2024 Forum on Specification & Design Languages (FDL) | 979-8-3315-0457-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/FDL63219.2024.10673864

Platform Design for Privacy-Preserving Federated
Learning using Homomorphic Encryption

Wild-and-Crazy-ldea Paper

Hokeun Kim
Arizona State University
hokeun@asu.edu

Abstract—Federated learning (FL) has been increasingly
widely used for distributed and privacy-preserving machine
learning (ML) environments, as the raw training data can stay
local to clients while leveraging model updates from individual
clients. Homomorphic encryption (HE) technologies can provide
additional privacy protection for FL by encrypting the model
update parameters while allowing model aggregation on a remote
server. Although HE-enabled FL seems to be a promising privacy-
preserving ML solution, it requires significantly more computa-
tional and memory resources, requiring a dedicated hardware
and software platform. In this paper, we discuss preliminary
but concrete and realizable research ideas for analyzing the
requirements for HE-enabled FL and for designing a hardware
and software platform. Furthermore, we propose a platform co-
design process that considers various design stages and challenges
in the platform co-design.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Federated learning (FL) [1] is a set of machine learning
(ML) techniques devised for multiple entities collaborating
to solve ML problems, expected to solve multiple critical
challenges in traditional distributed systems, such as privacy,
communication costs, and robustness [2]. Privacy challenges
in distributed learning environments are mitigated by FL as it
preserves clients’ private data by only sharing the metadata of
the locally trained ML model to be aggregated for updating the
shared ML model rather than sharing the raw data. However,
it still suffers from privacy concerns as the metadata of locally
trained ML models can still reveal sensitive information of the
local data to attackers [3], for example, through the inference
attack for the given model parameters [4]. These privacy
concerns have been one of the major obstacles to adopting
FL in critical applications, including digital healthcare [5].

Among efforts to address privacy concerns in FL, homomor-
phic encryption (HE) or fully homomorphic encryption (FHE)
technologies [6] have become a potentially promising solu-
tion to protect FL clients’ privacy from aggregation servers.
One example approach is BatchCrypt [7], which efficiently
encrypts a batch of quantized gradients for model updates
using HE. The emergence of significantly cost-efficient HE
algorithms, such as CKKS [8], is also facilitating the adoption
of HE, which has previously been prohibitively costly in
computation. HE allows for model aggregation operations on
remote servers without exposing the actual model parameters,
thus ensuring stronger privacy protection. HE-based privacy

979-8-3315-0457-1/24/$31.00 ©2024 IEEE

Younghyun Kim
Purdue University
younghyun@purdue.edu

Hoeseok Yang
Santa Clara University
hoeseok.yang @scu.edu

Privacy-Preserving
Model Aggregation using HE

e

Centralized Cloud Server
g—-—F

*
FL (Federated Learning)
Client
* L3 4 '
Specialized Edge HW/SW '3

Sharing Model
205 HE (Homom

|
Platform For HE-enabled FL| % *

FL Client FL Client FL Client

Fig. 1. Overview of an FL application with HE running on FL clients on the
edge and the model aggregation server on the cloud. Our goal is to design a
specialized HW-SW platform for the FL client running on the edge.

solutions to FL provide stronger cryptographic guarantees
compared to other solutions, for example, differential privacy-
based FL [9]. Thus, integrating FL with HE is now considered
a promising solution with great potential to enable privacy-
enhanced FL in a wide range of use cases.

However, performance-wise challenges still need to be
addressed to enable HE-based FL systems. Both FL and
HE are computation-heavy and memory-hungry applications,
requiring underlying computational architecture for high-
performance computing (HPC), including components such
as GPUs, high bandwidth memory (HBM) DRAM technol-
ogy [10], and hardware accelerators [11], [12]. Also, FL
and HE have very different types of workloads requiring
heterogeneous architecture on the same system. Specifically,
FL, like other ML applications, requires a high volume of low-
precision computation that TPUs [13] or GPUs can accelerate,
whereas HE demands massive memory bandwidth for the
encryption and decryption process in addition to computation
on large numbers, including the bootstrapping process [14]
which incurs enormous computation overhead.

