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Genome-wide association studies (GWAS) have been widely used to identify genetic variation associated with complex traits. Despite its 
success and popularity, the traditional GWAS approach comes with a variety of limitations. For this reason, newer methods for GWAS 
have been developed, including the use of pan-genomes instead of a reference genome and the utilization of markers beyond single- 
nucleotide polymorphisms, such as structural variations and k-mers. The k-mers-based GWAS approach has especially gained attention 
from researchers in recent years. However, these new methodologies can be complicated and challenging to implement. Here, we pre-
sent kGWASflow, a modular, user-friendly, and scalable workflow to perform GWAS using k-mers. We adopted an existing kmersGWAS 
method into an easier and more accessible workflow using management tools like Snakemake and Conda and eliminated the challenges 
caused by missing dependencies and version conflicts. kGWASflow increases the reproducibility of the kmersGWAS method by auto-
mating each step with Snakemake and using containerization tools like Docker. The workflow encompasses supplemental components 
such as quality control, read-trimming procedures, and generating summary statistics. kGWASflow also offers post-GWAS analysis 
options to identify the genomic location and context of trait-associated k-mers. kGWASflow can be applied to any organism and requires 
minimal programming skills. kGWASflow is freely available on GitHub (https://github.com/akcorut/kGWASflow) and Bioconda (https:// 
anaconda.org/bioconda/kgwasflow).
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Introduction

Identifying genotype–phenotype associations is fundamental to 

understanding the genetic architecture of complex traits. 

Genome-wide association studies (GWAS) have been the method 

of choice to detect associations between genetic variants and phe-

notypes for over 15 years (Visscher et al. 2017). Through GWAS, 

thousands of traits have been surveyed, and numerous statistical-

ly signi*cant associations have been reported (MacArthur et al. 

2017; Uffelmann et al. 2021). These *ndings resulted in a better un-

derstanding of complex human traits and diseases (Cano-Gamez 

and Trynka 2020), helped improve plant breeding (Tibbs Cortes 

et al. 2021) and animal health (Tian et al. 2020), and have otherwise 

signi*cantly impacted our understanding of genetics.

The classical GWAS approach uses genome-wide single- 

nucleotide polymorphisms (SNPs) as the genotype data. During 

a standard GWAS, SNP markers are tested for statistically signi*-

cant association with the phenotypic trait using statistical mod-

els. GWAS utilizes linkage disequilibrium (LD) information 

between markers and causal variants to identify trait-associated 

loci. However, despite its power and success, this method comes 

with various limitations (Gupta et al. 2019; Tam et al. 2019; Sun 

et al. 2021). It has been previously shown that GWAS often fails 

to pinpoint causal variants due to linkage disequilibrium (Faye 

et al. 2013; Boyle et al. 2017; LaPierre et al. 2021). Additionally, these 

studies primarily rely on SNPs as markers of genetic variants and 

often ignore other variants, such as structural variations, and 

therefore can sometimes explain only a fraction of heritability, 

particularly in cases involving highly complex traits (Manolio 

et al. 2009; Nolte et al. 2017). GWAS can also identify spurious as-

sociations (Sul et al. 2018) and fail to capture associations caused 

by rare variants (Wray et al. 2011; Young 2019).

The quality of GWAS also depends on the availability and the 

quality of reference genomes. Traditional GWAS relies on map-

ping sequencing reads to a reference genome and then calling var-

iants. This mapping step can potentially cause biases during 

variant calling because reference genomes are frequently incom-

plete and may not represent the full spectrum of genetic variation 

within a population. In addition, the misalignments can result in 

incorrect variant calling, especially in complex genomes and/or 

around repetitive regions.

