
Platform
D

esign
for

Privacy-Preserving
Federated

Learning
using

H
om

om
orphic

Encryption
W

ild-and-C
razy-Idea

Paper

H
okeun

K
im

Arizona
State

U
niversity

hokeun@
asu.edu

Younghyun
K

im
Purdue

U
niversity

younghyun@
purdue.edu

H
oeseok

Yang
Santa

C
lara

U
niversity

hoeseok.yang@
scu.edu

Abstract—
F

e
d

e
r
a

te
d

le
a

r
n

in
g

(F
L

)
h

a
s

b
e
e
n

in
c
r
e
a

s
in

g
ly

w
id

e
ly

u
s
e
d

fo
r

d
is

tr
ib

u
te

d
a

n
d

p
r
iv

a
c
y

-p
r
e
s
e
r
v

in
g

m
a

c
h

in
e

le
a

r
n

in
g

(M
L

)
e
n

v
ir

o
n

m
e
n

ts
,

a
s

th
e

r
a

w
tr

a
in

in
g

d
a

ta
c
a

n
s
ta

y

lo
c
a

l
to

c
lie

n
ts

w
h

ile
le

v
e
r
a

g
in

g
m

o
d

e
l

u
p

d
a

te
s

fr
o

m
in

d
iv

id
u

a
l

c
lie

n
ts

.
H

o
m

o
m

o
r
p

h
ic

e
n

c
r
y

p
tio

n
(H

E
)

te
c
h

n
o

lo
g

ie
s

c
a

n
p

r
o
v

id
e

a
d

d
itio

n
a

l
p

r
iv

a
c
y

p
r
o

te
c
tio

n
fo

r
F

L
b

y
e
n

c
r
y

p
tin

g
th

e
m

o
d

e
l

u
p

d
a

te
p

a
r
a

m
e
te

r
s

w
h

ile
a

llo
w

in
g

m
o

d
e
l

a
g

g
r
e
g

a
tio

n
o

n
a

r
e
m

o
te

s
e
r
v
e
r
.
A

lth
o

u
g

h
H

E
-e

n
a

b
le

d
F

L
s
e
e
m

s
to

b
e

a
p

r
o

m
is

in
g

p
r
iv

a
c
y

-

p
r
e
s
e
r
v

in
g

M
L

s
o

lu
tio

n
,

it
r
e
q

u
ir

e
s

s
ig

n
ifi

c
a

n
tly

m
o

r
e

c
o

m
p

u
ta

-

tio
n

a
l

a
n

d
m

e
m

o
r
y

r
e
s
o

u
r
c
e
s
,

r
e
q

u
ir

in
g

a
d

e
d

ic
a

te
d

h
a

r
d

w
a

r
e

a
n

d
s
o

ftw
a

r
e

p
la

tfo
r
m

.
I
n

th
is

p
a

p
e
r
,

w
e

d
is

c
u

s
s

p
r
e
lim

in
a

r
y

b
u

t
c
o

n
c
r
e
te

a
n

d
r
e
a

liz
a

b
le

r
e
s
e
a

r
c
h

id
e
a

s
fo

r
a

n
a

ly
z
in

g
th

e

r
e
q

u
ir

e
m

e
n

ts
fo

r
H

E
-e

n
a

b
le

d
F

L
a

n
d

fo
r

d
e
s
ig

n
in

g
a

h
a

r
d

w
a

r
e

a
n

d
s
o

ftw
a

r
e

p
la

tfo
r
m

.
F

u
r
th

e
r
m

o
r
e
,

w
e

p
r
o

p
o

s
e

a
p

la
tfo

r
m

c
o

-

d
e
s
ig

n
p

r
o

c
e
s
s

th
a

t
c
o

n
s
id

e
r
s

v
a

r
io

u
s

d
e
s
ig

n
s
ta

g
e
s

a
n

d
c
h

a
lle

n
g

e
s

in
th

e
p

la
tfo

r
m

c
o

-d
e
s
ig

n
.

