
A High Throughput, Energy-Efficient Architecture
for Variable Precision Computing in DRAM

Gian Singh
Arizona State University

Tempe, AZ, USA
gsingh58@asu.edu

Ayushi Dube
Arizona State University

Tempe, AZ, USA
adube9@asu.edu

Sarma Vrudhula
Arizona State University

Tempe, AZ, USA
svrudhul@asu.edu

Abstract—DRAM-based near-memory architectures are recog-
nized for their ability to deliver substantial energy efficiency and
throughput to execute data-intensive tasks. However, the inherent
limitations regarding area, power, and timing within DRAM allow
the integration of only primitive processing elements with limited
operations and application support. This paper introduces a near-
memory processing architecture based on DRAM featuring a novel
computing unit termed the neuron processing element (NPE).
NPEs are capable of performing multiple arithmetic, logical, and
predicate operations. With a well-defined instruction set, the NPEs
can be programmed to support standard data formats for floating
point and fixed point precision used in different AI/ML and signal
processing applications. They can be dynamically reconfigured
to switch operations during run-time without increasing overall
latency or power consumption. The NPEs have a small area and
power footprint compared to conventional MAC units and other
functionally equivalent implementations, making them suitable for
integration with DRAM without compromising its organization or
timing constraints. Furthermore, this paper shows a substantial
improvement in latency and energy consumption compared to
prior in-memory architectures and demonstrates the efficacy of
the proposed architecture for the acceleration of neural network
inference.

Index Terms—Processing-in-Memory, Low-power, Deep Neural
Networks, DRAM, Memory Wall, Energy Efficiency.

I. INTRODUCTION

Machine learning (ML) is fast becoming a dominant
paradigm of computing in almost every domain. ML algorithms
are realized as parametric function graphs (i.e., deep neural
networks–DNN) in which nodes represent the composition
of inner products and non-linear functions, and connections
represent function composition. The major internet companies
like Google, Meta, Microsoft, and others deploy DNNs with
hundreds of billions of parameters, performing trillions of large
dimensional matrix operations. Thus, DNNs are often both
memory and compute-bound. Consequently, they require mas-
sive amounts of memory and large server farms with thousands
of high-performance GPU processors. The electricity usage of
such server farms is approaching that of whole industries and
some nation states, and for such systems to be sustainable, at
least one to two orders of magnitude improvements in energy-
efficiency are required [1]–[3].

Existing CPU/GPU processors based on the traditional von
Neumann processor architecture in which the computation units

This work was supported in part by the NSF I/UCRC IDEAS center and from
the NSF grant #2324945.

and main memory (i.e. DRAM) are separated are wholly
inadequate [4] for large-scale memory and compute-intensive
applications such as ML because the energy required to data
transfer between the CPU and DRAM is nearly two orders of
magnitude greater than that required to perform computations
on a CPU [5]. Processing-in-memory (PIM), in which the
computation units are integrated with the DRAM, can eliminate
the energy consumption of the data transfers and achieve the
required improvement in energy efficiency.

While the concepts of underlying PIM are not new, the recent
proliferation of ML has led to a rapid development of PIM
architectures. Both SRAM and DRAM have been proposed
for the design of PIM architectures. SRAM implementations
either utilize analog multiply and accumulate (MAC) with
small ADCs (quantization < 4 bits) [6], or bit-serial digital
computation [7]. SRAM-based compute-in-memory (SRAM-
CIM) is usually implemented in the cache of CPU/GPU of
small size (< 100 MB), requiring at least one-time data transfer
from an external larger capacity memory such as a DRAM.
Thus, for large models, data transfers on the memory channel
dominate the energy consumption of the system.

A DRAM-based PIM architecture eliminates all the data
movement on the memory channel. A DRAM, with its much
larger capacity (> 10 GB), can provide various amounts of
parallelism depending on where the compute elements are
placed. The closer they are to the memory array, the more
available parallelism can be exploited.

