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Abstract: Vehicular edge computing relies on the computational capabilities of intercon-
nected edge devices to manage incoming requests from vehicles. This offloading process
enhances the speed and efficiency of data handling, ultimately boosting the safety, perfor-
mance, and reliability of connected vehicles. While previous studies have concentrated on
processor characteristics, they often overlook the significance of the connecting components.
Limited memory and storage resources on edge devices pose challenges, particularly in
the context of deep learning, where these limitations can significantly affect performance.
The impact of memory contention has not been thoroughly explored, especially regarding
perception-based tasks. In our analysis, we identified three distinct behaviors of memory
contention, each interacting differently with other resources. Additionally, our investi-
gation of Deep Neural Network (DNN) layers revealed that certain convolutional layers
experienced computation time increases exceeding 2849%, while activation layers showed
a rise of 1173.34%. Through our characterization efforts, we can model workload behavior
on edge devices according to their configuration and the demands of the tasks. This allows
us to quantify the effects of memory contention. To our knowledge, this study is the first
to characterize the influence of memory on vehicular edge computational workloads, with a strong
emphasis on memory dynamics and DNN layers.

Keywords: vehicular edge computing; deep learning; autonomous vehicles; perception
algorithms

1. Introduction
Perception is crucial for autonomous vehicles (AVs). While AVs have the potential to

be highly safe, they are not infallible. All automotive manufacturers prioritize safety and
efficiency in their designs, yet unforeseen challenges can still arise. The foremost responsi-
bility of an AV is to ensure the safety of its passengers, making it essential for the vehicle to
make critical driving decisions based on its surrounding environment. Additionally, the
AV must process data efficiently—from sensing to driving—to respond in a timely manner
to both its own actions and those of nearby entities. The inherent nature of AVs presents
a gap within traditional edge computing research, and we seek to address some of these
challenges below.

In this framework, the primary processing pipeline of an AV involves data flowing
from sensors to perception, then to path planning, and finally to actuation. Among these
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components, the object detection module is arguably the most vital, as underscored by
numerous news reports [1–3]. Object detection demands both speed and accuracy, making
Deep Neural Networks (DNNs) the most fitting choice for this module. DNNs have a
robust history and are actively researched, finding applications in both academic and
industrial settings. Various DNN implementations, such as YOLO, SSD, Faster R-CNN,
DETR, Deformable DETR and PointPillars for object detection [4–9], DeepLab, DeepLabV3+,
and ViT for image segmentation [10–12], and LaneNet for lane detection [13], demonstrate
their effectiveness across tasks.

These DNN workloads are typically executed as edge workloads; however, for a DNN
to be effective, it must be continuously trained and optimized to address new challenges
that arise over time. For example, the emergence of new climates or unmarked older roads
necessitates this adaptability. Consequently, many companies employ human operators
and semi-supervised methods to label and train the vast amounts of data generated by
vehicles on the road, with each vehicle producing nearly 11 terabytes of data daily [14].

Moreover, while edge computing offers significantly lower latency compared to cloud
solutions, it also comes with more limited resources. This scarcity of computing power
makes understanding perception workloads on edge devices a critical aspect of vehicle and
edge computing [15].

As a mode of transport, AVs must adhere to stringent safety standards, where latency
and detection accuracy are paramount [16]. However, meeting real-time requirements
is notoriously challenging, as reflected by the extensive research in this domain driven
by continuous technological advancements [17]. Given the widespread use of DNNs in
perception tasks, the pressing issue is how AVs and edge nodes can effectively manage
these workloads without necessitating constant upgrades of sensors and models.

Since most AVs rely on their own data for real-time object detection, they face inherent
limitations, particularly regarding sensor blind zones and obstructions [18].

In this paper, we investigate memory contention not only in convolutional neural
networks (CNNs) but also across individual layers, focusing on both characterization and
prediction. To the best of our knowledge, this work is the first to comprehensively analyze
the impact of memory contention on the performance of perception workloads in edge
environments. Existing studies often highlight the CPU and GPU as limiting factors, for
example, [19] systematically discusses the configuration of CPU and GPU in autonomous
driving systems, neglecting the crucial role of memory.

Memory usage is a significant consideration that can profoundly affect the deployment
of machine learning models for inference on edge devices. These models typically require
substantial memory for training and operation, and their size can escalate rapidly with
increased complexity. Consequently, deploying a memory-intensive machine learning
model on a resource-constrained edge device can lead to performance issues, such as slower
execution times or system crashes. In scenarios where multiple tasks are simultaneously
scheduled, only four tasks may be completed despite each having sufficient resources.
Therefore, optimizing memory usage is essential for enhancing the performance and
reliability of machine learning systems, reducing hardware costs, and improving overall
workflow efficiency. Understanding how memory utilization affects workloads at various
levels is critical for diverse deployment scenarios.