Due to these limitations, newer GWAS methods have been de-

veloped (Coletta et al. 2021; Gupta 2021). These newer methods in-

clude but are not limited to using pan-genomes instead of a single 

reference genome (Manuweera et al. 2019; Song et al. 2020; Zhou 

et al. 2022) and the usage of new markers beyond SNPs, such as 

structural variations (Prinsen et al. 2017; Zhou et al. 2018; Yang 

et al. 2019; Li et al. 2020; Göktay et al. 2021; Qin et al. 2021; Wei 

et al. 2021) and k-mers (Rahman et al. 2018; Voichek and Weigel 

2020; He et al. 2021; Mehrab et al. 2021; Lemane et al. 2022). Using 
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structural variations may capture some of the missing heritability 

(Génin 2020; Theunissen et al. 2020; Zhou et al. 2022). Furthermore, 

utilizing k-mers as genetic markers offers signi*cant advantages 

compared to the traditional SNP-based approach. k-mers, sub-

strings of length k in sequencing reads, can mark a broader range 

of genomic variants, including structural variations. k-mers- 

based GWAS also allows a reference-free association mapping 

and can identify trait-associated markers even in regions missing 

in the reference genome (Gupta 2021).

Voichek and Weigel recently developed a k-mers-based GWAS 

approach for both categorical and quantitative phenotypes 

(Voichek and Weigel 2020). In this approach, the authors use the 

presence or absence of k-mers in sequencing reads as genotypic 

variants and then apply traditional GWAS methods. Even though 

the k-mers-based GWAS method recently gained increased atten-

tion (Colque-Little et al. 2021; Tripodi et al. 2021; Kale et al. 2022; Li 

et al. 2022; Onetto et al. 2022; Schulthess et al. 2022), it has not 

reached its potential due to the dif*culties in implementing it. 

These dif*culties include the need for bioinformatics expertise 

and lack of user-friendly tools. Underlying software and library 

dependencies also have the potential to cause reproducibility is-

sues. Moreover, the existing implementation of this method lacks 

the essential downstream analyses necessary for interpreting re-

sults from the k-mers-based GWAS approach.

In an effort to tackle these challenges, here we present 

kGWASFow, a modular, user-friendly, and scalable workFow to 

perform k-mers-based GWAS. kGWASFow adapts the approach 

by Voichek et al. (2020), creating a more user-friendly workFow 

while addressing software dependency and version conFict is-

sues. Our workFow is highly deployable in high-performance 

and cloud computing environments. It also enhances the inter-

pretation of k-mer-based GWAS *ndings by providing supplemen-

tary downstream analysis options. kGWASFow boasts extensive 

customization, providing users with a variety of options tailored 

to their speci*c requirements.

Methods
Overview
The overall workFow of kGWASFow is described in Fig. 1. With the 

default settings, kGWASFow comprises three main phases: pre-

processing, k-mers-based GWAS (Voichek and Weigel 2020), and 

post-GWAS analysis. In short, the preprocessing phase conducts 

quality control analysis, offers optional read trimming, and orga-

nizes the input *les for downstream analysis. The workFow’s se-

cond and main phase performs k-mers-based GWAS by 

implementing the kmersGWAS method from Voichek et al. 

(2020) (Voichek and Weigel 2020). The post-GWAS phase gener-

ates results tables and provides multiple options to identify 

genomic locations and context of trait-associated k-mers. Lastly, 

kGWASFow generates an HTML report that includes QC and sum-

mary statistics, diagnostic plots, and kmersGWAS results. 

kGWASFow is highly customizable, as multiple steps of the work-

Fow are optional and can be easily deactivated. kGWASFow is 

written in Snakemake (Mölder et al. 2021), a commonly used 

Python-based workFow engine.

Snakemake allows the workFow to be highly modular, scalable, 

and reproducible. Utilizing Snakemake, the workFow is con-

structed through a set of rules that link input sets with their cor-

responding outputs. Snakemake establishes the execution order 

by discerning the optimal combination of rules necessary to pro-

duce the target output while ensuring that each rule is triggered 

only upon the availability of its input *les. Snakemake enhances 

the parallelization of independent jobs, considering computation-

al resources and the thread requirements for each job’s execution. 

This feature enables automatic scalability, allowing users to 

effectively run the workFow on local machines and high- 

performance and cloud-based computing platforms. Another as-

pect of Snakemake is that it recognizes which output *les are 

missing if the execution of the pipeline is halted due to an error 

and allows users to recover the execution of failed jobs and con-

tinue after the issues are resolved. By combining Snakemake 

with the Conda software manager, kGWASFow automatically in-

stalls all software and library dependencies for each rule separ-

ately in a Conda environment. In doing so, kGWASFow 

effectively addresses potential complications arising from soft-

ware dependency conFicts across various stages of the pipeline. 