In-array architectures modify the memory array itself [8]–
[10]. This exploits the maximum available parallelism by
performing bit-wise operations on entire rows of banks. Simple
logic operations are performed by exploiting the charge-sharing
characteristics of the transistors that comprise the memory cells
or by modifying the sense amplifiers of the memory banks.
These require changes to the memory access protocol and
timing, and incurs high delay when performing arithmetic oper-
ations. Tools like DRAM bender [11] are used to implement and
test In-array PIM architectures on commercial DRAM chips.

Near-array processing places the compute elements just
outside the memory array after the bit line sense amplifiers
(BLSA) [12], [13]. Here, the compute elements can receive the
maximum number of bits (e.g., 8K to 16K) from a memory
array. Unfortunately, due to stringent constraints on how much
memory capacity can be sacrificed, only compute elements of

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

limited functionality (e.g. a full adder as in [12]) can be used.
Near-bank processing places compute elements further away

from the memory array after the local I/O circuits. Here the
bandwidth is reduced to 64 bits for a DDR memory or 256 bits
in the case of 3D-HBM (High Bandwidth Memory) [4], while
still sacrificing nearly 50% of the memory capacity. Finally,
compute elements can be placed entirely outside the memory
chip at the RANK level, as in [14]. This is essentially a CPU
and a small DRAM memory on a separate chip. All of these
approaches present trade-offs between memory capacity and the
amount of parallelism. The near-array design [13] places LUTs
and the near-bank design [4], with reduced bandwidth, places
16-bit floating-point MACs–both incurring 50% reduction in
memory capacity.

A. Main Contributions

In this paper, we present a PIM design that addresses some
of the basic disadvantages of all existing PIM designs. As
explained above, the fundamental challenge is to introduce
compute elements that have high compute density, very low
area, and low latency near the memory array so as to access
the maximum number of bits in parallel. The low area should
allow many compute elements to be deployed near the array to
operate in a SIMD mode so as to maximize throughput. With
conventional CMOS logic, the requirements of high compute
density, low area and latency are conflicting.

We propose a novel solution to this problem by using a
new circuit element, referred to as a configurable neuron (CN),
that can realize complex functions within an ultra-small area.
For instance, the carry-out of a 5-input carry-lookahead adder
can be realized in an area the size of a single D-flipflop. A
small network of CNs forms the basic compute unit that can
be configured, without any area or delay penalty, to compute
arithmetic, bit-wise logic, and comparison functions. The area
and power of a CN is 50% of a functionally equivalent, equi-
delay version using conventional logic. A combination of the
compute unit and additional logic forms a novel processing
element, called NPE (neuron processing element), that can be
introduced into a DRAM at the output of each memory array
to maximally exploit all the available parallelism.

The proposed PIM architecture supports multiple data for-
mats (integer and floating point) and multiple bit-precision (4,
8, 12, 16, 32 bits) as the instruction set of the NPEs supports
all logic, arithmetic, and comparison operations. The proposed
architecture achieves on an average 1.78→ improvement in
throughput against [13], and 2.64→ against [4], and 9.27→
improvement in energy efficiency as compared to [13]. [4]
and [13] are state-of-the-art PIM architectures.

II. PROPOSED PIM ARCHITECTURE

A. Top-Level Architecture

Fig. 1(a) shows the top-level architecture of the proposed
PIM design. It consists of a High Bandwidth Memory (HBM)
cube, which has multiple DRAM chips and a base logic layer
connected using the through silicon vias (TSVs) to form a
3D integrated memory with high density. Each DRAM layer

TABLE I: Comparison of different Processing Elements/cores used
in PIM architectures.