Index
Term

s
—

c
o

m
p

o
n

e
n

t,
fo

r
m

a
ttin

g
,

s
ty

le
,

s
ty

lin
g

,
in

s
e
r
t

I.
IN

T
R

O
D

U
C

T
IO

N

Federated
learning

(FL)
[1]

is
a

set
of

m
achine

learning
(M

L)
techniques

devised
for

m
ultiple

entities
collaborating

to
solve

M
L

problem
s,

expected
to

solve
m

ultiple
critical

challenges
in

traditional
distributed

system
s,such

as
privacy,

com
m

unication
costs,

and
robustness

[2].
Privacy

challenges
in

distributed
learning

environm
ents

are
m

itigated
by

FL
as

it
preserves

clients’
private

data
by

only
sharing

the
m

etadata
of

the
locally

trained
M

L
m

odelto
be

aggregated
forupdating

the
shared

M
L

m
odelrather

than
sharing

the
raw

data.H
ow

ever,
itstillsuffers

from
privacy

concerns
as

the
m

etadata
oflocally

trained
M

L
m

odels
can

stillrevealsensitive
inform

ation
ofthe

localdata
to

attackers
[3],for

exam
ple,through

the
inference

attack
for

the
given

m
odel

param
eters

[4].
These

privacy
concerns

have
been

one
of

the
m

ajor
obstacles

to
adopting

FL
in

criticalapplications,including
digitalhealthcare

[5].
A

m
ong

effortsto
addressprivacy

concernsin
FL,hom

om
or-

phic
encryption

(H
E)orfully

hom
om

orphic
encryption

(FH
E)

technologies
[6]

have
becom

e
a

potentially
prom

ising
solu-

tion
to

protect
FL

clients’
privacy

from
aggregation

servers.
O

ne
exam

ple
approach

is
B

atchC
rypt

[7],
w

hich
efficiently

encrypts
a

batch
of

quantized
gradients

for
m

odel
updates

using
H

E.
The

em
ergence

of
significantly

cost-efficient
H

E
algorithm

s,such
as

C
K

K
S

[8],is
also

facilitating
the

adoption
of

H
E,

w
hich

has
previously

been
prohibitively

costly
in

com
putation.H

E
allow

s
for

m
odel

aggregation
operations

on
rem

ote
servers

w
ithoutexposing

the
actualm

odelparam
eters,

thus
ensuring

stronger
privacy

protection.
H

E-based
privacy

FL (Federated Learning)
C

lientFL C
lient

Privacy-Preserving 
M

odel Aggregation using H
E

Sharing M
odel Param

eters using 
H

E (H
om

om
orphic Encryption)

M
odel U

pdate via H
E

Specialized Edge H
W

/SW
 

Platform
 For H

E-enabled FL

C
entralized C

loud Server

FL C
lient

FL C
lient

Fig.1.
O

verview
of

an
FL

application
w

ith
H

E
running

on
FL

clients
on

the
edge

and
the

m
odelaggregation

server
on

the
cloud.O

ur
goalis

to
design

a
specialized

H
W

-SW
platform

for
the

FL
clientrunning

on
the

edge.

solutions
to

FL
provide

stronger
cryptographic

guarantees
com

pared
to

othersolutions,forexam
ple,differentialprivacy-

based
FL

[9].Thus,integrating
FL

w
ith

H
E

is
now

considered
a

prom
ising

solution
w

ith
great

potential
to

enable
privacy-

enhanced
FL

in
a

w
ide

range
of

use
cases.

H
ow

ever,
perform

ance-w
ise

challenges
still

need
to

be
addressed

to
enable

H
E-based

FL
system

s.
B

oth
FL

and
H

E
are

com
putation-heavy

and
m

em
ory-hungry

applications,
requiring

underlying
com

putational
architecture

for
high-

perform
ance

com
puting

(H
PC

),
including

com
ponents

such
as

G
PU

s,
high

bandw
idth

m
em

ory
(H

B
M

)
D

R
A

M
technol-

ogy
[10],

and
hardw

are
accelerators

[11],
[12].