Our analysis indicates that memory can be effectively generalized through characteri-
zation functions to model and predict workload behavior across different machine learning
methods and platforms.

By conducting a thorough analysis, we can extract the performance characteristics
for each layer within a perception network. We monitor the behavior of individual layers
during the inference process under varying constraints and conditions. This information
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is vital for understanding model performance and for optimizing its architecture and
parameters. However, monitoring the behavior of individual layers can be complex,
particularly with intricate models that contain many layers.

Our research reveals that convolutional layers, along with routing, shortcut, and ReLU
activation layers, are particularly sensitive to factors such as memory availability. For
instance, under constrained memory conditions, some layers may experience significant
increases in computation time, with convolutional layers seeing over a 2849% rise, routing
layers over 1053%, ReLU layers over 1173.34%, and shortcut layers over 271%. These
findings are instrumental in identifying memory bottlenecks in perception networks and
developing dynamic memory allocation strategies to enhance performance.

Our main contributions include the following:

• Characterizing and modeling the impact of memory on machine learning inference
workloads for edge devices.

• Conducting deep layer analysis to identify specific layers affected by memory con-
tention and over-subsidization.

• Generalizing the edge components that influence machine learning inference work-
loads and outlining challenges for future research.

The remainder of this paper is structured as follows: Section 2 discusses the back-
ground and motivation. Section 3 details the profiling setup and variables. Section 4
presents and analyzes the results. Section 5 elaborates on the findings, and Section 6
concludes the paper.

2. Background and Motivation
As the world increasingly embraces the next generation of sensor-equipped vehicles

which has great potential to enhance urban planning and transportation management [20],
the supporting infrastructure must evolve accordingly. Modern vehicles, whether fully
autonomous or semi-autonomous, demand sophisticated and extensive computational
resources to process the data necessary for ensuring passenger safety. To guarantee this
safety, computations must be conducted in real-time and be relevant to the vehicle’s spatial
context. Studies such as [14] explore the future landscape of connected vehicles and clarify
the associated challenges, notably the issue of offloading computational tasks away from
the vehicle itself.

In recent years, the definition of computing has become less distinct, as many edge
devices, like proprietary solutions from Nvidia or even mobile phones, can perform sim-
ilar tasks. Edge computing finds applications across various domains, including instant
diagnosis in healthcare [21], predictive maintenance in manufacturing [22], smart farming
in agriculture [23], unmanned aerial vehicles (UAVs) [24], and enhancing Android-based
device capabilities [25]. Gradually, the concept of edge Artificial Intelligence [26] emerges.
Likewise, edge computing is vital for connected autonomous vehicles (CAVs). Research
such as [27] highlights the inefficiencies of onboard computation in CAVs and demon-
strates how edge computing can alleviate issues like network congestion and limited
processing resources.

Recent studies, including [18,28,29], have investigate and validate the potential of
using edge computing for sensor fusion in CAVs. Further works, such as [27,30], exam-
ine real-world applications of offloading computations to the edge, revealing a range of
possibilities. The discussion around Deep Neural Networks (DNNs) has emerged as a
significant focus area in this context as indicated by [14].

Most AVs rely on DNN inferencing for their self-driving capabilities, utilizing state-
of-the-art models for object detection, such as YOLO [4], Faster R-CNN [6], Mask R-
CNN [31], SSD [5], DETR [7], Deformable DETR [8], and PointPillars [9]. YOLO [4]
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pioneers single-shot real-time object detection, balancing speed and accuracy, but struggles
with detecting small objects and overlapping objects, as the grid division could lead to
imprecise localization in those cases. Faster R-CNN [6] introduces the Region Proposal
Network (RPN), improving object detection by generating region proposals. Moreover,
Mask R-CNN [31] expands it by adding instance segmentation, allowing both object
localization and segmentation. SSD [5] improves single-stage detection by using multi-
scale feature maps and default boxes for handling objects at different scales. Both DETR [7]
and Deformable DETR [8] try to use and enhance the transformer-based approach to
object detection, eliminating region proposals and anchor boxes for a simpler end-to-end
pipeline, but both of them are slower than traditional methods like YOLO [4], Faster R-
CNN [6], and SSD [5] due to the complexity of the transformer model. PointPillars [9]
revolutionizes 3D object detection by applying a CNN to LiDAR point clouds, enabling
real-time detection in autonomous driving. While these models perform well, there are
trade-offs and optimization opportunities to consider. For instance, to facilitate deployment
on lower-end computational hardware, techniques such as quantization, pruning, and
architectural modifications are often employed [32–34].

Deploying machine learning models on edge devices, especially those with limited
resources, presents several challenges [35]. One significant hurdle is the constrained
computing and memory resources available on these devices, which restrict the complexity
and size of deployable models. Additionally, power limitations on edge devices further
constrain computational energy use [36].

