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Genome-wide association studies (GWAS) have been widely used to identify genetic variation associated with complex traits. Despite its
success and popularity, the traditional GWAS approach comes with a variety of limitations. For this reason, newer methods for GWAS
have been developed, including the use of pan-genomes instead of a reference genome and the utilization of markers beyond single-
nucleotide polymorphisms, such as structural variations and k-mers. The k-mers-based GWAS approach has especially gained attention
from researchers in recent years. However, these new methodologies can be complicated and challenging to implement. Here, we pre-
sent kGWASflow, a modular, user-friendly, and scalable workflow to perform GWAS using k-mers. We adopted an existing kmersGWAS
method into an easier and more accessible workflow using management tools like Snakemake and Conda and eliminated the challenges
caused by missing dependencies and version conflicts. kKGWASflow increases the reproducibility of the kmersGWAS method by auto-
mating each step with Snakemake and using containerization tools like Docker. The workflow encompasses supplemental components
such as quality control, read-trimming procedures, and generating summary statistics. kKGWASflow also offers post-GWAS analysis
options to identify the genomic location and context of trait-associated k-mers. kGWASflow can be applied to any organism and requires
minimal programming skills. kGWASflow is freely available on GitHub (https:/github.com/akcorut/kGWASflow) and Bioconda (https:/
anaconda.org/bioconda/kgwasflow).

Keywords: GWAS; k-mers; snakemake; bioinformatics tool; pipeline

Introduction studies primarily rely on SNPs as markers of genetic variants and
often ignore other variants, such as structural variations, and
therefore can sometimes explain only a fraction of heritability,
particularly in cases involving highly complex traits (Manolio
et al. 2009; Nolte et al. 2017). GWAS can also identify spurious as-
sociations (Sul et al. 2018) and fail to capture associations caused
by rare variants (Wray et al. 2011; Young 2019).

The quality of GWAS also depends on the availability and the
quality of reference genomes. Traditional GWAS relies on map-
ping sequencing reads to a reference genome and then calling var-
iants. This mapping step can potentially cause biases during

Identifying genotype-phenotype associations is fundamental to
understanding the genetic architecture of complex traits.
Genome-wide association studies (GWAS) have been the method
of choice to detect associations between genetic variants and phe-
notypes for over 15 years (Visscher et al. 2017). Through GWAS,
thousands of traits have been surveyed, and numerous statistical-
ly significant associations have been reported (MacArthur et al.
2017; Uffelmann et al. 2021). These findings resulted in a better un-
derstanding of complex human traits and diseases (Cano-Gamez

and Trynka 2020), helped improve plant breeding (Tibbs Cortes variant calling because reference genomes are frequently incom-
etal. 2021) and animal health (Tian et al. 2020), and have otherwise plete and may not represent the full spectrum of genetic variation
significantly impacted our understanding of genetics. within a population. In addition, the misalignments can result in
The classical GWAS approach uses genome-wide single-  jincorrect variant calling, especially in complex genomes and/or
nucleotide polymorphisms (SNPs) as the genotype data. During around repetitive regions.
a standard GWAS, SNP markers are tested for statistically signifi- Due to these limitations, newer GWAS methods have been de-
cant association with the phenotypic trait using statistical mod- veloped (Coletta et al. 2021; Gupta 2021). These newer methods in-
els. GWAS utilizes linkage disequilibrium (LD) information clude but are not limited to using pan-genomes instead of a single
between markers and causal variants to identify trait-associated reference genome (Manuweera et al. 2019; Song et al. 2020; Zhou
loci. However, despite its power and success, this method comes et al. 2022) and the usage of new markers beyond SNPs, such as
with various limitations (Gupta et al. 2019; Tam et al. 2019; Sun structural variations (Prinsen et al. 2017; Zhou et al. 2018; Yang
et al. 2021). It has been previously shown that GWAS often fails et al. 2019; Li et al. 2020; Goktay et al. 2021; Qin et al. 2021; Wei
to pinpoint causal variants due to linkage disequilibrium (Faye et al. 2021) and k-mers (Rahman et al. 2018; Voichek and Weigel