A
lso,

FL
and

H
E

have
very

different
types

of
w

orkloads
requiring

heterogeneous
architecture

on
the

sam
e

system
.

Specifically,
FL,like

otherM
L

applications,requires
a

high
volum

e
oflow

-
precision

com
putation

thatTPU
s

[13]orG
PU

s
can

accelerate,
w

hereas
H

E
dem

ands
m

assive
m

em
ory

bandw
idth

for
the

encryption
and

decryption
process

in
addition

to
com

putation
on

large
num

bers,
including

the
bootstrapping

process
[14]

w
hich

incurs
enorm

ous
com

putation
overhead.

In
this

position
paper,

w
e

discuss
the

design
ideas

and
steps

tow
ard

a
dedicated

hardw
are-softw

are
platform

for
FL

w
ith

H
E.

Specifically,
w

e
elaborate

on
the

research
efforts

required
to

design
such

a
platform

,including
(1)

application-
specific

profiling
and

analysis
forhardw

are
requirem

ents
(Sec-

tion
IV-A

),
(2)

design
space

exploration
for

heterogeneous
high-perform

ance
hardw

are
com

ponents
(Section

IV-B
),

(3)
design

of
optim

ized
accelerators

for
FL

and
H

E
w

orkloads
(Section

IV-C
),

(4)
acceleration

through
approxim

ate
com

-
puting

(Section
IV-D

),
and

(5)
m

iddlew
are

and
runtim

e
for

optim
alusage

of
the

underlying
hardw

are
(Section

IV-E).
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② Design/Config FL 
Algorithms and Model 
Aggregation Methods

③ Identify Required 
HE Operations for FL 

Model Aggregation

④ Estimate 
Overhead of HE 

Operations

⑤ Analyze FL 
and HE 

Computation

⑥ HW/SW Co-
optimization

⑦ Validation and 
Evaluation of HW/SW 

Platform

Ⓐ Redesign FL to
Optimize HE Operations

Ⓑ Redesign FL to Minimize the HE Overhead

Ⓒ Redesign HW to
Optimize FL/HE Performance

Ⓓ Redesign SW (FL/HE) to Optimize Performance

(i) SW (FL/HE) Design Processes (ii) HW (Edge Computing HW Platform) Design Processes

① Application 
Requirements

Fig. 2. Overall timeline of the proposed hardware/software (HW/SW) platform design and redesign processes for HE-enabled FL Applications.

II. SYSTEM AND THREAT MODELS

Fig. 1 illustrates an overview of the target system and the
platform. The target system to be designed as a platform is an
edge computing device running an FL client. Each FL client
will be connected to a powerful, centralized server, possibly on
the cloud. The FL clients will periodically, for example, every
few hours, share ML model parameters, such as gradients,
which will be encrypted using HE. The centralized server will
perform an FL algorithm for model aggregation [15] (e.g.,
FedAvg [16], FSVRG [17], BatchCrypt [7]) on the shared
model parameters encrypted by HE. The aggregated model,
still encrypted by HE, will be sent back to each FL client as
a model update. We acknowledge that there are FL models
based on decentralized model aggregation [18]; in this paper,
we will focus on the discussion on centralized FL.
System Model: The primary target system for the platform
design in this paper is an FL client using HE running on the
edge. In addition, we also consider the design requirements
for the cloud server performing model aggregation. The sys-
tem configuration parameters include (1) an ML model and
algorithm, (2) an FL algorithm that determines the model
aggregation method and ML parameters to be shared, (3) an
HE algorithm to protect the shared ML parameters, (4) runtime
and middleware for running software and communication, and
(4) a hardware architecture of the edge device.
Threat Model: The target system’s threat model assumes
that the FL clients trust each other and share keys for
HE. Our threat model also assumes the honest-but-curious
aggregation server model, similar to the threat model used
by Ada-PPFL [19] and BatchCrypt [7], which is widely
used for privacy-preserving approaches in FL. Specifically,
FL clients trust the aggregation server on the cloud in terms
of computation; that is, the aggregation server will perform
the correct computation honestly. However, FL clients do not
want to share any sensitive information that can potentially
expose privacy, including the model parameters used for model
aggregation. Thus, we assume the aggregation server does not
have knowledge of the HE keys used by FL clients.