This challenge is particularly pronounced in vehicular edge computing, where most
machine learning models require large-weight configurations to function optimally. Thus,
models deployed on edge devices must be meticulously optimized for both power and
speed, a balance that can be difficult to achieve without compromising accuracy or over-
all performance.

Another challenge is the lack of standardization in hardware and software platforms,
which complicates the development and deployment of machine learning models that
maintain consistency across AVs and their associated edge devices. Furthermore, deploy-
ing machine learning models on edge devices raises concerns about data privacy and
security, as sensitive vehicle data may be processed and stored locally. Addressing these
challenges will necessitate advancements in hardware and software optimization, as well
as improvements in standardization and data privacy measures [14,37–40].

Traditional improvements in machine learning and neural networks often focus on
overall latency per frame and optimizing accuracy through loss function adjustments,
typically centering on CPU and GPU impacts while neglecting memory considerations.
Although targeted methods like the Pyramid Attention Network [41] and the Region
Proposal Network [6] have led to many real-time detection algorithms, these are generally
developed without the constraints of edge resources in mind.

Common strategies in the literature for addressing edge memory limitations often
involve trade-offs or sacrifices. For example, the authors in [42,43] reduce the full YOLO
architecture to decrease computational demands. Similarly, ref. [44] proposes distributing
workloads through a pipeline to mitigate hardware constraints like memory contention.
Traditional methods, such as [45], consider and attempt to eliminate memory contention
for individual tasks.

The contemporary literature addressing memory contention issues for DNNs on edge
devices also encounters limitations. Among the various memory-aware middleware ap-
proaches, works like MASA [46], along with others such as Deepeye [47], NestDNN [48],
and DART [49], tackle CPU and memory issues for low-end edge devices from a middle-
ware perspective, considering the impacts of individual layers on CPU and memory usage.
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However, even in the case of MASA, the comprehensive effects of memory are not fully
explored. Additionally, due to the methodologies and hardware platforms employed in
MASA, the analysis is limited to two-layer types, neglecting single-stage and two-stage
foundations. Furthermore, these works do not model memory characteristics as a variable
impacting performance; instead, they facilitate DNN processes. Lastly, most modern DNNs
leverage PyTorch [50] as their backbone, which is absent from these motivating studies.

Challenges of Characterizing Machine Learning on Edge

Characterizing machine learning workloads on edge devices involves several signif-
icant challenges. A primary issue is the wide variety of edge devices and their distinct
hardware configurations, making it difficult to generalize performance metrics and opera-
tional timings across different systems. Additionally, energy consumption is closely tied
to workload intensity and processing duration, further complicating the characterization
process. Additionally, the inherent complexity and variability of machine learning models,
coupled with the diverse input and network conditions, complicate predictions about model
behavior on various edge devices, even when those devices share identical specifications.

Moreover, conducting the detailed profiling of machine learning workloads on edge
devices necessitates specialized tools and expertise, which may not be readily accessible
to developers or end users. Compounding these challenges is the need to protect client
data privacy, as profiling often requires monitoring the processing of sensitive information
directly on the device. To address these issues, advancements in standardizing benchmark-
ing tools and developing privacy-preserving methods for edge devices are essential as
highlighted in surveys like [51].

Studies such as [52,53] explore the relationship between memory and layer-wise
connections to privacy. These papers demonstrate that through layer-wise encoding, it is
feasible to encrypt and process data at the layer level with minimal impact on performance
for connected autonomous vehicles (CAVs). Similarly, traditional privacy concerns related
to memory usage also warrant further investigation.

3. Measuring and Characterizing Perception Workloads on the Edge
Deep learning-based perception networks can be categorized into two main types:

single-stage and two-stage object detection. In this study, we focus on both categories,
selecting widely recognized representative networks. Specifically, we examine Single-Stage
YOLO (both Darknet and PyTorch variants) and Two-Stage Faster R-CNN (PyTorch based).
We denote YOLO as ω and Faster R-CNN as θ. By including both single-stage and two-stage
methods, we aim to generalize our findings to apply to other methodologies employing
similar principles.

Our objective is to explore the distinctive resource demands of each category, partic-
ularly regarding memory impacts and the performance bottlenecks that arise from these
resource requirements.

Beyond analyzing individual resource impacts, we aim to characterize the workload
in a way that allows for predictive modeling. As illustrated in Figure 1, a generalized
prediction model for incoming workloads can enhance scheduling on edge nodes. The
edge network architecture thus serves as both a communication and computational hub for
connected autonomous vehicles (CAVs) utilizing the edge network.
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Figure 1. Interaction between autonomous vehicles and vehicular edge computing nodes.