PE Type Area (20nm) #PEs/Bank Relative Throughput
/Bank

MAC INT 16 [4]
(w/ 48-bit Acc.) 61.77 16 1.00

MAC INT 8 [4]
(w/ 48-bit Acc) 27.80 32 2.00

MAC INT 8 [4]
(w/ 32-bit Acc) 21.62 32 2.00

MAC FP 16 [4] 81.54 16 1.00
MAC BFLOAT 16 [4] 71.04 16 1.00

NPE-INT 16 1 1024 3.70
NPE-INT 8 1 1024 11.11

NPE-BFLOAT 16 1 1024 4.49

in the HBM consists of a collection of 2D memory arrays
called banks, as shown in Fig. 1(b). The main innovation of
this paper is the design of the Neuron Processing Elements
(NPEs) (shown in Fig. 1(c)), which can be interfaced directly to
the bit-line sense amplifier arrays of the DRAM banks without
interfering with the timing constraints or access protocols of
the memory as shown in Fig. 1(b). The array of NPEs, NPE-
Array, connected to the BLSA operates in a SIMD fashion to
enable massive compute parallelism inside the DRAM array.
The NPE is the basic computing element that can be configured
using the control signals generated by an instruction decoder
in the logic layer of the HBM. These signals are broadcast to
all the NPEs to operate in a SIMD fashion. NPEs perform
different operations without any delay penalty and without
having to include separate units for different functions. The
instruction set of the NPE consists of multi-bit carry-lookahead
operation, multi-bit logic, and comparison operations, which
provide an ability to map any higher-level arithmetic, linear,
or non-linear functions (multiplication, pooling, ReLU, etc.)
in different data formats (integer and floating point) to the
NPE. The NPE-Array enables the parallel execution of the
matrix-matrix (MM) and matrix-vector (MV) multiplications
which are common to many workloads (DNNs, LLMs, etc.)
that drive much of the applications today. The integration of
the NPE-Array to the memory banks can be easily adapted to
all the 2D (DDR, GDDR, LPDDR, etc.) and 3D (HMC and
HBM) DRAM organizations, making such a PIM architecture
scalable from edge devices to high-end servers. This paper uses
the HBM organization to demonstrate the efficacy of the NPEs
for DRAM-based PIM architectures.
Why is NPE suitable for BLSA integration? The DRAM
provides maximum memory parallelism (8K bits) at the array
level or at the output of bit-line sense amplifiers (BLSAs).
The major constraint in adding logic near BLSA is the high
area overhead of the compute elements. Therefore, prior ar-
chitectures have been able to place only primitive gates near
BLSA [12]. Such architectures have high latency for multi-bit
arithmetic operations, which makes them unsuitable for many
data-intensive applications such as DNNs. On the other hand,
several PIM architectures have used multiply and accumulate
(MAC) units of different precision to accelerate ML applica-
tions inside DRAM [4], [15]. These architectures, however,
place the MAC units outside the bank I/O, thus operating on a
much lower data width (64 or 256 bits). Furthermore, these

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Fig. 1: (a) High Bandwidth Memory (HBM) with multiple DRAM chips; (b) Bank-level description of the proposed PIM architecture showing
the proposed NPE array interfaced with a bank; (c) The proposed NPE microarchitecture.

architectures require more hardware for other operations of
the DNNs such as pooling and ReLU. McDRAM [15] showed
that adding 8-bit MAC units near BLSA in LPDDR4 leads to
an area overhead of 120%. Thus, such an architecture is not
feasible.

The unique design of the NPE, as explained later in this
section, provides the flexibility to perform multi-bit opera-
tions in a very low area footprint. Table I provides an area
and throughput/bank comparison of NPE and different MAC
units [4]. The MAC units are placed outside the DRAM bank
with parallel access of 256 bits, and NPEs are placed near
BLSA with parallel access of 16K bits [15]. The area advantage
of the NPE is clearly evident, and moreover, the NPE can be
configured to perform MAC operations of different bit-width,
unlike conventional MAC units.

