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Abstract

Freidlin-Wentzell theory of large deviations can be used to
compute the likelihood of extreme or rare events in stochas-
tic dynamical systems via the solution of an optimization
problem. The approach gives exponential estimates that
often need to be refined via calculation of a prefactor.
Here it is shown how to perform these computations
in practice. Specifically, sharp asymptotic estimates are
derived for expectations, probabilities, and mean first pas-
sage times in a form that is geared towards numerical
purposes: they require solving well-posed matrix Riccati
equations involving the minimizer of the Freidlin-Wentzell
action as input, either forward or backward in time with
appropriate initial or final conditions tailored to the esti-
mate at hand. The usefulness of our approach is illustrated
on several examples. In particular, invariant measure prob-
abilities and mean first passage times are calculated in
models involving stochastic partial differential equations of
reaction-advection-diffusion type.
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1 | INTRODUCTION

Rare events in stochastic dynamical systems tend to cluster around their most likely realization.
As a result they have predictable features that can be calculated via some optimization problem.
This profound observation has been made in numerous fields, and used for example, to explain
phase transitions in statistical mechanics [18], derive Arrhenius’ law in chemical kinetics [1], or
use semiclassical trajectories in quantum field theory [49]. Large deviation theory (LDT) [52]
gives a mathematical justification to these results and provide us with an action, or rate func-
tion, to minimize in order to calculate paths of maximum likelihood, also known as instantons.
The theory also gives exponential asymptotic estimates of rare event probabilities. While this
information is already useful in many cases, more refined estimates are often desirable. These
‘prefactor’ calculations attempt to quantify the effect of Gaussian fluctuations around the instan-
ton, a notion that has also been separately rediscovered in the literature through various means [5].
For example, in the context of chemical reaction rates, next order refinements of the exponential
reaction rate are known as the Eyring-Kramers law [19, 38]. Similarly in quantum field theory,
perturbing around the semiclassical trajectory, the second order variations leads to a Gaussian
path-integral, which ultimately results in an additional contribution in the form of a ratio of
functional determinants [49].

Over the last 2 decades, several computational methods have been developed to calculate
instantons. Among others, we refer to the string method in the context of gradient flows [15,
17], the minimum action method [16, 22], the adaptive minimum action method (aMAM) [53]
and the geometric minimum action method (gMAM) [34, 35, 50]. These methods are now effi-
cient enough to be used in the context high-dimensional systems, including stochastically driven
partial differential equations arising in fluid dynamics [28, 30].

In contrast, surprisingly little work has been done on the numerical side of prefactor calcu-
lations (see however [45]). The main objective of this paper is to show how to extend methods
such as MAM or gMAM to efficiently estimate prefactors in the context of the calculations of
expectations, probabilities, and mean first passage times.

1.1 | LDT and instantons

Consider a family of stochastic differential equations (SDEs) for X; € R", with drift vector
field b : R" —» R" and diffusion matrix a = oo ', where o € R"™",

dX¢ = b(X?) dt + \/eo dW,. 11)
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2270 | GRAFKE ET AL.

Here, W, is an n-dimensional Wiener process, and we have introduced a small parameter € > 0
to characterize the strength of the noise. For simplicity we will assume that the diffusion matrix
a € R™" is positive-definite (hence invertible) and constant (but not necessarily diagonal), that
is the case of additive Gaussian noise—the generalization of the methods presented below to a
covariance matrix a that depends on x, that is multiplicative Gaussian noise, is straightforward.
Large deviations theory [24, 52] indicates that, in the limit as € — 0, the solutions to (1.1) that con-
tribute most to the probability of an event or the value of an expectation are likely to be close to the
minimizer of the Freidlin-Wentzell rate function Sy subject to appropriate boundary conditions.
This action functional is given by

T
Sr(¢) = | L(¢,¢)dt 1.2)
/
with the Lagrangian
L$,§) = (¢ —b(@),a” ($— b)) = 5I¢ —b@)I2. (13)

Here (x, y) stands for the Euclidean scalar product between the vectors x and y and we introduced
the norm induced by a, |x|? = (x,a"'x) = szzl xial.fjl x;. If the diffusion matrix a is the identity,
this norm becomes simply the Euclidean length.

The minimizer of the action (1.2) is referred to as path of maximum likelihood or instanton, and
it can be found by solving the corresponding Euler-Lagrange equations

daL_ot

Ziag = 0% (1.4)

with boundary conditions appropriate to the event under consideration. Thus, in the context of
LDT, the leading order estimation of probabilities or expectations can be reduced to the solution
of the deterministic system (1.4).

Alternatively, there is a Hamiltonian formulation to the problem. Taking the Legendre trans-
form of the Lagrangian and introducing the momentum 8 = L /3¢, we obtain the Hamiltonian

H($.0) = (b($),6) + 5(6,ad), (15)
and the Euler-Lagrange equations for the instanton become

¢ = b(¢) + ab, 6 = —(Vb(p))T6. (1.6)

1.2 | Prefactor estimates

The instanton gives the leading contribution to the exponential decay of the probability for
observing a rare event. In order to obtain sharp estimates, one needs to furthermore consider
prefactor contributions.
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Intuitively these prefactors can be calculated by accounting for the effects of the fluctuations
around the instanton ¢, which can be done by linearizing the solution of the SDE (1.1) around ¢
and considering

dz, = Vb(¢()Z, dt + o dW,. a.7)

The solution to this equation defines a Gaussian process, and the prefactor contribution to expec-
tations, probabilities, or mean first passage times can be calculated as specific expectations over
this process. In turns, these expectations are ratios between determinants of specific positive-
definite matrices or operators that can be expressed in terms of the solutions of deterministic
Riccati equations, as can be intuited by analogy with results from optimal control theory. Our
objectives here are to: (i) formulate these Riccati equations, including their boundary conditions,
in the specific cases of the calculation of expectations, probabilities, and mean first passage time;
and (ii) develop efficient numerical methods for their solution.

1.3 | Related works

From a theoretical point of view, our approach builds on a large corpus of works dealing with
expansion beyond the exponential estimate of LDT and the evaluation of quadratic path integrals
or Wiener integrals, as initiated by Schilder [44]. Results from probability theory and stochastic
analysis in this direction include for example the pioneering works by Kifer [37] and Azencott [2].
On the analytical side, formal asymptotic expansions were used for example in [40, 41], the WKB
expansion in [21], optimal control theory in [3], and more recently potential theory in [5, 12]. This
last approach allows one to establish rigorously the Eyring-Kramers law for reversible system [11],
and has also been extended to other problems, such as lattice gas models [13]. Similarly, prefactor
calculations recently included non-reversible systems [9]. From a mathematical perspective it is
much harder to treat the infinite dimensional case, even though recent breakthroughs have been
made at least for systems in detailed balance [4, 6, 7, 20].

From a computational viewpoint, none of the references above deal with explicit calculation
of the instanton or the prefactors, and the equations they derive for these objects, while often
very general, do not lend themselves automatically to numerical implementation. Explicit (espe-
cially numerical) computation of prefactors is usually confined to quantum field theory, where the
evaluation of Gaussian path integrals is a classical result [23, 26, 39, 43], see also [14] for a recent
review. However, the Lagrangian in quantum mechanics is usually assumed to take a special form
with no first order time derivative in the Euler-Lagrange equation (corresponding to a stochas-
tic process in detailed balance in the stochastic interpretation). The processes we are interested
in are considerably more general from that perspective, and require the more general methods
we develop here. These methods built on formulas derived by asymptotic analysis of backward
Kolmogorov equations (BKEs), and are complementary to those recently proposed in [45] using
a path integral approach.

1.4 | Main contributions

Our main results can be summarized as follows: (1) We provide formal but short and simple proofs
of propositions establishing sharp estimates for expectations, probability densities, probabilities,
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2272 | GRAFKE ET AL.

exit probabilities, and mean first passage times. While most of these results can be found in some
form in the literature, they are scattered in many different papers, and we believe it is useful to col-
lect and summarize them in one place. The methods used in these proofs can also be extended to
more general situations not covered here. (2) We phrase each of our theoretical statements in a way
geared towards numerical implementation, unlike what is usually found in the literature on the
topic. (3) We use the geometric approach from gMAM to provide statements that are valid at infi-
nite time (i.e. on the invariant measure of the process), by explicitly computing this infinite time
limit via mapping of ¢t € (—c0,0] onto the normalized arc-length s € (0, 1] along the instantons
involved. (4) We formally generalize our results to the infinite-dimensional setup, with applica-
tions to stochastic partial equations of reaction-advection-diffusion type. (5) We also generalize
our result to examples driven by non-Gaussian noise, specifically Markov jump processes (MJPs)
in specific limits. (6) We illustrate the applicability of our method through tests cases in finite
and infinite dimension, in which we discuss how to perform the numerical calculation involved.

In terms of limitations, our work focuses on situations where the stochastic system at hand has a
single attracting point in the limit of vanishing noise. This setup is of interest in several situations,
but it excludes the important problem of analyzing rare transitions between metastable states.
Some of the tools we develop here, in particular the Riccati equations whose solutions enter the
expressions for the prefactors, may be useful to analyze these transitions, but we will not consider
them here.

1.5 | Assumptions and organization

As stated before, we are interested in obtaining sharp asymptotic estimates for expectations,
probabilities, exit probabilities, and mean first passage times. We will do so under the generic
assumption that the LDT optimization problem associated with each of these questions, that is
the minimization of the action in (1.2) subject to appropriate constraints and/or boundary condi-
tions, is strictly convex. This simplifying assumption guarantees that the solution of the equations
presented below exists and is unique, and therefore allows us to avoid dealing with local minimiz-
ers, flat minima, etc. that may require to generalize/amend some of the statements below. While
this is not necessary difficult to do, at least formally, it leads to a zoology of subcases that we want
to avoid listing.
To make (1.1) have unique solutions, we will also make:

Assumption 1.1. The vector field b is C2(R") and such that:
Ja,B>0 : (b(x),x) <a-—pB|x|> VxeRY
and the matrix a is such that:
Jy,T with 0<y <T<oo : y|x|? <(x,ax) <T|x|> Vxe€R"
This assumption guarantees [42] that the solution to the SDE (1.1) exists for all times and

is ergodic with respect to a unique invariant measure with a probability density function
pe - R"™ - (0, 00). This density is the unique solution to

0=-V.(bp;)+ ésa 1 VVp,, pe >0, /,og(x)dx =1, (1.8)
R?
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where here and below the colon denotes the trace, thatis a : VV = tr(a[V ® V]). We will also
make a stronger assumption:

Assumption 1.2. The ODE X = b(x) has a single fixed point located at x,, (i.e. x,, is the only solu-
tion to b(x) = 0), which is linearly stable locally (i.e. the real part of all eigenvalues of the matrix
Vb(x,) are strictly negative), and globally attracting (i.e. any solution to X = b(x) approaches x,
asymptotically).

This assumption implies that p, becomes atomic on x = x,, as € — 0, a property we will need
when looking at expectations or probability on the invariant measure.

The remainder of this paper is organized as follows: In Section 2 we will first consider
the problem of calculating sharp estimates of expectations, both at finite time (Sections. 2.1
and 2.2) and on the invariant measure of (1.1) (Section 2.3). In Section 3, we will show
how to calculate sharp estimates of probabilities densities at finite (Section 3.1) and infinite
times (Section 3.2). In Section 4 we then build on these results to calculate probabilities at
finite times (Section 4.1) and on the invariant measure of the process (Section 3.2). Finally,
in Section 5 we consider the problem of mean exit time calculation. These results are illus-
trated on finite dimensional examples throughout the paper, and on infinite dimensional
examples in Section 6, where we consider linear and nonlinear reaction-advection-diffusion
equations with random forcing. The results in this paper are mostly for diffusions, but
they can be generalized to other set-ups, in particular MJPs: this is discussed in Section 7.
We end the paper with some conclusions in Section 8 and defer some technical results to
Appendices.

2 | EXPECTATIONS
2.1 | Finite time expectations
Given the observable f : R" — R with f € C?(R"), consider
A(T,x) = EXexp (71 f(X5)), (2.1)

where the expectation is taken over samples of the SDE (1.1) conditioned on X = x and eval-
uated at the final time t = T < oo. Expectations of the form (2.1) are an important first step to
compute all other probabilistic variables, as they correspond to the moment generating function
of the probability distribution of the random variable f(Xt). Thus, they represent a problem
dual to the one of finding the associated probability densities. This will become clear in Sec-
tion 3, where we use the results presented here to derive similar sharp limits for probability
densities.
We have the following proposition:

Proposition 2.1. Let (¢,(t),0,(t)) solve the instanton equations

¢y = ab + b(¢,), ¢:(0) = x,
6, = —(Vb(¢:))"6, 0,(T) = Vf(¢(T)),

(2.2)
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and W ,(t) be the solution to the Riccati equation
Wx = _Vv<b(¢x)’ ex> - (Vb(¢x))TWx - Wx(Vb(¢x)) - Wanx: Wx(T) = va(¢x(T))7
(2.3)

integrated backwardsin time fromt = T tot = 0 along theinstanton ¢,.(t). Then the expectation (2.1)
satisfies

im M =1, (24)
=0 AE(T, x)
where
1 /7
AT, x) = R(T, x) exp (5‘1 <f(¢x(T)) -3 / (6,(8), ab, (1)) dt)), (2.5)
0
with
1 /7
R(T,x) = exp (5 / tr(aW . (¢)) dt). (2.6)
0

Remark 2.1. The function R(T, x) is typically referred to as the prefactor. LDT gives a rougher
estimate

log A(T,x)

im = = 2.7
¢=0 log A.(T, x)

which would be unaffected if we were to neglect the prefactor R(T, x) in A,(T, x). Of course, this
prefactor is key to get the more refined estimate in (2.4).

Remark 2.2. If the SDE (1.1) is modified into
dX¢ = b(X?) dt +eb(XF) dt + \/ea dW,. (2.8)

with b : R* = R" is C}(R") with bounded derivatives, Proposition 2.1 can be generalized by
replacing (2.6) with

R(T,x) = exp <% /
0

while leaving unchanged all the other equations in the proposition. The statements in the proposi-
tions below can similarly be straightforwardly amended to apply to (2.8), but for the sake of brevity
we will stick to (1.1).