etal. 2013; Boyle et al. 2017; LaPierre et al. 2021). Additionally, these 2020; He et al. 2021; Mehrab et al. 2021; Lemane et al. 2022). Using
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structural variations may capture some of the missing heritability
(Génin 2020; Theunissen et al. 2020; Zhou et al. 2022). Furthermore,
utilizing k-mers as genetic markers offers significant advantages
compared to the traditional SNP-based approach. k-mers, sub-
strings of length k in sequencing reads, can mark a broader range
of genomic variants, including structural variations. k-mers-
based GWAS also allows a reference-free association mapping
and can identify trait-associated markers even in regions missing
in the reference genome (Gupta 2021).

Voichek and Weigel recently developed a k-mers-based GWAS
approach for both categorical and quantitative phenotypes
(Voichek and Weigel 2020). In this approach, the authors use the
presence or absence of k-mers in sequencing reads as genotypic
variants and then apply traditional GWAS methods. Even though
the k-mers-based GWAS method recently gained increased atten-
tion (Colque-Little et al. 2021; Tripodi et al. 2021; Kale et al. 2022; Li
et al. 2022; Onetto et al. 2022; Schulthess et al. 2022), it has not
reached its potential due to the difficulties in implementing it.
These difficulties include the need for bioinformatics expertise
and lack of user-friendly tools. Underlying software and library
dependencies also have the potential to cause reproducibility is-
sues. Moreover, the existing implementation of this method lacks
the essential downstream analyses necessary for interpreting re-
sults from the k-mers-based GWAS approach.

In an effort to tackle these challenges, here we present
kGWASflow, a modular, user-friendly, and scalable workflow to
perform k-mers-based GWAS. kGWASflow adapts the approach
by Voichek et al. (2020), creating a more user-friendly workflow
while addressing software dependency and version conflict is-
sues. Our workflow is highly deployable in high-performance
and cloud computing environments. It also enhances the inter-
pretation of k-mer-based GWAS findings by providing supplemen-
tary downstream analysis options. kGWASflow boasts extensive
customization, providing users with a variety of options tailored
to their specific requirements.

Methods
Overview

The overall workflow of kGWASflow is described in Fig. 1. With the
default settings, kGWASflow comprises three main phases: pre-
processing, k-mers-based GWAS (Voichek and Weigel 2020), and
post-GWAS analysis. In short, the preprocessing phase conducts
quality control analysis, offers optional read trimming, and orga-
nizes the input files for downstream analysis. The workflow’s se-
cond and main phase performs k-mers-based GWAS by
implementing the kmersGWAS method from Voichek et al.
(2020) (Voichek and Weigel 2020). The post-GWAS phase gener-
ates results tables and provides multiple options to identify
genomic locations and context of trait-associated k-mers. Lastly,
kGWASflow generates an HTML report that includes QC and sum-
mary statistics, diagnostic plots, and kmersGWAS results.
kGWAStlow is highly customizable, as multiple steps of the work-
flow are optional and can be easily deactivated. kGWASflow is
written in Snakemake (Molder et al. 2021), a commonly used
Python-based workflow engine.

Snakemake allows the workflow to be highly modular, scalable,
and reproducible. Utilizing Snakemake, the workflow is con-
structed through a set of rules that link input sets with their cor-
responding outputs. Snakemake establishes the execution order
by discerning the optimal combination of rules necessary to pro-
duce the target output while ensuring that each rule is triggered
only upon the availability of its input files. Snakemake enhances

the parallelization of independent jobs, considering computation-
alresources and the thread requirements for each job’s execution.
This feature enables automatic scalability, allowing users to
effectively run the workflow on local machines and high-
performance and cloud-based computing platforms. Another as-
pect of Snakemake is that it recognizes which output files are
missing if the execution of the pipeline is halted due to an error
and allows users to recover the execution of failed jobs and con-
tinue after the issues are resolved. By combining Snakemake
with the Conda software manager, kGWASflow automatically in-
stalls all software and library dependencies for each rule separ-
ately in a Conda environment. In doing so, kGWASflow
effectively addresses potential complications arising from soft-
ware dependency conflicts across various stages of the pipeline.
kGWASflow also takes advantage of Conda for the initial deploy-
ment of the workflow environment. The latest version of the
workflow and its dependencies can be easily installed and acti-
vated by running the command

