

1 A 20-year systematic review of wave dissipation by soft and hybrid nature-based solutions (NbS)

2 Amy Bredes¹, Georgette Tso², Rachel K. Gittman², Siddharth Narayan², Tori Tomiczek³, Jon K. Miller¹,

3 Rebecca L. Morris⁴

4 ¹Stevens Institute of Technology, ²East Carolina University, ³United States Naval Academy, ⁴University of

5 Melbourne

6

7 **Abstract**

8 A systematic review of 20 years of studies was conducted to understand wave dissipation trends of
9 hybrid and natural (soft) coastal features, collectively referred to as nature-based solutions (NbS). Of
10 13,451 studies identified and 470 studies reviewed; only 50 studies consistently reported the basic
11 parameters required to compare wave height dissipation. These studies were used to create a basic
12 understanding of wave dissipation across soft and hybrid features along different cross-shore widths.

13 More specific implementation guidance for NbS is limited due to the lack of consistent monitoring
14 practices and protocol within and between soft and hybrid features. This disparity is greatest between
15 soft and hybrid NbS. To fully understand best practices for the wide variety of soft and hybrid NbS, more
16 uniform monitoring data is needed to assess and more fully define wave dissipation performance. Based
17 on the findings of this review, eight parameters to measure the wave dissipation effectiveness of NbS
18 features are proposed. These findings will inform the development and application of evaluation
19 protocols for future NbS projects.

20 **Keywords**

21 nature-based solutions, wave height dissipation, natural and nature-based features, living shorelines,
22 hybrid shoreline protection

23 [Introduction]

24 Reducing erosion and wave-induced flooding is often an engineering goal of both traditional and nature-
25 based coastal infrastructure features. This goal is commonly achieved through the installation or
26 enhancement of features that dissipate waves and success is often evaluated as the reduction of
27 incoming wave height by the feature. In the United States, shoreline retreat averages up to 1.8 m/y and
28 0.9 m/y on the Gulf Coast and Atlantic Coast, respectively; between 1984 and 2015 there was almost
29 28,000 km² of permanent land loss globally in coastal areas (Beatley et al., 2002; Mentaschi et al., 2018).

30 Application of shoreline protection that both utilizes and enhances ecological systems, also known as
31 natural and nature-based features (NNBFs), nature-based solutions (NbS), or living shorelines, has
32 substantially risen in popularity in the past 15-20 years (Cohn et al., 2022; O'Donnell, 2017; Preti et al.,
33 2022). Additionally, nature based solutions can include techniques specific to urban environments,
34 however this was not covered in this review (Su et al., 2024; Wang et al., 2024). While the adoption of
35 NbS has accelerated over the past decades, with several projects situated on fetch-limited coastlines in
36 temperate regions, limited guidance on feature suitability is one barrier to effective and widespread
37 implementation (Bridges et al., 2021). Current guidance often recommends design choices based on
38 qualitative metrics with limited quantitative decision-making tools available (Morris et al., 2020, 2019;
39 Schoonees et al., 2019). With over 20 years of NbS research and implementation, quantitative
40 recommendations for wave height dissipation capacity can be drawn through a systematic review of NbS
41 features.

42 NbS can be categorized into soft, hybrid, and eco-engineered hard features (Moosavi, 2017; Morris et al.,
43 2020; Schoonees et al., 2019). Soft features solely rely on habitat conservation or restoration and include
44 submerged aquatic vegetation (SAV) beds or salt marshes. Soft NbS can have tremendous coastal
45 protection capacity; however, coastal protection benefits largely depend on the surface area of the
46 habitat, creating limitations of application (Narayan et al., 2017). Hybrid features use a combination of

Commented [AB1]: I would reorganize the whole introduction by starting with the context, definitions and formulas, and then the fact that these data are missing, and finally talking about why this review is being done

Commented [AB2]: Add figure with images of NbS mentioned

Commented [AB3]: clarify

Commented [AB4]: Review F Preti, V Capolbianco, P Sangalli Ecological Eng 2022 on NbS definitions

Commented [AB5]: clarify

Commented [AB6]: The first sentence says that soft nbs rely solely on habitat conservation or restoration" indeed, this line says they have "tremendous coastal protection capacity" is this a beneficial side effect?

47 built structures and habitat restoration, such as a rubble mound sill or a constructed oyster reef (COR)
48 seaward of salt marsh vegetation. Hybrid NbS can be applied in a wider range of environmental
49 conditions compared to soft NbS; such as a more energetic wave climate caused by boat wakes, changing
50 conditions brought on through climate change, stricter space constraints, or sediment supply issues
51 (Palinkas et al., 2022). Hard methods aim to ecologically enhance a more traditional engineering
52 structure (e.g., through the addition of microhabitats), although ecologically enhanced traditional
53 infrastructure is often categorized separately from soft and hybrid features (i.e., hard features are not
54 considered living shorelines) (Bilkovic et al., 2016; Strain et al., 2018).

55 NbS features have been employed worldwide (Morris et al., 2024; University of Oxford, 2024; U.S Army
56 Corps of Engineers (USACE), 2024). However, projects are rarely monitored for engineering effectiveness,
57 and when they are, the methods and reporting are inconsistent. This deficiency of robust monitoring
58 data creates a lack of understanding of NbS performance in different wave climates and conditions,
59 preventing consistent and effective NbS implementation. There is a recognized need to understand when
60 to use different NbS features (Morris et al., 2020). Multiple attempts at categorizing site suitability for
61 different features exist; however, most of these methods are qualitative and typically classify solely
62 between soft or hybrid, not the specific NbS feature (Miller et al., 2015; Woods Hole Group, 2017; Harte
63 Research Institute, 2020; Morris, Boxshall and Swearer, 2020; Nelson, 2022; Bredes et al., 2023; Young
64 et al., 2023; Virginia Institute of Marine Science (VIMS), National Oceanic and Atmospheric
65 Administration (NOAA) and Troy University, 2024). In most qualitative guidance, wave energy is
66 positively correlated with hardness (amount of rock or concrete) of a solution; the higher the wave
67 energy, the harder the feature recommended (e.g., taller and broader rock sills in higher energy
68 environments). However, this recommendation is often not quantitatively verified, reducing the robustness
69 of resulting designs.

Commented [AB7]: Try to motivate why 4-line list of quotes. Perhaps report their differences or what characterizes them

Commented [GRK8R7]: I would change to e.g., then pick 2 or 3.

70 Wave dissipation is often quantitatively assessed using wave height as a representation of wave energy.
71 Wave heights are typically measured with pressure or capacitance gauges on the leeward (transmitted)
72 and seaward (incident) sides of a feature within the study area. In engineering studies, the ratio of the
73 transmitted, H_t , to incident, H_i , wave height is typically used to quantify the effectiveness in reducing
74 wave height, and is called the transmission coefficient, K_t (Jefferys, 1944):

75
$$K_t = \frac{H_t}{H_i} \quad (1)$$

76 Smaller values of K_t reflect greater reduction in wave height; higher values of K_t indicate less dissipation,
77 with $K_t > 1$ indicating an increase of wave heights. Wave height dissipation by a structure is a function of
78 the geometry and material characteristics of that structure. Freeboard, F , structure crest width, B , still
79 water depth, d , structure crest height above the bottom, h_c , and the incident wave length, L_i , are
80 identified controlling parameters (Goda et al., 1967):

81
$$K_t = f \left(\frac{F}{H_i}, \frac{B}{d}, \frac{h_c}{d}, \frac{d}{L_i}, \frac{H_i}{d} \right) \quad (2)$$

82 Many equations have been proposed to assess the ability of submerged and partially submerged
83 breakwaters to dissipate waves, although few of these equations are specific to NbS designs (Bredes et
84 al., 2022). These equations typically rely on the same parameters identified by Goda et al. (1967)
85 (Ahrens, 1987; Buccino and Calabrese, 2007; d'Angremond et al., 1996; Friebel and Harris, 2003;
86 Seabrook and Hall, 1998; Van Der Meer et al., 2005).

87 Understanding the wave height dissipation capability of NbS is important to further understand the
88 performance of these projects with respect to shore protection and coastal flood hazard mitigation.
89 Reducing erosion from both natural and anthropogenic systems is often a project goal achieved through
90 wave dissipation. The amount of wave dissipation required to reduce erosion will be dependent on
91 project goals and local site conditions. Numerous studies of both soft and hybrid NbS, including many

Commented [GRK9]: Might be useful to add a citation or
citations to this paragraph, particularly this opening section.