In this position paper, we discuss the design ideas and
steps toward a dedicated hardware-software platform for FL
with HE. Specifically, we elaborate on the research efforts
required to design such a platform, including (1) application-
specific profiling and analysis for hardware requirements (Sec-
tion IV-A), (2) design space exploration for heterogeneous
high-performance hardware components (Section IV-B), (3)
design of optimized accelerators for FL and HE workloads
(Section IV-C), (4) acceleration through approximate com-
puting (Section IV-D), and (5) middleware and runtime for
optimal usage of the underlying hardware (Section IV-E).

Authorized licensed use limited to: Scholss Dagstuhl - Leibniz. Downloaded on February 27,2025 at 06:35:13 UTC from IEEE Xplore. Restrictions apply.

© Redesign SW (FL/HE) to Optimize Performance

Redesign FL to Minimize the HE Overhead

® Redesign FLto
Optimize HE Operations

© Redesign HW to
Optimize FL/HE Performance

i 1
- | @ Design/Config FL @ Identify Required @ Estimate |, !l ® Analyze FL @ Validation and !

1 1 1 -
o Apptication |2 gorithms and Model| > | HE Operations for FL |2 [Overhead of HE| 'E1|andHE | D> | ©PWVSWCO 105 evatuation of HWisW |1
9 ! Aggregation Methods Model Aggregation Operations ! ! Computation P Platform]
'

(i) SW (FL/HE) Design Processes

(ii) HW (Edge Computing HW Platform) Design Processes

Fig. 2. Overall timeline of the proposed hardware/software (HW/SW) platform design and redesign processes for HE-enabled FL. Applications.

II. SYSTEM AND THREAT MODELS

Fig. 1 illustrates an overview of the target system and the
platform. The target system to be designed as a platform is an
edge computing device running an FL client. Each FL client
will be connected to a powerful, centralized server, possibly on
the cloud. The FL clients will periodically, for example, every
few hours, share ML model parameters, such as gradients,
which will be encrypted using HE. The centralized server will
perform an FL algorithm for model aggregation [15] (e.g.,
FedAvg [16], FSVRG [17], BatchCrypt [7]) on the shared
model parameters encrypted by HE. The aggregated model,
still encrypted by HE, will be sent back to each FL client as
a model update. We acknowledge that there are FL models
based on decentralized model aggregation [18]; in this paper,
we will focus on the discussion on centralized FL.

System Model: The primary target system for the platform
design in this paper is an FL client using HE running on the
edge. In addition, we also consider the design requirements
for the cloud server performing model aggregation. The sys-
tem configuration parameters include (1) an ML model and
algorithm, (2) an FL algorithm that determines the model
aggregation method and ML parameters to be shared, (3) an
HE algorithm to protect the shared ML parameters, (4) runtime
and middleware for running software and communication, and
(4) a hardware architecture of the edge device.

Threat Model: The target system’s threat model assumes
that the FL clients trust each other and share keys for
HE. Our threat model also assumes the honest-but-curious
aggregation server model, similar to the threat model used
by Ada-PPFL [19] and BatchCrypt [7], which is widely
used for privacy-preserving approaches in FL. Specifically,
FL clients trust the aggregation server on the cloud in terms
of computation; that is, the aggregation server will perform
the correct computation honestly. However, FL clients do not
want to share any sensitive information that can potentially
expose privacy, including the model parameters used for model
aggregation. Thus, we assume the aggregation server does not
have knowledge of the HE keys used by FL clients.

III. DESIGN CHALLENGES AND REQUIREMENTS

Fig. 2 illustrates the overall timeline of the proposed pro-
cesses of hardware/software (HW/SW) design and redesign for
an edge platform running FL clients using HE. To begin with,
@ we first specify the requirements of the FL application,

including the problem domain, data types, ML model’s inputs
and outputs, required performance, etc. Then, (i) SW design
(FL and HE) should be done, followed by (ii) the design of
HW components.

