

State of the Practice and Engineering Framework for Using Emergent Vegetation in Coastal Infrastructure

1 **Kayla Ostrow^{1*}, Greg Guannel², Esteban L. Biondi³, Daniel T. Cox¹, Tori Tomiczek⁴**

2 ¹School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, United
3 States

4 ²Caribbean Green Technology Center, University of the Virgin Islands, St. Thomas, US Virgin
5 Islands, United States

6 ³Applied Technology & Management / Geosyntec Consultants, Inc., West Palm Beach, FL, United
7 States

8 ⁴Department of Naval Architecture and Ocean Engineering, United States Naval Academy,
9 Annapolis, MD, United States

10 *** Correspondence:**

11 Kayla Ostrow
12 ostrowk@oregonstate.edu

13 **Keywords: Engineering with Nature, Natural and Nature-Based Features (NNBF), Nature-
14 Based Solutions (NbS), Working with Nature, Building with Nature, Emergent Vegetation,
15 Wave Attenuation, Design Guidelines.**

16 **Abstract**

17 Natural and nature-based features are promoted as alternatives to structural flood protection
18 measures. Progress has been made in understanding the physics and engineering of these systems;
19 however, engineering, ecological, and social barriers to implementation remain. This paper identifies
20 these barriers with a literature review and summary of expert opinion, contrasts the state of the
21 practice of NNBF with traditional structures, and details the main engineering challenges to NNBF
22 implementation, including the uncertainty in current calculation techniques and lack of engineering
23 design guidelines. However, emergent vegetation systems can be designed with the current body of
24 information, and an example framework is proposed for assessing these systems for their wave
25 attenuation performance. The framework is discussed in the context of risk, and future research
26 priorities are presented.

27 **1 Introduction**

28 Over the last few decades, ecosystems have been promoted as viable alternatives to conventional
29 (structural or gray) coastal protection structures (Arkema et al., 2013; Silver et al., 2019). Several
30 studies have demonstrated the protective and restorative values of wetlands, reefs, seagrass beds
31 and/or vegetated dunes (Scyphers et al., 2011; Anderson and Smith, 2014; Ozeren et al., 2014; Taylor
32 et al., 2015; Guannel et al., 2016; Narayan et al., 2016; Chang et al., 2019; Lei and Nepf, 2019; Maza
33 et al., 2019; Tomiczek et al., 2020a, 2020b, 2022; Elko et al., 2021; Kelty et al., 2022). These types
34 of solutions for shoreline protection are termed “Natural and Nature-Based Features (NNBF),” and
35 are landscape features that are used to provide engineering functions, while producing additional

economic, environmental, and/or social benefits. There are many definitions, but the common element among all these definitions is the focus on conserving, restoring, and engineering natural systems for the benefit of people and the ecosystems they inhabit (Bridges et al., 2021). NNBF for flood and erosion protection include natural features such as emergent vegetation, beaches and dunes, reefs, or islands, and nature-based features (*i.e.*, engineered ecosystems that mimic characteristics of natural features), such as constructed wetlands, nourished beaches, and artificial reefs (Bridges et al., 2015). These systems have also been referred to as “Nature-Based Solutions (NbS),” “Natural Infrastructure,” or “Green Infrastructure,” among other terms (Bridges et al., 2021). NNBF solutions are attractive because they have the potential to provide ecological, social, and economic benefits in addition to shoreline protection services (Barbier et al., 2011; Arkema et al., 2015; Ruckelshaus et al., 2016), and are often viewed as a “win-win” approach to coastal engineering (Hochard et al., 2019; Menéndez et al., 2020; Cunha et al., 2021; Feagin et al., 2021). As a result, several major initiatives by U.S. government agencies (Bridges et al., 2015, 2021; Webb et al., 2019), non-profit groups (Sarasota Bay Estuary Program, 2018; Narayan et al., 2019), and international organizations (PIANC, 2018; Browder et al., 2019; UNDRR, 2020; European Environment Agency et al., 2021; Science for Environment Policy, 2021), have focused on leveraging NNBF as resilient adaptation alternatives for shoreline protection.