III. DESIGN CHALLENGES AND REQUIREMENTS

Fig. 2 illustrates the overall timeline of the proposed pro-
cesses of hardware/software (HW/SW) design and redesign for
an edge platform running FL clients using HE. To begin with,
1 we first specify the requirements of the FL application,

including the problem domain, data types, ML model’s inputs
and outputs, required performance, etc. Then, (i) SW design
(FL and HE) should be done, followed by (ii) the design of
HW components.

A. Software Design Challenges
The software design part involves the 2 design and con-

figuration of FL algorithms and model aggregation methods
for the specified application, 3 figuring out the matching HE
operations to perform FL algorithms and model aggregation,
and 4 the estimation of the overhead caused by the HE
operations. As HE operations can be extremely expensive,
especially multiplication, we may have to A redesign the FL
algorithms to optimize the required HE operations or to B
minimize the overhead of HE operations.

For example, FedAvg [16] is a widely used basic model
aggregation method when the model parameters at the ith
round are pi, and the kth client’s weight is wk, the updated
model parameters for the next round are defined as a simple
weighted sum:

pi+1 →
∑

wk · pi
where 0 ↑ k < N of total N clients,

∑N→1
k=0 wk = 1, and

wk ↓ 0 for all k. This involves multiplication for model
aggregation. To eliminate the multiplication on the server side,
we can let the clients know their weights in advance and have
the clients send their parameters multiplied by their weights so
that the server only needs to do less expensive HE operations,
which in this case are additions.

At each round, the central server chooses a subset of
n clients out of the total N clients to report their model
parameters, such that n < N and

∑n→1
k=0 wk = 1. Thus, the

overhead for each client to perform HE to send encrypted
model parameters is reduced to n/N . We can also adjust
the period of model updates. If we use a longer period of
model updates, each FL client and the server need to perform
HE operations less frequently. The size and complexity of
the ML model is another knob that can change the HE
and HW requirements significantly. If we use a smaller and
lighter model with fewer model parameters, we can reduce the
number of HE operations and thus the HW cost.

B. Hardware Design Challenges
While recent algorithmic advancements have achieved a sig-

nificant speedup in HE computation [20], there is a multiple-
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orders-of-magnitude gap in the computation efficiency be-
tween HE and unencrypted computing [21]. The major chal-
lenge in HE computation is the enormous amounts of com-
putation and memory transactions that traditional computer
architectures cannot efficiently provide [22]. More specifically,
the large size of the ciphertext poses a number of problems.
Because of the sheer length of the ciphertex that does not fit in
on-chip memory, the HE computation requires a large off-chip
memory and generates massive off-chip memory transactions.
Reducing off-chip memory transactions, such as data reuse
and computing-in-memory, can greatly improve performance.

Since the edge nodes in the proposed system are relatively
resource-constrained in terms of power and cost compared
to the cloud, the design of optimal HW architecture for the
edge nodes through HW-SW co-design is critical for the
proposed FL-HE ensemble. This process, as illustrated in
Fig. 2, involves 5 the estimation of HW requirements or over-
heads based on the specifications of FL and HE operations.
Specifically, factors such as the model update period, memory,
and execution time overheads of HE operations are critically
modeled based on key sizes. Subsequent steps include 6 HW-
SW partitioning, and 7 validation via co-simulation or perfor-
mance estimation, emphasizing the necessity of design space
exploration (DSE) to pinpoint the optimal HW configuration
setup. C Redesign of HW or D SW may be necessary to
further optimize or accelerate the FL and HE performance.

IV. HARDWARE AND SOFTWARE PLATFORM

In this section, we present several software and hardware
strategies that we adopt in our platform.