A. Software Design Challenges

The software design part involves the @ design and con-
figuration of FL algorithms and model aggregation methods
for the specified application,) figuring out the matching HE
operations to perform FL algorithms and model aggregation,
and @ the estimation of the overhead caused by the HE
operations. As HE operations can be extremely expensive,
especially multiplication, we may have to (&) redesign the FL
algorithms to optimize the required HE operations or to
minimize the overhead of HE operations.

For example, FedAvg [16] is a widely used basic model
aggregation method when the model parameters at the ith
round are p;, and the kth client’s weight is wy, the updated
model parameters for the next round are defined as a simple
weighted sum:

Dit+1 < Zwk “Di

where 0 < k < N of total N clients, ng:ol wy = 1, and
wg > 0 for all k. This involves multiplication for model
aggregation. To eliminate the multiplication on the server side,
we can let the clients know their weights in advance and have
the clients send their parameters multiplied by their weights so
that the server only needs to do less expensive HE operations,
which in this case are additions.

At each round, the central server chooses a subset of
n clients out of the total N clients to report their model
parameters, such that n < N and ZZ;& wy, = 1. Thus, the
overhead for each client to perform HE to send encrypted
model parameters is reduced to n/N. We can also adjust
the period of model updates. If we use a longer period of
model updates, each FL client and the server need to perform
HE operations less frequently. The size and complexity of
the ML model is another knob that can change the HE
and HW requirements significantly. If we use a smaller and
lighter model with fewer model parameters, we can reduce the
number of HE operations and thus the HW cost.

B. Hardware Design Challenges

While recent algorithmic advancements have achieved a sig-
nificant speedup in HE computation [20], there is a multiple-

Authorized licensed use limited to: Scholss Dagstuhl - Leibniz. Downloaded on February 27,2025 at 06:35:13 UTC from IEEE Xplore. Restrictions apply.

orders-of-magnitude gap in the computation efficiency be-
tween HE and unencrypted computing [21]. The major chal-
lenge in HE computation is the enormous amounts of com-
putation and memory transactions that traditional computer
architectures cannot efficiently provide [22]. More specifically,
the large size of the ciphertext poses a number of problems.
Because of the sheer length of the ciphertex that does not fit in
on-chip memory, the HE computation requires a large off-chip
memory and generates massive off-chip memory transactions.
Reducing off-chip memory transactions, such as data reuse
and computing-in-memory, can greatly improve performance.
Since the edge nodes in the proposed system are relatively
resource-constrained in terms of power and cost compared
to the cloud, the design of optimal HW architecture for the
edge nodes through HW-SW co-design is critical for the
proposed FL-HE ensemble. This process, as illustrated in
Fig. 2, involves (® the estimation of HW requirements or over-
heads based on the specifications of FL. and HE operations.
Specifically, factors such as the model update period, memory,
and execution time overheads of HE operations are critically
modeled based on key sizes. Subsequent steps include & HW-
SW partitioning, and (D validation via co-simulation or perfor-
mance estimation, emphasizing the necessity of design space
exploration (DSE) to pinpoint the optimal HW configuration
setup. (© Redesign of HW or 0) SW may be necessary to
further optimize or accelerate the FL. and HE performance.

IV. HARDWARE AND SOFTWARE PLATFORM

In this section, we present several software and hardware
strategies that we adopt in our platform.

A. Profiling and Analysis for Hardware Requirements

The first step to achieving research goals is to profile and
analyze the workload of FL and HE. Specifically, we will first
build a practical FL application involving sensitive data using
datasets available online. For example, we can leverage the
public datasets on electric power grids, such as the ones from
Texas A&M University! or Columbia University?, to set up
an FL model for predicting power usage over time.