One type of natural habitat widely discussed by practitioners and in the literature is emergent vegetation, which includes mangroves (*e.g.*, *Rhizophora* sp., *Avicennia* sp., *Laguncularia racemosa*) and marsh vegetation such as grasses, rushes, or reeds (*e.g.*, *Spartina* sp., *Juncus* sp., *Phragmites* sp.). Among other benefits, these intertidal ecosystems have been noted for their wave and storm surge attenuation capabilities (Mazda et al., 1997; McIvor et al., 2012; Zhang et al., 2012; Montgomery et al., 2019; Chen et al., 2021), carbon sequestration (Alongi, 2008; Sanderman et al., 2018), habitat services for native fauna (Odum et al., 1982; USFWS, 1999), and cultural and recreational values (Uddin et al., 2013; Spalding and Parrett, 2019). However, the quantification and prediction of engineering performance (*e.g.*, wave height attenuation) of emergent vegetation to inform design lags behind the quantification of hydraulic responses for conventional engineering systems. Indeed, practicing engineers may be hesitant to design NNBF due to the lack of design standards and differences with the traditional design process for gray infrastructure. The coastal engineering practice, as well as civil engineering in general, is guided by established manuals of practice, design standards, and guidance documents (*e.g.*, USACE, 2002; FEMA, 2011; ASCE, 2014, 2022; Bridges et al., 2021). Although recent efforts have made strides in developing general guidelines for NNBF at international, national, state, and local levels (*e.g.*, Miller et al., 2015; World Bank, 2017; Webb et al., 2019; Bridges et al., 2021), current guidance documents do not provide the NNBF equivalent of the comprehensive calculation methodologies common in traditional engineering design manuals (Bridges et al., 2021). Moreover, compared with conventional systems, NNBF have unique concerns, because their performance may be affected by biological factors and physical events. For example, although scientists have found evidence of engineering benefits provided by emergent vegetation under specific circumstances (*e.g.*, McIvor et al., 2012), few conclusions are applicable for storm conditions (Pinsky et al., 2013), and only recently has research been focused on storm performance (*e.g.*, Vuik et al., 2016; Kelty et al., 2022). Therefore, it is important that guidance on coastal protection benefits be provided, clearly identifying the range of applicability of expected benefits.

Even with recent advancements in knowledge about utilizing emergent vegetation for coastal risk mitigation in hydraulics or engineering models, barriers to implementation remain (*e.g.*, Close et al., 2017; Cherry et al., 2018). These barriers exist throughout the implementation process as identified by Bridges et al. (2021), with challenges noted for technical design, socioeconomic considerations, financing, permitting, construction, and maintenance (Close et al., 2017; Cherry et al., 2018; Zuniga-

83 Teran et al., 2020; King et al., 2021). A broad set of conditions need to be addressed to facilitate and
84 promote the appropriate use of NNBF for coastal protection, which requires not only coastal
85 engineers, but also experts in other disciplines in engineering, ecology, and social science.

86 To improve our abilities to predict the engineering performance of NNBF, there is a need to (1)
87 develop technical recommendations on how to incorporate NNBF as part of coastal hazard mitigation
88 solutions, (2) quantify wave attenuation performance, and (3) establish prescriptive standards for
89 design, construction, and monitoring of projects to create, restore, or enhance NNBF systems.

90 This paper addresses the various issues raised above by summarizing the state of the practice and
91 providing practical guidance for the design of NNBF, based on recent advances in the quantification
92 of wave attenuation by emergent vegetation. We also describe the engineering, ecological, and social
93 conditions that influence the use of these systems for coastal protection. Based on these
94 considerations, we propose a conceptual engineering framework for evaluating existing natural
95 systems or designing new NNBF or hybrid systems, and make recommendations in the engineering,
96 ecological and social dimensions to facilitate and promote the appropriate use of these systems.

97 **2 State of the Practice**

98 **2.1 Expert Opinion**

99 To gain a deeper insight into the use of emergent vegetation in engineering design, implementation,
100 and construction, we asked practitioners in different fields working with NNBF projects to comment
101 on the state of the practice by answering the following questions:

- 102 1. In your experience, what is the current level of understanding regarding the performance of
103 emergent vegetation in coastal protection applications? Is available information applied
104 adequately for analysis of alternatives and for design?
- 105 2. What additional progress from a scientific, engineering, or design standpoint is needed to
106 encourage adequate consideration and better implementation of these types of nature-based
107 solutions?
- 108 3. What steps from a policy or regulatory standpoint could be taken to encourage adequate
109 consideration and better implementation of these solutions?
- 110 4. Please share any other thoughts/comments/concerns about the present status and future needs
111 regarding the use of nature-based solutions (especially emergent vegetation) for coastal
112 hazards mitigation and climate adaptation.

113 A total of 32 professionals responded, representing academia (6), consulting (9), government (13),
114 and nonprofit organizations (4), resulting in a variety of perspectives and experience on emergent
115 vegetation projects. The responses primarily inform on the existing knowledge in the field and
116 progress needed for NNBF strategies to be more widely adopted. Responses were organized
117 according to two broad themes: (1) current knowledge and (2) future needs, and within these themes,
118 responses were separated into engineering, ecology, and social categories.

119 While many respondents recognize that there is ample information supporting NNBF performance,
120 designers are unable to apply it in a quantitative way needed for design (19/32). Two consultants and
121 one government professional note that the information requires expertise to understand, making it
122 difficult to access (3/32). Furthermore, experience from case studies is highly location-specific and
123 unable to be extrapolated (5/32). Rather than designed solutions, many NNBF projects are structured
124 as vulnerability studies (1/32). Physical space is also a concern, as there may not be enough space for

125 emergent vegetation in urban environments or on steep and narrow banks (2/32). From a
126 socioeconomic perspective, respondents identify the current regulatory framework as inadequate for
127 NNBF, with many suggesting changes to policies and permitting (21/32). Stakeholders may advocate
128 against or be reluctant to implement NNBF projects due to loss of space and view, attraction of
129 mosquitos, and maintenance considerations (5/32). There are concerns about a perception among
130 some stakeholders that vegetation can always be used as a solution, even though many situations call
131 for another strategy or multi-tiered solution (2/32). Responses from academia, government, and
132 consulting describe a disconnect between the engineering, architecture, and environmental
133 disciplines, with some noting that engineers tend to ignore NNBF solutions, while architects and
134 environmental professionals tend to overestimate the protection that vegetation can provide and do
135 not understand the need for quantitative design guidelines for engineers (4/32).