B. Neuron Processing Element (NPE)
Fig. 1(c) shows the major components of the proposed

NPE microarchitecture. At the microarchitecture level, the NPE
resembles an execution unit of a conventional microprocessor.
The NPE is designed to issue a single instruction in every cycle.
The three main components of the NPE include DRAM-RF
Read/Write Selector (referred to as the Selector), Register
File (RF) with associated circuitry, and the Arithmetic Logic
Unit (ALU). The design of ALU is what distinguishes the NPE
from the conventional CMOS implementations.

The main computing elements in the ALU are the Primary
Cluster (PC) and the Secondary Cluster (SC). These clusters
consist of k Configurable Neurons (CNs) which can perform k-
bit operations (for some k) in a single clock cycle. The CNs are
the basic compute elements that perform the operations on each
bit of the operands. The main operations of the cluster are k-bit
carry look ahead, k-bit sum, k-bit comparison, and k-bit logic
operations. The cluster can implement all these functions just
by using k-CNs. No additional hardware is required for any of
the functions. The function on the cluster is selected by simply
generating the appropriate set of inputs to the neurons. This
leads to a very compact design of the primary and secondary
clusters. For instance, for k=5 as used in this paper, in 40nm
technology, the CN-based primary cluster is 4→ smaller than
an equivalent CMOS implementation.

The other components of the ALU comprise an Input Gener-
ator (referred to as the Generator), a Clock Gate (CG) module,
a Carry register, and an output multiplexer (Output MUX).
The Instruction Set Architecture (ISA): The ISA of the
proposed NPE design is formally defined in Fig. 2. It consists
of the 11 functions represented by the 4 bits of the opcode field
of the instruction encoding as shown in Fig 2. The instructions
of the NPE include arithmetic (ADD (addition)), COMP (com-
parison) and logical (AND, OR, NOT, XOR, XNOR, LADD
(addition after logical left shifting second operand), RADD
(addition after logical right shifting second operand), RCAR
(reset the carry register to zero) and MAND (AND of all bits
of first operand with a single bit)).

Fig. 2: ISA for the NPE (D and S denote the destination and source
register respectively; k is the bit-width of the operands; d is a bit
denoting left or right direction; x denotes unused bit(s).

NPE Operation: The primary inputs to the NPE are control
signals (RW and RD), input data (DRAM IP), and the opcode.
The Selector interfaces the data from DRAM to the register file
(RF) in the NPE. The NPE operates in two modes: functional
mode and buffer mode. In the buffer mode, the NPE either reads
data from the DRAM and writes to the RF or writes data back
to the DRAM from the RF. In this mode, the ALU of the NPE
is clock-gated to save power consumption. In functional mode,
the write port of the RF is connected to data coming from the
ALU to write the output of the operation performed by the
ALU. The control signals RW and RD are used to select the
mode of the operation of the NPE.

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

In the ALU, the Input Generator is responsible for formatting
the ALU operands A and B based on the opcode such that they
can be directly interfaced with the individual inputs of the CNs
in the clusters. The function performed by a CN is concisely
described by Equation 1 below.

Q(p, Z0, X, Z1, Y) = Z0 +
p→1∑

j=0

2jXj → Z1 +
p→1∑

j=0

2jYj (1)

For k-bit ALU operands A and B, the primary and secondary
clusters each consist of k CNs and each with 2k + 2 inputs.
Therefore, the total number of configuration bits per cluster
is 2k2 + 2k (X (k2 bits), Z0 (k bits), Y (k2 bits) and Z1 (k
bits)) to evaluate the Q function as defined in Equation 1. These
configuration bits for different functions are listed in Table II.