conda create -c bioconda ~
--name kgwasflow kgwasflow

conda activate kgwasflow

Input

The workflow has two main inputs: paired-end FASTQ files and
single or multiple phenotype files. FASTQ files contain the sequen-
cing reads of each individual/sample, and each individual/sample
can have multiple units of FASTQ files obtained from different se-
quencing runs of the same sample. A separate phenotype file for
each phenotype tested needs to be provided by the user. This
phenotype file consists of two columns where the first column re-
presents the name of the individual/sample and the second col-
umn represents the phenotypic value of that corresponding
sample, as described in Voichek et al. (2020) (Voichek and
Weigel 2020).

By configuring a single samples sheet (samples.tsv,
Supplementary Data S5), users can easily supply all necessary sam-
ple information for the pipeline, including sample names, FASTQ
file paths, or SRA accessions. Users have the option to either specify
the local file path for each FASTQ file or supply sequencing read
archive (SRA) accessions for each sample, considering individual
sequencing runs for the same sample separately. When provided
with only SRA accessions, the pipeline automatically retrieves the
relevant FASTQ files for each sample and its associated sequencing
run using fasterg-dump. Phenotype file information can be pro-
vided by using the phenotype sheet (phenos.tsv, Supplementary
Data S6). In the phenotype sheet, users specify the phenotype
name in the first column and the file path of the corresponding
phenotype file in the second column.

Workflow configuration and execution

KGWASflow streamlines the workflow configuration process and
provides users with easy customization. Once the workflow is in-
stalled, a new kGWASflow working directory with default config-
uration files can be initialized with a single command.

kgwasflow init —-work-dir working dir/

This command will generate the configuration file “confi-
g.yaml!” (Supplementary Data S3) alongside tab-separated sample
and phenotype sheets (explained in the Input section) inside of the
config directory. The command will also generate the “test” direc-
tory containing all the essential files required for executing a test
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Fig. 1. Overview of the kGWASflow workflow. The default kGWASflow workflow consists of three main phases: Preprocessing (1st step), k-mers-based
GWAS (2nd step), and post-GWAS analyses (3rd step). The configuration and input files required by the workflow are indicated at the top. The final
outputs and report of the workflow are outlined in the bottom right corner. Small boxes with solid outlines and shaded fill denote the publicly available
tools employed in the workflow. The workflow steps are customizable, with multiple optional steps, such as read trimming and post-GWAS analysis

options (options 1, 2, and 3). These optional steps are in dashed boxes.

run of kGWASflow. An example directory structure initialized by
init command can be found in Fig. 2.

To configure the workflow, the user simply needs to modify the
“config.yaml” configuration file, which is composed of three main
sections: input information, workflow settings, and tool para-
meters. In the first section, the user defines the paths for the sam-
ple and phenotype sheets and provides details regarding the

reference genome, if required. The workflow settings section al-
lows users to control optional pipeline steps, such as read trim-
ming, by changing them to “True” or “False” to activate or
deactivate. In this section, users can also specify their preferred
post-GWAS analysis options (Fig. 1). Finally, in the tool para-
meters section, the users can define the parameters/settings for
each tool used in the workflow.
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kgwasflow-workdir/

F—— config/

| — config.yaml

| — phenos.tsv

| — samples.tsv

L— test/

— config ecoli/
F—— config.yaml

phenos.tsv

samples.tsv

— config test/

[T

L— data/
—— ecoli phenos/

L resistence.pheno
— ecoli ref/

L CP026474.1.fa
— test reads/

T

— test phenos/

— test _ref/

Fig. 2. Example working directory structure generated by kGWASflow
initialization command: kgwasflow init. This working directory contains
the default kGWASflow configuration files and the test/ directory with all
the essential files required for a test workflow run.