136 Responses identify future engineering needs; a summary of broad categories is shown in Figure 1.
137 The most frequently cited need is the further development of engineering design standards (19/32),
138 an observation that agrees with previous studies (Cherry et al., 2018; Zuniga-Teran et al., 2020).
139 Some responses describe specific criteria that would be needed in engineering design guidelines: (a)
140 coastal geomorphology considerations, including sediment; (b) nearshore conditions, such as
141 bathymetry, tidal range, and wave conditions; (c) vegetation considerations, such as species, age,
142 number of plants, density, height, and width of patch, and under what environmental conditions and
143 in what locations they would be able to thrive; (d) contrasting design considerations for gray, green,
144 and hybrid systems; (e) maintenance requirements, including best management practices; (f)
145 performance over the design life, including recovery time between storms and changes in protection
146 as vegetation ages; and (g) survivability, especially in the face of climate and environmental changes
147 such as water quality, salinity, diseases, and extreme weather events. These criteria should be
148 predictive and could consider navigation.

149 Additional engineering challenges remain beyond the development of comprehensive engineering
150 design guidelines. For example, a broader consensus is required on how to incorporate emergent
151 vegetation into varied methodologies of calculating wave runup and total water level (1/32).
152 Government respondents identify a need for monitoring criteria to show success, such as (a) metrics
153 for reporting vegetation density, areal extent, and root structure of plants; and (b) guidelines for
154 duration and spatial resolution of the monitoring program (4/32). There is a need for additional pilot
155 projects in all types of locations that measure efficacy and detail designs (9/32). Similarly, research
156 should include field experiments especially in locations where NNBF projects may be implemented,
157 such as tropical environments, and develop a greater understanding of the applicability of solutions
158 from one location to another (5/32). This echoes the need to understand transferability of NNBF
159 results between locations (Close et al. 2016). Future research should also characterize the
160 performance of emergent vegetation under extreme events, higher tidal ranges, and future relative sea
161 level rise scenarios (7/32), and provide a better quantification of erosive processes (2/32).
162 Experiments are needed to further quantify and prove efficacy, including the translation of results
163 from flume experiments to field parameters (6/32).

164 Many responses mention the necessity of ecological research advances for successful implementation
165 of NNBF (6/32), including studies that assess connectivity, comprise a wide range of habitat types
166 and environmental conditions, monitor interaction with substrate and changes over the project's life
167 cycle, and characterize the impacts of invasive species. In order to obtain the best performance of a
168 restored or hybrid system, projects should imitate the ecology of nearby natural systems (4/32). This
169 observation is consistent with the findings of Waryszak et al. (2021), who determined that the
170 designers of most successful hybrid projects have a strong knowledge of site hydrological and

171 ecological history. Vegetation may be optimized based on the carbon cycle (3/32). Materials
172 scientists and engineers can be brought into interdisciplinary teams for design (1/32). The
173 engineering and ecology responses are highly related, with species considerations, performance over
174 design life, maturation, and survivability requiring ecological expertise. One future research topic is
175 converting existing ecological parameters, such as basal area, to engineering parameters, such as
176 projected area (1/32). NNBF designs may also create unintended consequences (1/32).

177 Responses note sociopolitical barriers to NNBF implementation; the frequency of topics mentioned is
178 shown in Figure 2. The most cited changes center on policies (21/32), including (a) prioritizing green
179 solutions over traditional (structural) alternatives; (b) allowing NNBF projects to count for other
180 environmental credits such as for stormwater; (c) requiring vegetation experts or plans to be included
181 in projects; (d) encouraging redundancy in planning; (e) considering longer life cycles of up to 100
182 years, and (f) developing regulations specifically for hybrid systems. Of these policy responses,
183 multiple suggest permitting modernization (5/32), which is also identified in the literature (Cherry et
184 al., 2018). Suggestions include fast-tracking NNBF permits and modifying USACE Nationwide
185 Permits to prioritize NNBF over gray infrastructure. Permitting modernization would focus on the
186 removal of artificial barriers to NNBF project approval, allowing NNBF to be given equal
187 consideration with traditional solutions. One potential area of conflict within policy arises from
188 habitat regulations, as one government professional and two consultants note the need for flexibility
189 with habitat conversion regulations (3/32), while an academic and nonprofit representative state the
190 need for policies to protect existing emergent vegetation from degradation (2/32).