TABLE II: Arguments to a Q function for k-bit operations.
operation p Z0 X Z1 Y

AND 1 0 Ak 1 ↑Bk

OR 1 0 Ak 0 ↑Bk

NOT 1 0 Ak 1 0
COMP k COMPout A[k-1:0] 1 B[k-1:0]
ADD k-1, 2 Carryin, Ak A[k-1:0], Bk 1, 0 ↑B[k-1:0], {Carryk,↑Carryk→1}
XOR 2 Ak Bk 1 {ANDk, 0}

XNOR 2 Ak Bk 1 {ANDk, 0}
LADD k-1, 2 Carryin, Ak A[k-1:0], Bk 1, 0 ↑B[k-1:0], {Carryk,↑Carryk→1}
RADD k-1, 2 Carryin, Ak A[k-1:0], Bk 1, 0 ↑B[k-1:0], {Carryk,↑Carryk→1}
MAND 1 0 Ak 1 ↑Bk

RCAR 0 0 0 0 0

This explains how different functions can be computed by
simply setting the appropriate bits. All functions except for
SUM and XOR/XNOR need only the primary cluster (PC) for
execution. A carry-look-ahead adder is implemented for SUM
operation wherein the PC computes the carry bits Ck. The
output of PC, Q1, and Q1 are supplied to the secondary cluster
(SC) and the Output MUX. The SC evaluates the SUM bits
where each of the k bits is computed using one out of k CNs.
The outputs to the SC are Q2 and Q2. For the XOR/XNOR op-
eration, the PC evaluates the AND operation between operands
A and B, which is used as an intermediate operation to compute
XOR/XNOR. A clock gate module operates only the necessary
clusters and/or CNs. The output multiplexer (output MUX)
selects the required output among Q1, Q1, Q2, and Q2 as
per the opcode.

Values of the inputs to the Q function depend on the
operation to be performed, as shown in Table II. For example,
consider an AND operation between two 1-bit operands A and
B, which can be calculated using Q(1,0,A,1,B). By substituting
the appropriate values into Equation 1, results in 0+A ↓ 1+B,
which in turn can be rewritten as A+B ↓ 2. Other k-bit logic
operations are similarly defined. They are computed in one
cycle using a neuron cluster in an NPE. For XOR(A[i], B[i]),
where i ↔ k, there is a two-level cluster network and therefore
requires two cycles.

For N-bit operands (N > k), addition, comparison, logic,
multiplication in integer or floating point format can be
decomposed into a sequence of k-bit operations, executed
sequentially on a single NPE. In this paper, k = 5.

The implementation of floating-point operations requires the
additional step of Normalization. The normalization procedure

Fig. 3: Configurable Neuron (CN): a mixed-signal circuit implemen-
tation based on Threshold Logic (TL) [18].

is dependent on the specific output value of the operation on
the input operands which can break the SIMD operation of the
NPEs. This paper uses the Normalization algorithm presented
in [16] for the SIMD operation. This Normalization procedure
depends only upon the bit-width of the operands; thus, the same
operations are performed for all the NPEs irrespective of the
value of the input operands. The algorithm is mapped onto the
ISA of the proposed NPE to be performed at the end of each
floating point operation.

In summary, the NPE can: (1) implement multiple functions
on the same hardware structure, (2) instantaneously switch
between the various functions by activating specific inputs of
the CN, and (3) utilize the exact number of CNs required in
a cluster depending upon the operand bit-width. All of these
factors result in extremely low power and a very small area
footprint of the NPE.

C. Circuit Implementation of Q (Configurable Neuron)

The Q function in the Equation 1 is realized by a mixed-
signal circuit called Configurable Neuron (CN) as shown in
Fig. 3. The inputs xi and Z0 are mapped to the left input
network (LIN) of the structure, where each xi has an associated
weight wi. The w associated with Z0 is 1. Similarly, the inputs
yi and Z1 are mapped to the right input network (RIN). For
the NPE design wi = 2i. When the clock is enabled, LIN and
RIN evaluate the weighted sum of the inputs in the form of a
cumulative current and connect to the Sense Amplifier (SA) as
two differential signals, as shown in Fig. 3. The SA evaluates
to 1 (0) if the LIN current is greater (lesser) than the RIN and
stores the result in the SR latch. A detailed discussion on the
threshold functions is provided in [17]. Note: The weights wi

in a CN are implemented by programmable resistors, whose
resistance values are set after fabrication. The details of the
CN’s circuit architecture and the realization of the wi are
beyond the scope of this paper. The circuit level details of the
CN design are presented in [18]. It is not the main contribution
of this paper.