92 found in this review, report minimal wave height dissipation, which may be considered as a metric with
93 which to assess reduction of wave energy or other performance requirements. Conversely, there is a risk
94 of “overpromising” performance based on studies with specific conditions where wave height dissipation
95 was high, for example from a few observations of wave height dissipation by reefs on open coasts
96 (Christianen et al., 2013; Morris et al., 2021; Wang et al., 2021). These inconsistencies result in a lack of
97 quantitative guidance which consequently reduces the ability to evaluate of NbS project outcomes.

98 Others have identified these gaps and lack of guidance, with the majority of criticism focused on the
99 difficulty of achieving both ecological and engineering goals and the lack of quantified engineering
100 guidelines for NbS (Firth et al., 2020; Morris et al., 2019; Ostrow et al., 2022; Strain et al., 2019, 2018).

101 With a focus on the parameters in formula (2), a systematic review of current peer-reviewed scientific
102 manuscripts, academic theses, and reports from government organizations was completed on the
103 breadth of soft through hybrid NbS features on fetch-limited coastlines in temperate regions to gain a
104 greater understanding of the wave height dissipation capacity of these features in different wave
105 climates and under different site constraints. The data collated in this review provide an opportunity to

Commented [AB10]: Collated is an error

106 quantitatively understand trends in wave height dissipation through different soft and hybrid NbS
107 depending on submergence, width, transmission coefficient, and incident wave height. Through the
108 collection of this data, this study aims to (1) use the data extracted from the literature to create a
109 quantitative understanding of wave height dissipation by a variety of NbS, and (2) create guidance for
110 monitoring based on the available data to ensure high quality quantitative guidance can be created in
111 the future.

112 Methods

113 Literature Search and Data Extraction

114 This systematic review followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses

115 (PRISMA) method to synthesize data from field measurements of wave height reduction in coastal

Commented [AB11]: The methods and results are very unOschematic and it is complicated to understand exactly all the parameters used, methods and results that emerged from using different methodologies

Commented [GRK12R11]: I agree with the reviewers, this was a comment I had in one of my previous reviews. See comments below for suggestions on how to improve the flow.

116 habitats. A literature search was performed using Web of Science, SCOPUS, and Google Scholar
117 databases through July 2023 for studies that describe measurements of wave height reduction in coastal
118 habitats. Search strings used the format: <habitat type> + <wave reduction type>, where <habitat type>
119 is either “coir log”, “breakwater”, “sill”, “reef ball”, “oyster castle”, “COR”, “marsh”, “wetland”, oyster
120 reef”, “seagrass” or “kelp,” and <wave reduction type> is (“wave height” AND “reduction” OR
121 “dissipation” OR “attenuation” OR “spending” OR “mitigation”). The search for “marsh”, “wetland”,
122 “oyster reef”, “seagrass” or “kelp” was conducted for post-2016 publications only. For pre-2016 data, the
123 database from Narayan et al. (2016) was used, which was compiled using the same literature search
124 method. The search for “coir log”, “breakwater”, “sill”, “reef ball”, “oyster castle”, “COR” includes pre-
125 2016 and post-2016 search results.

Commented [AB13]: Could be more clear inside a table
Commented [GRK14R13]: I don't think this is necessary, it is pretty common to list search strings in the methods as text.

126 To be included in the database, papers had to be English-language and primary literature (no conceptual
127 papers, meta-analyses, etc.). Peer reviewed literature, dissertations, theses, and technical government
128 reports were included. Studies were excluded if reported data were collected in modelling or laboratory
129 studies, and if studies were completed in non-temperate climates, as this study focused on temperate
130 systems only. Temperate features assessed included salt marsh, seagrass, kelp, COR, breakwaters, sills,
131 biodegradable breakwaters, and coir logs. The inclusion criteria are studies that (1) where data is not
132 collected during storm conditions, (2) not collected along open coasts rather than fetch-limited
133 coastlines, and (3) reported the necessary parameters. The necessary parameters were incident and
134 transmitted wave height or transmission coefficient and incident wave height across an included NbS
135 feature, water depth, freeboard, or percent time submerged throughout the tidal cycle of the NbS
136 feature and total cross-shore width of the NbS feature. Wave period was rarely reported; therefore,
137 exclusion criteria were selected for conditions where similar wave periods and incident wave climate
138 could be assumed (*i.e.*, estuarine environments). Waves in closed bodies of water will generally be fetch
139 limited, creating upper bounds on period and height (Karimpour et al., 2017). The initial search across all

Commented [AB15]: Missed “ before oyster
Commented [AB16]: It is not clear why there is a year of separation 2016

Commented [GRK17]: I think the review text is actually more confusing than the original text.
Commented [GRK18]: Why not list all of the exclusion criteria together here?

Commented [GRK19]: This sentence is no longer grammatically correct and doesn't make sense.

Commented [RM20]: Breaking up these sections would help readability

Commented [GRK21]: But you say below that this wasn't always numerically reported, so you used categories. I think you should only list exclusion criteria up here, then summarize the types of metrics that were reported and it what format below.

140 11 features yielded 13,451 studies. Duplicate papers and irrelevant papers were removed, leaving 6,876
141 papers. Of these, titles and abstracts were screened for eligibility in detail using exclusion criteria. At this
142 stage, the number of studies was reduced to 479 and full-text studies were reviewed for inclusion
143 criteria. Of those, 50 studies met all three inclusion criteria needed for this analysis (Figure 1).

144 For each of the 102 study sites observed within the 50 studies, 6 parameters were extracted:
145 transmission coefficient, incident wave height, submergence, shore perpendicular width, feature class
146 (soft or hybrid), and feature category. Soft feature categories include salt marsh, seagrass, and kelp.
147 Mangroves and coral were excluded due to tropical climates and habitats having large differences from
148 the other soft features studied. Hybrid feature categories included COR, breakwaters, sills, biodegradable
149 breakwaters, and coir logs. Of the studies assessed, 26 and 24 were hybrid and soft NbS, respectively.
150 The Matlab 2021 function Grabit (Doke, 2024) was used to accurately extract data from figures, and
151 averages were calculated for all numeric parameters when not reported directly. Of the selected metrics,
152 transmission coefficient, incident wave height, and shore perpendicular width were collected
153 numerically; due to inconsistent reporting, submergence was collected categorically. Some studies
154 reported percentage submerged throughout the tidal cycle, while others reported freeboard or position
155 within the tidal cycle. Therefore, data on submergence was collected as percentage submerged in three
156 categories by time submerged: not submerged (<25%), partially submerged (25-75%), and fully
157 submerged (>75%). Average H_i in each feature category was used as an estimate of incident wave
158 climate.

159 For studies reporting multiple observations over the same site (e.g. a summer observation and winter
160 observation), observations were averaged to collapse data into one observation per site to avoid placing
161 greater weight on studies with multiple same-site observations. For the cases in which multiple
162 observations over the same site did not follow the same field methods (e.g., different widths between
163 gauges), observations were not averaged, and instead the observation representing a greater length of

Commented [RM22]: These are duplicated from above just pick one place to list the parameters.

Commented [AB23]: This part could be moved before in the inclusion criteria

Commented [GRK24R23]: Yes, I think this should be moved up.

Commented [AB25]: I don't understand why average the data between winter and summer. I understand the need to have only one record, not the chosen method. In fact, the NbS features should be designed under wave conditions with maximum energy. Therefore measurements taken in winter should be considered to verify the effectiveness of an NbS structure.

Commented [GRK26R25]: This is a problem with averaging data. You could justify averaging across seasons if the majority of studies included in your analysis only collected observations in one season or also reported averages across seasons.

164 time was chosen. For multiple observations of the same length of time but with different field methods,
165 one single observation was selected at random. [These collapsed data were only used to evaluate study
166 effects, not for the entire study.]

Commented [GRK27]: I am not sure what this means.

167 Statistical and Classification Analysis

168 [All 6 collected parameters(transmission coefficient, incident wave height, submergence, shore
169 perpendicular width, feature class (soft or hybrid), and feature category) were used as predictors of
170 what? Transmission coefficient?]. Akaike information criterion (AIC) (Akaike, 1973) is a [parameter used to
171 select the best fit model to test study effects (Feng, 2021)]. The importance of each parameter was tested
172 using AIC, however due to the limited parameter space, linear models were only used to evaluate study
173 effects and not additional trends in the data. To test for study effects, an ordinary linear regression
174 model was created using a reduced number of studies with [insert parameter] as the response and
175 [insert parameters] as predictor variables. When a study was added at random, the AIC did not change,
176 indicating that study effects are negligible. [Due to the limited parameter space available, further analysis
177 was conducted with other methods as described in the following paragraph.]