T

T
tr(an(t))dt+/ (Gx(t),l;(q&x(t))dt), (2.9)
0

Proof of Proposition 2.1. Let

u (T —t,x) = EXexp (71 f (X7)) (2.10)
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so that
u.(0,x) = A(T, x). (211)
It is well-known that u, satisfies the BKE
O,u, + Lou, =0, u (T, x) = exp (71 f(x)), (2.12)
where L, is the generator of the process (1.1):
L. =b(x)-V+ %sa 1 VV (2.13)
Look for a solution of (2.12) of the form
u(t,x) = Z.(t, x) exp (e71S(t, x)), (2.14)
where S(¢, x) satisfies the Hamilton-Jacobi equation
3,5 +b(x)- VS + %(VS, avs)=0,S+H(x,VS)=0,  S(T,x)= f(x). (2.15)

If (¢, (t), 6,(t)) solves the instanton equations in (2.2), we have 6,(t) = VS(t, ¢,(t)) and a direct
calculation shows that

L5600 = 8,5 + o VS = 100, a0(0) (2.16)

implying

1 T
ST, 9(1) - 50.40) = 3 [ (@.a)ar G1)
0

Since S(T, ¢(T)) = f(¢(T)), we have

T
exp(e~15(0, $(0))) = exp | e~ f(¢(T)) — % /(6,a6)dt ) (2.18)
0

As a result, to show that (2.4) holds, it remains to establish that the factor Z,(¢, x) has a limit as
¢ - 0with lim,_, Z.(0, x) = R(T, x). To this end, notice that Z.(¢, x) satisfies

0,Z. + (b +aVs)-VZ. + %zga VVS + %Ea SVVZ, =0, Z(T,x)=1. (2.19)

Formally taking the limit as ¢ — 0 on this equation, we deduce that lim,_ Z.(¢, x) = Z(t, x),
where Z(t, x) solves

0,Z +(b+aVs)-VZ + %Za SVVS=0  Z(T,x)=1. (2.20)
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Setting G.(t) = Z(t, $,(t)) on the instanton path, so that G,(0) = Z(0, ¢,(0)) = Z(0, x), and using
the instanton equation ¢, = b(¢,) + ab,, we find as evolution equation for G,

G, = —écx taw,), G.(T)=1, (2.21)
where the matrix W, (t) is defined as the Hessian of S(t, x) evaluated along the characteristics
(i.e. the instanton path ¢,.(t)): W,(t) = VVS(t, ¢,(t)). In order to solve the equation (2.21) for
G, (t), we need an equation for W, (t). Differentiating the Hamilton-Jacobi equation (2.15) twice

with respect to x and evaluating the result at x = ¢,.(¢), it is easy to show that W, solves the Riccati
equation in (2.3). Therefore, by integrating (2.21), we deduce

1 /7
G,(0) = Z(0,x) = exp (5 / tr(aW(t)) dt) = R(T, x), (2.22)
0

which terminates the proof. O

2.2 | Expectations via Girsanov theorem

An alternative justification of the Riccati equation (2.3) can be given by introducing a stochas-
tic process that samples the Gaussian fluctuations around the instanton. This approach
opens up the possibility to alternatively compute the prefactor contribution as an expecta-
tions via sampling techniques. This result is well-known (see e.g. [24]) and can be phrased

as:

Proposition 2.2. The prefactor (2.6) satisfies
1 /" , 1 .
R(T,x) = E exp (5/ VV(b(¢x(1)),0x(1)) = ZiZ; dt + ZVVf(¢(T)) : ZTZT), (2.23)
0

where (¢, (t),0,(t)) are defined as in Proposition 2.1, Z, solves
dZ, = Vb(¢())Z,dt + cdW,, (2.24)
and the expectation E° is taken over realizations of (2.24) conditioned on Z, = 0.
Proof. LetY; € R" satisfy
dY¢ = ¢, () dt + \fea dw,, (2.25)

where ¢,(¢) is the instanton solution to (2.2). By invoking Girsanov’s theorem, we can write A.(x)
as

A(T,x) = E*MSexp (e7' f (Y3)) (2.26)
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SHARP ASYMPTOTIC ESTIMATES IN STOCHASTIC SYSTEMS WITH SMALL NOISE 2277

where M. is the Radon-Nikodym density

1
1\46 — —_—
r exp< 2e ~/()

Since Y¢ = ¢, (t) + y/eoW,, after expanding both b (Y¢) and f (Y?) in e, it is easy to see that the
leading order contribution is precisely given by

T

b —b(¥?)

Cdi- é/; (o7 (¢ — b (¥7)) ,th>>. (2.27)

T
exp (—% /O 16— b(@)IZ di + e—1f<¢x<T>)>

1 T
= exp (—g /0 (B8.(0), a0(0) dit + E‘lf(¢x(T))>

The next order vanishes due to the criticality of the minimizer. The first correction term in the
exponential is therefore O(e?), that is it gives the prefactor R(T, x), and reads

T T
R(T, x) = E exp (—%/ IVB( (U2 dt + %/ VV(b(,),0,) : U,U, dt
0 0

T
+ [ (TB@IUL U + LYV UTUT>, (228)
0

where U, = cW,. Noticing that the term

T T
exp(—% | v [ <Vb(¢x>Uz,dU[>a> 2.29)

is a itself Radon-Nikodym density for the change of measure from the random process Z; defined
in (2.24) to U, = oW,, we can therefore alternatively write the right hand-side of (2.28) as
in (2.23). O

Note that the formula (2.23) immediately tells us that the prefactor, defined as the limit as
¢ — 0 of the ratio between A.(T, x) and A*(T, x), is unity when both the drift b and the observ-
able f are linear. Note also that computing the expectation by using the change of measure from
the original process to one representing fluctuations around the instanton can be seen as an
approximated way (up to terms of order O(g)) of performing importance sampling via Monte-
Carlo method: how to do this importance sampling exactly is harder in general, as discussed for
example in [51].

Finally, note that another, more direct, proof of Proposition 2.2 goes as follows. It is easy to see
that

T
E0 exp <% / VV(b($),65)  ZiZydt + VVf(§(T)) : ZTZT> = v(0,0) (2.30)
0
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2278 | GRAFKE ET AL.

where v(t, z) solves
8,0+ (Vb($,)z, Vo) +2a : VVu+q(t,2)v =0, 0(T,2) = exp GVVf(qu(T)) : zz>, (2.31)
with
q(t,2) = SVV(b(@(D),6,) : zz. (232)

The solution of (2.31) can be expressed as

0(t,2) = Gu(Dexp (3(2. W (0)2) ), @33)
where W,(t) and G,.(¢) solve (2.3) and (2.21), respectively. Therefore v(0,0) = G,(0), consistent
with the statement in Proposition 2.1. In Appendix B we list a few more expressions that relate the
solution to Riccati equations like (2.3) to expectations over the solution of a linear SDE like (2.24).
These expressions are useful as they give a possible route to solve the Riccati equation (2.3)

via sampling, which is less accurate in general but simpler than solving the Riccati equation
itself.

2.3 | Expectations on the invariant measure

Given the observable f : R" — R with f € C2(R"), consider the expectation
B, = / exp (7' f(1)) p-(»)dy (2.34)
Rn

where p,(y) denotes the invariant density solution to (1.8). (2.34) can also be written as
B, = lim A/(T,x) (2.35)
T—-o

Assumption 1.1 guarantees that this limit exists for appropriate f (e.g. if | f| is bounded), and is
independent on x.

The next proposition shows how to calculate a sharp estimate for (2.34) using the procedure of
gMAM that allows us to compactify the physical time interval [0, o0) onto [0,1].

Proposition 2.3. Let (¢(s), 8(s)) solve the geometric instanton equations

A$' = abd + b($), $(0) = x,,
A8 = —(Vb($)Té,  6(1) = Vf($Q)),

(2.36)

with A = |b($)|4/|¢’ |4, and W (s) be the solution to the Riccati equation

AW = —VV(b($),6) — (Vb(@)TW - W(Vb($)) - WaW,  W(1)=VVf($1), (237
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integrated backwards in time from s = 1tos = 0 along the instanton $(s). Then the expectation (2.34)
satisfies

?i%g_i =1, (2.38)
where
1 1
B. = Rexp <£‘1 ( f(Q1)) — 5 / A71(s)(6(s), ab(s)) ds)>, (2.39)
0
with
1
R=exp <% / A1 (s)tr(aW (s)) ds). (2.40)
0

For more details about the geometric instanton equations we refer the reader to [29, 31, 34] as
well as Appendix A. Note that the parametrization of ¢ can be chosen arbitrarily: In the calcu-
lations, it is convenient to use normalized arc-length, that is impose that |¢/(s)|, = L, where the
constant L is the length of the instanton.

Proof. In order to speak meaningfully about the limit T — oo, we introduce a reparametrization
of time, t(s) : [0,1] - R*, to compactify the infinite “physical” time interval. In particular, we
choose t(s) such that

-1
d o
a(qﬁot):( /0 |¢|dt> : (2.41)

and denote ¢(s) = (pot)(s). We then have
" d dt _ .
¢ (S) = £(¢°I)(S) = $¢|t=t(s) =1 1(S)¢|[=[(S) (242)

where we introduced A(s) = ds/dt. As a consequence, ¢(s) fulfills the geometric instanton
equations (2.36). These equations can be used to show that, in the limit as T — oo, the initial
condition becomes irrelevant, and we can consider ¢(0) = x,.. First, from (1.2) we know that
Sr = %fOT |x — b(x)|?dt, so that in the limit T — oo, we must have % = b(x) for an infinite
amount of time if the action is to remain finite. As a consequence, for T — oo, the global minimizer
will decay towards the unique fixed point x.,, as all initial points are attracted towards it.

In order to find the global minimum, we can consider the two separate problems of first
approaching the fixed point, and subsequently leaving again. For this purpose, consider the
trajectory 7(t), and corresponding reparametrized trajectory 7(s) with 7 = 1%, s € [-1,1], and

i f -1, s
A(s) = %1(8) A or se€[-1,0] (2.43)
ha(s) = ¢(s) for se]0,1],
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2280 | GRAFKE ET AL.

where

Ay =b(H), M- =x, 7(0)=x,. (2.44)

It follows that %(s) corresponds to the trajectory that deterministically decays into the fixed point
x, starting from x, and then corresponds to the minimizer ¢, solution to equations (2.36) from
then on.

Since x, is the unique fixed point and all x € R" are attracted to it, such an 7#; exists and
is unique for all x. On the other hand, since (#;, ém) fulfill instanton equations on s € [—1, 0],
and /115{ = b(#;), we have that ém =0 and the corresponding action vanishes on the inter-
val s € [—1,0]. Therefore, the action associated with #(s) is equal to the action associated
with $(s). The problem of finding a global minimizer starting at x reduces to the problem of
solving (2.36).

Another consequence of taking the limit T — oo is that the Hamiltonian is zero along the
instanton, that is H($(s), 8(s)) = 0 Vs € [0,1]. As a result

a8 + b(P)I2 = (6,ad) + 2(8,b(¢)) + |b(P)I2 = 2H(,0) + |b(P)| = |b(P)I2. (2.45)

Since gz'SIt(S) = A(s)§’ (s), this allows us to deduce the following expression for A:

_ 1$C)la _ 106 +b@)la _ [b@)la

() = 1 i ¢
VT s s

(2.46)

This is the expression stated in the proposition.
It remains to be shown that the reparametrization of the Riccati equation, (2.37), is well posed.
To this end, notice that as s — 0, we have ¢(s) — x, and 8(s) — 0. Therefore,

AW = —(Vb(x,))"W — W(Vb(x,)) — WaW for 0<s<1, (2.47)
which leads to the conclusion that, since Vb(x,) is negative definite by definition, we have
W(s) - 0ass — 0. O
231 | Example: Gradient system
An easy example that can be computed explicitly is the case of diffusion in a potential landscape,

dX¢ = —VU(X®)dt + V2edW,, (2.48)
where X e R”, and U : R" - R is a potential with a unique minimum x,, such that
fR" e~¢ UM dx < oo for all £ > 0—we can set U(x,) = 0 without loss of generality. Given an

observable f : R" — R such that f(y) grows sufficiently slower than U(y) as |y| — oo, we want
to obtain a sharp estimate of the expectation

B. = / exp(eLF(1)p.(1)dy. (2.49)
Rn
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where p.(y) is the density of the invariant measure of (2.48), given by
pe(¥) = Z7 exp(—e'U(y))  with  Z = / exp(—e U (y))dy. (2.50)
Rn

Combining (2.49) and (2.50) we see that B, is given by

Jen €D (f () — UO)))dy
B, = , (2.51)
Joen €XP(—€"1U(y))dy

and both integrals can be estimated by Laplace’s method. The result is that lim,_,, B, /B, = 1 with
B, given by

B = < det H(x,)

1/2
_1 _
det(H(xf)—va(xf))> exp (7 (fx) = UGp)), (2.52)

where H(x) = VVU(x) is the Hessian of the potential and the point x; € R" is the solution of
the optimization problem

Xy = argl[;}in U = ). (2.53)
yeR"

We will now show that Proposition 2.3 yields the same result.
First, we know explicitly that the instanton fulfills

A$(s) = —VU@(s)) and 6(s) = VU(G(s)), (2.54)
where primes again denote derivatives with respect to arc-length. Further, the endpoints of the
instanton are x, = $(0) and x = $(1): the first is by definition, and the second since the final
condition for the equation for 8(s) gives

6(1) = V(1)) = VU($)), (2.55)

where the second equality follows from the second equation in (2.54). Since (2.55) is also the Euler-

~

Lagrange equation for the minimization problem in (2.53), we deduce x; = ¢(1). Therefore, using

A71s)(6,6) = (VU$()), ¢/ () = %VU@(S)) (2.56)

we deduce that the exponential term in the expectation is given by

1
exp <£_1<f(xf) - / A71(9)16(s)|? ds>> =exp (€71 (f(xp) = U(p))). (2.57)
0

Second, we have

VV(b,8) = —VVVU(HVU(P) = —VVVU($H)A = 1H . (2.58)
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This means that the Riccati equation (2.37) is here given by
AW = AH' + HW + WH + 2W?2, W) = VV f(xy). (2.59)
Let us look for a solution of the form
W =AD"1D/, (2.60)
for a matrix D € R™™", with D(1) = Id, and A(1)D'(1) = VV f(xy) to fulfill the boundary con-

ditions for W. Equation (2.60) can be written as D’ = A~'DW which, from Liouville’s formula,
W (s) = A(s)¥(s) implies det W(s) = det ¥(0) exp( fos trA(r)dr) for A, ¥ € R™", yields

1
det D(0) = exp < / 3,46 ds). (2.61)
0
From Equation (2.60) it also follows that
AW' = AD~Y(AD"Y — 2°D~'D'D~1D/, (2.62)
which we can use in conjunction with the Riccati equation to get
A(AD"Y = A(DH)' + A(DH — AD")D~'D’ (2.63)

or equivalently

AAD' — DH)Y = —(AD' — DH)W. (2.64)

Using again Liouville’s formula (this time for ¥ = AD’ — DH) yields the relation

1
det (A(0)D’(0) — D(0)H(x,)) = det (A(1)D’(1) — D()H(x;)) exp <— / A=Y (s)trW(s) ds>,
0
(2.65)

into which we can insert the boundary conditions 2(1)D’(1) = VV f(x 1), D(1) = Id and 4(0) = 0,
as well as det D(0) from Equation (2.61) to obtain

1
det H(x,) = det (H(x) — VV f(xs)) exp (—2/ O340 ds). (2.66)
0

This gives eventually the prefactor contribution,

1 1/2
5 _ . N _ det H(x,)
R=exp (/0 A7 ()W (s) ds> <det (H(xf) — VVf(xf)) ) . (2.67)

Therefore we recover B, given in (2.52), as needed.
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Note that the above results can be generalized to a diffusion in a potential landscape with
mobility matrix, that is systems of the form

dX = —MVUX)dt + V2eM/2 dw, (2.68)
where M € R™" is the symmetric, positive definite mobility matrix, and M'/> € R™" is a sym-
metric matrix with M'/2M'/2 = M. The procedure above can be repeated by replacing W with
M~Y2WM~1/2 and H with M~'/2HM~1/2 The result (2.52) is unchanged.