The advantages of a single CN over a functionally equivalent
CMOS are substantial [18]. At the individual cell level, a 5-
input CN results in improvements in area, power, and delay of
[80%, 60%, 40%] respectively, over the performance-optimized,
functionally equivalent CMOS circuit.

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

III. EXPERIMENTS AND RESULTS

A. Design and evaluation methodology

The NPE is designed in Verilog and synthesized in 40nm
technology using the TSMC standard cell library of the CMOS
and the configurable neuron data obtained from the work [18].
The frequency of the NPE is 300 MHz, which is equal to
the internal HBM frequency [4]. The area, power, and timing
information of the NPEs extracted using the industry standard
CAD tools and the HBM are listed in Table III. A behavior-
level simulator is designed using the NPE power and timing
data along with DRAMPower [19] simulator to characterize
the latency and the energy consumption of the proposed and
baseline PIM architectures FlutPIM [13] and FIMDRAM [4]
for different workloads.
Hardware Configuration: The proposed NPEs can be in-
tegrated with memory banks in both 2D-DIMM and 3D-
HBM memory. In this paper, the parameters of the HBM
are used according to Samsung’s HBM2-based PIM industrial
product [4]. The PIM-HBM2 consists of 8 DRAM dies stacked
using the TSVs. The memory bus frequency of the PIM-HBM2
is 1.2 GHz, and the operating frequency of the DRAM is 4→
slower than the bus frequency (= 300 MHz). In Samsung’s PIM-
HBM2, half of the DRAM dies consist of compute elements,
and the capacity of each DRAM die with compute elements is
equal to 4 Gb. Therefore, this paper simulates a 4 Gb DRAM
die with the bank organization and the timing parameters as
listed in Table III. The area of each DRAM die is 84.4 mm

2

at 20nm technology [4] and therefore, the area overhead of the
proposed design with 16384 NPEs/chip is only 10.6%. All the
presented results of the proposed and the baseline architecture
are based on the workload mapping and simulation on a single
DRAM chip.

TABLE III: Configuration of the platforms used.

Attributes FIMDRAM [4] FlutPIM [13] This Work
PE Area (20 nm)

in mm
2 0.045 0.021 0.00055

(0.0026 in 40 nm)
PE Power (mW) N.A. 14 0.051

PE Operating
Freq 300 MHz 1.69 GHz 300 MHz

PIM HBM
Freq 1.2 GHz 1.2 GHz 1.2 GHz

PIM HBM Die
Capacity 4 Gb 4 Gb 4 Gb

#PEs/bank 16 32 1024
#Banks/die 16 16 16

MAC Latency
(Tinyfloat-12) N.A. 19 Cycles 67 Cycles

MAC Latency
(INT-8) N.A. 6 Cycles 33 Cycles

MAC Latency
(FP-16) 2 Cycles N.A. 96 Cycles

Data-width/bank 256 bits 4096 bits 8192 bits

PIM HBM timing tRAS = 29, tRP = 14, tRCD = 16, tCCD S = 4,
tCCD L = 2, tWR = 16, tRC = 45, tRRD = 2

B. Workloads

This paper evaluates the performance and energy efficiency
of the proposed PIM architecture on CNN inference workloads.
CNN inference is a popular workload for PIM architectures as

it requires high computing and data parallelism, which is avail-
able in PIM designs. Furthermore, the CNNs are executed at
different data precision in both integer (INT) and floating-point
(FP) data formats. Hence, the CNN workloads are ideal for
testing the efficacy of the proposed PIM architecture, which can
be programmed to support multiple data formats. This paper
evaluates popular CNN architectures such as ALEXNET [20],
RESNET-18, RESNET-50 [21], VGG-16, and VGG-19 [22]
on the Imagenet dataset. Fig. 4 shows how the weight matrix
(shown in different colors on top of the bank) and input vector
V are mapped to the DRAM bank in the proposed architec-
ture for parallel computation of the vector-matrix product, a
common operation in CNN inference.