Commented [GRK28]: What parameters? In general, I find this paragraph really hard to follow as currently organized.

Commented [GRK29]: I would use a different word so as not to confuse with model parameters.

Commented [AB30]: Maybe spent a sentence to explain what it is AIC

Commented [RM31]: AIC is a standard method you can just say that you used it not what it is

Commented [GRK32]: I am confused by this sentence. Do you mean that you used linear models to assess the effect of "study" on each parameter or on a single response variable?

178 Mean and standard deviations were calculated for shore-perpendicular X , K_t , H_s , and submergence from
179 the data collected for every feature reviewed. Additionally, a decay coefficient was created by
180 normalizing percent dissipation by unit width, α . A Principal Components Analysis (PCA) was conducted
181 to understand the importance of the collected parameters in predicting NbS class (soft or hybrid). [This is]
182 represented in an importance factor; the higher the importance factor, the more influence it has on the
183 other components. The PCA was conducted using built in MATLAB functions. A classification analysis was
184 also used to identify and [assign categories] within a given dataset (Géron, 2017). Support vector machine,
185 or SVM, is a type of classification machine learning algorithm approach which focuses on finding the
186 optimal separation boundary between datapoints that have different classifications and is typically used
187 to classify small complex datasets (Géron, 2017). SVM is modified to fit nonlinear datasets using

Commented [GRK34]: To what does "This" refer?

Commented [GRK35]: What categories?

188 different kernels. A radial basis function (RBF) kernel is typically used for fitting datasets with nonlinear
189 boundaries between classes that fit a Gaussian distribution, such as the one collected in this analysis
190 (Géron, 2017). The rate at which the kernel decays is governed by gamma (G), where a higher gamma
191 indicates more rapid decay. The other parameter within SVM is cost (C). Cost is essentially the penalty
192 associated with making an error. Typically, the higher the cost, the less likely a misclassification, although
193 this may cause overfitting. When determining the optimal values for gamma and cost, a standard
194 random 80-20 train-test data split was used (Géron, 2017). The e1071 package in R was used to run SVM
195 analysis (Meyer et al., 2023). This package includes a function called “tune.svm” for optimizing cost and
196 gamma parameters. This function was used to evaluate the most accurate combinations of gamma and
197 cost parameters for the model. Three combinations (G=0.1 C=100, G=0.1 C=1000, G=0.2 C=100) were
198 found to be the best fits, all with a train dataset accuracy of 0.952 and a test dataset accuracy of 0.905.
199 After visually reviewing each combination, G=0.2 C=100 was chosen as it was the least overfit. Soft
200 margins were used to indicate the range of uncertainty in the category boundary.

201 Results

202 Trends in Soft and Hybrid NbS

203 Studies that met the criteria for evaluating wave dissipation were found in North America, Europe, Asia,
204 and Australia, with the highest concentration of studies in North America (63%), and the majority of
205 hybrid studies in the United States. Globally documented coastal NbS projects by two large networks,
206 Engineering With Nature and Oxford, showed 76% of documented projects in North America, this bias is
207 likely amplified by reporting, research funding availability, and research interest (University of Oxford,
208 2024; U.S Army Corps of Engineers (USACE), 2024). |

Commented [GRK36]: This sentence is hard to interpret.

209 Averages and standard deviations collected for each of the parameters (e.g., H_s , K_t , X , and submergence)
210 were found to be very different across different types of ecosystems, with wave dissipation influenced by
211 frequency of submergence (Table 1). As previously mentioned, wave period was underreported within

Commented [GRK37]: As defined by what analyses?

212 studies, so it was not included in the collected data. Therefore, average H_i in each feature category was
213 used as an estimate of incident wave climate. H_i was equivalent in magnitude between most categories
214 (13cm, 35.5 cm, 18.1 cm, 12.3cm, 22.3cm, 27.7cm for biodegradable breakwaters, breakwaters, coir
215 logs, CORs, salt marsh, and seagrass, respectively). H_i for rock sills (3.5cm) and kelp (87cm) had the
216 largest difference from the other features; this is likely due to the small sample size of rock sill data (4
217 observations) and the deeper water depth of kelp habitat. The features with the highest transmission
218 coefficients (i.e., least effective at wave dissipation) were associated with more frequent submergence
219 during the tidal cycle. In general, hybrid features outperformed soft features, with the exception of salt
220 marshes, which outperformed all other features with an average K_t of 0.3 (Figure 2).

Commented [GRK38]: As determined by what analysis?

221 Submergence varied more greatly within each feature for hybrid features than soft features. Of the
222 hybrid NbS, 33 were submergent, 20 were partially submergent, and 12 were emergent, with the most
223 emergent hybrid NbS being breakwaters. Of the soft NbS, every observation of kelp and seagrass were
224 submergent and every observation of salt marshes were partially submerged. Shore perpendicular
225 width, X , is a large differentiator between soft and hybrid features, with X of soft features one or two
226 magnitudes larger (97.4-417.6 m) than X (0.5-8.3 m) of hybrid features. The natural width of salt
227 marshes, SAV beds, and kelp are often on the order of hundreds of meters or more, consistent with the
228 average width of studies reviewed (97.4m, 417.6m, and 250m on average for salt marsh, SAV, and kelp,
229 respectively), while breakwaters and sills in the studies reviewed were often several orders of magnitude
230 smaller in width, and rarely included the width of any marsh or vegetation behind the structures (2.0m,
231 0.5m, 8.3m, 0.6m, and 3.6m on average for rock sills, biodegradable breakwaters, breakwaters, coir logs,
232 and COR, respectively). It should also be noted that widths of soft features had larger standard
233 deviations than widths of hybrid features (Table 1).

Commented [GRK39]: What analysis described above was used to make this determination?

234 Dissipation and Width Relationship
235 Width of feature was significantly more important than K_t , H_i , and submergence in predicting the feature
236 category (soft or hybrid), with an importance factor of 0.013. The next closest parameter, H_i , had an
237 importance factor of 0.002, as calculated with a PCA.

238 Using a decay coefficient, α , the wave dissipation capacity of different features over variable widths was
239 explored (Figure 3). α was found to be significantly different between soft and hybrid NbS, with soft
240 features never dissipating more than 10% of wave height per meter. Hybrid features at times dissipated
241 more than 90% of wave height per meter. Differences in α are also correlated with submergence.

242 Submerged hybrid structures outperformed submerged soft solutions, with an average α for hybrid and
243 soft solutions of 0.28 m^{-1} and 0.02 m^{-1} , respectively. Submerged hybrid structures consistently dissipated
244 wave heights less than partially submerged and non-submerged hybrid structures, with an average α for
245 submerged, partially submerged, and non-submerged hybrid features of 0.08 m^{-1} , 0.47 m^{-1} , and 0.51 m^{-1} ,
246 respectively. While hybrid structures are rarely analyzed using a decay coefficient, this result is consistent
247 with existing analytical models for wave height dissipation through vegetation (Mendez and Losada,
248 2004).

249 Non-submerged hybrid structures achieved the highest wave height dissipation per meter; however,
250 they were typically deployed within the same incident wave heights (on the order of 10 cm), making this
251 portion of the dataset too small and uniform to draw conclusions. Incident significant wave height for
252 soft structures showed two distinct clusters for submerged and partially submerged soft NbS due to
253 habitat differences for those features; salt marsh has lower H_i and kelp and SAV have higher H_i due to
254 level of submergence (Table 1).

255

256 Discussion

Commented [AB40]: The discussions are very interesting but I would use simpler periods to facilitate reading (??)

257 Effect of NbS Width and Submergence

258 Results of this systematic review and analysis quantitatively support what many qualitative analyses and
259 practitioners assert; hybrid NbS provide more efficient wave height dissipation than soft features for
260 smaller available shore perpendicular widths, while soft NbS are better suited to larger available widths
261 assuming other ecological and biological parameters are suitable for these solutions (Morris et al., 2020).