Next, we will build a distributed FL application using HE
for model aggregation. We will use the state-of-the-art FL
frameworks and platforms such as Flower Framework [23]
and NVIDIA FLARE [24] in addition to HE or FHE libraries
such as OpenFHE [25] to realize the prototype application. By
varying the aggregation algorithms, model update frequency,
and model pruning/compression techniques for FL and using
different HE algorithms, we will profile the prototype system
and analyze the performance requirements for hardware run-
ning FL with HE.

B. Design Space Exploration

While design space exploration (DSE) should be conducted
not only in high-performance computing (HPC) environments
and the cloud [26], it is also essential in edge nodes, where

Thttps://electricgrids.engr.tamu.edu/
Zhttps://wimnet.ee.columbia.edu/portfolio/synthetic-power-grids-data-sets/

resource constraints are even more constrained. Based on
the profiling and analysis results on FL. with HE, we will
perform DSE for cost-effective architecture involving hetero-
geneous hardware components that are designed for FL and
HE. This exploration is driven by a quantitative modeling
of overheads tailored to the FL/HE specifications [27], HE
operation types, and key sizes, ensuring efficient and accurate
performance analysis. In particular, number theoretic trans-
form (NTT) and multi-scalar multiplication (MSM) compo-
nents, which are commonly used in HE accelerators, may
have different optimized forms depending on the given HE
requirements. Therefore, it is necessary to employ a model-
based design methodology that can support various degrees of
parallelism [28]. Also, while performing DSE for the edge HW
platform, it is essential to incorporate sophisticated real-time
scheduling techniques that quantitatively analyze the Quality
of Service (QoS) of inference services. This is crucial as
edge nodes must not only handle model updates but also
concurrently provide inference services.

We will initiate our DSE with commercial-off-the-shelf
(COTS) hardware components that primarily include CPUs
and GPUs, albeit with limited programmability. This initial
phase will necessitate extensive profiling on different CPUs
and GPUs. As we progress, we plan to extend our target
to FPGAs and leverage open-source accelerators as starting
points. For ML-guided DSE, we will leverage existing open-
source tools such as Colmena [29]3.

C. Design of Optimized Accelerators

Performance analysis and DSE of hardware components
will open up opportunities to further customize the hardware
for the computational workload of FL. and HE. We will utilize
open-source accelerators as seed architectures, modifying and
optimizing them based on the outcomes of the DSE. This
optimization process will include adjustments to memory size,
key size, and the degree of component duplication according to
the specific requirements identified during DSE. This tailored
approach ensures that the accelerators are precisely aligned
with the operational demands and performance targets of the
specified FL/HE use case.

Since the volume of encrypted data is substantial in HE,
communication and memory often become a bottleneck in the
hardware design. Consequently, optimizing the memory struc-
ture is of paramount importance. The existing HE accelerators
are prototyped on high-end FPGA, with HBM [11] or without
HBM [12], due to its memory-intensive algorithm behavior.
Given these considerations, the accelerators derived from the
results of DSE will be generated in RTL, optimized for the
given FL/HE use case. This optimization will specifically
tailor features such as on-chip memory size, bus bandwidth,
the parallelism of components, and the utilization of High
Bandwidth Memory (HBM), ensuring that the accelerator
meets both performance efficiency and cost-effectiveness in
its deployment on edge platforms.

3https://colmena.readthedocs.io/en/latest/

Authorized licensed use limited to: Scholss Dagstuhl - Leibniz. Downloaded on February 27,2025 at 06:35:13 UTC from IEEE Xplore. Restrictions apply.

Error Tolerance Feedback
HE Error u
Budget g Approximate
Computing Error E>
Model
FL Error Budget a ode

i

Accuracy-
Performance
Trade-off

Accuracy
Evaluation

Fig. 3. Approximate computing that we apply to HE and FL acceleration.