kGWASFow also takes advantage of Conda for the initial deploy-

ment of the workFow environment. The latest version of the 

workFow and its dependencies can be easily installed and acti-

vated by running the command

conda create -c bioconda ∖
--name kgwas昀氀ow kgwas昀氀ow

conda activate kgwas昀氀ow

Input
The workFow has two main inputs: paired-end FASTQ *les and 

single or multiple phenotype *les. FASTQ *les contain the sequen-

cing reads of each individual/sample, and each individual/sample 

can have multiple units of FASTQ *les obtained from different se-

quencing runs of the same sample. A separate phenotype *le for 

each phenotype tested needs to be provided by the user. This 

phenotype *le consists of two columns where the *rst column re-

presents the name of the individual/sample and the second col-

umn represents the phenotypic value of that corresponding 

sample, as described in Voichek et al. (2020) (Voichek and 

Weigel 2020).

By con*guring a single samples sheet (samples.tsv, 

Supplementary Data S5), users can easily supply all necessary sam-

ple information for the pipeline, including sample names, FASTQ 

*le paths, or SRA accessions. Users have the option to either specify 

the local *le path for each FASTQ *le or supply sequencing read 

archive (SRA) accessions for each sample, considering individual 

sequencing runs for the same sample separately. When provided 

with only SRA accessions, the pipeline automatically retrieves the 

relevant FASTQ *les for each sample and its associated sequencing 

run using fasterq-dump. Phenotype *le information can be pro-

vided by using the phenotype sheet (phenos.tsv, Supplementary 

Data S6). In the phenotype sheet, users specify the phenotype 

name in the *rst column and the *le path of the corresponding 

phenotype *le in the second column.

Work)ow con*guration and execution
KGWASFow streamlines the workFow con*guration process and 

provides users with easy customization. Once the workFow is in-

stalled, a new kGWASFow working directory with default con*g-

uration *les can be initialized with a single command.

kgwas昀氀ow init --work-dir working_dir/

This command will generate the con*guration *le “con*-

g.yaml” (Supplementary Data S3) alongside tab-separated sample 

and phenotype sheets (explained in the Input section) inside of the 

con*g directory. The command will also generate the “test” direc-

tory containing all the essential *les required for executing a test 
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run of kGWASFow. An example directory structure initialized by 

init command can be found in Fig. 2.

To con*gure the workFow, the user simply needs to modify the 

“con*g.yaml” con*guration *le, which is composed of three main 

sections: input information, workFow settings, and tool para-

meters. In the *rst section, the user de*nes the paths for the sam-

ple and phenotype sheets and provides details regarding the 

reference genome, if required. The workFow settings section al-

lows users to control optional pipeline steps, such as read trim-

ming, by changing them to “True” or “False” to activate or 

deactivate. In this section, users can also specify their preferred 

post-GWAS analysis options (Fig. 1). Finally, in the tool para-

meters section, the users can de*ne the parameters/settings for 

each tool used in the workFow.

Fig. 1. Overview of the kGWASFow workFow. The default kGWASFow workFow consists of three main phases: Preprocessing (1st step), k-mers-based 
GWAS (2nd step), and post-GWAS analyses (3rd step). The con*guration and input *les required by the workFow are indicated at the top. The *nal 
outputs and report of the workFow are outlined in the bottom right corner. Small boxes with solid outlines and shaded *ll denote the publicly available 
tools employed in the workFow. The workFow steps are customizable, with multiple optional steps, such as read trimming and post-GWAS analysis 
options (options 1, 2, and 3). These optional steps are in dashed boxes.
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After the con*guration, kGWASfow can be run with a single 

command

kgwas昀氀ow run --threads 16 ∖
--work-dir working_dir

This command *rst initiates the installation of all necessary 

software and library dependencies for the workFow via Conda be-

fore executing the workFow steps. The execution order is deter-

mined by Snakemake, according to the user-de*ned 

con*guration *le and the dependencies between the workFow 

steps.

Alternatively, the workFow can be implemented by cloning the 

GitHub repository and executing snakemake command after the 

con*guration of the workFow. The con*guration can be done by 

manually con*guring the con*guration *les within the cloned re-

pository. A detailed guide on how to install, con*gure, and use the 

pipeline via Conda or GitHub can be found on the kGWASFow wiki 

page (https://github.com/akcorut/kGWASFow/wiki).