262 These findings indicate that soft NbS use more space than hybrid NbS to provide the same wave height
263 dissipation, and that increased submergence decreases wave height dissipation, trends that are expected
264 based on analytical and theoretical understanding of wave propagation through vegetation. Averages
265 and standard deviations calculated in this review, as well as the normalized wave height dissipation per
266 meter values, showed consistent wave height dissipation trends with the majority of literature on hybrid
267 and soft features (Bilkovic et al., 2016; Harte Research Institute, 2020; Moosavi, 2017; Nelson, 2022;
268 O'Donnell, 2017; Safak et al., 2020; Woods Hole Group, 2017; Young et al., 2023). Despite this
269 theoretical knowledge, there still exists a lack of practical guidance for new NbS projects on the widths
270 necessary to achieve specified levels of wave dissipation. These results validate many current practices
271 and assumptions; however, robust design guidance is still needed. Thus, below are suggestions on
272 conditions for the application of soft or hybrid NbS, as well as monitoring metrics for future data
273 collection to inform construction and monitoring of NbS.

274 Choosing Appropriate NbS Widths

275 The PCA analysis of the parameters extracted from this review suggested the importance of width in
276 wave dissipation capacity. This relationship suggests that hybrid features may be more appropriate in
277 situations where available space is limited. A SVM analysis was deployed to further explore that
278 relationship and create a tool for understanding, given shore perpendicular width, X , and desired wave

Commented [GRK41]: Add citations?

279 height dissipation outcome, whether a soft or hybrid NbS is the best choice. While this SVM model is
280 multivariate and incorporates all collected parameters, it is plotted as K_t vs X (m) for ease of
281 interpretation given the importance of shore perpendicular width (Figure 4). The SVM analysis suggests
282 that to meet wave dissipation goals below a K_t of 0.6, hybrid NbS should be used when X is below ~65 m.
283 When only minimal wave dissipation is required ($K_t > 0.8$) or when more shore perpendicular space is
284 available ($X > 400$ m) the use of soft NbS is recommended when ecologically appropriate, as indicated by
285 the “soft” margins depicted in Figure 4 with dashed lines. Cases between these margins are within the
286 “Best Judgement Zone” where practitioners are encouraged to use their expertise to determine the best
287 combination/selection of soft and hybrid features to achieve desired wave dissipation goals. These
288 margins are determined through the soft margins along the decision boundary within the SVM model.
289 At NbS sites where shore-perpendicular space is limited, this analysis concluded that hybrid structures
290 may be more appropriate than soft NbS to achieve wave dissipation goals. The lowest NbS width in this
291 review that achieved non-negligible wave dissipation for waves above 10 cm was 0.5m, with a
292 biodegradable breakwater (Table 2). At a point where space is very limited, NbS may not be suitable and
293 traditional hard infrastructure could be more appropriate; however, the data collected in this review did
294 not include traditional infrastructure, making this threshold difficult to quantify. In the cases where soft
295 or hybrid NbS cannot be used, ecological enhancement of the system may be incorporated as part of the
296 structure given the limited space available for restoration outside the structure. Features to ecologically
297 enhance hybrid and grey infrastructure may include CORs, stone structures using a wide variety of rock
298 sizes and textures to create a variety of niches, the use of novel materials, and other creative ecological
299 features (Strain et al., 2018).
300 The “Best Judgement Zone” (Figure 4) also provides unique opportunities for practitioner creativity.
301 Within this zone, shore perpendicular width is large enough to incorporate some soft features, while
302 likely still requiring use of hard structures. In widths above the “Best Judgement Zone”, soft features

303 should be adequate to meet wave dissipation goals. This does not indicate that those features will not
304 experience erosive forces, but behind those features, wave dissipation goals should be met. This
305 characterization model quantitatively agrees with the conceptual model posited in Morris et al. (2020)
306 and supports previous theoretical studies that posit the availability of space as a key factor in
307 determining the suitability of soft NbS projects (Van Hespen et al., 2023).

308 [Best Practice Recommendations For Monitoring](#)

309 Based on insights from this review regarding current practice in monitoring wave dissipation across soft
310 and hybrid NbS, recommendations are provided for 1.) what to monitor – i.e., key metrics to monitor to
311 evaluate wave dissipation and 2.) how to consistently monitor these metrics (Table 2). These metrics are
312 categorized as either critical, important or useful to be able to effectively evaluate the wave dissipation
313 and collect data on implemented NbS projects to create a deeper understanding of how different site
314 conditions effect project outcomes.

315 1.) Metrics to monitor to evaluate wave dissipation: This review revealed that important metrics directly
316 related to wave dissipation, such as wave period, freeboard, bathymetry, turbidity, and colonized
317 organism density, were rarely reported. Owing to the lack of studies meeting the minimal inclusion
318 criteria selected for this analysis, small sample size and lack of detailed data reduced the ability to
319 conduct detailed statistical analyses. Critically important metrics for such analyses include significant
320 wave height and wave period. Information on wave period helps create an understanding of how
321 parameters such as steepness or breaking, change when interacting with a structure or feature. Wave
322 steepness is related to erosion, and is important to understand the impact of structures (Kana, 1977;
323 King and Williams, 1949; Lemke and Miller, 2020; Masselink et al., 2010). While difficult and expensive to
324 collect, bathymetry is also important. When bathymetry cannot be gathered offshore, a manual
325 onshore/tidal zone survey at low tide around, offshore, and onshore of structures can be conducted,

326 offering a cost-effective alternative. These data are important because depth controls how waves
327 transform though a site. Wave breaking can cause wave height dissipation, so at some sites, bathymetry
328 may be causing breaking and driving K_t values. Conversely, if bathymetry is causing wave shoaling, wave
329 height dissipation and shoaling may have competing effects. Bathymetry effects are especially important
330 in areas where the targeted NbS is submerged for the majority of the tidal cycle or in areas with large
331 tidal cycles where the effects of bathymetry on wave dissipation may change dramatically throughout
332 the cycle.

333 When using natural features for wave dissipation, it is critical that engineering and ecological approaches
334 for monitoring are integrated well (Van Wesenbeeck et al., 2016). Due to the natural component of NbS,
335 metrics not directly related to wave dissipation, such as turbidity and organism density, provide
336 information important to the ecology of features. Turbidity measurements can serve as proxy for
337 sediment supply in the system, which can contextualize the wave dissipation data to erosive or
338 accretional potential at the study site and is important for understanding the ability of a marsh to
339 maintain pace with sea level rise (FitzGerald and Hughes, 2019; Thorne et al., 2021). In lieu of turbidity
340 monitoring, a sediment budget can also be performed. Organism density, whether reef building shellfish
341 or flora such as SAV or marsh grass helps contextualize the data to understand frictional effects for wave
342 dissipation as well (Chen et al., 2018).

343 2.) Consistent monitoring of metrics: In addition to the lack of reported data, this review also revealed
344 heterogeneity in the way in which metrics are reported. This heterogeneous data collection led to a
345 limited parameter space and reduced suitable studies (0.4% of studies that matched search criteria and
346 10.6% of studies fully reviewed) for this analysis. For example, some studies report significant wave
347 height, while others report maximum or average wave heights, locations of gauges are not standardized
348 in spacing or distances from structures when they exist (Everett et al., 2019; Wiberg et al., 2019).

349 Inconsistencies add artificial complexity to comparing already heterogeneous sites and features, making
350 it nearly impossible to create robust engineering guidance on specific feature application and suitability.
351 As a guide for future NbS projects interested in evaluating wave dissipation performance, a concise list of
352 engineering monitoring metrics has been developed based on the needs of common engineering and
353 ecological wave dissipation equations (Table 2), and categorized as either critical, important or useful for
354 evaluation of wave dissipation by NbS features. Collection of these data are important not just for
355 monitoring NbS performance but also for modeling future performance of NbS projects under different
356 ecological, water level or wave height scenarios. Recommended metrics include: incident significant
357 wave height, transmitted significant wave height, wave period, feature dimensions, tide/ water level,
358 bathymetry/ elevations, turbidity, and organism density, when applicable. When budget and time are
359 limited, priority should be taken to the most critical metrics: incident significant wave height,
360 transmitted significant wave height, wave period, feature dimensions, tide/ water level; then to
361 important metrics: bathymetry/ elevations; and finally, to useful metrics: turbidity, and organism
362 density. These metrics allow engineers to further study and understand the conditions at which NbS are
363 dissipating waves through many of the principles of wave dissipation (Goda et al., 1967). As studies
364 become more standardized, future work will focus on synthesizing ecological and engineering metrics for
365 better project planning and adaptive management.