D. Acceleration through Approximation

Error tolerance is the key property that can be exploited to
accelerate FL and HE computation, and approximate comput-
ing is a promising solution to this. Approximate computing
aims to improve performance and efficiency by relaxing the
exactness constraint on computation. Various approximate
computing techniques have been proposed [30], and many of
them can help accelerate FL. and HE. For example, approx-
imate multiplication-less integer FFTs (Fast Fourier Trans-
forms) and IFFTs (inverse FFTs) to exploit error tolerance and
speed up computation [31]. Another example of approximate
computing is a systolic DNN accelerator with approximate
multipliers to accelerate FL [32].

We will adopt various approximate computing techniques
to our platform to accelerate FL and HE computation as
shown in Fig. 3. Unary computing, which allows the use of
extremely efficient arithmetic hardware, can be utilized. Matrix
multiplication is a fundamental operation in HE computation;
thus, general matrix multiplication (GEMM) based on efficient
unary computing such as [33] will be an effective solution. HE
can also benefit from dynamic accuracy control of approximate
computing. Some approximate computing hardware supports
dynamic adjustment of the accuracy level, where the accuracy
can be traded off for performance and efficiency [34]-[36].
Such approaches can be used to perform adaptive bootstrap-
ping based on the available error budget in HE.

E. Middleware and Runtime for Optimized Usage of the
Underlying Hardware

The software stack in HPC environments plays a critical
role [37] for task scheduling [38] and I/O management. We
will apply hardware/software co-design approaches [39] when
developing the runtime. That is, in parallel to the hardware
architecture research, we plan to work on the design of
middleware and runtime for optimized usage of the underlying
hardware. This includes efficient memory management poli-
cies, scheduling of various computational, memory, and /O
operations, and fine-grained control of hardware components.
We also plan to leverage FPGA to enhance the runtime’s
performance by delegating performance-critical parts of the
runtime to FPGA.

In particular, since the edge nodes must continue to pro-
vide inference services without serious QoS degradation even

HE-Enabled FL
Accuracy
. requirements
Security, Co-
privacy, Design Accuracy
ML performance loss

Efficiency (e.g., latency,
HW/SW Co- | ceughput, power) | Approximate
Optimization D —— Computmg
HW components (e.g.,

accelerators, HBM, GPUs,
processing elements)

FL configurations,
HE operations

Fig. 4. Proposed interactive, iterative HW/SW co-design process of platform
for HE-enabled FL using approximate computing.

during model updates, a real-time scheduling method that
accounts for both model update tasks and inference needs to be
implemented at the runtime software level. This will involve
the introduction and implementation of isolation scheduling
techniques [40] on multi-core or heterogeneous systems to
ensure seamless service delivery.

For validation, we will perform integrated co-verification of
hardware and software stack [41] to ensure the proposed ap-
proach achieves cost-effective, power-efficient, and workload-
specific platform design for both FL and HE, using the
practical FL applications using sensitive, large-scale data.

V. CONCLUDING REMARKS

In this paper, we explore research challenges and ideas
in the platform design for HE-enabled FL. The security
requirements imposed by the target FL use case and model
update frequency should be taken into account in the HW-SW
optimization. Moreover, since we use approximate computing
components in the HE accelerator design, the approximated
components should be carefully optimized along with the
accuracy requirements of the chosen HE algorithm. This co-
design is illustrated in Fig. 4 in summary.

This approach’s application areas include large-scale, high-
value systems dealing with sensitive and private data, where
we can afford relatively high-performance computing power
for both FL and HE. These applications include critical
social and industrial infrastructure such as privacy-preserving
FL among private hospitals for healthcare, power grids for
optimized power usage and generation, transportation and
urban mobility systems, and collaborative malware/intrusion
detection. In terms of technical impacts, we aim to advance the
HPC platform design methodology for software with mixed or
even conflicting requirements beyond FL and HE, maximizing
the underlying heterogeneous architecture.

ACKNOWLEDGMENT

This work was supported in part by ATTO Research, the
NSF I/UCRC for Intelligent, Distributed, Embedded Applica-
tions and Systems (IDEAS) and from NSF grant #2231620,
and the NSF under award No. CNS-2435327.