3 | PROBABILITY DENSITIES

3.1 | Probability densities at finite time

Here we estimate the probability density function of X} in the limit of small €. Denote this density
by pX(t,y), so that, given any suitable F : R" - R,

/ F(y)p¥ (T, y)dx = E*F (X} (€AY
Rn

The next proposition shows how to get a sharp estimate of p)(¢,y) at any y by purely local
considerations:

Proposition 3.1. Let (¢, ,(t), 0, ,(t)) solve the instanton equations

¢x,y = aex,y + b(qu,y): ¢x,y(0) =X,

6-x,y = _(Vb(¢x,y))Te: ¢x,y(T) =),

(3.2)

and let Q. ,(t) be the solution to the forward Riccati equation

Qx,y = Qx,ny,ny,y + Qx,y(Vb(¢x,y))T + (Vb(¢x,y))Qx,y t+a, Qx,y(o) =0. (3.3)

where we denote

Kx,y(t) = Vv(b(¢x,y(t))s ex,y(t»’ (3~4)

In addition let 1,,(T,y) be defined as

1 T
L) =5 [ 0.0t @) >0 (33)
0

Then the probability density function p} (T, y) of satisfies

PE(T,y)
im — =
=0 oz (T, y)

1 pointwise in y, (3.6)
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2284 | GRAFKE ET AL.

where pX(T,y) is given by

T
ﬁ;‘(T,y):(2ms>—"/2|deth,y(T)|—1/2exp<§ / tr(Kx,y(r)Qx,y(z»dr—ziglx(T,y)) (37)
0

Remark 3.1. Equation (3.3) for Q, ) is structurally equivalent to the equation (2.3) for W, , = Q;}y
except for the boundary conditions. The boundary conditions necessitate solving Q, ,, forward
in time. Notably, this direction of integration is also the one in which the equation for Q, ) is
numerically stable, as can be intuited for example by considering the Ornstein-Uhlenbeck process
b(x) = —yx, for y > 0 (see Section 3.1.1 below). This feature will become even more apparent in
the context of stochastic partial differential equations, see the discussion after Proposition 6.1 in
Section 6.

Remark 3.2. In Appendix B we discuss how to solve (3.3) via sampling of the solution of a nonlinear
(in the sense of McKean) SDE.

Intuitively, the local estimation of of p} (¢, y) implied by Proposition 3.1 is possible because in the
limite — 0, this probability density is dominated by the instanton, and the prefactor contributions
can again be estimated from the Gaussian fluctuations around this instanton. More concretely, we
will see in the proof of Proposition 3.1 below (see (3.23)) that Q, ,(T) is the inverse of the Hessian
of the action I,.(T, y), that is

Qx,y(T) = [Vyvylx(T’y)]_l (3.8)

This implies that we can also write (3.7) as

T
p;‘(T,y>=(zns>-"/2|detvyvyfxT,y)P/Zexp(% / tr(Kx,y(t)Qx,y(r))dr—%w,y)). (3.9)
0

This form shows that 57 (T, y) is normalized in the limit as ¢ — 0, a result we state as

Lemma 3.2. The density 57 (T, y) defined in (3.7) is asymptotically normalized, that is

lim pX(T,y)dy =1 (3.10)

e—0 R

Proof. Starting from expression (3.9) for gX(T,y), which as we show in the proof of Proposi-
tion 3.1 is equivalent to (3.7), let us evaluate the integral fRn (T, y)dy by Laplace’s method. To
this end, we must first identify the point where I..(T, y) is minimal. It is easy to see that this point is
y = y,(T), where y,(¢) is the solution to the ODE y, = b(y,), ¥,(0) = x. Indeed, y,(¢) is also the
instanton obtained when 6, , (y(t) = 0, and from (3.5) it gives I,.(T, y(T)) = 0, which implies
that the minimum at y, is necessarily a global minimum. Similarly, 6, ,, (7)(¢) = 0 implies that
Ky y.(r)(t) = 0. Therefore

lim / pX(T, y)dy = lim(27e)™"/2| det V,V , I (T, y,(T))|*/2 /
e—=0 Rn e—=0

1
i e (—Z—EIX(T,y)>dy

= @) /2| det ¥,V I(T. y(T))] /2 /

exp <—%(u, V, VI (T, yx(T))u)>du =131
Rn
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where to get the second equality we used u = (z — y,(T))/ \/E as new integration variable and
only keep the zeroth order term in € that contributes to the limit. O

In the proof of this lemma, only the behavior of 5f(T,y) near its maximum at
¥(T) matters, but let us stress that the expression for 5X(T,y) given in (3.7) offers a
much finer approximation of this density valid arbitrary far away from y,(T). This will
allow us to use gf(T,y) to estimate expectations dominated by tail events, as shown in
Section 3.3.

Proof of Proposition 3.1. Consider the expectation
CX(m) = E*exp(e ' (n,X3)),  n€R™ (3.12)

We can alternatively express this expectation as
cson = [ e (7 .)pXT )y, (13)
Rn

We will show that g¥(T, y) allows us to estimate this expectation for all 7 € R¢. Assuming that
pX(T,y) is of the form

pX(T,y) = @me) ™2 (RF(y) + Oe)) exp(—e (T, y)), (314)
we can evaluate the integral in (3.13) by Laplace’s method to obtain
CX(m) = (Ry(») + O(e)) | det V),V I (T, y)| /2 exp(e (1, y) = LT, y)), (3.15)
where

y = argmax({n, z) — I.(T, 2)). (3.16)

zeRn

From Proposition 2.1 we also know that

T T
Cxn) = (exp (% / tr(awxm)dr) + c9<s)> exp (s—1<<n,¢xm> -3 [ tenat dr))
0 0

(3.17)

where (¢,.(t), 0, (t)) solve the instanton equations (2.2) and W (¢) solves the Riccati equation (2.3);
note that, since f(x) = (n,x) here, the boundary conditions at t = T reduce to 6,.(T) = 5 and
W,(T) = 0. Comparison between (3.15) and (3.17) implies that ¢,(T) = y, that is the instanton
equations for (¢,(£),0,(t)) = (py,, (1), 65 (1)) reduce to the form in (3.2). In addition, I(T,y) is
given by (3.5) and

T
RY(y) = | det VyVny(T,y)ll/2 exp (%/ tr(aW (1)) dt). (3.18)
0
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Using Proposition C.1 with K(t) = K, ,(¢), we can identify W(t) = W, (t), and Q(t) = Q, ,(¢) to
deduce that

T T

/ tr(aW . (£))dt = / tr(K . ()Qy, ())dt (3.19)
0 0

since W,(T) = 0 and Q, ,(0) = 0 and so det(Id — W (T)Q,,,(T)) = det(Id — W,(0)Q,,,(0)) = 1.
Therefore, to finish the proof it remains to evaluate det[V,V,I,(T, y)]. To this end, notice first
that, since I,,(T, y) is given by (3.5), it satisfies

. 1 _

01 (t,y) + H(y,V,I,(t,y)) =0, }lgé th(t,y) = S{(y = x),a 1y —x)). (3.20)
Indeed, the solution to this equation can be expressed as in (3.5), and the boundary condition
follows from the fact that, for small T, to leading order the solution to the instanton equations (3.2)
reads

¢ry(O) =x+ @ —x)t/T +O(T), 0xy(t) = a~'(y —x)/T + O(T), telo,T]. (3.21)

This implies that

T
LT,y =3 / (8xy(D), a0y (O) dt = STy~ x),a” (p ~ 1)) +0(1) for T <1, (3.22)
0
consistent with the boundary condition in (3.20). Therefore, if we introduce

[Vy Vny(ta ¢x,y(t))]_1 = Qx,y(t) (3.23)
so that V,V,I(T,y) = Q;yly(T ), then an equation for Q, ,(¢) can be derived by (i) differentiating

(3.20) twice with respect to y and evaluating the result at y = ¢, ,,(¢) to obtain an equation for

V, V,L(¢, ¢,(t)), and (ii) using this equation to derive one for Q, ,,(¢). The result is the Riccati

equation (3.3), in which the boundary condition follows from lim;_,,tV,V I, (t,y) = %a‘l, that
is [V, V,L,(6,1)] ™! = O(t) and hence Qs (t) = [V, V, [ (t, ¢, (D] = O(0). O
3.1.1 | Example: The one-dimensional Ornstein-Uhlenbeck process
Consider Equation (1.1) with n = 1, 0 = 1, and b(x) = —x, that is

dX¢ = —XSdt + \/edW,, X =x. (3.24)

This one-dimensional and linear case is the easiest possible non-trivial scenario, and in particular
we know explicitly that

(T —,/—1 —'y_xe_tlz 3.25
e (T,y)= T — e exp T e ) (3.25)
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We want to compare this analytical result to the approximation g} (T, y) given in Equation (3.7).
In fact it turns out that g} (T, y) of proposition 3.1 is exact in this case, since there is no higher
order contribution in ¢ in the prefactor. To show this, we have the instanton equations

p=-4+6, 4O =x,

_ (3.26)
6 = e; ¢(T) = y’
which are solved by
-T
_y—xe t~T _ ,—t-T
¢() = w(e —etT)
(3.27)
2(y—xeT) 7
== ¢

The exponential estimate therefore yields

T T2
exp <_2lg /0 62(t)dt> = exp (—%) (3.28)

For the prefactor, we have the Riccati equation

Q=-20+1, Q(0) =0, (3.29)
which is solved by
Q) = 31 -, (330)
Therefore
1 -1/2
QD72 = <§(1 - e‘”)) : (3.31)

and since VVb(x) = 0 in this example, we obtain
2
T |y — x|
55(T. ) = S L), 3.32
which is precisely the analytical result.

3.2 | Probability density of the invariant measure

We can generalize Proposition 3.1 to calculate the probability density of the invariant measure,
using again the procedure of gMAM to compactify physical time:
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Proposition 3.3. Let (gfvy (s), 8,(s)) solve the geometric instanton equations

A$), = ad, + b($)), $,(0) = x,,
) . ) (3.33)
/16; = —(Vb(qby))TGy, (1) =y.
where A = |aéy + b($y)|/|¢; |. In addition let Q,, be the solution to the Lyapunov equation
0= Qu(Vb(x. )" + (Vb(x,))Q. +a, (3.34)
and let Qy (s) be the solution to the forward Riccati equation
AQA; = QyKyQy + Qy(Vb(d;y))T + (Vb(qsy))éy +a, Qy(o) =Q., (3.35)
where we denote
Ry(s) = VV(b(y (). 6,(5)). (3.36)
Finally, let I(y) be given by
1 [ 5 R
10) = 5 /0 A71(s)(B,(s), by (s))ds, (3.37)
Then the probability density function p.(y) of satisfies
. p:(y)
lim — =1, (3.38)
=0 pc(y)

in which p.(y) is given by either one of the two equivalent expressions

1
pe(y) = (27e) /%) det Q, (D[ /2 exp (% | A 6,0, ds - Zigf(w)
0

1
= (27e) ™| det Q.| exp <— [ (V- b, + xtay ) ) ds - Zigny)).
0
(3.39)

The function I(y) defined in (3.37) is important: it is the quasipotential of y with respect to x,.
Interestingly Q,(s) = [VVI] (qlAvy(s))]_1 and so (3.7) can also be written as

1
p(v) = (2e) /2| det VVI)| /2 exp (% | A 6,0, ds - %f(y))
0

1
= (27e) 2| det VVI(x,)|'/? exp (— / ALy, s)ds — zigf(y)) (3.40)
0
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where we defined
L(s,y) = V- by () + 5tr(aV VI, (5))) (3.41)

The second expression in (3.40) is consistent with the one derived in [9]. Note that we can find
yet another illuminating form to write (3.40) by use of the transverse decomposition that decom-
poses the drift b(x) into a gradient of the quasipotential, and a transverse portion I(x), defined
as

I(x) = b(x) + %an(x) with  (VI(x),l(x)) = 0. (3.42)

Such a decomposition is guaranteed to exist under the assumption that the quasipotential
is continuously differentiable [24, chap. 3.4]. In terms of I(x) (3.41) reduces to L(s,y) =V -
l(<;l3y(s)). Note that for a reversible diffusion, that is a gradient flow, we have U(x) = 2[(x),
and so I(x) =0 and L(s,y) vanishes. More generally, in flows that have V -I(x) =0, the
invariant measure remains the Gibbs-measure, p.(y) = (277¢)~"/2| det VVI(x,)|/? exp(—zigf o)),

leading the authors of [9] to call the quantity exp(— /01 A71(s)V - I(x) ds) the non-Gibbsianness
of the flow. It is important to remark, though, that this simplification is only available
in the infinite time case on the invariant measure, as for finite times the correspond-
ing quantity V,V,I(¢,y) becomes singular at t =0. Further, since V-1 is generally not
available explicitly, the first form of (3.40) is the one most easily used for numerical
computation.

We can use (3.40) to show that lim,_,, fR” p:(y)dy =1, that is the equivalent of Lemma 3.2
holds in the infinite time limit using the geometric expressions above. Basically, this is because the
dominating point in this integral is y = x,,, for which éx* (s) =0and Qx* () =Q, = VVIl(x,).
This also shows that, O(\/E) away from x,, p.(¥) can be approximated by the Gaussian density
with mean x, and covariance €Q,, given by

(2me) /2| det Q.| "2 exp (—%((y -x,),Q: (v — x*)>>, (3.43)

and this density is normalized. However, for locations y that are O(1) away from x,,, this Gaussian
approximation is no longer valid, and the full expression (3.39) must be used as estimate of the
probability density on the invariant measure, as shown in Section 3.3.

Proof of Proposition 3.3. To get the first equality in (3.39), we can mimic the steps in the proof of
Proposition 3.1. The only difference is that we need to show the validity of the boundary conditions
for Q(0) given in equation (3.34). It was established before that, regardless of the initial conditions
X, the instanton 7(s) first decays into the unique fixed point x,, on s € [—1,0]. For s = 0, we then
have ¢(0) = x,,6(0) = 0, and 1(0) = |b(x,)|, /1¢'(0)], = 0, so that we deduce from the arc-length
reparametrization of Equation (3.3), given in (3.35), that

0= Q(O)(Vb(x.)" + (Vb(x.)Q(0) + a. (3.44)

This shows that Qy(O) = Q, with Q, solution to (3.34).
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To get the second equality in (3.39), start from (3.35) for Qy and use Liouville’s formula to deduce
that

1 10gdetQ, = tr[Q;'(QyR,Qy + Oy (VD)) + (Vb0 +a)]
= tr(K,Q,) + 2V - b + tr(aQ, ") (3.45)

Integrating this equation on s € [0, 1] using Qy(O) = Q, gives

1
detQ,(1) = detQ, exp (/ A7) (R ()Q,) + 2V - b (s)) + tr(aQ;l))) (3.46)
0

that is
s
| detQ,(1)|~/ exp <§ /0 rl(s)tr(1<y<s)oy)>
1
= | det Q.| exp <— / A‘I(S)(V - b($y(s) + %tr(aéy_l)>> (3.47)
0
This shows that the two expressions for g.(y) in (3.39) are identical. O

Remark 3.3. Note that this is consistent with the intuitive interpretation that Q quantifies the
covariance of fluctuations around the instanton. For T — oo the fluctuations will “thermalize”
around the fixed point, which corresponds to considering the linearized (Ornstein-Uhlenbeck)
dynamics around x,, the covariance of which solves the Lyapunov equation (3.34).