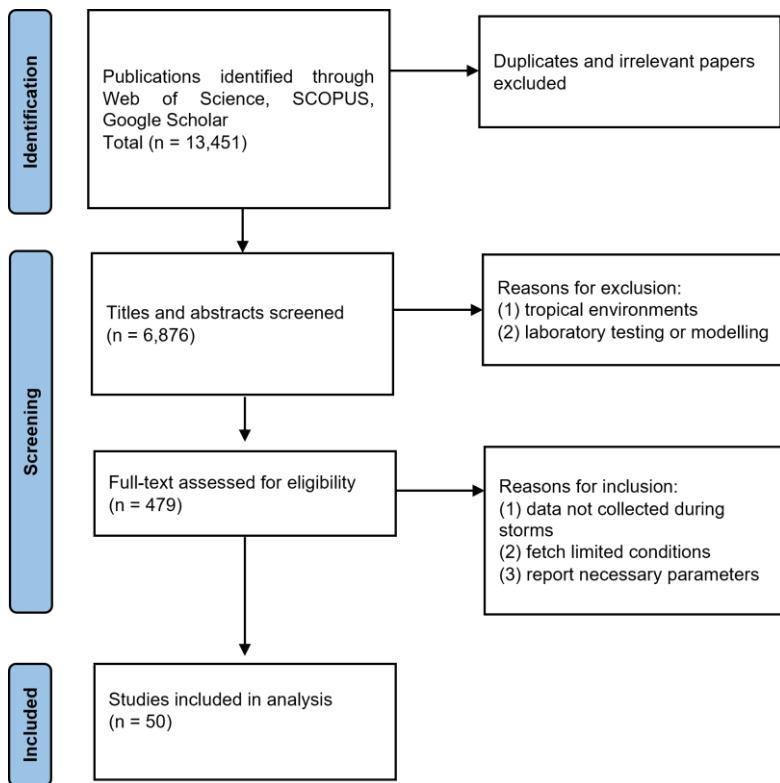
366 **Conclusions**

367 This extensive PRSIMA systematic review of the wave dissipation of soft and hybrid NbS features in
368 temperate regions produced several important results and conclusions:

369 • Wave height dissipation varied between different features and their associated parameters; NbS
370 that were submerged during the majority of the tidal cycle were the least dissipative, and hybrid
371 NbS had greater dissipation than soft NbS overall. Salt marsh was the most dissipative feature in

372 this study. The largest differentiator between soft and hybrid NbS was shore perpendicular
373 width, with the largest widths associated with salt marshes.

- 374 • When wave height dissipation is normalized by cross-shore width of the feature, creating a decay
375 coefficient, the best performing hybrid NbS dissipated 90% of wave heights per meter, while soft
376 NbS only attenuated 10% of wave heights per meter. Submerged hybrid NbS dissipated less
377 energy per meter than emergent hybrid NbS.

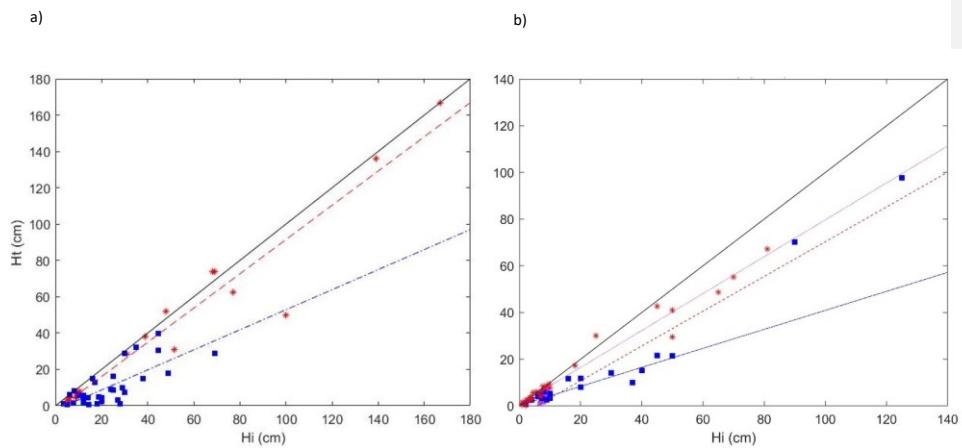

- 378 • A classification model using SVM was created to provide guidance for practitioners
379 demonstrating that hybrid NbS should be deployed when shore perpendicular width is limited
380 and wave dissipation needs are high, and soft NbS can be relied on when width is large and
381 available, ecological conditions are appropriate, and/or wave dissipation needs are minimal.

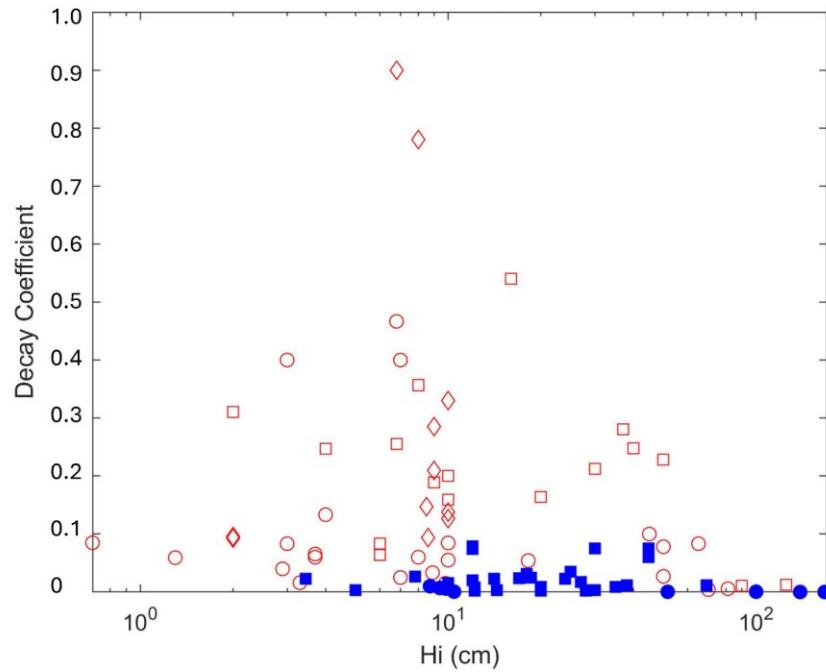
382 However, there is no clear threshold between soft and hybrid NbS usage, therefore a “Best
383 Judgement Zone” has been developed for cases when the determination between soft or hybrid
384 is less clear (Figure 4).

- 385 • A small body of existing literature (50/13,451 or 0.4%) that appeared in search results met the
386 inclusion criteria necessary for analyzing wave height dissipation. The size of this dataset relative
387 to the body of literature is due to a lack of clear monitoring metrics and procedures. Therefore,
388 critical, important, and useful monitoring metrics and the associated methods are proposed
389 (Table 2).

390 The use of NbS is increasing, but until standardized data is collected to better inform technical guidance,
391 the uncertainty in the level of risk reduction will remain a barrier to broader implementation.

392 Additionally, increasing understanding of the interdisciplinary metrics needed to evaluate engineering
393 and ecological goals present in NbS projects will help to ensure both priorities are optimized in future
394 projects.

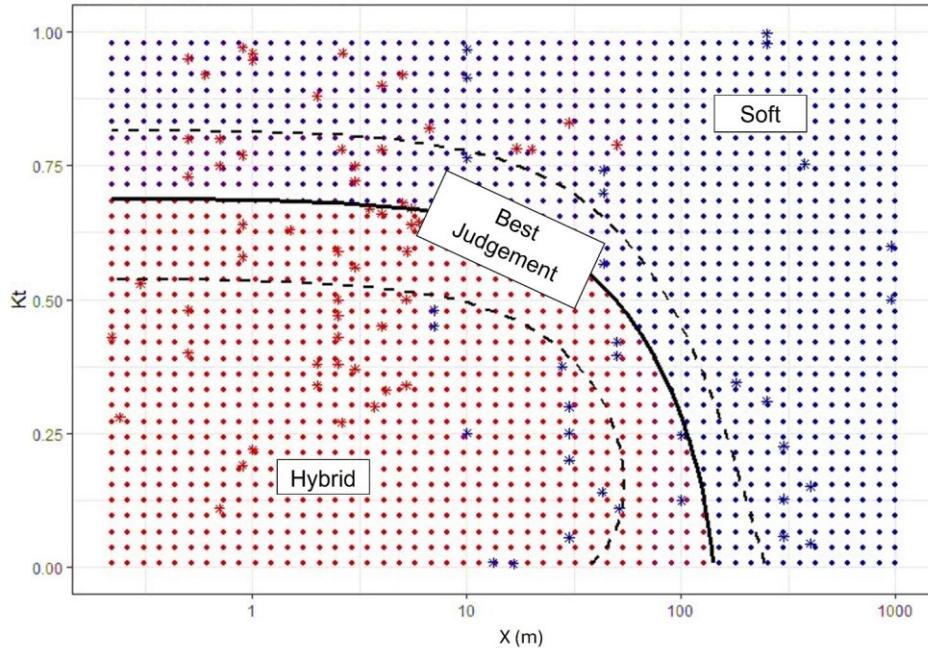



398 Figure 1. This systematic review was completed using PRISMA. As publications were screened and
 399 excluded or included based on criteria, the number of identified publications decreased from 13,451 to
 400 6,876 to 470, to a final 50 studies for use in this analysis.