Authorized licensed use limited to: Scholss Dagstuhl - Leibniz. Downloaded on February 27,2025 at 06:35:13 UTC from IEEE Xplore. Restrictions apply.

[1]

[2

—

[3

—

[4]

[5]
[6]

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and Trends in Machine Learning, vol. 14, no. 1-2, pp. 1-
210, 2021.

S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh,
“Federated learning review: Fundamentals, enabling technologies, and
future applications,” Information processing & management, vol. 59,
no. 6, p. 103061, 2022.

Z. Li, V. Sharma, and S. P. Mohanty, “Preserving data privacy via fed-
erated learning: Challenges and solutions,” IEEE Consumer Electronics
Magazine, vol. 9, no. 3, pp. 8-16, 2020.

A. Pyrgelis, C. Troncoso, and E. De Cristofaro, “Knock knock, who’s
there? Membership inference on aggregate location data,” in Network
and Distributed System Security (NDSS) Symposium, 2018.

N. Rieke et al., “The future of digital health with federated learning,”
NPJ Digital Medicine, vol. 3, no. 1, p. 119, 2020.

P. Martins, L. Sousa, and A. Mariano, “A survey on fully homomor-
phic encryption: An engineering perspective,” ACM Computing Surveys
(CSUR), vol. 50, no. 6, pp. 1-33, 2017.

C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for Cross-Silo federated learning,” in
2020 USENIX Annual Technical Conference, 2020, pp. 493-506.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology—
ASIACRYPT, 2017, pp. 409-437.

K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454-3469, 2020.

H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “HBM
(High Bandwidth Memory) DRAM technology and architecture,” in
IEEE International Memory Workshop (IMW), 2017, pp. 1-4.

N. Samardzic et al., “F1: A fast and programmable accelerator for fully
homomorphic encryption,” in IEEE/ACM International Symposium on
Microarchitecture (Micro), 2021, pp. 238-252.

J. Zhang, X. Cheng, W. Wang, L. Yang, J. Hu, and K. Chen, “FLASH:
Towards a high-performance hardware acceleration architecture for
cross-silo federated learning,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), 2023, pp. 1057-1079.
N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2017, pp. 1-12.

D. Micciancio and Y. Polyakov, “Bootstrapping in FHEW-like cryp-
tosystems,” in Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography, 2021, pp. 17-28.

A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A
performance evaluation of federated learning algorithms,” in Workshop
on Distributed Infrastructures for Deep Learning (DIDL), 2018, pp. 1-8.
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), vol. 54, 2017, pp. 1273-1282.

J. Kone¢ny, H. B. McMahan, D. Ramage, and P. Richtérik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

L. Yuan, L. Sun, P. S. Yu, and Z. Wang, “Decentralized federated
learning: A survey and perspective,” arXiv preprint arXiv:2306.01603,
2023.

J. Le, D. Zhang, X. Lei, L. Jiao, K. Zeng, and X. Liao, “Privacy-
preserving federated learning with malicious clients and honest-but-
curious servers,” IEEE Transactions on Information Forensics and
Security, 2023.

J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient bootstrapping for approximate homomorphic encryption with
non-sparse keys,” in Advances in Cryptology — EUROCRYPT 2021,
A. Canteaut and F.-X. Standaert, Eds. Springer International Publishing,
2021, pp. 587-617.

W. Jung, E. Lee, S. Kim, J. Kim, N. Kim, K. Lee, C. Min, J. H. Cheon,
and J. H. Ahn, “Accelerating fully homomorphic encryption through
architecture-centric analysis and optimization,” IEEE Access, vol. 9, pp.
98772-98 789, 2021.

(22]

(23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

B. S. Latibari, K. I. Gubbi, H. Homayoun, and A. Sasan, “A survey
on fhe acceleration,” in IEEE Dallas Circuits and Systems Conference
(DCAS), 2023, pp. 1-6.