After the configuration, kGWASfow can be run with a single
command

kgwasflow run -—threads 16 \

--work-dir working dir

This command first initiates the installation of all necessary
software and library dependencies for the workflow via Conda be-
fore executing the workflow steps. The execution order is deter-
mined by Snakemake, according to the wuser-defined
configuration file and the dependencies between the workflow
steps.

Alternatively, the workflow can be implemented by cloning the
GitHub repository and executing snakemake command after the
configuration of the workflow. The configuration can be done by
manually configuring the configuration files within the cloned re-
pository. A detailed guide on how to install, configure, and use the
pipeline via Conda or GitHub can be found on the kGWASflow wiki
page (https:/github.com/akcorut/kGWASflow/wiki).

Workflow steps
Preprocessing

The preprocessing phase of kGWASflow starts with the quality
control (QC) analysis of raw sequencing reads. kGWASflow first
uses FastQC (Andrews 2010) to generate basic QC metrics, such
as quality scores, GC content, duplication levels, and adapter con-
tent, for each FASTQ file. The pipeline then uses MultiQC (Ewels
etal. 2016) to summarize and visualize each FastQC report in a sin-
gle HTML file. If the trimming setting is activated, kGWASflow per-
forms read trimming for each FASTQ file using cutadapt (Martin
2011). Users can define the parameters for read trimming in the
configuration file. If the trimming setting is not activated,
the pipeline skips this step and uses the raw reads for the rest of

the workflow. During the final stage of the preprocessing phase,
kGWASflow sorts the FASTQ files (trimmed or raw) into individual
folders based on the sample or individual name, with one folder
designated for each. Subsequently, within each folder, a text file
is generated, listing the file paths of all FASTQ files associated
with that particular sample. This last step is required to run
k-mers-based GWAS.

k-mers-based GWAS

Once the preprocessing phase is complete, kGWASflow starts the
k-mers counting step. KMC (Kokot et al. 2017) is used to count
k-mers from sequencing reads (trimmed or raw) from each indi-
vidual/sample. Users can specify the desired k-mer length and
the read count threshold parameters in the configuration file.
Initially, KMC is run in default mode to count canonical k-mers,
followed by a second run using the “-b” option to count noncano-
nical k-mers. Canonization in this context means that KMC, in its
default mode, considers a k-mer and its reverse complement as
equivalent and assigns the combined count of the two to the al-
phabetically smaller k-mer (Deorowicz et al. 2015). Conversely,
in noncanonical counting mode (“-b” option), the k-mer and its re-
verse complement are counted separately. Next, the “kmer-
s_add_strand_information” function from the kmersGWAS
library is used to combine the output of two KMC runs. This gen-
erates a single list of k-mers per sample, along with their strand
information. Subsequently, k-mer lists from each sample are
merged into a single binary file (kmer_to_use) and then filtered
using the “list_kmers_found_in_multiple_samples” feature of
the kmersGWAS library. As described in Voichek et al. (2020),
the two-step filtering criteria are applied as follows: First, k-mers
are filtered if they are not present in at least N individuals.
Second, k-mers are filtered based on their canonical and noncano-
nical counts. A k-meris dropped if it is not found in both canonical
and noncanonical forms in at least X percent of the individuals/
samples in which it appeared (Voichek and Weigel 2020). Users
can easily modify filtering criteria within the configuration file.
Upon completing the k-mer counting and filtering phases,
kGWASflow generates summary statistics for k-mer counts and
visually displays the results through a variety of plots (Fig. 1).