Work)ow steps
Preprocessing

The preprocessing phase of kGWASFow starts with the quality 

control (QC) analysis of raw sequencing reads. kGWASFow *rst 

uses FastQC (Andrews 2010) to generate basic QC metrics, such 

as quality scores, GC content, duplication levels, and adapter con-

tent, for each FASTQ *le. The pipeline then uses MultiQC (Ewels 

et al. 2016) to summarize and visualize each FastQC report in a sin-

gle HTML *le. If the trimming setting is activated, kGWASFow per-

forms read trimming for each FASTQ *le using cutadapt (Martin 

2011). Users can de*ne the parameters for read trimming in the 

con*guration *le. If the trimming setting is not activated, 

the pipeline skips this step and uses the raw reads for the rest of 

the workFow. During the *nal stage of the preprocessing phase, 

kGWASFow sorts the FASTQ *les (trimmed or raw) into individual 

folders based on the sample or individual name, with one folder 

designated for each. Subsequently, within each folder, a text *le 

is generated, listing the *le paths of all FASTQ *les associated 

with that particular sample. This last step is required to run 

k-mers-based GWAS.

k-mers-based GWAS

Once the preprocessing phase is complete, kGWASFow starts the 

k-mers counting step. KMC (Kokot et al. 2017) is used to count 

k-mers from sequencing reads (trimmed or raw) from each indi-

vidual/sample. Users can specify the desired k-mer length and 

the read count threshold parameters in the con*guration *le. 

Initially, KMC is run in default mode to count canonical k-mers, 

followed by a second run using the “-b” option to count noncano-

nical k-mers. Canonization in this context means that KMC, in its 

default mode, considers a k-mer and its reverse complement as 

equivalent and assigns the combined count of the two to the al-

phabetically smaller k-mer (Deorowicz et al. 2015). Conversely, 

in noncanonical counting mode (“-b” option), the k-mer and its re-

verse complement are counted separately. Next, the “kmer-

s_add_strand_information” function from the kmersGWAS 

library is used to combine the output of two KMC runs. This gen-

erates a single list of k-mers per sample, along with their strand 

information. Subsequently, k-mer lists from each sample are 

merged into a single binary *le (kmer_to_use) and then *ltered 

using the “list_kmers_found_in_multiple_samples” feature of 

the kmersGWAS library. As described in Voichek et al. (2020), 

the two-step *ltering criteria are applied as follows: First, k-mers 

are *ltered if they are not present in at least N individuals. 

Second, k-mers are *ltered based on their canonical and noncano-

nical counts. A k-mer is dropped if it is not found in both canonical 

and noncanonical forms in at least X percent of the individuals/ 

samples in which it appeared (Voichek and Weigel 2020). Users 

can easily modify *ltering criteria within the con*guration *le. 

Upon completing the k-mer counting and *ltering phases, 

kGWASFow generates summary statistics for k-mer counts and 

visually displays the results through a variety of plots (Fig. 1).

Next, kGWASFow generates the k-mer presence/absence 

genotype matrix, using the *ltered k-mers obtained from all indi-

viduals/samples and utilizing the “build_kmers_table” function 

from the kmersGWAS library. This binary k-mers presence/ab-

sence table features k-mers as rows and individuals as columns. 

kGWASFow also allows users to convert this binary k-mers table 

into PLINK (Chang et al. 2015) format. The option to export the 

k-mers table in PLINK format enables users to utilize various 

other GWAS tools of their choice outside of the kGWASFow 

environment. This Fexibility allows for the adoption of diverse 

GWAS models or settings, such as incorporating covariates 

into their GWAS model, an action not supported by the 

current kmersGWAS method. After creating the k-mer table, 

kGWASFow constructs a kinship-relatedness matrix based on 

either the k-mers table or a user-provided SNP *le in PLINK for-

mat. Users can choose between these two options via the con*g-

uration *le. If users opt for a k-mer-based kinship matrix, 

kGWASFow executes the “emma_kinship_kmers” function 

from the kmersGWAS library, generating an EMMA-based 

(Kang et al. 2008) relatedness matrix. Alternatively, if an 

SNP-based kinship matrix is preferred, the pipeline employs 

the “emma_kinship” function from the same library. Users can 

specify the minor allele frequency and minor allele count para-

meters for this step by modifying the con*g *le.