3.1. Profiling Testbed and Setup

To rigorously evaluate the memory contention effects and layer-wise performance,
we designed a test environment that closely resembles real vehicular edge scenarios. Our
experiments were conducted on two types of edge hardware configurations: (1) a high-end
laptop simulating a powerful edge node (Intel Core i7-10750H, Nvidia GeForce RTX 2070,
16 GB DDR4 RAM, 1 TB NVMe SSD), and (2) a Nvidia Jetson Xavier NX as a representative
low-end or mid-range edge device. We selected these two platforms to capture a broader
spectrum of resource capabilities commonly found in vehicular edge deployments.

Dataset and Workload Parameters: For the object detection tasks, we used inputs
derived from standard AV-oriented image sets (e.g., subsets of KITTI or COCO) [54,55].
The input resolutions varied (e.g., 320 × 320, 640 × 480, and 1280 × 720) to emulate camera
feeds from different AV sensors. Each resolution set was run multiple times (10 runs per
setting) to capture the performance variability and to mitigate any transient system effects
(such as GPU thermal throttling or background OS processes). The size of each workload
was selected to reflect realistic AV perception tasks, where real-time performance is vital.
For each test run, we tracked not only the inference latency but also the peak and average
memory consumption, using nvidia-smi, PyTorch’s built-in profiler, and Linux-based
resource monitoring tools. However, it should be noted that the scope is on system-level
profiling rather than perception accuracy metrics. Our approach is agnostic to the dataset,
and thus we focus on memory usage and layer execution times behavior, which remain
consistent across different datasets.

Simulation Topology: To approximate a distributed edge environment, we modeled
each device as if it were an individual edge node receiving inference tasks from one or more
autonomous vehicles. Each node could be allocated a certain fraction of tasks, simulating
real traffic scenarios where multiple vehicles offload to the same edge. The exact number of
concurrent requests varied to provoke different degrees of resource contention. In more
constrained tests, we artificially reduced the available RAM or GPU memory to simulate
heavy oversubscription.

Reliability and Validity Measures. We repeated each configuration (device × resolution
× concurrency level) multiple times to ensure stable averages. We computed standard
deviations and confidence intervals (95% CI) to check for statistical consistency. In addition,
we systematically logged CPU frequency, GPU utilization, and GPU temperature to verify
that the results were not skewed by thermal throttling or one-off system states. Where
possible, we cross-checked the measured layer-by-layer timings with independent profiling
scripts to validate the internal PyTorch logs. Although our dataset was substantial enough
to capture meaningful trends in resource usage, we acknowledge that a larger or more
diverse dataset (e.g., a full AV sensor suite) could yield additional insights. This limitation
is further discussed in Sections 5 and 6.
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3.2. Features and Formulation

To assess how incoming AV workloads will affect available edge nodes, we consider
two sets of variables: the inputs from AVs and the resources available from edge nodes. We
define the set of AV inputs as V = {v1, v2, . . . } and the set of edge nodes as E = {η1, η2, . . . }.
Each element vi = {vi

data, vi
task} and ηi = {ηi

conf, ηi
queue} is monitored and managed by the

Prediction Module.
As depicted in Figure 1, upon receiving input requests from vehicles, the edge nodes

within the service range can process these tasks. Each edge node evaluates the incoming
workload requests and determines its capacity to handle them. The nodes then com-
municate their task requirements and resource availability to the edge manager, which
efficiently allocates the workload to an edge node capable of completing the task within an
acceptable timeframe.

To formulate potential edge configurations, we define the following key variables: pro-
cessor resource, RAM as the memory resource, workload size (derived from the requested
service and input size), and time (as the quantifying metric).

4. Analysis and Key Insights
The variability in edge deployment hardware and task types presents a significant

challenge. Diverse AV workload requests and differences in hardware performance on
edge nodes complicate planning, ultimately affecting the reliability of DNN inferencing
and presenting a fundamental challenge for robust workload characterization.

4.1. Memory and Computation Load

As discussed in Section 2, memory contention is a critical factor when latency in
time or performance is essential. Figure 2 illustrates two distinct states, emphasizing the
necessity of managing memory contention effectively in these scenarios.
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Figure 2. (Left) Single-stage perception deep learning application with and (Right) without memory
resource contention.

In our profiling, we identify three scenarios regarding memory resources:

• Scenario 1: No memory resource contention.
• Scenario 2: Memory resource contention typically encountered under heavy workloads.
• Scenario 3: Extreme lack of memory resources.

In Scenario 1, memory resources are abundant for all tasks, with no bottlenecks.
In Scenario 2, however, memory resources are strained due to access contention or lim-
ited availability. Notably, temperature and system bus bottlenecks are not considered in
Scenario 2, as these conditions may lead to system instability. Scenario 3 accounts for severe
memory allocation constraints, from low to minimal operational limits.
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In Scenario 1 (Figure 2(left)), the model remains consistent with a CPU-dominated
linear model, which we can express as

ηtime = 0.077 ∗ γ − 0.89 (1)

where γ = GFLOPs, representing the computational load required by the workload.
However, when applying Equation (1) to the same set of workloads under memory

limitations, the model no longer holds true as depicted in Figure 2(right). Traditional
optimization and scheduling methods may alleviate some issues, but they cannot fully
resolve the challenges posed by memory contention.