Next, kGWASflow generates the k-mer presence/absence
genotype matrix, using the filtered k-mers obtained from all indi-
viduals/samples and utilizing the “build_kmers_table” function
from the kmersGWAS library. This binary k-mers presence/ab-
sence table features k-mers as rows and individuals as columns.
kGWASflow also allows users to convert this binary k-mers table
into PLINK (Chang et al. 2015) format. The option to export the
k-mers table in PLINK format enables users to utilize various
other GWAS tools of their choice outside of the kGWASflow
environment. This flexibility allows for the adoption of diverse
GWAS models or settings, such as incorporating covariates
into their GWAS model, an action not supported by the
current kmersGWAS method. After creating the k-mer table,
kGWASflow constructs a kinship-relatedness matrix based on
either the k-mers table or a user-provided SNP file in PLINK for-
mat. Users can choose between these two options via the config-
uration file. If users opt for a k-mer-based kinship matrix,
kGWASflow executes the “emma_kinship_kmers” function
from the kmersGWAS library, generating an EMMA-based
(Kang et al. 2008) relatedness matrix. Alternatively, if an
SNP-based kinship matrix is preferred, the pipeline employs
the “emma_kinship” function from the same library. Users can
specify the minor allele frequency and minor allele count para-
meters for this step by modifying the config file.
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Upon generating the k-mers table and the kinship matrix,
kGWASflow proceeds to perform k-mers-based GWAS utilizing
the methodology developed by Voichek et al. (2020). In this phase,
the k-mers table, kinship matrix, and phenotype file serve as in-
puts. The kmersGWAS method is applied independently to each
provided phenotype using the “kmers_gwas.py” script (Voichek
and Weigel 2020). In short, this method initially permutes the given
phenotype N times (with N specified by the user in kGWASflow) and
employs a linear mixed model (LMM) to associate k-mer presence/
absence patterns with the phenotype and its permutations. By util-
izing this approximated model, the top-ranking k-mers (deter-
mined by the user in kGWASflow, with a default value of 10,000)
are identified and subsequently passed to the next stage.
Afterward, these top k-mers are utilized as input in the following
step, where the actual model implemented in GEMMA (Zhou and
Stephens 2012) is employed to generate exact P-values for the
phenotype and its permutations. The kinship matrix is used to ac-
count for the relatedness between individuals. A permutation-
based 5% family-wise error-rate threshold is identified, and the
k-mers surpassing this threshold are deemed statistically signifi-
cant. After the completion of the kmersGWAS run, kGWASflow
produces a results summary table (Fig. 1), which incorporates the
significant k-mers derived from the kmersGWAS stage.

Post-GWAS analysis

Post-GWAS analyses are all optional and highly dependent on the
user’s preference, the organism of interest, and the research ques-
tion. Users can easily activate or deactivate various Post-GWAS
options within the configuration file. This phase concentrates on
identifying the genomic location and context of significantly asso-
ciated k-mers. This step can offer deeper insights into the context
of previously recognized associations, while also aiding in the dis-
covery of new associations that may contain a broader range of
genetic variants. kGWASflow includes 3 post-GWAS analysis op-
tions, which differ based on whether the user wants to map the
kmers themselves, the reads they originated from, or contigs as-
sembled from those reads.

The first post-GWAS analysis option is to directly map the
trait-associated k-mers to a reference genome FASTA file (as de-
fined in the configuration file). To map significant k-mers to a ref-
erence genome, users have the option to select from two
read-mapping algorithms: bowtie or bowtie2 (Langmead and
Salzberg 2012). kGWASflow maps the associated k-mers to a given
genome FASTA using the preferred alignment algorithm and then
converts the results into a sorted and indexed BAM file using sam-
tools (Li et al. 2009). Finally, kGWASflow generates a Manhattan
plot by incorporating the P-values from the kmersGWAS step
and the genomic locations of the aligned k-mers obtained during
this mapping stage.

The second option is to identify which sequencing reads the sig-
nificant k-mers came from and map those reads to the genome
FASTA file. When this option is enabled, kGWASflow initially re-
trieves the source reads for each associated k-mer from the
FASTQ files of samples containing those k-mers. kGWASflow exe-
cutes the“fetch_source_reads.py” script, which incorporates the
“fetch_reads_with_kmers” tool (https:/github.com/voichek/
fetch_reads_with_kmers) at its core to identify the source reads
of each trait-associated k-mer. After finding the source reads of
trait-associated k-mers, the pipeline first merges and then sorts
the reads using segkit (Shen et al. 2016). kGWASflow maps the
sorted reads to a reference genome FASTA file using bowtie2
(Langmead and Salzberg 2012) with “--very-sensitive-local” para-
meters. Alignments are filtered based on a mapping quality score

defined by the user. kGWASflow also converts the alignment out-
puts into BAM and BED files for downstream analysis. Optionally,
the workflow generates IGV reports of the alignment results in
HTML format using the igv-reports tool (https:/github.com/
igvteam/igv-reports).