Remark 3.4. We seemingly encounter a practical problem with the forward Riccati equation (3.35)
ats = 0, as also discussed in [10]: Since the instanton remains at the fixed-point x,, for an infinite
amount of time, we have 1(0) = 0, as well as éy(O) =0, and thus the forward Riccati equa-
tion (3.35) reads 0 = 0 at s = 0—a similar issue arises with the equation for qsy in (3.33) and is
discussed in Appendix A. This problem is only apparent however and the limit of va (s)ass >0
can be straightforwardly obtained by writing (3.35) as

Q) = 171(Q,R,Q, + 0, (Vb)) + (VB(E,))D, + a), (3.48)

and sending s — 0 at both sides using 'Hopital rule to compute the limit of the right hand side.
Accounting for the fact that Qy(O) = Q, and Ky(O) = 0 since éy(O) = 0, the result is the following
equation for Q},(0):

Q(0) = [ O)17 Qb 0)Q. + QOB + (Vb(x.)Q(O)
+QuUVVB(IFO)T + (VWb )E(O)Q. ). (3.49)

All the quantities in this equation except Q;(O) are available from the solution of the geometric
instanton equation (3.33) as well as the Lyapunov equation (3.34) for Q,., and (3.49) can also be

:sdny) SUONIPUOD) pUE S A 98 “[SZ02/Z0/9T] U0 ATRIqIT AUIUQ) KA[IAN “PUBIS] USIEIS JO 9891100 Aq L2122 2dd/200101/10p/w00" Koy Keaquiautiuoy:sdiny woxy papro[usod *b 20z “ZIS0L60T

sty woo Kapm K

ASUIDI SUOWWOY) AATEAI) d[qear[dde Yy Aq patIaA0F a1k SONIE () 13N Jo ST 10] AIRIGIT dUIUQ KI[IA UO (U0



SHARP ASYMPTOTIC ESTIMATES IN STOCHASTIC SYSTEMS WITH SMALL NOISE 2291

written as a Lyapunov equation
€CQ,(0)+Q,(0)C" = &, (3.50)
where we defined

(3.51)

Since A/(0) > 0 and —Vb(x,) is positive-definite as x, is a stable fixed point of X = b(x) by
assumption, the matrix € is positive-definite and invertible, meaning that (3.50) has a unique
solution Q/,(0). Once Q/,(0) has been calculated, one can initialize the integration of Q,(s) with
arc-length stepsize As > 0 using for example

Qy(As) = Q. + AsQ;,(0) + O(As?). (3.52)

For the examples presented in Sections 3.2.2 or 4.2.1, it turns out that VVb(x,) = 0 and thus
Q;,(O) = 0. Therefore, approximating Qy(As) by Q. is correct to O(As?), which is precise enough
for the numerical scheme we employ, and is therefore what we used in practice. However, we note
that it is straighforward to go to higher order if necessary: for example, the derivation to obtain
Q}/(0) when Q},(0) = 0is given in appendix A.2.

3.21 | Example: Invariant measure of gradient diffusions

Similar to the expectations for gradient diffusion, discussed in Section 2.3.1, we can also derive
a formula for the small ¢ approximation of the invariant density of the gradient diffusion
process (2.48). The result is known to be

p.(y) = (2me)/2(det H(x,))"/* exp(—e"LU(y)), (3.53)

where the only approximation made is on the prefactor Z, that can be evaluated by Laplace’s
method (using U(x,) = 0): Z, = (27e)"/?((det H(x,)) /% + O(¢)). Let us show that the small ¢
approximation of Proposition 3.3 recovers this result, including the normalization factor.

First, the instanton contribution yields

/195;1 = 2éy - VU(ng), qu(o) = Xy
) A R (3.54)
26}, = H($,)8,, ¢y(1) =y,
which is solved by
Ag}(s) = VU($,(5)) = 6,,(s) (3.55)

so that the exponential large deviation contribution is given by

1 R 1 R R
1) = / A58, 12(s) ds = / (VU@G(). () ds = UG, (3.56)
0 0
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which recovers the exponential part of g.(y). If we additionally notice that for a gradient system
we know explicitly the transverse decomposition to be trivial, [(x) = 0 and thus L(s,y) = 0, the
second form of (3.39) in proposition 3.3 immediately yields the limiting density of (3.53).
It is instructive to recover the same result by explicitly solving the Riccati equation. Notice that
Ky(s) = VV(b(qSy(s), éy(s)) = —A(s)H’ (<f>y(s)), so that forward Riccati equation (3.35) reduces to
AQ}, = -2Q,H'Q, —HQ, — Q,H + 21d, Q,(0) = Q.. (3.57)
We can directly solve the Lyapunov equation (3.34) for Q,,,
Q. = Q,(0) = H(x,)™". (3.58)
Given this fact, note that Equation (3.57) is solved by
Qy(s) = H'(¢y(s)). (3.59)
Therefore, we can read off

| detQ,(1)|1/2 = | det H(y))| /2. (3.60)

and

1
exp(% /0 A‘l(s)tr(Ky(s)Qy(s))ds>

1 A 1/2 1/2
1 . . detQ,,(0) detH(y)
=exp| —= [ tr(H Y ,(s)DH (p,(s))ds | = |——| =|—— (3.61)
p ( 2 /0 2 Py detQ,(1) detH,
Combining these results we indeed recover exactly the limiting density given in (3.53).
3.2.2 | Example: Invariant measure of a nonlinear, irreversible process in R?

For all above examples, analytical results were available from case-specific calculations, since the
systems are very simple. The easiest example of a system where no analytical results can be easily
derived is a system which is nonlinear, and further the drift is not given by a gradient of a potential.
Since the latter is always the case in 1D, we need to consider a state space of at least dimension
two. In this case, in order to compute expectations, probability densities, or probabilities with
our approach, we need to solve the corresponding equations, both instanton equation and Riccati
equation, by numerical means.
As a concrete example, consider the non-gradient drift given by

b(x1,x,) = (—ax; — yx; + Bxy, —ax, — yx3 — fx;) . (3.62)

For positive a,y € R, this drift corresponds to a nonlinear attractive force towards the fixed-
point x,, = (0,0). The parameter § # 0 adds a swirl on the drift, so that the total dynamics are
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/ // 1072 e e, Instanton + Riccati
1.5 102 s .. . ® Monte-Carlo experiment
10_% ’ //// ;10—4 '.0.0.
——— a8 4 s
0.5 % % 10
0.0 %/ g
= =
= | 3
-1.0 / & % Los
-15 1 /
// \'\\\\\\\\\\\\\\ 1.00 0.0 0.5 1.0 1.5 2.0

-1.5 -0.5 0.5

FIGURE 1 Left: Instanton (solid curve) connecting the fixed point x,, = (0, 0) to the point (1,1). The shaded
contours indicate the invariant measure, obtained from sampling the process for long times. The flow field
depicts the drift b(x). Here, « = 0.5, 8 = 1, ¥ = 1, ¢ = 0.25. Top right: Comparison of the pdf p.((1,1)) between
the computation via proposition 3.3 (light blue solid) and random sampling of the stochastic process (dark blue

dots) for varying y € [0, 2]. The pdf is reproduced at every point from instanton and fluctuations, including its

normalization factor. Bottom right: Prefactor of the invariant density, p (y)ezs o

the nonlinearity parameter y, obtained by numerically integrating the Riccati equation along the instanton using
proposition 3.3. Clearly, the strength of the nonlinearity influences the prefactor. The other parameters are again
a=05p8=1.

,aty = (1,1) as a function of

no longer gradient. The behavior of this drift can be seen by the streamlines in Figure 1 (left).
Note in particular that the system is not rotationally symmetric in the presence of cubic terms
(i.e.y #0).

In order to estimate numerically the density 5°(y) defined in (3.39), we need to:

(1) compute the instanton cﬁy (s) connecting (0,0) to y, as well as the parametrization A(s), using
gMAM; and
(2) solve the forward Riccati equation (3.35).

The results of this procedure are shown in Figure 1. For a given arbitrary endpoint (1,1), we
can obtain the invariant density by sampling the process for long times, and approximating the
density by a normalized histogram. The result is depicted as shaded contours on the left. Note
that for this procedure, not only do we need many samples hitting close to the point (1,1), but
furthermore statistics everywhere else in state space, because these determine the normalization
constant. The instanton connecting (0,0) to (1,1) is depicted here as a solid line, while the drift is
given by the flowlines.

Le-1p
We now want to establish how the prefactor contribution, 55(y)e2* 10 ), changes when chang-
ing the parameter y, which determines the strength of the nonlinear term. In particular, for the

linear case y = 0, we know that g° (y)e AR =1V y € R?, since the invariant measure is Gaus-

sian, and its covariance can be computed by solving a Lyapunov equation. For the nonlinear case,
y > 0, this is no longer possible, and we need to resort to numerical results instead. In the right
panel of Figure 1 we show the computation of the prefactor through proposition 3.3, computing the

sdNy) SUONIpUOD) pue suLd, ) 998 “[Z0T/T0/9T) U0 A1eIqrT uIUQ AdlIAN “PUVIS SIS JO 9321100 Aq £L 1T /20010 1/10p/w0o a1 resquiautjuoy/:sdiy wioxy papeofumoq “¢ 470z ‘T1€0L601

19)/09" K[ TM”,

25ULDI] SUOWILIO)) 2ANEAL) dqeatdde oy £q PLIGAOS I SA[ILIE YO 1SN JO Sa[NI 0] AILIQLT AUIUQ) S[LAN UO (SUONY



2294 | GRAFKE ET AL.

instanton and solving the Riccati equation. For y = 0, this reproduces the known linear result, but
we obtain values for finite values of y as well. These results are in agreement with results from
sampling the whole process, and looking at the normalized histogram at the point (1,1) for dif-
ferent y € [0,2]. The numerical parameters here are ¢ = 0.5,8 = 1,y € [0,2],¢ = 0.25, and the
histogram binning is done with square bins of side-lengths Ax = 0.02 and with 107 samples per
value of y.

3.3 | Calculation of expectations revisited

We can use Proposition 3.1 to give an expression alternative to that in Proposition 2.1 for finite-time
expectations:

Proposition 3.4. Let (¢, (t), 6,(t)) solve the instanton equations in (2.2), and Q,(t) be the solution
to the forward Riccati equation

Qx = QxK,Qy + Qx(Vb(¢x))T + (Vb(¢x))Qx +a, Qx(o) =0, (3.63)
where we denote K, .(t) = VV{(b(¢,(t)),6,(t)). Then the factor R(T, x) defined in (2.6) of Proposi-

tion 2.1 can also be expressed as

T
R(T, %) = | det(ld = VV f($T)QT)]/? exp (% JAREORX0) dr>. (364

0

Proof. We can arrive at expression (3.64) for R(T,x) in two ways. We can use Propo-
sition C.1 with W,(t) solution to (2.3) and Q,(t) solution to (3.63) to deduce from (C.2)
that

1" 17
| det(1d — VV f($(T)Qx (T2 exp (5 JREEORX0) dt> = exp (5 [ taw. dt)
0 0
(3.65)

The left hand side is (3.64) and the right hand side is (2.6), showing that these two equations con-
tain identical expressions. Alternatively, we can evaluate

/ exp(e ! f(x))p°(T, x)dx (3.66)
Rn

by Laplace’s method, using the expression in (3.7) for 5°(T, x). This calculation show that this inte-
gral is asymptotically equivalent to A*(T, x) in (2.5) with R(T, x) given by (3.64) instead of (3.64),
thereby establishing again that these two equations give the same R(T, x) since this factor is
independent on €. O

Similarly, we can use Proposition 3.3 to give an expression alternative to that in Proposition 2.3
for expectations on the invariant measure:
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Proposition 3.5. Let (§(s), (s)) solve the instanton equations in (2.36), and Q(s) be the solution to
the forward Riccati equation

A$)Q' = QRQ + Q(Vb($)" + (Vb($)Q + a, Q(0) = Q.. (3.67)
where Q,, solves (3.34) and we denote K(s) = VV(b($(s)), é(s)). Then the factor R defined in (2.40)

of Proposition 2.3, can also be expressed as

1
R = | det(Jd — VV f($(1))O(1)|'/? exp (% / 171($)tr(R()Q(s)) ds>. (3.68)
0

The proof of this proposition is similar to that of Proposition 3.4.

4 | PROBABILITIES
4.1 | Probabilities at finite time

Having access to pointwise estimates of the probability density allows us to estimate probabilities
by integration. For example, let f : R" — R be some observable, and assume we want to compute
the probability that f(X7.) exceeds some value a € R. This probability can be expressed as

PX(F(XE) > a) = / ey 1)
f)=a

and calculating for various values of a gives the complementary cumulative distribution function
(aka tail distribution) of the random variable f (X;). For concreteness, we will focus on the cal-
culation of this tail probability for one value of a which, without loss of generality, we can set to
zero. In this case, (4.1) can also be interpreted as the probability that the stochastic process (1.1)
hits the set

A={zeR"|f(z) 20}, (4.2)

attime t = T. This is a problem interesting in its own right, and we will denote this probability as

PAT,x) =P* (X5 € A) = / oX(T,y)dy. (4.3)
A

To make the problem interesting, we will work under:

Assumption 4.1. The function f : R” - Risin C?, x & A (i.e. f(x) < 0), and the vector field b
points outward A everywhere on 0A (i.e. (Vf(z),b(z)) <0V z € A = {z € R"|f(z) = 0}).

This assumption implies that the event X ; isnoise-driven, and as a result P?(T, x) — 0ase — 0,
which is the nontrivial case. We also need
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2296 | GRAFKE ET AL.

Assumption 4.2. The point on 0 A with minimal I (T, z),

T
y= argmin/ (0 2(1), aby - (1)) dt (4.4)
0

zE0A

is unique, and so is the instanton leading to it. In addition y is not a critical point of f.

Intuitively we demand that the set A does not admit multiple distinct points that can be reached
by competing instantons of identical action. Then, we have:

Proposition 4.3. Let (¢, (1), 0, (1)) solve the instanton equations in (2.2) with y specified as

T
y = argmin / (6(0), 0B (1)) d, 3)
z€0A 0

and let Q,. ,(t) solve the forward Riccati equation in (3.3). Let also F(T, x) and V(T x) be defined as

F(T,x) = Id - |ex,y(T)| |Vf(y)|_1Qx,y(T)VVf(y),
1 T
V(T,x) = (8, (T), Quy ()6, (T)) "/ exp <§/ tr(Ky y (0Qx (1) dl‘>, (4.6)
0

where K, ,(t) = VV(b(¢y (1)), 6y ,(t)). Finally denote by i = V f(y)/|V f (y)| the inward pointing
surface normal of A at y. Then the probability P2(T, x) satisfies

PA(T,x) .

im — = 4.7)
e—0 P?(T, X)

in which

] B A, F(T, x)n) \ /> 1 [
PA(T,x) = 2m) 1/251/2<%> V(T, x) exp (—2—8/0 (Ox,y(0), a0, () dt ). (4.8)

In addition, the unit normal /i can be expressed as i = 6, ,(T)/|6y ,(T)|.
The situation of Proposition 4.3 is depicted in Figure 2.

Remark 4.1. As we will see in the proof, the factor involving F(T, x) describes the effect of the
geometry (specifically, the curvature) of the set A around the maximum likelihood hitting point
y: If the set is planar, then VV f(y) = 0 and the factor evaluates to unity. Equivalently, this fac-
tor disappears for linear observables f. As will also be clear from the proof, in the definition of
F(T,x) in (4.6) we can replace |V f(»)| "' VV f(y) by VA(y), that is in (4.8) we can replace F(T, x)
with

F (T, x) = 1d — [85,,(T)|Qx y(T)VA(y) (4.9)
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A:{Z|Z” Z_é<ZL7 %ZL>}

n = Vfy)/IVf(y)l

A={z|f(z) 20}

R™ y+ QF

FIGURE 2 Schematic representation of the situation in proposition 4.3. To obtain the probability to hit the
set A, we replace the integral of the density over A with an integral over the paraboloid A, which is tangential A
at the point of maximum likelihood y and shares its curvature.

This is because VA = |Vf|7IVVf + V)| A(VVfA)! and the extra factor |V f|1A(VV fA)!
does not contribute to the ratio (A, F(T, x)i)| det F(T, x)|~! in (4.8). This shows that this expres-
sion is intrinsic to the set A, that is it does not depend on the way we parametrize its boundary
by the zero level-set of f, as it should be. For computational purposes, using the parametrized
version in (4.6) is more convenient, however.