Thus, to accurately characterize the impact of memory contention across various
platforms, further characterization is necessary for workloads in Scenarios 2 and 3, which
encounter moderate to heavy memory contention.

By modeling the behavior of the algorithms under varying resource constraints, we
can profile and characterize the effects of memory contention, with Faster R-CNN denoted
as (θ) and YOLO as (ω). Initially, we profile the maximum amount of RAM needed for each
machine learning method, represented as θMAX for Faster R-CNN and ωMAX for YOLO.
Each ML method is tested with progressively less available RAM until task failure occurs.

As shown in Figure 3, we profile the workload characteristics under Scenario 3 and
observe a clear correlation with the amount of memory available. From the data collected,
we can model the behaviors of the two ML workloads using Equations (2) and (3), respec-
tively. Here, the CPU frequency is represented as ν = CPU Power, and memory is denoted
as β = Memory. It is important to note that while an R2 value of at least 0.9 is deemed
acceptable, extreme cases, such as operating ω with 100 MB or less, exhibit higher variance
when predicted using this model.
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Figure 3. Performance of perception deep learning applications single-stage (Left) and two-stage
(Right) on high-end vehicular edge devices with memory contention.

ηθ
time =0 ∗ ν + 1016 ∗ β−0.06054 − 930

with R2 = 0.9041
(2)

ηω
time =0 ∗ ν + 0.2379 ∗ β−1.03 + 11.38

with R2 = 0.9560
(3)

To ensure consistency in edge workload parameters for Scenario 3 across different
platforms, we analyze the same scenario on the Jetson device, as shown in Figure 4. While
the Jetson device exhibits less variance in the data, its behavior aligns closely with our
previous findings. The second set of models derived for Faster R-CNN (θ), and YOLO (ω)
is expressed in Equations (4) and (5).
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Figure 4. Performance of perception deep learning applications single-stage (Left) and two-stage
(Right) on low-end vehicular edge devices with memory contention.

ηθ
time =0 ∗ ν + 42.418 ∗ β−0.768

with R2 = 0.9837
(4)

ηω
time =0 ∗ ν + 6.386 ∗ β−0.413

with R2 = 0.8694
(5)

With the Jetson Memory model, we achieve an R2 = 0.98 for θ and R2 = 0.87 for ω.
This characterization is beneficial for industrial cost estimation, providing insights into

how many incoming tasks an edge node can manage. With the impact of memory clearly
defined, we now turn our attention to how it affects each individual layer of the models.

4.2. Layer-Wise Characterization

Building on the insights gained from memory profiling, we can delve into the layer-
specific analysis of our machine learning methods. Both YOLO and Faster R-CNN utilize
several common layers, including convolutional layers, activation layers, and operations
such as max-pooling. Figure 5 illustrates the differences in layer performance under normal
operation versus resource-constrained conditions, highlighting how memory contention
disproportionately affects specific layers within the architecture.
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Figure 5. Fine-grained layer-wise performance of single-stage perception DL application for both no
contention and under/oversubsidized contention.

Given the shared building blocks, we conduct a layer-by-layer workload profiling for
both scenarios. The layers that experience significant impacts are depicted in Figure 6 for
YOLO and Figure 7 for Faster R-CNN. A detailed analysis of the gathered data reveals that
the layers that are most affected are primarily located at the beginning of the architecture



Algorithms 2025, 18, 31 10 of 19

for both models, ω and θ. Table 1 summarizes the layers that are most impacted in YOLO,
while Table 2 details the affected layers in Faster R-CNN.

Table 1. Performance of single-stage perception deep learning network layers with and without
memory contention.

YOLO Layer Normal Contention Percentage Increase

0 Convolution 0.2705 s 0.4792 s 77%
1 Convolution 0.5176 s 14.311 s 2665%
6 Convolution 0.5046 s 14.879 s 2849%
9 Routing 0.0108 s 0.1249 s 1053%
10 Convolution 0.2669 s 0.5167 s 93%
11 Convolution 0.4157 s 0.7581 s 82%
16 Convolution 0.2113 s 0.2816 s 33%
20 Shortcut 0.0015 s 0.0057 s 271%

Table 2. Performance of two-stage perception deep learning network layers with and without
memory contention.