The third option also utilizes the source reads of the associated
k-mers. If not previously obtained, the source reads of k-mers are
retrieved as outlined above. In this step, instead of mapping the
raw reads to a reference genome, kGWASflow first performs a de
novo assembly of the source reads using SPADES (Prjibelski et al.
2020) with the “--careful” parameter. After the assembly step,
kGWASflow runs minimap?2 (Li 2018) to map assembled contigs
onto a reference genome FASTA file. Users also have the option
to perform a BLAST (Altschul et al. 1990) query using blastn on
the resulting contigs. The output of this step is the sorted, indexed,
and quality-filtered (user-defined) BAM files of mapped contigs. If
the BLAST option is enabled, the workflow outputs a BLAST re-
sults file. As in the previous step, kGWASflow optionally generates
IGV reports of the contig mapping results using the igv-reports
software.

Testing the workflow

In order to test and evaluate the kGWASflow, we generated a test
mock dataset consisting of 100 individuals with a corresponding
mock genome FASTA file and phenotype (Fig. 2). A test run of
the workflow using this mock dataset can be performed by execut-
ing a single command:

kgwasflow test ——threads 16~

--work-dir working dir

With this command, kGWASflow initiates a test run, first con-
ducting QC analysis and producing a MultiQC report. After QC, it
progresses to the k-mer counting phase, followed by k-mer filtra-
tion, table construction, and kinship matrix generation based on
k-mers. The workflow will then perform kmersGWAS using the
k-mers table and the kinship matrix. Finally, kGWASflow provides
a summary of the kmersGWAS results and carries out options 1
and 2 of the post-GWAS phase, as illustrated in Fig. 1, thereby suc-
cessfully completing the test run.

Results and discussion

To illustrate our workflow, we selected two distinct datasets that
had been previously analyzed using different k-mer-based GWAS
methods. The first dataset is a public Escherichia coli (E. coli) ampi-
cillin resistance dataset that contains 241 strains of E. coli (Earle
et al. 2016), which was used by Rahman et al. (2018) to test their
k-mers-based association mapping tool HAWK (Rahman et al.
2018). Among 241 strains, 189 had ampicillin resistance and 52
were susceptible. By applying our workflow to this dataset,
kGWASflow yielded results comparable to the findings from
Rahman et al. (2018) (Supplementary Data S1: Tables 1 and 2).
Figure 3 shows examples of kGWASflow output from this test
run, including k-mer count summary statistics (Fig. 3a-c) and
k-mers-based GWAS results (Fig. 3d,e). The configuration files
and the HTML summary report from this kGWASflow run can be
found in the Supplementary Data (Data S6-510). This E. coli ampi-
cillin resistance dataset is also included with the pipeline as an al-
ternative test dataset and its results can be reproduced by
executing a single command:

kgwasflow test —-dataset ecoli --threads 16~

--work-dir working dir
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Fig. 3. Example outputs obtained from kGWASflow by processing the E. coli ampicillin resistance dataset (Rahman et al. 2018). a) Bar plot showing the
number of k-mers that appeared in exactly “N” number of samples (“N” goes between 1 to the total number of samples). Only the k-mers that passed the
initial filtering step were used. b) Histogram plot showing the distribution of noncanonical k-mer counts. The x-axis shows the unique k-mer counts and
the y-axis shows the number of samples. The legend at the top right shows the total number of unique k-mers (noncanonical). The histogram plot for
canonical counts can be found in the Supplementary Data (Supplementary Figure S1a). c) Joint plot showing the relationship between the noncanonical
unique k-mer counts and the number of reads. The x-axis represents the number of unique k-mers (noncanonical), and the y-axis represents the number
of total reads. The red line represents the linear regression line. The r-value is the Pearson correlation coefficient, and the P-value is the two-tailed
P-value. The marginal distributions of the x and y axis are also shown on the top and right sides of the plot, respectively. The joint plot for canonical
counts can be found in the Supplementary Data (Supplementary Figure S1b). d) Histogram of the -log10 P-values of each k-mer that passed the first
kmersGWAS step. The red dashed line indicates the 5% family-wise error-rate threshold, while the blue dashed line indicates the 10% family-wise
error-rate threshold. Only the P-values of the best k-mers from the first kmersGWAS step are used. P-values are obtained from GEMMA during the second
step of kmersGWAS (a detailed explanation can be found in the k-mers-based GWAS section). e) Manhattan plot showing —log10 P-values of k-mers that
are significantly associated with ampicillin resistance, mapped to their genomic locations. k-mers were mapped to E. coli plasmid pKBN10P04869A
reference genome (PRJNA430286) using bowtie2.

Executing this command will trigger an automated download this dataset generated results that closely mirrored the findings
of the sequencing reads of all 241 strains of E. coli from NCBI of He et al. (2021). We identified trait-associated k-mers that
Following this, kGWASflow will execute all preprocessing, k-mers- passed the P-value threshold for each of the three phenotypes
based GWAS, and post-GWAS analysis stages and complete the (Supplementary Data S1: Tables $3-S8). Furthermore, using the
E. coli test run. Ultimately, to produce an HTML report summariz- post-GWAS analysis module of kGWASflow, we have determined
ing the workflow and the results from the E. coli test run, users only the probable genomic locations of these trait-associated k-mers
need to execute a single command after the test workflow run is and the results were comparable to He et al (2021)
completed: (Supplementary Data S2: Figures S2-S5). The configuration files

and the HTML report from this kGWASflow run can be found in
kgwasflow test --dataset ecoli --threads 16 the Supplementary Data (Data S11-S15).
--work-dir working dir~
—--generate-report Conclusion
We employed a second dataset consisting of whole genome se- kGWASflow is an easy-to-install, reproducible, scalable, and user-

quencing data of 261 maize lines from the Goodman-Buckler friendly workflow written in Snakemake. It employs the
Maize Association Panel (Flint-Garcia et al. 2005) and three differ- kmersGWAS method (Voichek and Weigel 2020) to conduct

ent maize phenotypes, including kernel color, upper leaf angle, k-mer-based GWAS while offering enhanced pre- and
and cob color. He et al. (2021) previously used this dataset to test post-GWAS analysis capabilities. kGWASflow offers extensive
their k-mer-based GWAS tool, which relies on k-mer occurrence customization, either via the command line or a configuration
count (KOC) rather than presence/absence (He et al. 2021). Of the file, enabling users to modify the workflow to their specific re-
281 maize lines in this association panel, only 261 were used quirements. It takes advantage of Snakemake’s parallelization
due to the phenotype information available, as described in He and scalability capabilities, making the workflow deployable in lo-

et al. (2021). As in the previous test run, using kGWASflow on cal computers, high-performance computing, or cloud computing
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environments. By utilizing Conda, kGWAS{low effectively circum-
vents software dependency issues and prevents library/version
conflicts. The easy expansibility of kGWASflow enables seamless
integration of future enhancements and the incorporation of
new or improved k-mers-based GWAS methods. Taken together,
by creating a modular, customizable, and user-friendly workflow,
we aim to enhance the accessibility and streamline k-mer-based
GWAS, empowering a broader research community to leverage
this approach.

Data availability

kGWASTlow is freely available (under MIT license) from GitHub
(https://github.com/akcorut/kGWASflow) and also on Bioconda
(https://anaconda.org/bioconda/kgwasflow), including necessary
inputs to perform a test run. The GitHub repository contains a
wiki (https://github.com/akcorut/kGWASflow/wiki) explaining in
detail how to install, configure, and use the workflow.
Supplemental material available at FigShare: https:/figshare.
com/s/6f54d35d6f8dfc79e2f9.
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