Proof. Let us evaluate the integral in (4.3) by Laplace’s method using the ansatz (3.14) for p} (T, y).
To this end notice that the point y specified in (4.5) is also given by

y =argminI(T,z) € 4A. (4.10)
zEGA

Notice also that 6, (T) = V[ (T,y), and that & = 6, ,(T)/|6,,(T)| is the inward pointing unit
normal to A at y. Therefore, to perform the integral

PA(T,x) = / £3(T,z) dz, (4.11)
A
we split the integration variable into components parallel to 72 and perpendicular to 7, as
z—y=¢ezi+ \/EZJ_, (4.12)
where zy € Rand z, € Qi with

Q; ={zeR?: (h,z) =0} (4.13)
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2298 | GRAFKE ET AL.

For any z € A we have f(z) > 0. Further using f(y) = 0, we can expand f around y to obtain

. €
F@) = f0) + Velzr, V) + ez (A, V() + 5(zL, VVf(zL) + O = 0.
Since (z,, Vf(¥)) = 0 by definition, we have for points in A around y that

VViG)
IV

1
zZ) 2 —5<ZJ_, Zy).

Effectively, to the relevant order in €, A can be approximated by a paraboloid
~ 1 —
A={z€eR"z) 2 = (21, V) WV f»)z.)}

where VV f(y)/|Vf(y)] is the (normalized) curvature of the set A at y.
We can now evaluate the integral in (4.3) by Laplace’s method,

1
PA(T, x) = 2me) "/ ?R.(y) exp(—e L (T, y)) e"~/2 / ¢ 2 TR
ot

n

e8]

><,s/1 e_ZHWIx(T’y)'dz” dz;
_E<Z_L’|Vf(y)|_lvvf(Y)ZJ_>

= (2m)"Y/2e1/2R (y) exp(—e (T, y))| VI (T, Y)| !
1 1
y / e—;<zbvv1x(T,y)zL>+5<zi,|Vf<y>|—1|VIX(T,y)|VVf<y>zl> dz,
ot

-1/2

= (277)_1/251/2R£(y) [D(T, y)I |ex,y(T) |~ eXP(—E_IIx(T, ),

Here

T
R.(y) = <| det Qx,y(T)l_l/2 €Xp <% / tr(Kx,y(t)Qx,y(t))) dt) + O(£)>
0

T
= <| det VVI (T, y)|"/? exp (% / tr(Ky ,()Qx (1)) dt) + (9(£)>
0

and

D(T,y) = det; (VVI(T,y) — [VfD)I T VI(T,»IVVF())

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

where det is defined as follows: Given an invertible, positive definite, symmetric H € R™" and

a unit vector A we define det; H via

1

(Zn)("‘l)/zldetLH|_1/2=/ e 20 gy,
Qr

(4.20)
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In other words, det is the determinant evaluated only in the space Qi perpendicular to a vector 7.
As shown in Appendix E we have

det, H = (1, H 'A)detH, (4.21)
so that
| det VVI,(T, )[Y2|D(T, y)| "/
-1/2
= ’deu (1-|Vf (y)l‘lIVIx(T,y)IQx,y(T)VVf(y))| (R,Qy (D)2 (422)

and thus, inserting R, in (4.17), this equation gives (4.7). Finally, note that by definition of det, we
canreplace |V f(y)|"!VV f(y) by VA(y) in (4.19), which justifies the alternative expression in (4.9)
for F(T, x). O

4.2 | Probabilities on the invariant measure

The equivalent of (4.3) at infinite time is
Pl = / pe(y) dy. (4.23)
A

where p.(y) is the invariant density defined by (1.8) and the set A is defined as before. Then we
have:

Proposition 4.4. Let (43y (s), éy (s)) solve the instanton equations in (3.33) with y specified as

1
y = argmin / l_l(s)(éy(s), aéy(s))ds; (4.24)
$y(1)edA /0

and let Qy (s) solve the forward Riccati equation in (3.35). Let also F' and V be given by

F=1d—16,DIIVIMIT'Q,DVVFW),
) \ 1 /!
V = (6,(1),Q,(1),(1))"/? exp <§ / A1 )R, (5)Qy (s)) dt>, (4.25)
0

where Ky(s) = VV(b($y(s)), éy(s)). Finally denote by i = Vf(y)/|Vf(y)| the inward pointing
surface normal of A at y. Then the probability P2 satisfies
pA
lim =% =1, (4.26)
) P;:“

where

1/2

P = (2m)~/%/2 ( m’pﬁ))

, 1 [ ;
oiF V exp <_£/0 A (s)(ey(s),aey(s))ds) (4.27)
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FIGURE 3 Left: Instanton (solid curve) connecting the fixed point x,, = (0, 0) to the set A, with minimal
action at boundary point (1,1). The shaded contours indicate the invariant measure, obtained from sampling the
process for long times, and the set A is depicted in green. The flow field depicts the drift b(x). Here, ¢ = 0.25.
Right: Comparison of the probability to hit the set A between the computation via proposition 4.4 (light blue
solid) and random sampling of the stochastic process (dark blue dots) for varying . The probability is reproduced
at every point from instanton and fluctuations, including its normalization factor. The parameters are
a=0.5p=1,y=0.5.

In addition , the unit normal #i can be expressed as i = éy(l)/léy(l)L

The proof is similar to that of Proposition 4.3.

4.2.1 | Example: Nonlinear, irreversible process in R? revisited

To show the applicability of these propositions to an actual system, we re-use the nonlinear, irre-
versible process in R?, as defined in Equation (3.62), as a simple example for which the solution
is not readily accessible by analytical considerations. Instead of computing the invariant density,
as in Section 3.2.2 we use proposition 4.4 to compute the probability of hitting the set A on the
invariant measure, where A is the half-space defined by

A= {x eR*|{(i,x - (1,1)) > 0}, (4.28)

with A ~ (0.6304, 0.7762) chosen specifically such that the point y = (1, 1) is the maximum like-
lihood point on dA. Because of this, the solutions to the instanton equations and the Riccati
equation do not need to be re-computed, and we can insert their results into equation (4.27)
to obtain the instanton and prefactor estimate for the hitting probability on the invariant
measure.

The results of this experiment are shown in Figure 3: While the dynamics and instanton in
Figure 3 (left) look identical to the original problem in Section 3.2.2, we are now trying to estimate
the probability of hitting the set A denoted by the light green shading. The result shown in the
right panel of Figure 3 confirms that the asymptotic prediction of proposition 4.4 agrees with the
Monte-Carlo simulations for different values of €. The parameters are « = 0.5, = 1,y = 0.5, and
we are taking Ngmples = 10° samples each value of ¢.
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5 | EXIT PROBABILITIES AND MEAN FIRST PASSAGE TIMES
Let A° C R" be the complement of the set A defined in (4.2) that is
A ={z e R"| f(z) < 0} (5.1)

Under Assumption 4.1, we know from the argument given after Proposition 3.3 that
lim [ p.(y)dy =lim [ p.(y)dy =1 (5.2)
=0 Jf 4¢ =0 J 4c

We wish to estimate the exit probability

P = / o )do(y) 53)
0A

in the limit as ¢ — 0, since this surface integral enters the limiting expression for the mean first
passage time (MFPT) of the process to set A. We have

Proposition 5.1. Let (¢3y (s), éy (8)) solve to the instanton equations in (3.33) with y specified as

1
y= argmin/ A71(s)(B,(s), ab,(s)) ds; (5.4)
0

z€0B

and let F and V be given by (4.25). Denote by i = V f(y)/|V f(»)| the inward pointing unit normal
vector on 0A at'y. Then the exit probability PfA satisfies

0A

3
=1, 5.5
=0 p?A (5.5)

where

1/2

_ R A, P R R A R
poA =(27r£)_1/2|6y(1)|<<z tf‘>> exp <—£ /O A71(s)(6,(s), aey(s)>ds> (5.6)

Proof. The proof has the same ingredients as the proof of proposition 4.4, except instead of integrat-
ing over the paraboloid approximation A, we integrate over its boundary dA. No normal integral
is performed and therefore the scaling in € and |éy(1)| differs. O

With this knowledge, we can now compute exit times. Consider the entrance into the domain
A for a particle starting at x € A¢. The mean exit time T, : A - R" is given by the solution of
the problem

LT.=-1, if x €A
(5.7)
T. =0, if x €9A,
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2302 | GRAFKE ET AL.

where L, is the generator of our process defined in (2.13). In the following, we quickly review the
standard approach to use a boundary layer expansion in order to approximate the exit time T..
Multiplying the first equation by the invariant measure p and integrating we find—after applying
Green’s theorem and making use of the fact that LY p, = 0 [25]:

e/ (A, VTE)dcr:—/ e dx. (5.8)
3A Ac

Here, 7i(z) = Vf(2)/|V f(2)| denotes the inward pointing normal unit vector of the surface 6A
at z € JA. An approximation of (7i(z), VT(z)) for z € A can be obtained by boundary layer
analysis. For this purpose, we first expand

T.(x) = e€/°7(x) (5.9)
such that we find from (5.7) the corresponding equation for t

Lt=eC/xo0. (5.10)

Since we assumed that (7(z), b(z)) < 0 for all z € dA, the appropriate scaling of the boundary
layer is x = z — enn. In the scaled variables, the equation for 7 becomes

—(b(2),A(2))t, + T, = 0 (.11)
with the solution
T =C(1 - el@0@m) (5.12)
This means that we obtain for the exit time T, the expression
T, = € eC/s (1 — eli@bEn) (5.13)
and therefore
9 Cle (p A5
VT, = - e“/¢ (#i(z), b(z))rA(u) (5.14)

which we can use in the solvability condition (5.8). From there, for x away from the boundary
layer, we obtain

- ./Ac p:(z)dz
54 P(2)(A(2), b(u))do(z)

T.(x) = CeC/c = (5.15)

The following proposition shows how to estimate T.(x) in the limit as € — 0:

Proposition 5.2. Let (cﬁy(s), éy(s)) solve the instanton equations in (3.33) with y as specified in (5.4),
and let F and V be given by (4.25).Denote by i = V f(y)/|V f(y)| the inward pointing unit normal
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SHARP ASYMPTOTIC ESTIMATES IN STOCHASTIC SYSTEMS WITH SMALL NOISE 2303

vector on 0A aty. Then for any x € A€, the mean first passage time T.(x) satisfies

T
lim ﬂ =1 (5.16)
=0 T,
where
N 1
_ A Fri) . 1 A R
T. = Qre)2|(A, b -18. (1 _1<(n, . > V-1lex —/ A7L(s)B,(s), ab,(s)) ds ).
e = (27me) /7|(7, b)) 716, (D] ot f P\ % ; (5)(6,(5), aby(s))
(5.17)
Proof. From (5.15) it follows with the use of proposition 5.1 that
- o -1
Te = —((A(). b PEF) (5.18)
where we additionally used that lim,_,, / e Pe(2)dz = 1. O

Remark5.1. Another interesting case is when we demand (#(z), b(z)) = 0 everywhere on 0 A, such
that A¢ corresponds exactly to the basin of attraction of the process. In this case, the situation is
more complicated. Generally, one expects a different scaling of the form

_ -1
To(x) ~ Ce™V/2(P24) . (5.19)
The underlying assumptions need to make sure that the quasipotential is twice differentiable at
the exit point, which is true for gradient systems, but not generally true for an arbitrary drift. We
refer to [9, 40] for details.
5.0.1 | Example: Ornstein-Uhlenbeck process
For the 1D Ornstein-Uhlenbeck process,

dX¢ = —yXSdt +\edW,,  X,=0, (5.20)

X, € R, the formula for the MFPT is known exactly [48]. Concretely, the expected time for the
process (5.20) to leave the set A¢ = [—o0, z] is given by

2v/2y/e
T, = % %/O (1 + erf(é)) exp <§> dt. (5.21)

In the limit ¢ — 0, truncating the prefactor at 9(¢3/2), this yields the limiting result

T, = G, / ”—j + 0(63/2)>e€‘1yzz. (5.22)
14
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Since necessarily y = z, and there is no perpendicular direction in 1D, Proposition 5.2 tells us
that T, = C exp(¢~'yz?) with C given by

€ = @re (bW, MWD (5.23)
Using
6,(1) = 2yz, bl =7z
Q =@y, Q)=
v=(6,0°0,m)  —ar
we obtain
C= % ’;—35
in agreement with the analytical result in (5.22).
5.0.2 | Example: Exit from a displaced circle
Consider instead the situation of X, € R?, but still
dX¢ = —yX:dt +\edW,,  X,=0. (5.24)

We are interested in the expected time to enter the complement of the translated circle [33] of
radius r around (z — r, 0), that is exit

Al ={xeR?*||x—(z-r0) <r}. (5.25)

We want to compare this result against the translated half-plane,

Af = {xeR?|x; <z}, (5.26)

where x; is the first component of x = (x;, X,). The most likely exit point, located at y = (z,0),
is identical in both cases, as is the instanton, but we expect to find different prefactors due to the
difference in curvature at y between the two sets. In the left panel of Figure 4 we illustrate the
problem setup. We will focus on the case r > z when the instanton lies on the x-axis: at r = z the
instanton becomes degenerate and we obtain caustics, that is due to rotational symmetry every
point on the circle is equally likely to be the exit point.

When r > z, we have, basically identically to Section 5.0.1,

6,(1) = 2z, A, b)) =7z
Q" =0y 1, Q) =@y '1d

V= (2)/22)_1/2.
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FIGURE 4 Left: Schematic representation of the curvature experiment. An Ornstein-Uhlenbeck process is
started at the origin (center), and we are interested in the time T, at which it leaves the circular set A{, or time T,
at which it leaves the half-plane Alc. The most likely exit point is always (z, 0), but the curvature of the set
boundary differs. Right: Ratios of TP™ to T‘DNS for different r, in comparison to the theoretical prediction (5.28).
For r — oo, this ratio should converge to 1, but for small radii the curvature has a measurable effect. For example,
ataradiusr = i, the measured exit time is roughly 25% smaller than for the planar exit.

The only difference between the two cases (5.25) and (5.26) are the curvature contributions F,
and F|, respectively. For the half-space A¢, the curvature at y is 0, and thus F| = Id. For the circle,
instead, we can choose

fx)=|x—=(z—=r,0)2*—=r2
so that A{ is the zero level-set of f. Then,
VIl =2r
and
VVf(y) =21d,
and thus

F, =1d = Q,I8, IV WIT'VV )

= (1—§)Id.

Defining the scalar contribution of the curvature to the prefactor ¢ = (det; F)1/2 a5 ¢| for the
planar case and c, for the case of a circle with radius r, respectively, we obtain

r—2z
r

Z 1/2
q=1, and cr=<detl(1—7)ld> - (5.27)
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2306 | GRAFKE ET AL.

In order to measure this curvature prefactor experimentally, we performed the following
numerical experiment: For different radii r from r = 0.25 to r = 100, we performed N = 2 - 10°
Monte-Carlo simulations each, and measured the mean time TPNS to exit the set AS. We per-
formed further 2 - 10° Monte-Carlo simulations in the planar case AlC to obtain TFNS. The ratio of
the measured passage times of the planar case to the circular case yields a numerical estimate of
the curvature component only:

TDNS

¢DNS _
r TDNS
|

which can be compared against the analytical prediction

¢ =\(Fr—2)/r. (5.28)

This comparison is shown in Figure 4. For r — o0, ¢, indeed converges to 1, but for small radii the
curvature has a measurable effect, and the measured discrepancy to the planar prediction agrees
with the correction term given in (5.28). The other parametersarey = 1,z = 0.1,ande = 5- 1073,

6 | INFINITE-DIMENSIONAL EXAMPLES

In the previous sections, we derived prefactor estimates and sharp limits in finite dimension. All
of these estimates have a counterpart in infinite dimension, that is when applied to stochastic
partial differential equations.