191 In addition to policies, responses describe other social considerations that would catalyze future
192 progress in NNBF implementation. Incentives should be created to encourage NNBF projects,
193 including additional dedicated sources of funding (8/32). Cost-benefit analyses are in need of
194 improvement, and should consider the full lifecycle cost of the project (12/32). These observations
195 agree with recent studies that have identified challenges in quantifying costs, benefits, and co-
196 benefits of NNBF (Close et al., 2017; Cherry et al., 2018; Zuniga-Teran et al., 2020). Collaboration
197 across multiple government agencies is needed for effective projects (3/32), a recommendation which
198 supports findings from previous workshops (Cherry et al., 2018; Zuniga-Teran et al., 2020).
199 Community engagement is cited as an important component to creating a successful project (1/32), a
200 finding also highlighted in the literature (Zuniga-Teran et al., 2020; Waryszak et al., 2021).
201 Responses note the need for broader coastal management, such as (a) considering regional planning
202 and retreat, perhaps utilizing a different term than the politicized “retreat”; (b) having government
203 acquire vegetated lands; and (c) developing tools specifically for coastal management (4/32).
204 Education and updated materials for the public, project applicants, regulators, maintenance workers,
205 students, and engineers are needed (9/32).

206 2.2 NNBF in the Context of Traditional Structures

207 To elucidate the challenges of incorporating emergent vegetation systems in coastal infrastructure
208 design, it is helpful to compare requirements for NNBF with practices for conventional
209 infrastructure. In traditional civil engineering design, a coastal protection structure is sized and
210 justified by performance objectives, such as flood risk management, erosion control, and/or wave and
211 current mitigation under both extreme design events and normal operational conditions (e.g.,
212 USACE, 2002). In the design process, a clear understanding emerges on how the structure
213 accomplishes its purpose, how success is measured, and the length of time the structure can maintain
214 its desired performance. The structure’s performance is predictive, that is, based on a set of widely
215 accepted, controllable assumptions and uncontrollable hazards. The structure’s performance and

216 failure limits can also be determined, such as the storm surge height that can overwhelm the
217 structure, wave types that can damage the structure, or storm conditions and durations that can
218 generate significant erosion.

219 Established design methods exist for one form of NNBF: beach nourishment (e.g., USACE, 2002;
220 Elko et al., 2021). Engineers select a grain size to be compatible with the existing geomorphological
221 processes of the native beach, and calculate the volume of sand that can provide an acceptable
222 dynamic response under a set of design parameters. Additional design decisions may include adding
223 vegetation and widening the beach in front of a dune. However, since the “structure” (i.e., beach
224 profile) dynamically adjusts through time to environmental conditions, performance factors are
225 harder to control, predict, and improve, and nourished beaches are usually adaptively managed
226 through monitoring, maintenance, or renourishment works.

227 The design considerations are more complicated for types of NNBF that consist of living systems,
228 such as wetlands or reefs. From a large body of evidence based on field observations, physical
229 modeling, and numerical modeling, engineers have been able to characterize key variables for
230 specific ecosystems that control wave, water level, and erosion mitigation. After decades of
231 observations, it emerges that different NNBF provide different types of coastal protection benefits.
232 Table 1 builds off previous work (e.g., Cunniff and Schwartz, 2015; Bridges et al., 2021) to
233 summarize current knowledge on protection mechanisms, performance, and services of NNBF. In
234 this paper, we focus on emergent vegetation systems (salt marshes and mangroves).

235 Emergent vegetation can provide protection to inland areas by affecting nearshore hydrodynamics
236 and attenuating wave height (e.g., NAS, 1977; McIvor et al., 2012), nearshore currents (e.g., Guannel
237 et al., 2015), and storm surge height (e.g., Zhang et al., 2012). As a result, emergent vegetation may
238 reduce the risk of erosion (Coops et al., 1996) and flooding (e.g., Narayan et al., 2017, 2019; Dong et
239 al., 2020), as well as wave forces and resulting damage to coastal structures (Kyprioti et al., 2021;
240 Mitchell, 2021) and ecosystems, both in response to chronic (La et al., 2015; Thuy et al., 2017;
241 Tomiczek et al., 2022) and acute hazards (Narayan et al., 2019; Menéndez et al., 2020; Tomiczek et
242 al., 2020a). Additionally, emergent vegetation can dynamically respond to increases in sea level by
243 trapping sediment and moving landward, unless it is squeezed by development or rapid rates of
244 submergence (Borchert et al., 2018; Saintilan et al., 2020). It is important to note that all protection
245 services are relative and may be significantly reduced depending on various factors.

246 Despite this large body of evidence, evaluating the performance of NNBF is more complicated than
247 for conventional systems. The protection services delivered by vegetation arise due to the drag force
248 they exert on nearshore waters, and are a function of the morphology of emergent vegetation and the
249 hydrodynamic forcing offshore (e.g., NAS, 1977; Dalrymple et al., 1984). Guannel et al. (2015)
250 showed how the choice of a drag coefficient is sensitive to wave model formulation, and Kelty et al.
251 (2022) were among the few to test such models under storm conditions. Additionally, contrary to
252 conventional systems, the performance of NNBF is determined by ecological factors, which
253 engineers cannot fully control and can positively or negatively impact the performance of the system.
254 For example, the ability of natural systems and their constituent species to grow, increase in density,
255 and survive can be influenced by local or global processes like local climate, sea level rise, ocean
256 acidification and warming, water quality, sedimentation rates, or the spread of diseases (Ross and
257 Adam, 2013; Salimi et al., 2021). These factors, which are often influenced by humans (IPCC, 2013),
258 impact the physical characteristics of natural systems (e.g., stem density and diameter) and hence
259 their ability to moderate coastal hazards.