A. Profiling and Analysis for Hardware Requirements
The first step to achieving research goals is to profile and

analyze the workload of FL and HE. Specifically, we will first
build a practical FL application involving sensitive data using
datasets available online. For example, we can leverage the
public datasets on electric power grids, such as the ones from
Texas A&M University1 or Columbia University2, to set up
an FL model for predicting power usage over time.

Next, we will build a distributed FL application using HE
for model aggregation. We will use the state-of-the-art FL
frameworks and platforms such as Flower Framework [23]
and NVIDIA FLARE [24] in addition to HE or FHE libraries
such as OpenFHE [25] to realize the prototype application. By
varying the aggregation algorithms, model update frequency,
and model pruning/compression techniques for FL and using
different HE algorithms, we will profile the prototype system
and analyze the performance requirements for hardware run-
ning FL with HE.

B. Design Space Exploration
While design space exploration (DSE) should be conducted

not only in high-performance computing (HPC) environments
and the cloud [26], it is also essential in edge nodes, where

1https://electricgrids.engr.tamu.edu/
2https://wimnet.ee.columbia.edu/portfolio/synthetic-power-grids-data-sets/

resource constraints are even more constrained. Based on
the profiling and analysis results on FL with HE, we will
perform DSE for cost-effective architecture involving hetero-
geneous hardware components that are designed for FL and
HE. This exploration is driven by a quantitative modeling
of overheads tailored to the FL/HE specifications [27], HE
operation types, and key sizes, ensuring efficient and accurate
performance analysis. In particular, number theoretic trans-
form (NTT) and multi-scalar multiplication (MSM) compo-
nents, which are commonly used in HE accelerators, may
have different optimized forms depending on the given HE
requirements. Therefore, it is necessary to employ a model-
based design methodology that can support various degrees of
parallelism [28]. Also, while performing DSE for the edge HW
platform, it is essential to incorporate sophisticated real-time
scheduling techniques that quantitatively analyze the Quality
of Service (QoS) of inference services. This is crucial as
edge nodes must not only handle model updates but also
concurrently provide inference services.

We will initiate our DSE with commercial-off-the-shelf
(COTS) hardware components that primarily include CPUs
and GPUs, albeit with limited programmability. This initial
phase will necessitate extensive profiling on different CPUs
and GPUs. As we progress, we plan to extend our target
to FPGAs and leverage open-source accelerators as starting
points. For ML-guided DSE, we will leverage existing open-
source tools such as Colmena [29]3.

C. Design of Optimized Accelerators

Performance analysis and DSE of hardware components
will open up opportunities to further customize the hardware
for the computational workload of FL and HE. We will utilize
open-source accelerators as seed architectures, modifying and
optimizing them based on the outcomes of the DSE. This
optimization process will include adjustments to memory size,
key size, and the degree of component duplication according to
the specific requirements identified during DSE. This tailored
approach ensures that the accelerators are precisely aligned
with the operational demands and performance targets of the
specified FL/HE use case.

Since the volume of encrypted data is substantial in HE,
communication and memory often become a bottleneck in the
hardware design. Consequently, optimizing the memory struc-
ture is of paramount importance. The existing HE accelerators
are prototyped on high-end FPGA, with HBM [11] or without
HBM [12], due to its memory-intensive algorithm behavior.
Given these considerations, the accelerators derived from the
results of DSE will be generated in RTL, optimized for the
given FL/HE use case. This optimization will specifically
tailor features such as on-chip memory size, bus bandwidth,
the parallelism of components, and the utilization of High
Bandwidth Memory (HBM), ensuring that the accelerator
meets both performance efficiency and cost-effectiveness in
its deployment on edge platforms.

3https://colmena.readthedocs.io/en/latest/
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HE Error 
Budget

FL Error Budget

Error Tolerance Feedback

Accuracy 
Evaluation

Approximate 
Computing Error 

Model

Accuracy-
Performance 

Trade-off

Fig. 3. Approximate computing that we apply to HE and FL acceleration.

