
〈β2

1〉 − 〈β1〉2, where187

〈β2
1〉 =

∫ +∞

−∞
dβ1β

2
1

e−1/2(c(β1)−b(β1)2/a(β1))

Z(1 + β2
1)
√
a(β1)

. (27)

The expected value for β0 is188

〈β0〉 = −
∫ +∞

−∞
dβ1

b(β1)

a(β1)

e−1/2(c(β1)−b(β1)2/a(β1))

Z(1 + β2
1)
√
a(β1)

, (28)
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and the standard deviation δβ1 =
√
〈β2

1〉 − 〈β1〉2, where189

〈β2
0〉 =

∫ +∞

−∞
dβ1

(
1

a(β1)
+

(
b(β1)

a(β1)

)2
)
e−1/2(c(β1)−b(β1)2/a(β1))

Z(1 + β2
1)
√
a(β1)

. (29)

We computed these integrals numerically to estimate the fitting parameters and their standard deviations.190

B. residuals191

We would like to test whether the expected values 〈β0〉 and 〈β1〉 enable to adequately fit the set of data. We gave192

in Eq. 22 the probability of having a linear relation y = β0 + β1x in measurement i. For β0 = 〈β0〉 and β1 = 〈β1〉,193

this probability is194

pi(y) = 〈β0〉+ 〈β1〉x) = e
− (〈yi〉−〈β0〉−〈β1〉〈xi〉)

2

2(δy2
i
+〈β1〉2δx2i ) /

√
2π(δy2

i + 〈β1〉2δx2
i ), (30)

We see that this probability follows a standard normal distribution with respect to the parameter ri =195
〈yi〉−〈β0〉−〈β1〉〈xi〉√

δy2i+〈β1〉2δx2
i

. If our assumptions are consistent, and notably the assumption that a linear relation exists be-196

tween yi and xi is correct, then the distribution of ri over all the measurements should be close to a standard normal197

distribution. To assess this, we performed a Kolmogorow-Smirnov test at the 5% significance level. We concluded198

that, in the case of the master curve, the distribution of data around the fit can be explained by the uncertainty on199

the estimates, and that the data are compatible with the hypothesis of a linear and deterministic relation between200

Γt and ∆t/τt, while we could not draw the same conclusions for any of the other pairwise trends. The p-values of201

the Kolmogorow-Smirnov test for the residuals of the linear fits of all the plots of Fig. 6. of the main are given in the202

table below.203

Plot p-value
Γt vs Gt 2.2 10−4

αt vs Gt 4.3 10−2

∆Gt/Gt vs Gt 3.3 10−7

Γt vs αt 2.0 10−2

Γt vs ∆Gt/Gt 8.7 10−3

αt vs ∆Gt/Gt 1.6 10−5

Γt vs ∆tGt/2(1 − αt) 2.5

TABLE I. p-value for the Kolmogorow-Smirnov test of the residuals of the linear fits of all the plots in Fig. 6.
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