Faster R-CNN Layer Normal Contention Percentage Increase

3 Relu Activation 1.8892 s 22.1668 s 1173.34%
5 Convolution 0.5995 s 3.4108 s 468.9%
7 Convolution 1.1588 s 28.272 s 2339.77%
12 Convolution 0.9201 s 6.551 s 12.96%
14 Convolution 0.9158 s 9.6611 s 954.93%

Starting with Figure 6(left), we observe that two layers—Layer 1 and Layer 6—are
significantly impacted by memory contention. Both layers are convolutional layers with a
theoretical computational load of 3.407 GFLOPs. Despite this seemingly substantial load,
similar loads are distributed across various other layers in the architecture. Notably, Layer 1
exhibits a remarkable 27.65 times increase in execution time, while Layer 6 demonstrates
a 29.49 times increase compared to the non-contention scenario. These findings provide
valuable insights into the areas most affected by resource constraints within the YOLO archi-
tecture, highlighting the critical layers that may benefit from targeted optimization efforts.
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Figure 6. Impacts of memory contention on single-stage perception DL network layer on vehicu-
lar edge.

However, in Figure 6(right), after removing the two heavily impacted layers from
Figure 6(left), we identify other layers that also show notable increases in latency. In our
profiling results, Layers 9 and 20 reveal an unusual degree of increase when compared to
both their theoretical GFLOP values and the non-contention latency. Specifically, Layer 9,
which functions as a routing layer with a near-zero GFLOP, experiences a staggering latency



Algorithms 2025, 18, 31 11 of 19

increase of over 1053%. Similarly, Layer 20, a shortcut layer with an almost negligible
GFLOP of 0.001, demonstrates a latency increase of 271%.

While it is expected that the initial convolutional layers would be heavily affected
by memory constraints—primarily due to the necessity of loading input data from stor-
age—the significant impacts observed in Layers 9 and 20 suggest intriguing avenues for
future research.
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Figure 7. Impacts of memory contention on two-stage perception DL network layers.

Next, we analyze the layer data for Faster R-CNN as shown in Figure 7. Here,
five layers are identified as most affected, with Layers 3 and 7 standing out prominently.
Layer 3, a ReLU activation layer, exhibits a dramatic increase of 1173%, while Layer 7,
a convolutional layer, shows an even more severe increase of 2339.77%.

4.3. Compute Power and Processor Characterization

On both of our platforms, we began with a consistent input load for the two machine
learning methods. Figure 8 illustrates the performance of Faster R-CNN across four distinct
CPU power Thermal Design Power (TDP) and core configurations, using inference time as
the key metric to characterize the workload. Based on the data points collected in Figure 8,
right, we can model the impact of Scenario 1 for Faster R-CNN as follows, where ν = CPU
and frequency is in gigahertz.
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Figure 8. Performance of perception deep learning applications on Jetson with varying CPU configu-
rations. (Left) Single-stage perception network. (Right) Two-stage perception network.

ηθ
time =− 3.758 ∗ ν + 41.62

with R2 = 0.8832
(6)
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Similarly, Figure 8(left) presents the profiling results for YOLO under the same CPU
power and core configurations. We can also formulate the model for the impacts of Scenario
1 on the YOLO workload as follows:

ηω
time =− 0.4082 ∗ ν + 4.711

with R2 = 0.8901
(7)

Incorporating the memory variable from Scenario 2, we arrive at Equation (8) for
Faster R-CNN, with memory expressed in gigabytes and frequency in gigahertz:

ηω
time =97.201 − 9.335 ∗ β − 5.862 ∗ ν

with R2 = 0.927
(8)

Likewise, when characterizing the complete workload, Scenario 2 for YOLO is repre-
sented by Equation (9), which can be expressed as follows:

ηδ
time =23.713 − 3.506 ∗ β − 1.361 ∗ ν

with R2 = 0.924
(9)

4.4. Workload Size and Resource Requirement

The CPU profiling reveals a direct linear relationship between the CPU computational
power and inference performance for both models as illustrated in Figure 8.

But the input size of the task also influences the amount of computational power
required. For instance, processing higher-resolution sensor data demands significantly
more computational power compared to low-resolution data. To explore this further, we
perform profiling with various input sizes as depicted in Figure 9.
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Figure 9. Impacts of edge input for single-stage (Left) and two-stage (Right) perception DL applications.

However, when we introduce an additional variable, memory, into the equation, the
profiling results change significantly as illustrated in Figure 2. Applying the direct linear
formula with adjusted constants to Figure 2(right) shows that the R2 fit for the formulation
based solely on the CPU variable becomes increasingly inaccurate.

4.5. Insight Analysis and Generalization

Using the data from our profiling to identify the variables that influence ML workloads,
we can now work on generalizing our prediction model.

Drawing from the key insights in Formulas (2)–(5), we can summarize the findings for
Scenario 3 as follows:

ηθ
i = ki ∗ βai + Qi

ηω
j = k j ∗ βaj + Qj

. . .