260 While traditional structural components may have controllable design parameters (e.g., rock weight
261 for a rubble mound breakwater), emergent vegetation systems have design parameters that change
262 both spatially (e.g., natural variability in trunk or prop root diameters, prop root distribution, and
263 stem densities) and temporally (e.g., vegetation may grow and forest density may increase or recede
264 over a system's life cycle (e.g., Maza et al., 2021)). Moreover, while traditional projects can be built,
265 maintained, and repaired immediately according to set specifications, NNBF need time to grow into
266 the morphology that provides the desired protection benefits. For NNBF projects, engineers have less
267 control of the performance of the system and contend with a higher level of uncertainty than for
268 traditional coastal protection structures; a range of design parameters must be evaluated for NNBF
269 systems.

270 2.3 Characterizing the Performance of NNBF

271 To compute traditional design metrics in the presence of NNBF – overtopping, runup, wave force on
272 inland structures, or cross-shore erosion – engineers incorporate vegetation modules in wave or
273 nearshore circulation models, and couple these outputs with other established performance metrics
274 models. For example, forces on structures behind emergent vegetation can be calculated using
275 formulas such as Goda (2010) by accurately accounting for wave height attenuation due to vegetation
276 (Mitchell, 2021).

277 Table 2 provides an overview of existing wave and hydrodynamic models available for emergent
278 vegetation (see also Suzuki et al., 2019; Piercy et al., 2021). This table shows the wealth of numerical
279 models that are now available, including Reynolds Averaged Navier Stokes (RANS) models, which
280 resolve the highest level of physics, phase averaged models, which summarize the wave conditions as
281 wave spectra, and 1-Dimensional models, which use representative values of wave height and period.
282 Details of vegetation implementation in each model are described in the references listed in the
283 respective row of Table 2. Other models exist beyond those listed in Table 2, such as the Boussinesq-
284 type model FUNWAVE (Blackmar et al., 2014), and the 1D phase-averaged wave and nearshore
285 current model CSHORE, which can incorporate flexibility (Ding et al., 2022). Progress in computer
286 modeling has allowed for a better understanding and quantification of the effects of vegetation on
287 nearshore hydrodynamics.

288 Most of the models in Table 2 incorporate the effects of vegetation using Morison-type equations,
289 which require information on the system's morphological and hydrodynamic parameters. The
290 accuracy of these parameters will determine the quality of the results (i.e., relying on drag
291 coefficients from reduced scale laboratory studies may result in inaccurate amounts of wave
292 attenuation). By necessity, models make simplifications or idealizations to the system to allow the
293 model to run; however, the more physics that a model simplifies, the more uncertain the outputs. For
294 example, many models neglect flexibility, an important parameter for marshes (e.g., van Veen et
295 al., 2020; Ding et al., 2022). Models also vary in their ability to layer different characteristics of
296 vegetation elements in the water column, an important characteristic of mangroves such as
297 *Rhizophora* sp., (e.g., Suzuki et al., 2019; Kelty et al., 2022), and to represent other fluid mechanics
298 properties such as porosity (important in denser forests (Suzuki et al., 2019)), turbulence, and wave
299 nonlinearity (Maza et al., 2015). Many models also do not reproduce wave transformation and water
300 level changes in intertidal zones (Guannel et al., 2015; van Rooijen et al., 2016).

301 Importantly, although recent studies have validated some numerical models under certain storm and
302 field conditions (e.g., Vuik et al., 2016; Baron-Hypolite et al., 2019; Garzon et al., 2019), to the
303 authors' knowledge, the models are only validated under limited conditions, that is, against reduced-

304 scale laboratory studies that do not consider storm conditions (see “Validation and Verification” in
305 Table 2 and associated references). In fact, only one full-scale laboratory study has been carried out
306 for storm wave attenuation of mangroves (Kelty et al., 2022). This study shows that, for the tested
307 conditions, to have wave height attenuation of order 25%, an 18-meter-wide forest needs to have a
308 high density and still water elevation lower than the root system. Conversely, low density, high still
309 water elevations with respect to the root system, and narrow fringes provide wave height attenuation
310 on the order of 5% or less. More research is needed to generalize these results, but the data support
311 the assertion that mangroves can provide storm wave attenuation, but not under every incident
312 condition.

313 Beyond modeling the hydrodynamics, the ecological performance of NNBF systems must be
314 characterized. During storms, trees bend and break, reducing the capacity of the forest to attenuate
315 waves compared with the ideal conditions modeled in the design phase. Storms may also create
316 conditions such as ponding, leading to delayed mortality of vegetation (e.g., Craighead and Gilbert,
317 1962; Lagomasino et al., 2021). Even if the emergent vegetation is successful at its purpose of
318 protecting the built environment during a storm, the delayed mortality will cause the decomposing
319 forest to break down and not provide the same level of service during the next storm. Likewise,
320 damages to the built environment may occur even without a failure of the emergent vegetation itself.
321 It is therefore important to distinguish between “engineering” failure (*i.e.*, failure to provide the
322 required hydraulic response) and “ecological” failure (*i.e.*, inability to withstand the environmental
323 conditions during a storm or owing to longer-term changes) in the design of NNBF; current
324 approaches do not incorporate the latter.