401

402

403 Figure 2. Transmitted wave height (cm) vs. incident wave height (cm) for soft (a) and hybrid (b) features,
404 demonstrating the effect of submergence for both soft and hybrid features. Both soft and hybrid features
405 that are submerged more than 75% (indicated by the red stars) of the tidal cycle have reduced
406 performance (closer to 1:1 line) than partially (blue squares) or non-submerged (purple circles) features.



407

408 Figure 3. Decay coefficient (percent dissipation by shore perpendicular width (m)) plotted against
 409 incident wave height. Red empty symbols and blue filled-in symbols represent hybrid features and soft
 410 features, respectively. Diamond, square, and circle symbols represent submerged, partially submerged,
 411 and non-submerged conditions, respectively.

Commented [AB42]: Spruce up figure

412

413 Figure 4. Classification model created using SVM, the blue and red asterisks represent soft and hybrid
414 data points, respectively, from the dataset. In this model, the blue region labeled soft and the red region
415 labeled hybrid represent when each of the respective features are to be implemented according to the
416 model. The region between the dashed lines represents the uncertainty in which feature is the ideal
417 choice, this region is known as the “Best Judgement Zone.” It should be noted that this does not mean
418 that erosion or degradation of the selected solution will not happen; these zones simply reflect the
419 requirement to achieve specific wave dissipation goals behind the NbS. It should also be noted that there
420 is a point where space is so limited that traditional hard infrastructure is more appropriate, however the
421 data collected in this review did not include traditional infrastructure, making such a cut-off difficult to
422 quantify.

423

424 **Tables**

425 Table 1. Averages and standard deviations for all the numeric parameters (width (X) in meters,
 426 transmission coefficient (K_t), and incident wave height (H_i) in centimeters) and occurrences of
 427 submergence condition; divided into Yes (submerged over 75% of the time), Partial (submerged 25-75%
 428 of the time), and No (submerged <25% of the time).

Commented [AB43]: In the tables it is difficult to distinguish the different rows

Commented [AB44R43]: Check with the guidelines for the publication

Feature	X (m)			K_t			H_i (cm)			Submergence		
	# of Data Points	Avg	Std	Avg	Std	Avg	Std	Yes (>75%)	Partial (25-75%)	No (<25%)		
Rock Sill	4	2.9	1.6	0.6	0.2	3.5	1.9	0	3	1		
Biodegradable Breakwater	3	0.5	0.2	0.6	0.2	13	6.1	0	2	1		
Breakwater	14	8.3	13.3	0.5	0.2	35.5	35.1	1	8	5		
Coir log	7	0.6	0.3	0.5	0.3	18.1	18.4	2	3	2		
COR	37	3.6	4.8	0.8	0.3	12.3	18.5	30	4	3		
Kelp	6	250	N/A	0.9	0.1	87	54.7	6	0	0		
Saltmarsh	29	97.4	126.3	0.3	0.3	22.3	14.3	0	29	0		
Seagrass	8	417.6	376.8	0.7	0.2	27.7	31.6	8	0	0		

429

430

431 Table 2. Suggested metrics for evaluating wave dissipation of nature-based solutions.

Importance	Metric	Equipment	Method	Units	Frequency	Use case
Critical	Incident significant wave height, H_{si}	pressure gauge, capacitance gauge	gauges should be placed offshore of the structure by 1-2m/ feature (before the wave climate is being affected by the NbS), gauges should sample in high frequency (>4 Hz)	m (ft)	Preconstruction and post construction with sufficient time to characterize effects of NbS establishment	This is combined with H_{st} to calculate K_t
	Transmitted significant wave height, H_{st}	pressure gauge, capacitance gauge	gauges should be placed on the inshore side of a hybrid structure by 1-2m, and throughout the soft portion of the NbS every 10 to 20 meters, gauges should sample in high frequency (>4 Hz)	m (ft)	Preconstruction and post construction with sufficient time to characterize effects of NbS establishment	This is combined with H_{si} to calculate K_t
	Period, T	pressure gauge, capacitance gauge	gauges should be placed offshore of the structure/feature (before the wave climate is being affected by the NbS) by 1-2m and on the inshore side of a hybrid structure by 1-2m, and throughout the soft portion of	s	Preconstruction and post construction with sufficient time to characterize effects of NbS establishment	Period is used to understand wave steepness and erosion/deposition

Important					
	Dimensions				
	Tide / Water level				
	Bathymetry/ Elevations				
Useful					
	Turbidity				

conditions if possible

Biologic Growth (when applicable)	quadrats (0.25-meter), calipers, drone, satellite imagery	measure biologic growth and physical dimensions on the feature (i.e. for a COR measure reef building organisms, for a marsh measure density of flora) with standard measurement features for that organism	counts, cm (in)	Pre construction and post construction with sufficient time to characterize effects of NbS establishment	Biologic growth on a feature or resulting in the creation of a feature has implications on wave transmission
-----------------------------------	---	--	-----------------	--	--

432

433

434 References

435 Ahrens, J., 1987. Characteristics of Reef Breakwaters. *Coast. Eng. Res. Cent.* Vicksbg. Miss.

436 Akaike, H., 1973. Maximum likelihood identification of Gaussian autoregressive moving average models. *Biometrika* 60, 255–265. <https://doi.org/10.1093/biomet/60.2.255>

437 Beatley, T., Brower, D.J., Schwab, A.K., 2002. *An Introduction to Coastal Zone Management*. Island Press, Washington, DC.

438 Bilkovic, D.M., Mitchell, M., Mason, P., Duhring, K., 2016. The Role of Living Shorelines as Estuarine Habitat Conservation Strategies. *Coast. Manag.* 44, 161–174. <https://doi.org/10.1080/08920753.2016.1160201>

439 Bredes, A., Miller, J.K., Kerr, L., Gannon, K., Day, I., 2023. Developing guidance for the application of Natural and Nature Based Features (NNBF) on developed shores: A case study from New Jersey, USA. *Reg. Stud. Mar. Sci.* 62, 102959. <https://doi.org/10.1016/j.rsma.2023.102959>

440 Bredes, A.L., Miller, J.K., Kerr, L., Brown, D.R., 2022. Observations of Wave Height Amplification Behind an Oyster Castle Breakwater System in a High-Energy Environment: Gandys Beach, NJ. *Front. Built Environ.* 8, 884795. <https://doi.org/10.3389/fbuil.2022.884795>

441 Bridges, T.S., King, J.K., Beck, M.W., Collins, G., Lodder, Q., Mohan, R.K., 2021. International Guidelines on Natural and Nature-Based Features for Flood Risk Management. U.S. Army Engineer Research Development Center, Vicksburg, MS.