(10)
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where ki and ai represent the variable coefficient constants associated with each edge node,
while Qi denotes the respective constant value, and β indicates the currently available
memory. To accurately represent Scenario 3, the variable ν is removed from Equation (10).
We can account for the variance in thermal limitations using the rolling window average
in Equation (11), where n marks a specific point in time, enhancing accuracy. The rolling
window for kn and an can be defined such that k1 = k2 . . . kn = kn+1, with n+ 1 representing
the current time constant for Equation (10):

kn =
k1 + k2 + k3 + · · ·+ kn

n

an =
a1 + a2 + a3 + · · ·+ an

n

(11)

By integrating the two characterization models, we can formulate a decision tree
for the task queue c running on the edge. Here, βthreshold

i for task i signifies the memory
threshold for Scenario 3, where the influence of the CPU variable is overshadowed by the
effects of memory. This threshold varies depending on the ML algorithm; in our results, it
is approximately 100 MB for YOLO and 800 MB for Faster R-CNN. The decision tree for
predicting workload is outlined as follows:

c : {1, . . . , n} where βAvailable = βMax −
n

∑
i

ci

such that processing time for task: ai in the task

queue c can be calculated as follows



c(ai) = Scenario 1 for βthreshold
i > β

Required
i

&& β
Required
i < βAvailable

i

c(ai) = Scenario 2 for βthreshold
i > β

Required
i

&& β
Required
i > βAvailable

i

c(ai) = Scenario 3 for βthreshold
i < β

Required
i

Based on the profiling results, the first key insight highlights the effects of limited mem-
ory resources on a given workload. Traditional CPU-based scheduling approaches fail to
consider physical memory constraints, which can lead to issues like the over-subsidization
of an edge node. Furthermore, the amount of data needed for a straightforward predictive
model derived from our insights is quite small, enabling quick and efficient customization.

We identify the characteristics of various edge node components relevant to CAV-
based inference workloads, categorizing the variables for CPU and input size as linear
while implementing specific measures to address over-subsidization scenarios.

Further profiling of layer performance reveals that only a few specific layers are im-
pacted by memory contention. As shown in Figures 6 and 7, we identify the affected layers
for ω and θ, respectively. These findings facilitate a more targeted approach to researching
and optimizing ML methods for edge devices, particularly in scenarios involving memory
contention or lower hardware specifications.

5. Implications and Discussion
In our generalization, we initially explored a non-linear approach to account for all the

variables discussed in Section 4 simultaneously. To achieve this, we tested various modeling
methods. The results of including all our targeted variables are presented in Table 3. While
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Linear Regression provides a reasonable level of model accuracy, it is outperformed by
methods such as MLP [56] and Correlated Nystrom Views [57].

Table 3. Traditional and ML predictor models based on the features listed in Table 1. Coefficients of
layers point to Equation (1).

Method Model Accuracy

Linear Regression 0.82
Gaussian Process 0.76
Isotonic Regression 0.85
MLP Regressor 0.88
MLP Base 0.84
Pace Regression 0.8
Radial Basis Network 0.43
Radial Basis Regressor 0.87
SMOreg (SVM) 0.81
Correlated Nystrom Views 0.9

Through additional testing, we attempted to train and fine-tune the aforementioned
models using actual data, comparing their predictive capabilities across different platforms.
However, due to the limited sample size, the models encountered overfitting issues. To
address this, we applied SMOTE [58] to upsample our data where necessary, aiming for
better generalization. Unfortunately, this process proved to be cumbersome and requires
further optimization through research.

While we are confident that the ML modeling approach based on the identified
variables will outperform the generalized formulations presented, it will necessitate a
larger dataset for effectiveness and will require retraining for each individual edge node in
a self-updating loop, which will demand additional resources.

5.1. Unusual Findings

Several unusual findings emerged during our research that warrant further attention.
Firstly, our profiling revealed that oversubsidized workloads trigger the Out-Of-Memory
(OOM) killer in Nvidia Jetson but not on other platforms using the same Linux kernel and
OOM policy. Since this issue exceeds the scope of this paper, we did not explore it further,
but it presents a potential avenue for optimizing CAV workload scheduling.

Another anomaly noted during profiling was the discrepancy between the theoretical
computational load and the actual latency observed in the workload. Specifically, as
discussed in the layer-wise profiling section, we found that shortcut layers and routing
layers exhibited significantly higher latency than standard convolutional layers. While
this could be attributed to insufficient memory, it does not fully account for the substantial
increase in latency we measured. Additionally, both shortcut and routing layers have a
minimal computational footprint, making this finding particularly relevant for optimization
research. Once again, due to the technical complexities involved, we did not investigate
this phenomenon further. We hypothesize that this latency increase may stem from a linear
or sequential architecture workflow. Future research could explore base ML algorithms
and those that can be parallelized, such as transformers, to determine if a method can
be developed to improve the consistency between the theoretical performance and real-
world outcomes.

Although these findings did not impact the workload profiling directly, they highlight
additional opportunities for future investigation.
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5.2. Limitations

There are several limitations that are noteworthy and go beyond the scope of a single
paper. However, we believe that addressing these will be great future work directions
to navigate.