325 As shown above, advances in computational methods allow for the improved quantification of
326 emergent vegetation’s engineering performance. For example, based on information from results
327 such as those by Kelty et al. (2022) and Maza et al. (2019), engineers may assess either (1) the cross-
328 shore distance required to achieve a desired wave height reduction for a design condition, or (2)
329 hybrid alternatives (e.g., structural measures) that can provide a second line of defense to provide the
330 remaining required wave height attenuation. Engineers may also be able to assess expected wave
331 height reduction, lowering design requirements on inland structural measures or near-coast structures.
332 However, these models have limitations (Table 2), and designers should consider the impact these
333 limitations have on the ability for the design to meet performance requirements. Professional practice
334 dictates that engineers have a primary responsibility to “protect the health, safety, and welfare of the
335 public” (ASCE, n.d.). In traditional design, engineers rely on engineering design standards to produce
336 design parameters that have a low, commonly accepted probability of failure, allowing engineers to
337 have a high level of confidence that their designs will protect the public. Such standards do not exist
338 for emergent vegetation, and questions about the uncertainty of the results, such as those raised
339 above, linger. Therefore, it is difficult for engineers to have a high level of confidence in NNBF
340 designs, and engineering design standards for NNBF are needed (Figure 1).

341 As a step toward design standards, we propose a framework to evaluate NNBF in such a way that
342 engineers can ensure that lives and properties are protected, while simultaneously accounting for the
343 engineering performance of natural systems following engineering design principles.

344 3 Evaluation and Design Framework

345 Even though there are many uncertainties that remain in the quantification of the physical behavior of
346 emergent vegetation under hydrodynamic loads and their long-term performance in the face of
347 uncontrollable ecological variables, the existing body of knowledge can be used for practical

348 purposes (Figure 3). Since wave impact forces can generate significant damage to near-coast
349 infrastructure (Robertson et al., 2007; FEMA, 2011; Duncan et al., 2021), this framework focuses on
350 providing a methodology to quantify wave attenuation performance. The proposed framework can be
351 used for the assessment of existing wetlands and for the design of new features. It should be
352 integrated in a comprehensive process that includes other engineering evaluations (e.g., overtopping)
353 as well as ecological (Piercy et al., 2021) and social dimensions (King et al., 2021), as suggested in
354 Figure 4.

355 The proposed analytical approach for the design of new emergent vegetation systems considers five
356 key points (Figure 3). Step 1 involves calculating a baseline performance of the system without the
357 contribution of vegetation (e.g., USACE, 2002). The quantification of this baseline is recommended
358 because engineering design standards do not yet prescribe a method of calculating wave attenuation
359 for emergent vegetation, and newly planted NNBF may perform as if no vegetation is present. The
360 system including NNBF will therefore be overdesigned, as vegetation is expected to moderate
361 forcing parameters over its lifetime.

362 The second step comprises of determining relevant physical parameters that will allow for the
363 quantification of wave attenuation performance, for example, by measuring forest morphological
364 parameters in the field (Figure 4). Stem density and height can be measured through traditional
365 ecological methods (Cintrón and Schaeffer-Novelli, 1984). A variety of methods have been
366 developed to characterize projected area (see Yoshikai et al., 2021 for an overview), including
367 empirical models (e.g., Ohira et al., 2013; Mori et al., 2022), 3D laser scanning (e.g., Chang et al.,
368 2019; Kelty et al., 2022), photogrammetry (e.g., Zhang et al., 2015; Maza et al., 2019), and remote
369 sensing (Figueroa-Alfaro et al., 2022). Eventually, field measurement of engineering morphological
370 parameters could be integrated with ecological field work. For new plantings, the framework
371 recommends measuring the physical parameters of a benchmark nearby forest. This is analogous to
372 the standard ecological design of NNBF, which includes the thorough understanding of ecological
373 variables (e.g., terrain elevation, water elevation ranges, vegetation species composition) of a nearby
374 wetland community (UNEP-Nairobi Convention/USAID/WIOMSA, 2020). The reference forest's
375 capability of representing a future condition of the proposed wetland should be validated through an
376 ecological evaluation. The field measurement collection process can be simplified by considering a
377 set of scenarios that are relevant to the study goals. For example, to quantify the economic benefit of
378 an existing, healthy mangrove forest, a scenario with a degraded forest may be used for comparison.
379 The framework conservatively neglects the forest canopy when designing for storm conditions,
380 assuming all leaves are gone and small branches have broken. For engineering purposes, the
381 minimum attenuation performance is more important than average conditions, and this should be the
382 aim of measurements. For the drag coefficient, estimates vary widely (Pinsky et al., 2013) as
383 relationships for coefficients based on the Reynolds number derived from small-scale flume studies
384 do not match with recent full-scale studies (Kelty et al., 2022), owing to kinematic scaling
385 differences between the Froude and Reynolds numbers under Froude similitude (Heller, 2011).
386 Recent prototype-scale physical models have suggested equations for the drag coefficient as a
387 function of the Reynolds number, Re , with the coefficient approaching 0.6 for large values of Re
388 (Kelty et al., 2022).