D. J. Beutel et al, “Flower: A friendly federated learning research
framework,” arXiv preprint arXiv:2007.14390, 2020.

H. R. Roth et al., “NVIDIA FLARE: Federated learning from simulation
to real-world,” arXiv preprint arXiv:2210.13291, 2022.

A. Al Badawi et al., “OpenFHE: Open-source fully homomorphic
encryption library,” in Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, 2022, pp. 53-63.

C. G6mez, F. Martinez, A. Armejach, M. Moretd, F. Mantovani, and
M. Casas, “Design space exploration of next-generation HPC machines,”
in IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2019, pp. 54-65.

T. Ye, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Performance
modeling and fpga acceleration of homomorphic encrypted convolution,”
in International Conference on Field-Programmable Logic and Appli-
cations (FPL), 2021, pp. 115-121.

L. Schor, H. Yang, L. Bacivarov, and L. Thiele, “Expandable process
networks to efficiently specify and explore task, data, and pipeline par-
allelism,” in 2013 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), 2013, pp. 1-10.

L. Ward et al., “Colmena: Scalable machine-learning-based steering
of ensemble simulations for high performance computing,” in 2021
IEEE/ACM Workshop on Machine Learning in High Performance Com-
puting Environments (MLHPC), 2021, pp. 9-20.

Y. Kim, J. S. Miguel, S. Behroozi, T. Chen, K. Lee, Y. Lee, J. Li, and
D. Wu, “Approximate hardware techniques for energy-quality scaling
across the system,” in International Conference on Electronics, Infor-
mation, and Communication (ICEIC), 2020, pp. 1-5.

L. Jiang, Q. Lou, and N. Joshi, “MATCHA: a fast and energy-
efficient accelerator for fully homomorphic encryption over the torus,”
in ACM/IEEE Design Automation Conference (DAC), ser. DAC ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
235-240.

K. Pfeiffer, K. Balaskas, K. Siozios, and J. Henkel, “Energy-aware
heterogeneous federated learning via approximate systolic dnn accel-
erators,” 2024.

D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. S. Miguel, “UGEMM:
Unary computing architecture for gemm applications,” in ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2020, pp.
377-390.

J. Melchert, S. Behroozi, J. Li, and Y. Kim, “SAADI-EC: A quality-
configurable approximate divider for energy efficiency,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11,
pp. 2680-2692, 2019.

D. Wu, T. Chen, C. Chen, O. Ahia, J. S. Miguel, M. Lipasti, and
Y. Kim, “SECO: A scalable accuracy approximate exponential function
via cross-layer optimization,” in IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED), 2019, pp. 1-6.

T. Kemp, Y. Yao, and Y. Kim, “MIPAC: Dynamic input-aware accuracy
control for dynamic auto-tuning of iterative approximate computing,”
in Asia and South Pacific Design Automation Conference (ASP-DAC),
2021, p. 248-253.

D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: performance intro-
spection for HPC software stacks,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2016,
pp. 550-560.

Y. Fan, Z. Lan, P. Rich, W. E. Allcock, M. E. Papka, B. Austin,
and D. Paul, “Scheduling beyond CPUs for HPC,” in International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC), 2019, pp. 97-108.

J. S. PARKERe and L. TANG, “On the role of co-design in high per-
formance computing,” Transition of HPC Towards Exascale Computing,
vol. 24, p. 141, 2013.

G. Giannopoulou, P. Huang, R. Ahmed, D. B. Bartolini, and L. Thiele,
“Isolation scheduling on multicores: model and scheduling approaches,”
Real-time systems, vol. 53, pp. 614-667, 2017.

P. Herber, “The rescue approach-towards compositional
hardware/software co-verification,” in IEEE HPCC, CSS, ICESS,
2014, pp. 721-724.

Authorized licensed use limited to: Scholss Dagstuhl - Leibniz. Downloaded on February 27,2025 at 06:35:13 UTC from IEEE Xplore. Restrictions apply.