For concreteness we will focus on reaction-advection-diffusion equations of the type (for more
general equations see Appendix F)

dic+v(x)-Ve=V-(Dx)Ve) +r(x)c+ f(c) + \/En, c(0) = ¢y, (6.1)

Here t € [0,00), x € Q c RY, with Q compact, and ¢ : [0,00) X Q — R; the vector field
v : Q — RYis in C%(Q); the diffusion tensor D : Q — RY x R? is in C?(Q), symmetric, D (x) =
D(x), and positive-definite for all x € Q;r : Q — R isin C3(Q); the reaction term f : R — R, is
in C%(Q), nonlinear in general; and the noise 7 is white-in-time Gaussian with covariance

En(t, x)n(t’,x") = 8t — t")x(x, x"). (6.2)

where y : QX Q — R givenand in C%(Q x Q). If Q is a rectangular domain in R, we can impose
periodic boundary condition on c, assuming that all the other functions in (6.1) are also periodic;
otherwise, denoting by 7i(x) the unit normal to 9Q, we impose that r(x) = 0 and 7A(x) - v(x) =0
on 0Q, y(x,y)=0forallx e dQandy € Qory € dQ and x € Q, and also that

A(x) - D(x)Vce(t,x) =0 forall x €0Q and ¢ > 0. (6.3)

In this infinite-dimensional setting, the determinants must be replaced by functional deter-
minants, the instanton equations become PDEs, and the Riccati equation must be replaced by a
functional variant as well. While these changes require a whole new set of techniques to rigor-
ously prove validity, our results and methods remain formally applicable in infinite dimension.
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SHARP ASYMPTOTIC ESTIMATES IN STOCHASTIC SYSTEMS WITH SMALL NOISE 2307

For example, considering probabilities for a linear observable, that is

P(T, z) = P ( / ¢(xX)c(T, x) dx > z>, (6.4)
Q

for some test function ¢ : Q — R, we obtain a proposition analogous to Proposition 4.3:

Proposition 6.1 (Probabilities for SPDES). Let the fields c(t, x), 6(t, x) solve the instanton equations

dic =V - (DX)Ve) — v(x) - Ve + r(x)e + f(c) + /Q K@Dy, O=ar

5,6 = V- (D(x)V6) - V - (v(x)6) — r(x)8 — f'(c)8. o) = ¢, *
with either periodic boundary conditions, or

A(x) - D(x)Vc(t, x) = A(x) - D(x)VB(t,x) =0 forall x €9Q and t €[0,T]; (6.6)
Let also the field Q(t, x, ) = Q(t,y, x) solve

3,9 =V, -(D(x)V, Q)+ V, - (DOV,Q) —v(x) - V,Q —v(y) - V,Q + r(x)Q + r(»)Q

+'(e(t, x))Q + f'(c(t, y)Q + / Q(t, x,2)Q(t, z,y) f" (c(t, 2))6(t, z) dz + x(x,y),  (6.7)
Q

with initial condition Q(0) = 0, and either periodic boundary conditions in x and y, or

A(x) - D(x)V,Q(t,x,y) =0 forallx € 9Q, y € Q, andt € [0,T],
(6.8)
Ay) - D)V, Q(t, x,y) =0 forally €8Q, x € Q, and t € [0,T].
Then the probability P§° (T, z) in (6.4) satisfies
PX(T, 2)
R | (6.9)

m — =1,
e—0 PEO(T, Z)

where
1 /T
P§°(T,z)=(znrl/zsl/ZV(T,co)exp<—£ / / e(r,xmx,y)e(r,y)dxdydt>, (6.10)
o Jo2
with

-1/2
V(T, o) = < / 0(T, x)Q(T, x, y)O(T, y) dx dy>
Q2

T
xexp(% /0 /Q f”(c(t,x))G(t,x)Q(t,x,x)dxdt). (6.11)
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2308 | GRAFKE ET AL.

‘We will omit the proof of this proposition since it essentially amounts to translating the equa-
tions in Proposition 4.3 to the infinite dimensional setting, and using the fact that the term
involving the tensor F(T, x) disappears since the equivalent of VVf is zero for a linear observ-
able as in (6.4). Similar reformulations of our other propositions are straightforward as well, and
for the sake of brevity we will therefore omit writing them down.

Note the instanton equation for c(t,x) in (6.5) as well as the Riccati equation in (6.7) for
Q(t, x,y) are well-posed as formulated, that is forward in time; similarly the instanton equation for
6(t, x) in (6.5) is well-posed as formulated, that is backward in time.

In Sections 6.1 and 6.2, we confirm numerically that Proposition 6.1, or its counterparts for
other quantities, produces results that agree with those obtained via direct sampling of the SPDE
in (6.1). As example problems, we consider two special cases of (6.1): First, in Section 6.1 we
study a linear advection-reaction-diffusion equation with spatially non-homogeneous forcing, for
which some analytical results can be derived. The probability that the concentration exceeds a
threshold at a given location can then be estimated by a mixed analytical-numerical approach.
Second, in Section 6.2, we study a reaction-advection-diffusion equation with cubic nonlinear-
ity, where we need to resort to fully solving numerically all involved instanton and Riccati
equations.

6.1 | Linear reaction-advection-diffusion equation with non-local
forcing

Here we consider the stochastic one-dimensional advection-diffusion-reaction equation,
8,c = xd2c — 3, (v(x)c) — ac + Ven. (6.12)

where x € [0, 1] periodic. This a special case of (6.1) with D = «, r(x) = —d,.v, and f(c) = —ac.
For the covariance of the white-in-time forcing #(t, x) we take

X, x") =98 opd (x). (6.13)

where lp;f ,(x) is a mollifier of length § < 1 concentrated around x; € [0, 1]. For the observable,

we take
1
IP’( / c()Ps, (x)dx > z), (6.14)
0

where x, # x; and the expectation is taken on the invariant measure of the solution to (6.12).
Intuitively, the scenario we are investigating is therefore that of a pollutant, the density
of which is described by c(t,x), along a one-dimensional periodic channel. The pollutant
is randomly emitted into the environment at a spatial location x;, and gets advected and
diffused conservatively, but decays over time with rate a. We are interested in measur-
ing extreme concentrations of the pollutant around the location x, somewhere else in the
channel.
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SHARP ASYMPTOTIC ESTIMATES IN STOCHASTIC SYSTEMS WITH SMALL NOISE 2309

6.1.1 | Finite-dimensional analogous case

Equation (6.12) is a linear SPDE, an infinite-dimensional generalization of the (non-normal, n-
dimensional) Ornstein-Uhlenbeck process,

dX; = -TX;dt + V2eocdW,;, t>0, X;eR" (6.15)

for I € R™" where I' # I'" (non-symmetric), I'TT # I'' T (non-normal), W is an n-dimensional
Wiener process, o not necessarily invertible, and a = oo'. In analogy to the above scenario, we
can ask for probabilities on the invariant measure of the form

P} =P(X* € A,), where A,={x € R"|(k,x) >z} (6.16)

Intuitively, we want to estimate the probability that the process reaches the far-side of a plane
with normal k, distance z away from the origin.

If we define the symmetric, positive semi-definite matrix C as the solution of the Lyapunov
equation

I'C+CTI" =2a, (6.17)
the quasi-potential of (6.15) is given by
V(x) = (x,C7x). (6.18)

Since C is not necessarily invertible, we interpret w = C~ v tobe the solution of v = Cw if it exists,
and otherwise the quasi-potential is set to infinity. The final point of the geometric instanton ¢(s)
for observable value z must be given by

y = argmin(V(x)) = k (6.19)

zZ
—F——C
X€0A, (k,Ck)

Here, we must assume that k is not in the kernel of C, which is the same as saying that k is in the
support of the invariant measure of (6.15). The action is

2

z
RRC)

(6.20)

which follows from evaluating V(x) at x = y given by (6.19).
To estimate the prefactor, we need to solve the Q-equation with appropriate boundary
condition. Because the Equation (6.15) is linear, Q(s) = %C. As a result

A
Pt . 4, _ [&k,Ck) z2 1

where we used

V= (6,(1),0,(1)8,(1))"1/2 = %(k, Ck)l/2 6.22)
VA
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2310 GRAFKE ET AL.

since

2z

Al<) — 2(—1 4 A1) — 9 —1y —
0(s) = 2C~'¢(s), sothat 6(1)=2C y_(k,Ck)k'

(6.23)

Due to the linearity of the system, only the end location of the instanton at s = 1 plays a role.

6.1.2 | Infinite dimensional setting

Coming back to the infinite-dimensional case, we can proceed similarly, noticing that (6.12) can
be written as

dic=—Gc+m, (6.24)
where
C=—x02 4+ v(x)d, + B,0) +a (6.25)

is a linear differential operator, acting on functions in L2, Notably, G is not normal, and we need
to solve the Lyapunov equation

GC +CGT = 293, ()3, (), (6.26)

where C(x,y) is symmetric and positive semi-definite in L? and CG™ = (GC)T, that is it is the
differential operator acting on the second variable of C(x, y). Explicitly (6.26) reads

—x (82 4 82) C — (V3 + v8),)C — (350 + 8,v)C + 2aC = 293 ()P (). (6.27)

By extending the argument for the finite dimensional case to the functional setting, we also
deduce that the endpoint at s = 1 of the geometric instanton ¢(s, x) for hitting the set A, is given

by

1
C(x, ;‘C d
#(1,x) = argmin V(&) = Zfo (x, )95, (») dy

— , (6.28)
=V Jo Jo $%,0CCx y)PE, (v) dx dy

in analogy to Equation (6.19) by replacing the inner product with the L? inner product. The
corresponding action is (compare (6.20))

1 1 -1
I(z)=z2( [/ ¢£2<x)C(x,y>¢£2<y>d>cdy> . (6.29)
0 0

Concerning the prefactor, we have (compare (6.23))

1

1 1 -
e(t=o,x)=2z< / / ¢;§2(x)(:(x,y)¢§z<y>dxdy> 92 () (6.30)
0 0
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SHARP ASYMPTOTIC ESTIMATES IN STOCHASTIC SYSTEMS WITH SMALL NOISE 2311

and thus (compare (6.22))

1 1,1 1/2
V= Z(/ / ¢§2(X)C(x,y)¢£z(y)dxdy> , (6.31)
o Jo
so that in total,

[P’(/O1 c(x)z,biz(x) dx > z)
lim =1 (6.32)
€0 P.(2)

with

1 1 1/2
P = 1 ( /0 /0 zp;iz(x)C(x,y)zp;iZ(y)d»cdy) exp (- 1) (633)

as in Equation (6.21). Clearly, this probability is Gaussian, as expected when we consider a linear
system with Gaussian input.

In order to obtain C, we numerically solve the operator Lyapunov equation (6.26) for a
finite difference representation of G. As an example, we take the advection-diffusion-reaction
equation (6.12), with a velocity field

v(x) = Asin(27rx) (A>0), (6.34)

that is with negative divergence at the center of the domain, x = 1/2. We expect (if we were not
to condition on any outcome, and would force homogeneously in space) that in a typical con-
figuration the concentration has higher variance at x = 1/2 and lower around x = 0, where it is
depleted by the velocity. We also choose x; = 1/32 and x, = 1/4, that is the forcing is localized
on the very left of the domain, where concentration is released randomly, and we are sensing
concentration further down the channel, where it is transported by advection and diffusion. We
also check the results above numerically by comparing the instanton prediction derived here with
the result of a direct simulation of the advection reaction diffusion equation (6.12) with stochastic
forcing localized according to (6.13), and counting the number of times the observable exceeds a
given threshold.

In the left panel of Figure 5 we show the corresponding instanton: It has a non-trivial
dependence on both the location of the forcing as well as the location of the observation.
Additionally shown are the localized functions defining the forcing and the observation, as
well as the velocity field. In the right panel of Figure 5 we show a comparison against direct
simulation results of the SPDE. In particular we note that the mean of all observed events
within A, resembles the instanton. Further, the highest variance in the direct simulation is
clearly observed where noise is injected, as well as close to x = 1/2, at the sink of the velocity
field.

Depending on z and ¢, the probability can be computed via (6.32). In Figure 6 we show a com-
parison of these probabilities against numerics, obtained by integrating the SPDE (6.12) for a long
time, and observing how often each threshold z was exceeded. We note that the prediction indeed
captures not only the scaling, but also the correct prefactor.
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FIGURE 5 Left: Endpoint of the instanton configuration (rescaled, red), that is solution of the minimization
problem (6.28) for the advection-reaction-diffusion equation (6.12) with velocity field v(x) (green), conditioning
on observing a high concentration in the region specified by gb;fz (blue), where concentration is released randomly
around location x; (yellow). Here, x = 1072, a = 1, v(x) = 0.4sin(27x), e = 5- 1072, z = 0.0025, x; = 1/32,

X, =1/4,and § = 1072, as well as N, = 128. Right: Comparison between instanton and the result from direct
numerical simulations, conditioning on hitting the set .4,. Notably, the mean realization recovers the instanton,
but variances are very high around x = 1/32, where the concentration fluctuations are inserted, and also high
around x = 1/2, where the velocity field compresses the fluctuations of the concentration field.

101
— P(2)
1072 = instanton (rescaled)
MC measurements
. ¢
10—
104
-5
10 \\\
N
N
10-6 N
0.002 0.003 0.004 0.005 0.006

z

FIGURE 6 Probabilities for the advection-diffusion-reaction problem with localized forcing obtained by
direct numerical simulations (blue), from formula (6.32) (black). Also shown is the instanton prediction (black
dotted), that is only the exponential contribution from the large deviation scaling. It is rescaled by a factor 1072 to
obtain the best fit in the tail. The difference between the instanton prediction and P(z) is noticeable.

6.2 | Nonlinear reaction-advection-diffusion equation

For the linear reaction-advection-diffusion equation of Section 6.1, we were able to harness lin-
earity to avoid explicitly using Proposition 6.1 and numerically solving the instanton and Riccati
equations. This is no longer possible if we choose the system to be nonlinear, for example by taking
a cubic reaction term. In this case, we no longer have access analytically to the invariant measure,
the instanton trajectory, or the solution to the prefactor terms.

Concretely, we consider the nonlinear stochastic partial differential equation

d,c = kd2c — v(x)d,c — ac — yc3 + V2en, (6.35)
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SHARP ASYMPTOTIC ESTIMATES IN STOCHASTIC SYSTEMS WITH SMALL NOISE | 2313

where the spatial variable x is periodic on the domain [—-L/2,L/2] and ¢ € [T, 0]. This equa-
tion is a special case of (6.1) with D(x) = x, r(x) = 0, and f(c) = —ac — yc>: the parameters o and
y control the linear and nonlinear part of the reaction term, respectively. As velocity field we pick

v(x) =4+ 2sin(4x/L), (6.36)

which always advects to the right, but with spatially varying speed. As a consequence, the whole
equation is no longer translation invariant. We will assume that the noise 7 is white in space and
time, with covariance

E((t, x)n(t’,x")) = 8(t — t')6(x — x'). (6.37)

This is a rougher noise than the one in the SPDE (6.5), which is allowed because (6.35) is well-
posed in 1D with this forcing [20].