442

443

444

445

446

447

448

449

450

451

452 Buccino, M., Calabrese, M., 2007. Conceptual Approach for Prediction of Wave Transmission at Low-
453 Crested Breakwaters. *J. Waterw. Port Coast. Ocean Eng.* 133, 213–224.
454 [https://doi.org/10.1061/\(ASCE\)0733-950X\(2007\)133:3\(213\)](https://doi.org/10.1061/(ASCE)0733-950X(2007)133:3(213))

455 Chen, J., Ralston, D.K., Geyer, W.R., Sommerfield, C.K., Chant, R.J., 2018. Wave Generation, Dissipation,
456 and Disequilibrium in an Embayment With Complex Bathymetry. *J. Geophys. Res. Oceans* 123,
457 7856–7876. <https://doi.org/10.1029/2018JC014381>

458 Christianen, M.J.A., Van Belzen, J., Herman, P.M.J., Van Katwijk, M.M., Lamers, L.P.M., Van Leent, P.J.M.,
459 Bouma, T.J., 2013. Low-Canopy Seagrass Beds Still Provide Important Coastal Protection Services.
460 *PLoS ONE* 8, e62413. <https://doi.org/10.1371/journal.pone.0062413>

461 Cohn, J.L., Copp Franz, S., Mandel, R.H., Nack, C.C., Brainard, A.S., Eallonardo, A., Magar, V., 2022.
462 Strategies to work towards long-term sustainability and resiliency of nature-based solutions in
463 coastal environments: A review and case studies. *Integr. Environ. Assess. Manag.* 18, 123–134.
464 <https://doi.org/10.1002/ieam.4484>

465 d'Angremond, K., Van Der Meer, J.W., De Jong, R.J., 1996. Wave Transmission at Low-Crested Structures,
466 in: *Coastal Engineering*. Presented at the 25th International Conference on Coastal Engineering,
467 American Society of Civil Engineers, Orlando, Florida, United States, pp. 2418–2427.
468 <https://doi.org/10.1061/9780784402429.187>

469 Doke, J., 2024. GRABIT.

470 Everett, T., Chen, Q., Karimpour, A., Twilley, R., 2019. Quantification of Swell Energy and Its Impact on
471 Wetlands in a Deltaic Estuary. *Estuaries Coasts* 42, 68–84. <https://doi.org/10.1007/s12237-018-0454-z>

473 Feng, C.X., 2021. A comparison of zero-inflated and hurdle models for modeling zero-inflated count data.
474 *J. Stat. Distrib. Appl.* 8, 8. <https://doi.org/10.1186/s40488-021-00121-4>

475 Firth, L.B., Airoldi, L., Bulleri, F., Challinor, S., Chee, S., Evans, A.J., Hanley, M.E., Knights, A.M.,
476 O'Shaughnessy, K., Thompson, R.C., Hawkins, S.J., 2020. Greening of grey infrastructure should
477 not be used as a Trojan horse to facilitate coastal development. *J. Appl. Ecol.* 57, 1762–1768.
478 <https://doi.org/10.1111/1365-2664.13683>

479 Fitzgerald, D.M., Hughes, Z., 2019. Marsh Processes and Their Response to Climate Change and Sea-
480 Level Rise. *Annu. Rev. Earth Planet. Sci.* 47, 481–517. <https://doi.org/10.1146/annurev-earth-082517-010255>

482 Friebel, H.C., Harris, L.E., 2003. Re-evaluation of Wave Transmission Coefficient Formulae from
483 Submerged Breakwater Physical Models.

484 Géron, A., 2017. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and
485 techniques to build intelligent systems, First edition. ed. O'Reilly Media, Beijing ; Boston.

486 Goda, Y., Takeda, H., Moriya, Y., 1967. Laboratory investigations of wave transmission over breakwaters
487 (No. 13). Port and harbor research institute, Ministry of Transport, Yokosuka, Japan.

488 Harte Research Institute, 2020. Texas Living Shoreline Site Suitability Tool. Award No. NA17NOS4190139.

489 Jastram, J.D., Zipper, C.E., Zelazny, L.W., Hyer, K.E., 2010. Increasing Precision of Turbidity-Based
490 Suspended Sediment Concentration and Load Estimates. *J. Environ. Qual.* 39, 1306–1316.
491 <https://doi.org/10.2134/jeq2009.0280>

492 Jefferys, H., 1944. Note on the Offshore Bar Problem and Reflection from a Bar (No. Wave Report 3).
493 Ministry of Supply, Great Britain.

494 Kana, T.W., 1977. Beach Erosion during Minor Storm. *J. Waterw. Port Coast. Ocean Div.* 103, 505–518.
495 <https://doi.org/10.1061/JWPCDX.00000056>

496 Karimpour, A., Chen, Q., Twilley, R.R., 2017. Wind Wave Behavior in Fetch and Depth Limited Estuaries.
497 *Sci. Rep.* 7, 40654. <https://doi.org/10.1038/srep40654>

498 King, C.A.M., Williams, W.W., 1949. The Formation and Movement of Sand Bars by Wave Action. *Geogr. J.*
499 113, 70. <https://doi.org/10.2307/1788907>

500 Lemke, L., Miller, J.K., 2020. Evaluation of storms through the lens of erosion potential along the New
501 Jersey, USA coast. *Coast. Eng.* 158, 103699. <https://doi.org/10.1016/j.coastaleng.2020.103699>

502 Masselink, G., Russell, P., Blenkinsopp, C., Turner, I., 2010. Swash zone sediment transport, step dynamics
503 and morphological response on a gravel beach. *Mar. Geol.* 274, 50–68.
504 <https://doi.org/10.1016/j.margeo.2010.03.005>

505 Mendez, F.J., Losada, I.J., 2004. An empirical model to estimate the propagation of random breaking and
506 nonbreaking waves over vegetation fields. *Coast. Eng.* 51, 103–118.
507 <https://doi.org/10.1016/j.coastaleng.2003.11.003>

508 Mentaschi, L., Voudoukas, M.I., Pekel, J.-F., Voukouvalas, E., Feyen, L., 2018. Global long-term
509 observations of coastal erosion and accretion. *Sci. Rep.* 8, 12876.
510 <https://doi.org/10.1038/s41598-018-30904-w>

511 Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., Lin, C.-C., 2023. Misc
512 Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien.

513 Miller, J.K., Rella, A., Williams, A., Sproule, E., 2015. Living Shorelines Engineering Guidelines (No. SIT-DL-
514 14-9-2942). Stevens Institute of Technology, Hoboken, NJ.

515 Moosavi, S., 2017. Ecological Coastal Protection: Pathways to Living Shorelines. *Procedia Eng.* 196, 930–
516 938. <https://doi.org/10.1016/j.proeng.2017.08.027>

517 Morris, R.L., Bilkovic, D.M., Boswell, M.K., Bushek, D., Cebrian, J., Goff, J., Kibler, K.M., La Peyre, M.K.,
518 McClenachan, G., Moody, J., Sacks, P., Shinn, J.P., Sparks, E.L., Temple, N.A., Walters, L.J., Webb,
519 B.M., Swearer, S.E., 2019. The application of oyster reefs in shoreline protection: Are we over-
520 engineering for an ecosystem engineer? *J. Appl. Ecol.* 56, 1703–1711.
521 <https://doi.org/10.1111/1365-2664.13390>

522 Morris, R.L., Boxshall, A., Swearer, S.E., 2020. Climate-resilient coasts require diverse defence solutions.
523 *Nat. Clim. Change* 10, 485–487. <https://doi.org/10.1038/s41558-020-0798-9>

524 Morris, R.L., Campbell-Hooper, E., Waters, E., Bishop, M.J., Lovelock, C.E., Lowe, R.J., Strain, E.M.A.,
525 Boon, P., Boxshall, A., Browne, N.K., Carley, J.T., Fest, B.J., Fraser, M.W., Ghisalberti, M.,
526 Gillanders, B.M., Kendrick, G.A., Konlechner, T.M., Mayer-Pinto, M., Pomeroy, A.W.M., Rogers,
527 A.A., Simpson, V., Van Rooijen, A.A., Waltham, N.J., Swearer, S.E., 2024. Current extent and
528 future opportunities for living shorelines in Australia. *Sci. Total Environ.* 917, 170363.
529 <https://doi.org/10.1016/j.scitotenv.2024.170363>

530 Morris, R.L., La Peyre, M.K., Webb, B.M., Marshall, D.A., Bilkovic, D.M., Cebrian, J., McClenachan, G.,
531 Kibler, K.M., Walters, L.J., Bushek, D., Sparks, E.L., Temple, N.A., Moody, J., Angstadt, K., Goff, J.,
532 Boswell, M., Sacks, P., Swearer, S.E., 2021. Large-scale variation in wave attenuation of oyster
533 reef living shorelines and the influence of inundation duration. *Ecol. Appl.* 31.
534 <https://doi.org/10.1002/eap.2382>

535 Narayan, S., Beck, M.W., Wilson, P., Thomas, C.J., Guerrero, A., Shepard, C.C., Reguero, B.G., Franco, G.,
536 Ingram, J.C., Trespalacios, D., 2017. The Value of Coastal Wetlands for Flood Damage Reduction
537 in the Northeastern USA. *Sci. Rep.* 7, 9463. <https://doi.org/10.1038/s41598-017-09269-z>

538 Nelson, E., 2022. Assessing the Suitability of Living Shoreline Techniques for Coastal Erosion in Prince
539 Edward Island, Canada (Thesis). Saint Mary's University, Halifax, Nova Scotia.

540 O'Donnell, J.E.D., 2017. Living shorelines: a review of literature relevant to New England coasts. *J. Coast.*
541 *Res.* 33, 435–451.