kgwasflow-workdir/
 config/

config.yaml

phenos.tsv
samples.tsv

 test/
config_ecoli/

config.yaml

phenos.tsv
samples.tsv

config_test/
 ...

 data/

ecoli_phenos/
resistence.pheno

ecoli_ref/
 CP026474.1.fa

test_reads/

 ...
test_phenos/

 ...
test_ref/

Fig. 2. Example working directory structure generated by kGWASFow 
initialization command: kgwas昀氀ow init. This working directory contains 
the default kGWASFow con*guration *les and the test/ directory with all 
the essential *les required for a test workFow run.
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Upon generating the k-mers table and the kinship matrix, 

kGWASFow proceeds to perform k-mers-based GWAS utilizing 

the methodology developed by Voichek et al. (2020). In this phase, 

the k-mers table, kinship matrix, and phenotype *le serve as in-

puts. The kmersGWAS method is applied independently to each 

provided phenotype using the “kmers_gwas.py” script (Voichek 

and Weigel 2020). In short, this method initially permutes the given 

phenotype N times (with N speci*ed by the user in kGWASFow) and 

employs a linear mixed model (LMM) to associate k-mer presence/ 

absence patterns with the phenotype and its permutations. By util-

izing this approximated model, the top-ranking k-mers (deter-

mined by the user in kGWASFow, with a default value of 10,000) 

are identi*ed and subsequently passed to the next stage. 

Afterward, these top k-mers are utilized as input in the following 

step, where the actual model implemented in GEMMA (Zhou and 

Stephens 2012) is employed to generate exact P-values for the 

phenotype and its permutations. The kinship matrix is used to ac-

count for the relatedness between individuals. A permutation- 

based 5% family-wise error-rate threshold is identi*ed, and the 

k-mers surpassing this threshold are deemed statistically signi*-

cant. After the completion of the kmersGWAS run, kGWASFow 

produces a results summary table (Fig. 1), which incorporates the 

signi*cant k-mers derived from the kmersGWAS stage.

Post-GWAS analysis

Post-GWAS analyses are all optional and highly dependent on the 

user’s preference, the organism of interest, and the research ques-

tion. Users can easily activate or deactivate various Post-GWAS 

options within the con*guration *le. This phase concentrates on 

identifying the genomic location and context of signi*cantly asso-

ciated k-mers. This step can offer deeper insights into the context 

of previously recognized associations, while also aiding in the dis-

covery of new associations that may contain a broader range of 

genetic variants. kGWASFow includes 3 post-GWAS analysis op-

tions, which differ based on whether the user wants to map the 

kmers themselves, the reads they originated from, or contigs as-

sembled from those reads.

The *rst post-GWAS analysis option is to directly map the 

trait-associated k-mers to a reference genome FASTA *le (as de-

*ned in the con*guration *le). To map signi*cant k-mers to a ref-

erence genome, users have the option to select from two 

read-mapping algorithms: bowtie or bowtie2 (Langmead and 

Salzberg 2012). kGWASFow maps the associated k-mers to a given 

genome FASTA using the preferred alignment algorithm and then 

converts the results into a sorted and indexed BAM *le using sam-

tools (Li et al. 2009). Finally, kGWASFow generates a Manhattan 

plot by incorporating the P-values from the kmersGWAS step 

and the genomic locations of the aligned k-mers obtained during 

this mapping stage.

The second option is to identify which sequencing reads the sig-

ni*cant k-mers came from and map those reads to the genome 

FASTA *le. When this option is enabled, kGWASFow initially re-

trieves the source reads for each associated k-mer from the 

FASTQ *les of samples containing those k-mers. kGWASFow exe-

cutes the“fetch_source_reads.py” script, which incorporates the 

“fetch_reads_with_kmers” tool (https://github.com/voichek/ 

fetch_reads_with_kmers) at its core to identify the source reads 

of each trait-associated k-mer. After *nding the source reads of 

trait-associated k-mers, the pipeline *rst merges and then sorts 

the reads using seqkit (Shen et al. 2016). kGWASFow maps the 

sorted reads to a reference genome FASTA *le using bowtie2 

(Langmead and Salzberg 2012) with “--very-sensitive-local” para-

meters. Alignments are *ltered based on a mapping quality score 

de*ned by the user. kGWASFow also converts the alignment out-

puts into BAM and BED *les for downstream analysis. Optionally, 

the workFow generates IGV reports of the alignment results in 

HTML format using the igv-reports tool (https://github.com/ 

igvteam/igv-reports).