389 Because the actual wetland vegetation morphology cannot be fully predicted and future storm
390 conditions have increasing uncertainty (IPCC, 2013), the third step defines various scenarios of
391 vegetation morphology, storm parameters (e.g., storm surge, wave heights) and sea levels. Emergent
392 vegetation consists of, by definition, living systems that grow and adapt to changing environmental
393 conditions at various time scales; the physical structure of the wetland at the design storm's time of

394 impact is likely to be different from the conditions at the time of design, and is uncertain and
395 uncontrollable to a certain extent. In addition, storm conditions may cause emergent vegetation to fail
396 during the event (e.g., Doyle, 1995), meaning it no longer has its protective capabilities (Table 1).
397 This uncertainty can be accounted for by quantifying the performance of alternative – but similar –
398 ecosystems, assessing possible growth rates, stressors, and more. This understanding should inform
399 the adoption of a set of representative conditions for calculation (scenarios), and analysis of
400 performance results for a given design storm under each scenario. Additionally, this step should be
401 used to assess the resilience of NNB to climate change stressors and to explore potential adaptation
402 scenarios. At a minimum, alternative design storm parameters (e.g., different return periods) and the
403 influence of sea level rise on storms should be evaluated (Biondi and Guannel, 2018). It may also be
404 appropriate to qualitatively consider a broader range of other potential conditions, but a quantitative
405 calculation may only be required for a limited number of selected scenarios, depending on the design
406 goals.

407 Step 4 involves using validated tools to quantify wave attenuation based on the physical parameters
408 and scenarios identified in Steps 2 and 3. Multiple tools exist for completing these calculations in
409 Step 4 (Table 2), but it is recommended to use tools that have been validated for prototype-scale
410 laboratory studies or field studies that cover a wide range of initial conditions, such as the Mendez
411 and Losada (2004) equation for the conditions in Kelty et al. (2022). In models, the spatial scale
412 should be adequate to evaluate a forest between tens and hundreds of meters wide, and the vertical
413 structure of the forest should be reproduced and sensitive to changing water elevations. Once wave
414 attenuation by the emergent vegetation is calculated, other engineering performance parameters of
415 the original design, such as overtopping, wave forces, and runup, can be assessed using appropriate
416 engineering tools. Based on these analyses, a range of performance results under different conditions
417 and assumptions can be identified. This quantitative data should be adequate for the engineer to make
418 appropriate design decisions, weighing uncertainties, costs, performance, and risk. Engineering,
419 ecological, and social benefits can also be evaluated across different types of solutions. With these
420 results, engineering criteria can be used to justify a design of an emergent vegetation system (Step 5).

421 Due to the living nature of emergent vegetation, the morphological parameters of a system will
422 change over time for both new designs and already existing marshes and forests. As the built wetland
423 changes over time (e.g., growth), or responds to acute disturbances (e.g., storm events) or ecological
424 changes (e.g., disease), monitoring of physical morphology can be used to update expected wave
425 attenuation performance. After the project has been implemented, Steps 2 and 4 should be repeated to
426 obtain updated morphological parameters and calculation results, which should be evaluated by the
427 engineer as part of a revisited Step 3. In a created wetland, the analysis should use measurements
428 from the wetland itself, removing uncertainty derived from using parameters of a reference forest. In
429 existing, restored, or created forests, calculation updates can be done in response to observed changes
430 in the forest structure, either due to growth, ecological stress, or storm damage. Given the biological
431 and engineering performance of NNB, additional actions may be taken over the project lifetime to
432 improve its performance of overall benefits. This can be part of an adaptive management approach,
433 as described in NNB design guidance (de Looff et al., 2021; Piercy et al., 2021).

434 4 Discussion

435 The framework presented in this paper provides ways for engineers, designers, and stakeholders to
436 include emergent vegetation in coastal infrastructure design in a way that both demonstrates the value
437 of the protection services delivered and creates a pathway for the creation of rigorous design
438 standards in the future. To some extent, the present state of the practice of engineering with nature for

439 emergent vegetation is reminiscent of the development of rubble mound structure methodologies,
440 which began in the 1950's with limited data available and evolved over time to have well-established
441 standards (Hudson, 1958, 1974; USACE, 1977, 1984, 2002). Alternative formulations and
442 coefficients were used by engineers to inform a decision-making process, even with uncertainty of
443 the structural performance.

444 The proposed framework allows for prudent, conservative approaches to incorporating NNBF in
445 coastal engineering designs. This approach is also appropriate for engineers to be in compliance with
446 ASCE guidance. Currently, to the authors' knowledge, the only mention of NNBF in existing
447 engineering design standards in the United States is in ASCE 24 (ASCE, 2014). ASCE 24-14 4.3
448 states that projects "shall not remove or otherwise alter sand dunes and mangrove stands, unless an
449 engineering report documents that the alterations will not increase potential flood damage by
450 reducing the wave and flow dissipation characteristics of the sand dunes or mangrove stands"
451 (ASCE, 2014). Notwithstanding environmental regulations that would typically prevent the removal
452 of mangroves, the burden of proof requires that the engineer prove that alterations would not
453 exacerbate wave impacts. Therefore, from an engineering perspective (*i.e.*, ASCE compliance) no
454 removal of natural features can be justified because research demonstrates that a mangrove stand
455 always provides some level of wave attenuation, and therefore removal will cause some increase in
456 the potential damage. Even under unfavorable circumstances, mangrove protection can increase over
457 time (*e.g.*, growth in height, root density), so present conditions cannot be used to justify that the
458 removal will not increase potential damage.