542 Ostrow, K., Guannel, G., Biondi, E.L., Cox, D.T., Tomiczek, T., 2022. State of the practice and engineering
543 framework for using emergent vegetation in coastal infrastructure. *Front. Built Environ.* 8,
544 923965. <https://doi.org/10.3389/fbuil.2022.923965>

545 Palinkas, C.M., Orton, P., Hummel, M.A., Nardin, W., Sutton-Grier, A.E., Harris, L., Gray, M., Li, M., Ball, D.,
546 Burks-Copes, K., Davlasheridze, M., De Schipper, M., George, D.A., Halsing, D., Maglio, C.,
547 Marrone, J., McKay, S.K., Nutters, H., Orff, K., Taal, M., Van Oudenhoven, A.P.E., Veatch, W.,

548 Williams, T., 2022. Innovations in Coastline Management With Natural and Nature-Based
549 Features (NNBF): Lessons Learned From Three Case Studies. *Front. Built Environ.* 8, 814180.
550 <https://doi.org/10.3389/fbuil.2022.814180>

551 Preti, F., Capobianco, V., Sangalli, P., 2022. Soil and Water Bioengineering (SWB) is and has always been a
552 nature-based solution (NBS): a reasoned comparison of terms and definitions. *Ecol. Eng.* 181,
553 106687. <https://doi.org/10.1016/j.ecoleng.2022.106687>

554 Safak, I., Norby, P.L., Dix, N., Grizzle, R.E., Southwell, M., Veenstra, J.J., Acevedo, A., Cooper-Kolb, T.,
555 Massey, L., Sheremet, A., Angelini, C., 2020. Coupling breakwalls with oyster restoration
556 structures enhances living shoreline performance along energetic shorelines. *Ecol. Eng.* 158,
557 106071. <https://doi.org/10.1016/j.ecoleng.2020.106071>

558 Schoonees, T., Gijón Mancheño, A., Scheres, B., Bouma, T.J., Silva, R., Schlurmann, T., Schüttrumpf, H.,
559 2019. Hard Structures for Coastal Protection, Towards Greener Designs. *Estuaries Coasts* 42,
560 1709–1729. <https://doi.org/10.1007/s12237-019-00551-z>

561 Seabrook, S.R., Hall, K.R., 1998. Wave Transmission at Submerged Rubblemound Breakwaters. *Coast.
562 Eng. Proc.* 1.

563 Strain, E.M.A., Alexander, K.A., Kienker, S., Morris, R., Jarvis, R., Coleman, R., Bolland, B., Firth, L.B.,
564 Knights, A.M., Grabowski, J.H., Airoldi, L., Chan, B.K.K., Chee, S.Y., Cheng, Z., Coutinho, R., de
565 Menezes, R.G., Ding, M., Dong, Y., Fraser, C.M.L., Gómez, A.G., Juanes, J.A., Mancuso, P.,
566 Messano, L.V.R., Naval-Xavier, L.P.D., Scyphers, S., Steinberg, P., Swearer, S., Valdor, P.F., Wong,
567 J.X.Y., Yee, J., Bishop, M.J., 2019. Urban blue: A global analysis of the factors shaping people's
568 perceptions of the marine environment and ecological engineering in harbours. *Sci. Total
569 Environ.* 658, 1293–1305. <https://doi.org/10.1016/j.scitotenv.2018.12.285>

570 Strain, E.M.A., Olabarria, C., Mayer-Pinto, M., Cumbo, V., Morris, R.L., Bugnot, A.B., Dafforn, K.A., Heery,
571 E., Firth, L.B., Brooks, P.R., Bishop, M.J., 2018. Eco-engineering urban infrastructure for marine
572 and coastal biodiversity: Which interventions have the greatest ecological benefit? *J. Appl. Ecol.*
573 55, 426–441. <https://doi.org/10.1111/1365-2664.12961>

574 Su, J., Wang, M., Zhang, D., Yuan, H., Zhou, S., Wang, Y., Adib Mohammad Razi, M., 2024. Integrating
575 technical and societal strategies in Nature-based Solutions for urban flood mitigation in
576 Guangzhou, a heritage city. *Ecol. Indic.* 162, 112030.
577 <https://doi.org/10.1016/j.ecolind.2024.112030>

578 Thorne, K.M., Buffington, K.J., Jones, S.F., Largier, J.L., 2021. Wetlands in intermittently closed estuaries
579 can build elevations to keep pace with sea-level rise. *Estuar. Coast. Shelf Sci.* 257, 107386.
580 <https://doi.org/10.1016/j.ecss.2021.107386>

581 University of Oxford, 2024. Case Study Platform. Nature Based Solutions Initiative.
582 U.S Army Corps of Engineers (USACE), 2024. Welcome to Engineering With Nature® ProMap.

583 Van Der Meer, J.W., Briganti, R., Wang, B., Zanuttigh, B., 2005. WAVE TRANSMISSION AT LOW-CRESTED
584 STRUCTURES, INCLUDING OBLIQUE WAVE ATTACK, in: *Coastal Engineering 2004*. Presented at
585 the Proceedings of the 29th International Conference, World Scientific Publishing Company,
586 National Civil Engineering Laboratory, Lisbon, Portugal, pp. 4152–4164.
587 https://doi.org/10.1142/9789812701916_0335

588 Van Hespen, R., Hu, Z., Borsje, B., De Dominicis, M., Friess, D.A., Jevrejeva, S., Kleinhans, M.G., Maza, M.,
589 Van Bijsterveldt, C.E.J., Van Der Stocken, T., Van Wesenbeeck, B., Xie, D., Bouma, T.J., 2023.
590 Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and
591 ecological considerations. *Water Sci. Eng.* 16, 1–13. <https://doi.org/10.1016/j.wse.2022.10.004>

592 Van Wesenbeeck, B.K., Van Der Meulen, M.D., Pesch, C., De Vriend, H., De Vries, M.B., 2016. Nature-
593 Based Approaches in Coastal Flood Risk Management: Physical Restrictions and Engineering
594 Challenges, in: Renaud, F.G., Sudmeier-Rieux, K., Estrella, M., Nehren, U. (Eds.), *Ecosystem-Based
595 Disaster Risk Reduction and Adaptation in Practice, Advances in Natural and Technological*

596 Hazards Research. Springer International Publishing, Cham, pp. 181–198.
597 https://doi.org/10.1007/978-3-319-43633-3_8
598 Virginia Institute of Marine Sceince (VIMS), National Oceanic and Atmospheric Administration (NOAA),
599 Troy University, 2024. Shoreline Decision Support Tool.
600 Wang, H., Capurso, W., Chen, Q., Zhu, L., Niemoczynski, L., Snedden, G., 2021. Assessment of Wave
601 Attenuation, Current Patterns, and Sediment Deposition and Erosion During Winter Storms by
602 Living Shoreline Structures in Gandys Beach, New Jersey. US Geol. Surv.
603 Wang, M., Zhong, X., Yuan, H., Zhang, D., Cheng, L., Zhang, J., 2024. Integrating carbon and water
604 footprint into nature-based solution (NBS) for urban planning in a highly built-up area in
605 Guangzhou, China. Sci. Total Environ. 951, 175505.
606 <https://doi.org/10.1016/j.scitotenv.2024.175505>
607 Wiberg, P.L., Taube, S.R., Ferguson, A.E., Kremer, M.R., Reidenbach, M.A., 2019. Wave Attenuation by
608 Oyster Reefs in Shallow Coastal Bays. Estuaries Coasts 42, 331–347.
609 <https://doi.org/10.1007/s12237-018-0463-y>
610 Woods Hole Group, 2017. Living Shorelines in New England: State of Practic. Prepareed for: The Nature
611 Conservancy, Massachusetts.
612 Young, A., Runting, R.K., Kujala, H., Konlechner, T.M., Strain, E.M.A., Morris, R.L., 2023. Identifying
613 opportunities for living shorelines using a multi-criteria suitability analysis. Reg. Stud. Mar. Sci.
614 61, 102857. <https://doi.org/10.1016/j.rsma.2023.102857>
615

616 Funding

617 Bredes' participation on this manuscript was supported in part by funding from the US Coastal Research
618 Program under grant #W912HZ2220007. Tomiczek's participation was supported by funding from the
619 National Science Foundation CBET Grant #2110262. Any opinions, findings, and conclusions or
620 recommendations expressed in this material are those of the authors and do not necessarily reflect the
621 views of the National Science Foundation, United States Naval Academy, or Department of Defense.

622

623