The third option also utilizes the source reads of the associated 

k-mers. If not previously obtained, the source reads of k-mers are 

retrieved as outlined above. In this step, instead of mapping the 

raw reads to a reference genome, kGWASFow *rst performs a de 

novo assembly of the source reads using SPADES (Prjibelski et al. 

2020) with the “--careful” parameter. After the assembly step, 

kGWASFow runs minimap2 (Li 2018) to map assembled contigs 

onto a reference genome FASTA *le. Users also have the option 

to perform a BLAST (Altschul et al. 1990) query using blastn on 

the resulting contigs. The output of this step is the sorted, indexed, 

and quality-*ltered (user-de*ned) BAM *les of mapped contigs. If 

the BLAST option is enabled, the workFow outputs a BLAST re-

sults *le. As in the previous step, kGWASFow optionally generates 

IGV reports of the contig mapping results using the igv-reports 

software.

Testing the work)ow
In order to test and evaluate the kGWASFow, we generated a test 

mock dataset consisting of 100 individuals with a corresponding 

mock genome FASTA *le and phenotype (Fig. 2). A test run of 

the workFow using this mock dataset can be performed by execut-

ing a single command:

kgwas昀氀ow test --threads 16 ∖
--work-dir working_dir

With this command, kGWASFow initiates a test run, *rst con-

ducting QC analysis and producing a MultiQC report. After QC, it 

progresses to the k-mer counting phase, followed by k-mer *ltra-

tion, table construction, and kinship matrix generation based on 

k-mers. The workFow will then perform kmersGWAS using the 

k-mers table and the kinship matrix. Finally, kGWASFow provides 

a summary of the kmersGWAS results and carries out options 1 

and 2 of the post-GWAS phase, as illustrated in Fig. 1, thereby suc-

cessfully completing the test run.

Results and discussion

To illustrate our workFow, we selected two distinct datasets that 

had been previously analyzed using different k-mer-based GWAS 

methods. The *rst dataset is a public Escherichia coli (E. coli) ampi-

cillin resistance dataset that contains 241 strains of E. coli (Earle 

et al. 2016), which was used by Rahman et al. (2018) to test their 

k-mers-based association mapping tool HAWK (Rahman et al. 

2018). Among 241 strains, 189 had ampicillin resistance and 52 

were susceptible. By applying our workFow to this dataset, 

kGWASFow yielded results comparable to the *ndings from 

Rahman et al. (2018) (Supplementary Data S1: Tables 1 and 2). 

Figure 3 shows examples of kGWASFow output from this test 

run, including k-mer count summary statistics (Fig. 3a–c) and 

k-mers-based GWAS results (Fig. 3d,e). The con*guration *les 

and the HTML summary report from this kGWASFow run can be 

found in the Supplementary Data (Data S6–S10). This E. coli ampi-

cillin resistance dataset is also included with the pipeline as an al-

ternative test dataset and its results can be reproduced by 

executing a single command:

kgwas昀氀ow test --dataset ecoli --threads 16 ∖
--work-dir working_dir
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Executing this command will trigger an automated download 

of the sequencing reads of all 241 strains of E. coli from NCBI. 

Following this, kGWASFow will execute all preprocessing, k-mers- 

based GWAS, and post-GWAS analysis stages and complete the 

E. coli test run. Ultimately, to produce an HTML report summariz-

ing the workFow and the results from the E. coli test run, users only 

need to execute a single command after the test workFow run is 

completed:

kgwas昀氀ow test --dataset ecoli --threads 16 ∖
--work-dir working_dir ∖
--generate-report