D. Acceleration through Approximation

Error tolerance is the key property that can be exploited to
accelerate FL and HE computation, and approximate comput-
ing is a promising solution to this. Approximate computing
aims to improve performance and efficiency by relaxing the
exactness constraint on computation. Various approximate
computing techniques have been proposed [30], and many of
them can help accelerate FL and HE. For example, approx-
imate multiplication-less integer FFTs (Fast Fourier Trans-
forms) and IFFTs (inverse FFTs) to exploit error tolerance and
speed up computation [31]. Another example of approximate
computing is a systolic DNN accelerator with approximate
multipliers to accelerate FL [32].

We will adopt various approximate computing techniques
to our platform to accelerate FL and HE computation as
shown in Fig. 3. Unary computing, which allows the use of
extremely efficient arithmetic hardware, can be utilized. Matrix
multiplication is a fundamental operation in HE computation;
thus, general matrix multiplication (GEMM) based on efficient
unary computing such as [33] will be an effective solution. HE
can also benefit from dynamic accuracy control of approximate
computing. Some approximate computing hardware supports
dynamic adjustment of the accuracy level, where the accuracy
can be traded off for performance and efficiency [34]–[36].
Such approaches can be used to perform adaptive bootstrap-
ping based on the available error budget in HE.

E. Middleware and Runtime for Optimized Usage of the
Underlying Hardware

The software stack in HPC environments plays a critical
role [37] for task scheduling [38] and I/O management. We
will apply hardware/software co-design approaches [39] when
developing the runtime. That is, in parallel to the hardware
architecture research, we plan to work on the design of
middleware and runtime for optimized usage of the underlying
hardware. This includes efficient memory management poli-
cies, scheduling of various computational, memory, and I/O
operations, and fine-grained control of hardware components.
We also plan to leverage FPGA to enhance the runtime’s
performance by delegating performance-critical parts of the
runtime to FPGA.

In particular, since the edge nodes must continue to pro-
vide inference services without serious QoS degradation even

HE-Enabled FL

HW/SW Co-
Optimization

Approximate 
Computing

FL configurations,
HE operations

Security,
privacy,

ML performance

HW components (e.g., 
accelerators, HBM, GPUs, 

processing elements)

Efficiency (e.g., latency, 
throughput, power)

Accuracy 
requirements

Accuracy 
loss

Co-
Design

Fig. 4. Proposed interactive, iterative HW/SW co-design process of platform
for HE-enabled FL using approximate computing.

during model updates, a real-time scheduling method that
accounts for both model update tasks and inference needs to be
implemented at the runtime software level. This will involve
the introduction and implementation of isolation scheduling
techniques [40] on multi-core or heterogeneous systems to
ensure seamless service delivery.

For validation, we will perform integrated co-verification of
hardware and software stack [41] to ensure the proposed ap-
proach achieves cost-effective, power-efficient, and workload-
specific platform design for both FL and HE, using the
practical FL applications using sensitive, large-scale data.

V. CONCLUDING REMARKS

In this paper, we explore research challenges and ideas
in the platform design for HE-enabled FL. The security
requirements imposed by the target FL use case and model
update frequency should be taken into account in the HW-SW
optimization. Moreover, since we use approximate computing
components in the HE accelerator design, the approximated
components should be carefully optimized along with the
accuracy requirements of the chosen HE algorithm. This co-
design is illustrated in Fig. 4 in summary.

This approach’s application areas include large-scale, high-
value systems dealing with sensitive and private data, where
we can afford relatively high-performance computing power
for both FL and HE. These applications include critical
social and industrial infrastructure such as privacy-preserving
FL among private hospitals for healthcare, power grids for
optimized power usage and generation, transportation and
urban mobility systems, and collaborative malware/intrusion
detection. In terms of technical impacts, we aim to advance the
HPC platform design methodology for software with mixed or
even conflicting requirements beyond FL and HE, maximizing
the underlying heterogeneous architecture.
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[17] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
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