Fig. 4: Mapping of a matrix of weights and activation vectors to a
DRAM bank for parallel computation.

C. Results and Discussion
Support For Variable Precision: The instruction set of the
NPE consists of basic logic functions, carry-lookahead addition,
and comparison operations. Hence, a micro-program consisting
of NPE instructions can be designed to implement different
arithmetic and logic operations involving various data formats.
The proposed architecture’s throughput (Images/s) and energy
efficiency (Images/J) are evaluated for all workloads at pop-
ular integer formats for inference such as INT-4 and INT-8.
Popular floating point formats for machine learning, including
Tinyfloat (12 bits) and brain floating point (BFLOAT-16), are
also evaluated. Fig. 5 shows the throughput and Fig. 6 shows
the energy efficiency of the CNN workloads for different data
formats. It is observed that as the size (number of parameters)
of the CNN architecture increases, both the throughput and
energy efficiency of the proposed architecture decrease. The
same trend can be observed with respect to the data format
and precision and higher precision involves computing more
NPE instruction per operation.
High Throughout and Energy Efficiency: Table IV com-
pares throughput and the energy efficiency of the proposed
PIM architecture with another LUT-based PIM architecture
FlutPIM [13]. The throughput of the proposed architecture is
also compared with Samsung FIMDRAM [4]. The processing
elements of the FlutPIM consist of multiple lookup tables that

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Fig. 5: Demonstrating variable precision. Throughput of the proposed
PIM architecture for computing different CNNs at different data
formats.

Fig. 6: Demonstrating variable precision. Energy efficiency of the
proposed PIM architecture for computing different CNNs at different
data formats.

implement 8-bit functions and, therefore, are about 38→ larger
than the NPEs used in the proposed PIM architecture when
scaled to 20 nm process node. To limit the area overhead
of the PEs, only 32 of the FlutPIM PEs are used per bank
as opposed to 1024 NPEs. This results in a larger compute
bandwidth and compute parallelism per bank for the proposed
PIM architecture. As a result, the proposed PIM architecture is
able to achieve improvements in throughput over FlutPIM in
spite of NPE being slower as compared to FlutPIM PE1.

The NPEs are compact and do not overprovision hardware
to achieve flexibility; hence, they achieve about 274→ lower
power than a FlutPIM PE. This results in an order of magnitude
improvement in the energy efficiency of the proposed PIM
architecture as compared to FlutPIM, as shown in Table IV.

IV. CONCLUSION

This paper presents a PIM architecture that integrates novel
neuron processing elements (NPEs) into a conventional DRAM
to utilize the maximum available parallelism inside the memory.
The aim of this work is to design a general-purpose computing
element with a very small area and power footprint that is,
therefore, non-invasive to the DRAM design and makes the
PIM architecture easily adaptable. This paper shows the NPE

1The FlutPIM uses a clock frequency of 1.69 GHz for its PE which is greater
than the HBM frequency (300 MHz). This is not a feasible design according to
Samsung Industrial PIM product [4]. Any components inside the HBM have
to operate at the HBM frequency, or else it will lead to timing violations.

TABLE IV: Throughput of the proposed architecture normalized to
FlutPIM [13] and Samsung FIMDRAM [4] and Energy-Efficiency
normalized to FlutPIM [13].