We are interested in the probability that a sample on the invariant measure of (6.35) exceeds
the threshold z at the location x = 0, that is

P(e(x =0) > z), (6.38)

Note that this problem can either be viewed as a nonlinear version of the reaction-advection-
diffusion equation of Section 6.1, or as an infinite dimensional version of the R? process given in
Section 4.2.1.

To apply our method we need to first solve the geometric instanton equations (2.36) using
the appropriate boundary conditions. Since we are focusing in this example on the limit T —
o0, an efficient way of numerically solving these equations using an iterative scheme and arc-
length parametrization has been discussed in previous work [29]. Since for Equation (6.35) the
Hamiltonian is

L/2
H(c,6) = / ((xa)%é — 0(x)0,¢ — aé — ye®) 6(x) + |é(x)|2)dx (6.39)
-L)2

we immediately obtain the (geometric) instanton equations in this case as

18,6 = k026 — v(x)3,¢ —al —y& +28,  ¢(0) =0

R ~ . . ~ R (6.40)
10,8 = —1028 — 6, (v(x)8) + ab + 27?8, B(1) = 8(x).

In this case, the boundary conditions ¢(0) = 0 and 8(1) = 8(x) allow direct application of the
previously developed geometric techniques [29] to solve the above system iteratively in order to
find the instanton solution.

Once the instanton is found, we need to solve the corresponding (geometric variant of the)
forward Riccati equation for O(s, x, y) given by (6.7).

For the specific SPDE (6.35), the equation for O(s, x,y) = O(s, y, x) is

28,0 = 1330 + 1350 — v(x)8,0 — v(»)3,0 — 2aQ — 3y (é%(s, x) + ¢%(5,)) Q

L2
-6 (s, x,2)é(s, 2)8(s, 2)0(s, z, ) dz + 28(x—y) (6.41)
—L)2
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1.0
0.8 e mean MC 0.7
------ Instanton
0.8 1 0.6
0.5
0 0.6
— . 0.4
I : ,
< 0.4 4 0.3
0.2
0.2 1
0.1
0.0 T T T 0.0
-8 —4 4 8
T T

FIGURE 7 Left: Comparison of the numerically computed instanton (black dots) with the filtered solution
from direct numerical simulations (red) realizing a high amplitude event z = 0.7 at the origin x = 0, plus/minus
one standard deviation (light red shaded region), for the nonlinear stochastic partial differential equation (6.35).
The spatially dependent positive velocity field v(x) leads to an asymmetry if the typical final configuration
exceeding z at x = 0, which is visible both in the instanton and the direct simulation results. Right: Instanton
trajectory along the arc-length parameter s, showing the temporal evolution of the instanton into the large
amplitude configuration at s = 1. The positive velocity leads to a traveling wave instanton solution that slowly
amplifies over time.

to be solved with the initial condition, O(0) = 9., solution to the Lyapunov equation
L (320 24 5 4 1 A A
—x (630, +85Q.) +aQ, + z(v(x)de* +0(1)8,9,) = 8(x — y). (6.42)

One can numerically integrate the instanton equations (6.40) to obtain the most likely config-
uration that achieves a given amplitude z at x = 0 at final time ¢t = 0. Fourier transforms were
used to calculate the spatial derivatives. When solving the associated Riccati equation for Q, how-
ever, we chose an equally distant point grid to discretize the time interval [T, 0] for stability
reasons. Here, the time T can be found from the geometric parametrization [34] and the instan-
ton solution needs to be interpolated onto this new point grid. For the solution of the Riccati
equation on the equidistant grid, exponential time differencing [36] was employed and the dif-
fusive term x(92 + dﬁ)Q can be treated for numerical efficiency using the two-dimensional fast
Fourier transform.

In the left panel of Figure 7 we compare this numerically computed instanton with the fil-
tered instanton from direct simulations of the SPDE (6.35) using the method described in [28].
As can be seen, the mean realization with z = 0.7 at x = 0 in the SPDE is very similar to the
instanton. In particular, both instanton and the typical sample from the SPDE show an asym-
metry around x = 0 coming from the spatially inhomogeneous velocity field (6.36). Also shown
is one standard deviation of the fluctuations around the instanton as shaded red region. In the
right panel of Figure 7 we show the whole evolution of the instanton in arc-length parame-
ter s that compactifies the infinite time interval ¢ € [0, c0) into s € [0, 1]. Clearly visible is the
(inhomogeneous) movement of the peak as it is advected with the positive velocity v(x) given in
Equation (6.36).

In the left panel of Figure 8 shows the conjugate momentum &(s, x) along the arc-length param-
eter s, and in the right panel we show the quantity f”(¢(s, x))8(s, x)Q(s, x, X): the exponential of
its integral along x and s enters the expression in (6.11) for the prefactor component V(T, cy).
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24.74
—0.0020
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8.61
—0.0057
3.00 0.6
—0.0165
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0.4 4 —0.0475
0.36
—0.1369
0.2 4
0.13 N N .
f(é(s,2))0(s,x)Q(s, x, x) —0.3948
0.00 0.0 T T T

FIGURE 8 Left: Conjugate momentum (s, x) along the arc-length parameter s. Right: The quantity
f7(@(s, x))8(s, x)O(s, x, x). The exponential of its integral along x and s enters the expression in (6.11) for the
prefactor component V(T c;).

°
°
®
102 U]
]
— [ 4
\R}/
= [
¢
103 Instanton + Riccati (y = 2) i
¢ Monte-Carlo experiment (y = 2) i
linear (v = 0)
no advection (v(z) = 0)

0.45 0.50 0.55 0.60 0.65 0.70
z

FIGURE 9 Comparison of the predicted probabilities p(z) of exceeding the threshold z. The dark blue dots
shows the probability p estimated via direct numerical simulations for the nonlinear case (y = 2), while the light
blue line is the theoretical prediction from instanton and Riccati equation. Clearly, the instantons, together with
the corresponding prefactors, approximate these probabilities well. For comparison, we show the analytical
prediction that can be obtained for the linear case (y = 0), highlighting the fact that the nonlinearity indeed plays
a role for the tail probabilities in particular. Similarly, we show the situation without advection (v(x) = 0),
demonstrating that the advection term modifies the probabilities.

The combination of both results inserted into Proposition 6.1 allows us to determine the prefac-
tor. In Figure 9 we compare the result from direct simulations of the SPDE (6.35) to the predictions
of the instanton equations together with the prefactor, showing clear agreement especially for
large values of z, as expected. A comparison is further made to the analytical result available for
the linear case, y = 0, which clearly shows that the nonlinear term affects the probability. Simi-
larly we compare against the case without advection (v(x) = 0), which is gradient, demonstrating
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that the advective term also has a considerable (opposite) effect on the probabilities. In this numer-
ical example, we chose N,, = 256 grid points for the discretization in space for a domain of size
L =16,and N, = 5000 grid points in time for the direct simulations for a temporal domain of size
T = 25. The instanton is computed with N = 2000 discretization points in the arc-length param-
eter. Additional parameters are xk = 1, a = 0.6, and y = 2. The noise level is set to ¢ = 0.1, and we
collected Ngymples = 10° samples in the direct simulations.

7 | GENERALIZATION TO PROCESSES DRIVEN BY A
NON-GAUSSIAN NOISE

It is possible to generalize the above results to continuous time MJPs that cannot be represented
by an SDE with additive Gaussian noise like in (1.1). The intuition is similar: considering a WKB
approximation to the BKE allows us to obtain a Hamilton-Jacobi equation that defines the behav-
ior of the instanton. If we furthermore keep track of the prefactor in the WKB, we will obtain
an additional equation for it on the next order, which will yield a generalization of the Riccati
equations to obtain sharp prefactor estimates.

Concretely, consider a continuous-time MJP on the state space R? with the generator

R
L) = 2 Y @G+ %,8) = () (71)
r=1

which encodes a reaction network for d € N species with R € N reactions, each reaction r leading
to a change in species defined by the vector v, € R%, and happening with rate a,(x) € R possibly
depending on the state x € R%. Depending on the microscopic model at hand, we can expand
a,(x) in terms of orders of ¢,

a,(x) = a”(x) + eaV (x) + O2). (7.2)
If we insert the WKB ansatz f(t, x) = Z(t, x) exp(e 'S(t, x)) in the BKE
of = Lef, (7.3)

and collect terms of successive orders in €, we obtain

R
OE™ : 8,5 ==\ ()€ V¥ = 1) = —H(x, VS(x)) (7.4)
r=1

R
&) : 6z=-Y <a£°’(x)ew~vs(v, NZ+ 17y, VVSV,) +aP(x) Z(e"r VS — 1)). (7.5)

r=1

The instanton ¢ solves the Hamilton’s equations

{¢ = VgH($,0), ¢(0)=x (7.6)

6 = —V4H(¢,0),
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where we additionally get a boundary condition ¢(T) = y or 6(T) = V f(¢(T)) depending on the
scenario under consideration. For the generator (7.1), the Hamiltonian is given by

R
H($.0)= Y al”(¢)(e”? - 1), 7.7)
r=1

but an arbitrary Hamiltonian is possible in general. If we evaluate Z(¢, x) along the instanton,
G(t) = Z(t, $(t)), we have

R
CO)=Z+VZ-p=2+ Y v - VZa(p)e "5, (7.8)

r=1

and therefore, along the instanton, Equation (7.5) becomes

=

G = —%G Z <e”r'vsa§0)(¢)vr - VVSv, + 2a(p) (e VS — 1)), G(T)=1. (7.9)

r=1

Written in terms of the Hamiltonian and the additional ©O(¢) drift term, this becomes

G = =G (tr(HgeW) + AV), G(T) =1, (7.10)

with AV =23 aﬁl) (¢)(e”'VS —1). Note that, similar to the derivations for Gaussian SDEs, G(t)
plays the role of prefactor along the instanton (as G(t) = Z(t, ¢(t)) and is used to compute the
eventual prefactor correction (which is merely G(0)).

As before, we obtain an evolution equation for W = VVS by differencing the HIB equa-
tion twice,

W = —Hgyg — HyoW — WH [, — WHgeW, (7.11)

to be solved with boundary conditions that depend on the scenario, and where subscripts of the
Hamiltonian denote differentiation. We can also derive an equation for Q,

Q = QHygQ + QHyo + H,,Q + Hep. (7.12)
This allows one to compute sharp estimates for expectations, probability densities, hitting prob-
abilities and exit times in a similar way as before, replacing the instanton equations (1.6)

and its variants with (7.6), and the forward and backward Riccati equations with (7.11)
and (7.12).

7.0.1 | Example: Continuous time MJP

Consider the following continuous-time MIJP, inspired by [8], in which a particle hops on a grid
with spacing € , X € €Z (see Figure 10), that is the spatial coordinate becomes continuous for
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Tr—€ x Tr+e
FIGURE 10 Schematic depiction of the MJP with generator (7.14): A particle at point x € £Z jumps with

rates r* to the left and right, respectively. The rates are given in Equation (7.13). For ¢ — 0, we compute the
probability Pr(z) of excursions larger than z € R at time t = T.

¢ — 0. Left and right jumps happen with a rate
re.(x) = exp (—e 1 (E(x £ €) — E(x))), (7.13)
and the generator is given by
Lof =1 (ry O (x + ) = f()) + r_()(f (x — €) = f(x)))- (7.14)
By construction, this process is in detailed balance with respect to the Gibbs distribution

U (x) = Z7Le=2T'E®) where Z = Z g2 EX) (7.15)

xeeZ

that is E(x) plays the role of the free energy and %s that of the temperature.
In the continuum limit, € — 0, the rates (7.13) can be expanded as

ri(x) = eiE’(x)<1 + %EE”(X) + (9(52)> = rf)(x) + EVS__D +O(e?) (7.16)
with
PP =e® and P = %E”(x)eiE'(”. (7.17)

Correspondingly, the LDT Hamiltonian takes the form
H($,6) = rO(¢)(e® —1) + rO(@) (e ? —1). (7.18)
We are interested in estimating the probability to observe a large excursion z € R attime ¢t =T,
Pr(z) = PXt > z|Xy, =0) (7.19)

for the MJP with generator (7.1), with the particle starting at X, = 0 att = 0.
Solving this problem numerically by our approach amounts to performing the following steps:

(i) Solve the instanton equations

L _ ,—E'+6 _ _E'-6 _
{¢—He<¢,e>—e 0 _ oF'-0, $(0) =0, (720)

6= —Hy($,6) = —E"e F (e —1) +E”eE’(e_9 —-1), ¢(T) =z,
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10!
— Pr(z) (Inst + Ricc)
¢ Gillespie measurements
102
1073
1074

0.15 0.16 0.17 0.18 0.19 0.20

FIGURE 11 Comparison between numerical estimate of P(z) and sampling estimate obtained from the
Gillespie algorithm [27] for the original MJP for small e. Here, the parameters are E(x) = }‘x“, T = 5.12, while for
the instanton, N, = 512, At = 1072, and for the Gillespie algorithm N = 2 - 10°, Ny,p1es = 10

(ii) Solve the Riccati equation
Q = Hy3Q* + 2Hy0Q + Hegp
= (=B + E")e™F (€ = 1) + (B + (E"))e" (e -~ 1))Q?
—E"(e 0 + e 0)Q + (e + P70, Q0)=0 (7.21)

forward in time,
(iii) Assemble the full estimate as
1/2

_ € 1 T
PT(Z)=<W> exp<5 /0 (Hpg($(1), 0(0)Q(t) + AD((1))) dt)

X exp <—:~:_1 (/ 0d¢ — H(8, ¢)T>> (7.22)

This procedure can be carried out for various z € R to, for example, investigate the probabil-
ity Pr(z) for rare events, that is large z. Displayed as black solid line in Figure 11 is the estimate
Pr(z) at T = 5.12. Here, we choose E(x) = %x“. For the numerical computation of the instanton,
we employed a simple forward Euler scheme integrating the instanton equations (7.6) forward
and backward multiple times until convergence, with N, = 512 time discretization points, and
At = 1072 temporal resolution. The blue markers compare the instanton prediction against a
numerical computation of the actual stochastic process for finite (but small) € < 1 by using
the Gillespie algorithm [27]. Numerical parameters are ¢ = 5 - 1074, and we took Ngamples = 10*
samples to estimate Pr(z).

8 | CONCLUSIONS

In this paper, we have proposed explicit formulas to calculate the prefactor contribution of expec-
tations, probabilities, probability densities, exit probabilities, and mean first passage times for
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stochastic processes, both at finite time and over the invariant measure. The approach gives sharp
estimates in the small noise limit, corresponding to the next order (pre-exponential) term to the
Freidlin-Wentzell large deviation limit. This allows us to compute these probabilistic quantities
in absolute terms, that is including normalization constants, for finite noise values, instead of
merely producing the exponential scaling. This feature makes the approach valuable whenever
full quantitative estimates of probabilities are required, as is the case in almost all applications,
for example in physics, chemistry, biology, and engineering.

From a physical point of view the prefactor formulas given above represent an explicit eval-
uation of the fluctuation determinant. In principle, these ideas have been formulated multiple
times in various contexts (compare Section 1.3), from quantum field theory over linear-quadratic
control to calculus of variations. As noted by Schulman [46]:

“Methods for handling the quadratic Lagrangian are legion and have been well devel-
oped since the earliest work on path integrals. Oddly enough, papers on the subject
continue to appear and may give some historian of science material for a case history
on the nondiffusion of knowledge.”