First is the partial consideration of AV dynamics. This paper zeroes in on memory
contention and latency in deep learning workloads but does not explicitly account for
vehicular mobility models or dynamic network conditions (e.g., handoff between edge
nodes as a vehicle moves). While we believe the memory-contention insights are broadly
applicable, real-time vehicular scenarios might involve intermittent connectivity or variable
network latency that further affects resource allocation.

Second is the limitations of open source datasets. It is a well-known fact that these
publicly available datasets are just a very small representation of the conditions faced
in real life. Any models created or studied within the scope of these publicly available
datasets will run into the same issues of being narrow in scope and inapplicable to real-life
needs. We believe that more diverse datasets are needed to refine the observations made in
this paper.

Third, we also see that certain layers (e.g., routing and shortcut layers in YOLO)
exhibited disproportionate latency spikes under memory contention. While we hypothesize
that these anomalies stem from architecture design and memory-access bottlenecks, our
analysis does not fully isolate all possible causes (e.g., overhead from framework-level
memory allocation, PCIe contention, or caching effects). A deeper hardware or machine-
level study could offer more conclusive explanations.

Finally, the current work does not quantitatively evaluate how encryption or obfusca-
tion techniques impact memory contention. In safety-critical vehicular settings, ensuring
data confidentiality might introduce extra overhead, which we have not yet modeled.

5.3. Further Explorations

A promising avenue for exploration based on our findings is the development of
accurate and efficient profiling tools and methodologies that can manage the complexity
and variability of machine learning models and edge device hardware. A comprehen-
sive understanding of workload behavior can lead to the establishment of standardized
benchmarks and metrics targeting variables for more generalized use cases.

Furthermore, our findings indicate a need to address privacy considerations. While our
profiling does not incorporate privacy algorithms and methods applicable to the selected
workloads, the integration of privacy-preserving techniques and data obfuscation methods
may reveal different workload characteristics and provide additional insights. Considering
privacy in workload profiling could offer a more complete understanding of the challenges
and opportunities at hand.

6. Conclusions and Future Works
Machine learning and AI workloads have become stable components of our current

society, driven by the widespread adoption of edge technology by major companies such
as Microsoft Azure, Amazon AWS, and IBM [59–61]. However, utilizing on-road edge
to offload workloads from connected and autonomous vehicles (CAVs) introduces many
uncertainties. Existing research on optimizing machine learning for edge devices lacks
the in-depth insights necessary for edge users and device providers to accurately predict
the behavior of machine learning workloads across various configurations. In this paper,
we tackle these challenges and identify areas for potential improvement. We propose a
novel approach to optimizing workloads by considering edge device parameters, workload
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inputs, and algorithm architectures. The profiling and insights provided in our approach
can be generalized beyond the specific machine learning algorithms discussed here.

While our models are fundamental, they provide a clearer characterization of workload
behavior compared to traditional machine learning (ML) models. Although some models,
like MLP and Correlated Nystrom Views, can predict workload behavior, they require
extensive training and struggle to accommodate diverse ML inference algorithms.

By characterizing and generalizing our findings, we offer valuable insights into the
performance and capabilities of edge devices for machine learning workloads. Our analysis
indicates that even under memory contention, algorithms such as YOLO and Faster R-CNN
can successfully complete their tasks, suggesting that resource oversubscription on edge
devices is a feasible option for non-time-sensitive applications.

Moreover, utilizing memory and layer-wise information allows for the optimization
of both the architecture and deployment of machine learning models, enhancing the
efficiency of edge devices and reducing energy consumption. Our analysis identifies critical
bottlenecks in machine learning workloads as detailed in Sections 4 and 5.

The ability to predict the execution time of specific layers presents several advantages
for future research. First, it enables the optimization of model architecture and hyperpa-
rameters by pinpointing the most time-consuming layers and enhancing their performance.
Second, it improves model efficiency during training or inference by scheduling layers to
maximize available resources and minimize overall execution time. Finally, it supports the
development of new algorithms and techniques that consider the performance character-
istics of individual layers, leading to the creation of more efficient and accurate machine
learning models.

The contributions of our paper are significant. Our proposed approach offers a targeted
method for predicting the performance and maximum workload capabilities of edge devices
for machine learning inference tasks. These insights empower other researchers and service
providers to pursue future research on more efficient algorithms and resource management
strategies, including memory and processing power, ultimately reducing contention and
enhancing overall performance. Additionally, exploring distributed systems and edge-to-
cloud architectures could help mitigate resource contention and improve scalability.

In conclusion, there are numerous potential areas for future research in profiling ma-
chine learning workloads on edge devices. Addressing these challenges will be vital for
facilitating the widespread deployment of machine learning models in edge environments.
By investigating these areas, researchers can advance efficient algorithms, resource manage-
ment strategies, profiling tools, and privacy-preserving techniques, ultimately enhancing
the seamless integration of machine learning within edge computing frameworks.
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