Throughput Ratio Energy-Efficiency Ratio
FlutPIM = 1 FIMDRAM = 1 FlutPIM = 1

INT-8 Tinyfloat-12 FP-16 INT-8 Tinyfloat-12
ALEXNET 1.56 2.01 2.55 6.94 11.41
RESNET18 1.56 2.01 2.59 6.97 11.75
RESNET50 1.56 2.01 2.66 6.96 11.43

VGG16 1.56 2.01 2.69 6.95 11.71
VGG19 1.56 2.01 2.69 6.95 11.71

can perform both integer and floating point operations and
can be integrated into BLSA to extract maximum memory
parallelism. When compared to an existing PIM architecture
with floating point support, the proposed PIM architecture
achieves about 1.56→ to 2.69→ higher throughput and about
6.94→ to 11.75→ higher energy efficiency.

REFERENCES

[1] C. Lai et al. AI is harming our planet: addressing AI’s staggering energy
cost. https://numenta.com/blog/2022/05/24/ai-is-harming-our-planet,
2022.

[2] E. Strubell et al. Energy and Policy Considerations for Deep Learning
in NLP, 2019.

[3] C. Wu et al. Sustainable AI: Environmental Implications, Challenges and
Opportunities, 2021.

[4] S. Lee et al. Hardware architecture and software stack for pim based on
commercial dram technology : Industrial product. In ACM/IEEE ISCA,
2021.

[5] Mark Horowitz. Computing’s energy problem (and what we can do about
it). In IEEE ISSCC, 2014.

[6] S. Yin et al. Vesti: Energy-Efficient In-Memory Computing Accelerator
for Deep Neural Networks. TVLSI’20.

[7] H. Kim et al. Colonnade: A Reconfigurable SRAM-Based Digital
Bit-Serial Compute-In-Memory Macro for Processing Neural Networks.
IEEE JSSC, 2021.

[8] V. Seshadri et al. Ambit: in-memory accelerator for bulk bitwise
operations using commodity DRAM technology. In MICRO’17.

[9] Q. Deng et al. DrAcc: a DRAM based accelerator for accurate CNN
inference. In DAC’18.

[10] İ. Yüksel et al. Functionally-Complete Boolean Logic in Real DRAM
Chips: Experimental Characterization and Analysis. In IEEE HPCA,
2024.

[11] A.and others Olgun. DRAM Bender: An Extensible and Versatile FPGA-
Based Infrastructure to Easily Test State-of-the-Art DRAM Chips. IEEE
TCAD, 2023.

[12] S. Li et al. DRISA: a DRAM-based Reconfigurable In-Situ Accelerator.
In IEEE/ACM MICRO’17.

[13] P.R. Sutradhar et al. FlutPIM: A Look-up Table-based Processing in
Memory Architecture with Floating-point Computation Support for Deep
Learning Applications. In ACM GLSVLSI, 2023.

[14] J. Gomez-Luna et al. Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System.
IEEE Access, 2022.

[15] H. Shin et al. McDRAM: Low Latency and Energy-Efficient Matrix
Computations in DRAM. IEEE TCAD, 2018.

[16] O. Leitersdorf et al. AritPIM: High-Throughput In-Memory Arithmetic.
IEEE Transactions on Emerging Topics in Computing, 2023.

[17] S. Muroga. Threshold logic and its applications. Wiley-Interscience,
New York, 1971.

[18] A. Wagle et al. A Novel ASIC Design Flow Using Weight-Tunable Binary
Neurons as Standard Cells. IEEE TCAS I: Regular Papers, 2022.

[19] K. Chandrasekar et al. DRAMPower: Open-source DRAM Power and
Energy Estimation Tool,. http://www.drampower.info/.

[20] A. Krizhevsky et al. ImageNet Classification with Deep Convolutional
Neural Networks. In NeurIPS, 2012.

[21] K. He et al. Deep residual learning for image recognition. CoRR, 2015.
[22] S. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, 2015.

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