Importantly, though, numerical methods for the calculation of prefactors in the general setup
we consider here remain, to the best of our knowledge, mostly nonexistent. Concretely, for the
prefactor terms we (i) formulate algorithms suitable for their explicit numerical computation, (ii)
phrase them for the more general class of Lagrangians encountered in LDT, and (iii) treat the case
of the invariant measure and infinite time horizon. Computations on stochastic partial differential
equations highlight the fact that our results produce correct results even in the irreversible infinite
dimensional case, and are efficient enough to be used for quantitative estimates of probabilistic
quantities in regimes where direct sampling is inaccessible.
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APPENDIX A: THE GEOMETRIC INSTANTON AND RICCATI EQUATIONS

A.1 | Geometric instanton equations
Here we give some additional information about the geometric instanton equations (2.36),
referring the reader to [29, 31, 32, 34] for more information. Recall that these equations read

v ok A
/1({: =b(¢) + Aae A (A1)
28" = —(Vb(¢)"6
with boundary conditions ¢(0) = x,, 6 = Vf($(1)) as in (2.36), or $(0) = x,, (1) =y as
in (3.33). Here A(s) = ds/dt is the reparametrization factor from physical time ¢t € [—o0, 0] to nor-
malized arc-length s € [0, 1], and primes denote derivatives with respect to s. In practice, these
equations can be solved globally by a relaxation method [34]. This amounts to solving the first
equation in a8 and inserting the result in the second equation multiplied by a to deduce

0=22¢" + A2'¢" — 2a(a=1Vb(¢$) — (a2 Vb($)" )¢’ — a(Vb($))Ta 1b($) (A.2)

with boundary conditions ¢(0) = x,, ad’(1) = Vf($(1)) or $(0) = x,., $(1) = y. We can now find
the stable fixed points of this equation by introducing an artificial relaxation time r and evolving
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{¢(s) : s € (0,1)} globally from some initial guess via
8:¢ =A% +A'¢" — Aa(a"'Vb($) — (@ 'Vb($)T)$' — a(Vb() a " b($). (A.3)

while enforcing ¢(0) = x,., a¢’(1) = Vf($(1)) or ¢$(0) = x,, $(1) = y for all T > 0. This is the
procedure that was used in this paper to solve the geometric instanton equations.

Alternatively, in situations where we want to solve (A.2) with boundary condition $(0) = x,,
6(1) = Vf($(1)) we can also iteratively solve the equation for ¢ forward in s, then that for 8
backward in time forward-integrate the $-equation [29, 31]. In this case, we encounter a simi-
lar problem as with the equation for Q in (3.3): at s = 0, corresponding to physical time t = —co
when the instanton starts at the fixed-point x,, = $(0), one has b(¢(0)) = b(x,) = 0 and 6(0) =0,
aswell as 1(0) = 0. This means that the equation for ¢ in (A.1) reads 0 = O at s = 0 and it is a priori
unclear how to start the integration. Here too, this problem is only apparent since the equation for
$ can be written as

$'(s) = 2171 (5)(b($(s)) + ab(s)) (A4)

and a direct application of 'Hépital rule shows that ¢’(0) = lim,_,, ¢'(s) satisfies
¢'(0) = [/ (0)] 7 (Vb(x,)¢'(0) + ab’(0)) (A.5)
where we used 913(0) = x,. Noticing that the matrix (1’(0)Id — Vb(x,)) is invertible since 1'(0) >

0 and —Vb(x,) is positive-definite as x,, is a stable fixed point of X = b(x) by assumption, this
equation has the unique solution

#(0) = ((0)Id — Vb(x,)) ad’(0). (A.6)

This solution can be computed numerically since we have access to A’(0) and '(0) through our
knowledge of A(s) and 8(s) from the last backward integration. In particular, since A(0) = 0 and
é(O) = 0, we can write, for arc-length stepsize As > 0,

8’(0) = 8(As)/As + 0(As),  A'(0) = A(As)/As + O(As). (A7)

Once ¢'(0) has been computed, it can be used together with $(0) = x, to start off the numerical
integration of the ¢-equation forward in time using

A(As) = x, + §'(0)As + O(As?) = x, + (A(As)Id — AsVb(x,)) 1ab(0) + O(As?). (A.8)
A.2 | Geometric Riccati equations

As discussed in remark 3.4, we can similarly derive the initial arc-length derivative Q;(O) by
solving an additional Lyapunov equation. Concretely, let us start from

Q) =271(Q,K,Qy + Q,(Vb(§, ) + (Vb($,)Qy + a) = 17'R. (A9)

Since R(0) = 0 and A(0) = 0, via 'Hépital’s rule it follows that Q;(O) = A/(0)~'R’(0)., which can
be written explicitly as

€CQ,(0)+Q,(0)CT = K. (A.10)
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where we defined

6 = 22/(0)1d - Vh(x)R = Q.(VVb(x,),(0)Q. + Qu(VVb(x )E,O) + (VVb(x,)FO)Q..
(A1)

If VVb(x,) = 0, we have & = 0 and hence one obtains Q;,(O) = 0—this is the case for example in
the examples presented in Sections 3.2.2 or 4.2.1. In this situation, the approximation Qy(AS) =Q,
is correct up to order ©O(As?). If a more accurate approximation is needed, we can consider the next
order: Taking the derivative of (A.9) we deduce that

QY (s) = A(s) 'R/ (s) = A(5) PR(A (), (A12)

and hence, using I’'Hopital’s rule again together with R(0) = R’(0) = 0 and 1(0) = 0, we obtain
Q}/(0) = 2A'(0) 'R (0). (A13)
For brevity, we will refrain to write down this equation explicitly, but we note that it is again a

Lyapunov equation, this time for Q;’ (0), where all other terms are known. Knowledge of Q;’ (0) in
situations where Q;(O) = 0 allows one to use

Qy(45) = Q. + 5A5*Q}/(0) + O(As)*, (A14)

APPENDIX B: EXPRESSIONS FOR THE SOLUTION OF RICCATI EQUATIONS AS
EXPECTATIONS

The following two propositions give ways to express the solution of backward and forward Riccati
equations of the type considered in text in terms of expectations over the solution of some SDE:

Proposition B.1. Given A : [0,T] - R™™", B : [0,T] - R™™", 75 : [0,T] = R", all in C'([0,T])
and with A symmetric, as well as C € R™", with C symmetric, and & € R", the following equality
holds

T
EZ exp </ GA(t)  Z,Z, +(b) - Zt> dt + %c S ZpZp+ & -ZT>
0

— G(0)exp (§<z, W(0)z) + r(0) - z), (B.1)
where Z, solves the linear SDE
dZ, = B(t)Z,dt + odW,; (B.2)
andW :[0,T] - R™ r :[0,T] - R",G : [0,T] = R, solve

W +BT(O)OW + WB(t) + WaW + A(t) =0, W(T)=C,
P+ BT (O)r + War + (1) = 0, r(T)=¢, (B.3)

G+ %tr(aW)G + %a G =0, G(T) = 1.
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Note that the solution to the equation for G(t) in (B.3) can be expressed as

T
G(t) = exp (% / (tr(aW(s)) +a : r(s)r(s))ds). (B.4)

Proof. Letv : [0,T] X R" - R solve
8,0+ (B(1)z, Vv) + 2a : VVu + GA(t) L2z 4+ (t) - z)u —0, (BS)
for the final condition
u(T,z) = exp <%C tzz+ € 'z>. (B.6)
Then: (i) computing d(v(t, Z;) exp(fot(%A(s) P ZZs +1(s) - Zg)ds)) via Ito’s formula, taking
expectation, and integrating on t € [0, T] shows that the solution to this equation at time t =0
can be expressed as the expectation in (B.1); and (ii) substituting G(t) exp(%(z, W(t)z) +r(t)-z)

in (B.5) shows that this expression satisfies this equation as well as (B.6) if W(¢), r(¢t), and G(t)
satisfy (B.3). O

Proposition B.2. Using the same notations as in Proposition B.1, let Q : [0,T] — R™" solve

Q=B(1)Q+QB" () +QA(NQ +a,  Q(0) = Q,, (B.7)

for some Q, = Qg, positive semidefinite (possibly zero). Then
Q) = EZ2(ZX)T, (B.8)

where Z[Q solves the nonlinear (in the sense of McKean) SDE
dz = BOZ1di + ZQAMZdt + 9dW,, (B.9)

and the expectation in (B.8) is taken over solutions to (B.9) with initial conditions drawn from a
Gaussian distribution with mean zero and covariance Q.

Proof. Application of Ito’s formula shows that

%[E [Z,Q (Z?)T] = B(O)E [Z,Q (Z?)T] +E [Zf’ (z?)T] BT(1)

T T
+1QA(E [Z? (z?) ] +E [Z? (Z? ) ] A(Q+a.  (B10)

T T
Since E [Z(? (ZS) ] = Q, = Q(0) initially, this equation shows that E [Zto (ZtQ) ] = Q(¢t) for
t>0. ]

The following proposition offers a practical way to simulate (B.9):
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2326 | GRAFKE ET AL.

Proposition B.3. Let {Z}}!" | solve
n
dZi = B(t)Zidt + 1n1 > <Zi A)Z! > Zldt + odw! i=1,..,n (B.11)
t t 2 t’ t t t’ A Rt *
j=1

where {Wti}l.”:l is a set of independent Wiener processes. Then if we drawn the initial conditions
for (B.11) independently from a Gaussian distribution with zero mean and covariance Q,,, we have

T
Zi(Z}) - Q(t)  almostsurelyas n — oo (B.12)

M=

1
n &

Proof. The proposition is a direct consequence of a ‘propagation of chaos’ argument (see e.g. [47])
applied to (B.11). O

APPENDIX C: LINK BETWEEN THE FORWARD AND BACKWARD RICCATI
EQUATIONS
We have:

Proposition C.1. Using the same notations as in Proposition B.1, let W : [0,T] — R™" and
Q : [0,T] - R™" solve

{W +BT(O)W + WB(t) + WaW + A(t) =0, W(T)= Wy,
(C1

Q = QBT(t) + B(t)Q + a + QA(1)Q =0, Q(0) = Qq,

where Wp € R"™" and Qq € R™™", both symmetric. Then the following identity holds
T
det(Id — WrQ(T)) = det(Id — W(0)Q,) exp (/ tr(A(t)Q(t) — W(t)a)dt) (C.2)
0
Proof. From (C.1), it is easy to see that the matrix W(¢)Q(t) satisfies
d
E(WQ) = B'(t) + Wa)Id - WQ) — (Id - WQ)(B"(t) + A(H)Q). (C3)
As a result, using the Jacobi formula, we deduce that
% logdet (Id — WQ) = —tr((Id — WQ)~X(d/dt)(WQ)) = tr(A(1)Q — Wa). (C.4)
Integrating both side on ¢ € [0, T] and taking the exponential of the result gives (C.2). O
APPENDIX D: THE RADON’S LEMMA FOR THE RICCATI EQUATION

It is well-known that a matrix-Riccati equation can be equivalently represented by a linear
matrix equation. Sometimes, this transformation is called Radon’s Lemma. Consider a differential
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equation of the form

d (®\ _ (My M) (@
dt <®> B <M21 M, ) \©/’ (DD)
and set W = ©®~1. Then

W=00"1+0d"1=00"1-—00100"! = (My®+M,0)0! — 0d~1(M,;® + M,,0)d!

= M21 +M22W - WMll - WM12W.

We can apply this to the instanton matrix-Riccati equation by choosing M,; = —(VVb,0),
M,, = —(Vb)', M;; = Vb, and M, = a to obtain:

d (D Vb a ()]
di <®> - <—<Wb,e> —<Vb>T> (@) | -

and as final conditions we can choose @(T) = W(T) and &(T) = Id. While it seems appealing
to solve the Riccati equation this way, in practice the issue is that the equation for ® is well-
posed forward in time, whereas that for © is well-posed backward in time. This means that the
system (D.2) has to be solved iteratively, and the final condition are not simple to impose. This is
why we did not use (D.2) in this paper.

APPENDIX E: DERIVATION OF det | H = (W"H 'A)det H
Given an invertible, positive definite H = H T € R™" and a unit vector A we define det | Hvia

1
) "=V/2|det H|"/? = / e 2" MM aey =2 A (E1)
P

where P = {y : (#i,y) = 0}. For m > 0, let

H,, = H+ mnin' (E.2)
Clearly
1
A= /e_5<y’H’"y>da(y) (E.3)
P

since (#,y) = 0 in P. At the same time we have

O ds (E.4)
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where we used u = y + sf to change integration variable with

= % s A= Ig_il (E5)
Comparing (E.1) and (E.5) we deduce
|det, H| = (4 - )|t TH,,,f| " |det H,,,| (E.6)
Since
t"H,t=f{"(H+mnn")i =t{"Hf + m@ - £)? (E.7)
we have
(- D2 tTH,,f| 7 = i f mt(n 5 (E.8)
and (E.6) can be written as
det H = — n-i — detH,, (E.9)
|HE| + m(A - £)
Next, write (E.2) as
H,=H(Id+mH'"wA") = H(Id+ m|H'A| I AT) (E.10)
so that
detH,, = detH det (Id + m|H™'A| fAT) (E.11)

The matrix Id + m|H'#|fAT has n — 1 eigenvectors perpendicular to 7, each with eigenvalue 1,
and one eigenvector { with eigenvalue 1 + m|H~'/|(# - f) since

(Id+m|H A tADE = (1 +m|HA|(A - D))E (E.12)

Therefore

~1a1(7 - F
det, H = @ t)(l T miH nlA(n t)) detH (E.13)
|HE| + m(7 - f)

Since |H~ 7| = |Hf|! this can be written as

(n-0)

det, H = A |detH| = (ATH'A) detH (E.14)
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APPENDIX F: GENERAL FORM OF THE INSTANTON AND RICCATI EQUATIONS
FOR SPDEs
Let us generalize (6.1) into

du = Blul + Ven, u(0) =uy, (F1)
for t € [0,00), x € QC R? and u : [0,00) X Q = R, and where B[u] is a (possibly nonlinear)

differential operator in the spatial variable x and the noise 7 is white-in-time Gaussian with
covariance

En(t, x)n(t’',x") = 8@t — t")x(x, x"). (F.2)

If we consider again probabilities that a linear observable exceeds a certain threshold,

PY(T, z) = P < / ¢()u(T, x) dx > z>, (E.3)
Q

we formally obtain a proposition analogous to Proposition 6.1:

Proposition F.1 (Probabilities for SPDEs - general case). Let the fields u(t,x), 6(t, x) solve the
instanton equations

S = Blul + / 298 dy,  u(0) = up,
Q
(F.4)

__ [ 8By _
a0 =- [ Do yay. o =s.

and let Q(t, x, y) solve
0,0 = / o(t, x,z1)K(t, z1,2,)Q(t, 25, y) dz, dz, dz;
Q3

8 B[u](t, x) SBlul(t,y)
+/Q 51,{(1',2) Q(t,y,z)dz+/gWQ(t,Z,x)dz+}((x,y), (FS)

with Q(0) = 0 and where we denote

_ dBu](t, z)
]C(t’x’y)_/Q—5u(t,x)5u(t,y)e(t’z)dz' (F.6)

Then the probability P?O (T, z) in (F.3) satisfies

P°(T,z) _ )

im— = (F.7)
=0 (T, 2)
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(F.9)

K(t, x,x)Q(t, x,x)dx dt).

.

J

— I

o(t, x)x(x,y)0(t,y)dx dy dt> (F.8)

[

1
2e

1/2
o(T,x)Q(T, x,y)6(T,y) dx dy) exp <

2

J

(T,z) = 2r) Y2 /2V(T, uy) exp <—

v
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~
g =]
3
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