We employed a second dataset consisting of whole genome se-

quencing data of 261 maize lines from the Goodman-Buckler 

Maize Association Panel (Flint-Garcia et al. 2005) and three differ-

ent maize phenotypes, including kernel color, upper leaf angle, 

and cob color. He et al. (2021) previously used this dataset to test 

their k-mer-based GWAS tool, which relies on k-mer occurrence 

count (KOC) rather than presence/absence (He et al. 2021). Of the 

281 maize lines in this association panel, only 261 were used 

due to the phenotype information available, as described in He 

et al. (2021). As in the previous test run, using kGWASFow on 

this dataset generated results that closely mirrored the *ndings 

of He et al. (2021). We identi*ed trait-associated k-mers that 

passed the P-value threshold for each of the three phenotypes 

(Supplementary Data S1: Tables S3–S8). Furthermore, using the 

post-GWAS analysis module of kGWASFow, we have determined 

the probable genomic locations of these trait-associated k-mers 

and the results were comparable to He et al. (2021)

(Supplementary Data S2: Figures S2–S5). The con*guration *les 

and the HTML report from this kGWASFow run can be found in 

the Supplementary Data (Data S11–S15).

Conclusion

kGWASFow is an easy-to-install, reproducible, scalable, and user- 

friendly workFow written in Snakemake. It employs the 

kmersGWAS method (Voichek and Weigel 2020) to conduct 

k-mer-based GWAS while offering enhanced pre- and 

post-GWAS analysis capabilities. kGWASFow offers extensive 

customization, either via the command line or a con*guration 

*le, enabling users to modify the workFow to their speci*c re-

quirements. It takes advantage of Snakemake’s parallelization 

and scalability capabilities, making the workFow deployable in lo-

cal computers, high-performance computing, or cloud computing 
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Fig. 3. Example outputs obtained from kGWASFow by processing the E. coli ampicillin resistance dataset (Rahman et al. 2018). a) Bar plot showing the 
number of k-mers that appeared in exactly “N” number of samples (“N” goes between 1 to the total number of samples). Only the k-mers that passed the 
initial *ltering step were used. b) Histogram plot showing the distribution of noncanonical k-mer counts. The x-axis shows the unique k-mer counts and 
the y-axis shows the number of samples. The legend at the top right shows the total number of unique k-mers (noncanonical). The histogram plot for 
canonical counts can be found in the Supplementary Data (Supplementary Figure S1a). c) Joint plot showing the relationship between the noncanonical 
unique k-mer counts and the number of reads. The x-axis represents the number of unique k-mers (noncanonical), and the y-axis represents the number 
of total reads. The red line represents the linear regression line. The r-value is the Pearson correlation coef*cient, and the P-value is the two-tailed 
P-value. The marginal distributions of the x and y axis are also shown on the top and right sides of the plot, respectively. The joint plot for canonical 
counts can be found in the Supplementary Data (Supplementary Figure S1b). d) Histogram of the -log10 P-values of each k-mer that passed the *rst 
kmersGWAS step. The red dashed line indicates the 5% family-wise error-rate threshold, while the blue dashed line indicates the 10% family-wise 
error-rate threshold. Only the P-values of the best k-mers from the *rst kmersGWAS step are used. P-values are obtained from GEMMA during the second 
step of kmersGWAS (a detailed explanation can be found in the k-mers-based GWAS section). e) Manhattan plot showing −log10 P-values of k-mers that 
are signi*cantly associated with ampicillin resistance, mapped to their genomic locations. k-mers were mapped to E. coli plasmid pKBN10P04869A 
reference genome (PRJNA430286) using bowtie2.
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environments. By utilizing Conda, kGWASFow effectively circum-

vents software dependency issues and prevents library/version 

conFicts. The easy expansibility of kGWASFow enables seamless 

integration of future enhancements and the incorporation of 

new or improved k-mers-based GWAS methods. Taken together, 

by creating a modular, customizable, and user-friendly workFow, 

we aim to enhance the accessibility and streamline k-mer-based 

GWAS, empowering a broader research community to leverage 

this approach.

Data availability

kGWASFow is freely available (under MIT license) from GitHub 

(https://github.com/akcorut/kGWASFow) and also on Bioconda 

(https://anaconda.org/bioconda/kgwasFow), including necessary 

inputs to perform a test run. The GitHub repository contains a 

wiki (https://github.com/akcorut/kGWASFow/wiki) explaining in 

detail how to install, con*gure, and use the workFow. 

Supplemental material available at FigShare: https://*gshare. 

com/s/6f54d35d6f8dfc79e2f9.
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