459 However, expanding upon the spirit of ASCE 24-14, it is also worth considering how wetlands
460 provide protection under future climate change scenarios. Rising sea level and changes to the
461 frequency, intensity, and speed of storms (Emanuel, 2005; Mendelsohn et al., 2012; Kossin, 2018;
462 Sweet et al., 2022) will affect the performance of mangroves and wetlands as their footprint and
463 composition are required to adapt to changing conditions (Hagen et al., 2013; Lovelock et al., 2015;
464 Woodroffe et al., 2016). These changes will in turn impact the performance of coastal infrastructure
465 (Biondi and Guannel, 2018). While these facts are not yet part of engineering design standards, they
466 should be accounted for by practicing engineers and considered in the definition of scenarios (Figure
467 3). The wave protection afforded by emergent vegetation should be considered as a part of resilience
468 and adaptation strategies where these systems are a viable alternative from a physical and ecological
469 standpoint.

470 In addition to providing an opportunity to improve engineering guidance, the proposed framework
471 creates opportunities for convergence among academic and professional disciplines. First, the plants
472 themselves could have unintended consequences (Figure 4). For example, emergent vegetation can
473 modify nearshore currents and sediment transport, which may be detrimental for a particular site
474 (*e.g.*, Allen, 1998), become refuge for mosquitos (*e.g.*, Rey et al., 2012), contribute to trash and
475 debris buildup (Cunniff and Schwartz, 2015), or become projectile debris during an extreme storm
476 event. Edge effects should be characterized at locations where emergent vegetation integrates with
477 other shoreline typologies. These issues can be addressed if considered as part of the design, and the
478 inclusion of researchers, practitioners, and stakeholders during monitoring efforts can help direct
479 future guidance that includes both engineering and ecological dimensions.

480 Furthermore, implementation of NNBF must consider the sociopolitical context in the locations in
481 which they are deployed, requiring skills beyond pure engineering and environmental sciences.
482 Implementing NNBF projects requires navigating the factors that were cited as barriers to
483 implementation (Figure 2; see also Cherry et al., 2018; Zuniga-Teran et al., 2020) such as convoluted

484 permitting processes, limited funding streams, public perception, and enhanced coordination.
485 Community engagement and appropriate socioeconomic analyses over a project's life cycle are also
486 cited as critical for successful implementation of projects but are often insufficiently considered
487 (Zuniga-Teran et al., 2020).

488 One way to garner public support is to properly account for the full value of NNBF. NNBF projects,
489 which often include public access and amenity features (e.g., boardwalks, kayak trails, kayak
490 launches), can have significant economic, recreational, and aesthetic value (Prato and Hey, 2006;
491 Pueyo-Ros et al., 2018), and provide habitat and improved water quality that can support fisheries
492 and biodiversity (Odum et al., 1982; USFWS, 1999; Struve and Falconer, 2001; Wang et al., 2010).
493 Consequently, the full evaluation of the benefits delivered by emergent vegetation used for coastal
494 protection requires a solid understanding of the relationship between the engineering, ecological, and
495 social dimensions at play at a particular site. While coastal protection may be a benefit driving a
496 particular project, all potential benefits should be pursued. These multiple performance objectives
497 must be evaluated during the planning and design process, and subsequently monitored along with
498 engineering performance objectives to assess the system's overall performance (van Zanten et al.,
499 2021).

500 5 Future Research Priorities

501 In this paper, we summarized a state of the practice through a review of the literature and elicitation
502 of expert opinion, and proposed a framework that can increase the adoption of NNBF by various
503 stakeholders. We identify three main areas of focus for more widespread implementation of emergent
504 vegetation systems:

- 505 1. Validating existing models and characterizing uncertainty in ecological and engineering
506 parameters;
- 507 2. Understanding lifecycle performance, including factors that affect survivability and relevant
508 time scales; and
- 509 3. Anticipating unintended social, environmental, and engineering consequences.

510 Engineers require comprehensive validation of the methodology to quantify wave attenuation and
511 develop design standards. This validation would involve blind model studies; presently, most
512 validation studies tune model parameters to fit data. Furthermore, work is needed to determine
513 conservative values for, and uncertainties associated with, input parameters in the wave height
514 attenuation and/or other models for engineering performance output variables. This knowledge would
515 help to characterize the reliability of NNBF systems. Further quantification needs to be determined
516 for forests with a mixed composition of species, hybrid systems, and considering three-dimensional
517 effects.

518 Future work should also quantify the lifecycle performance and survivability of emergent vegetation
519 with respect to acute stressors and long-term changes. Recovery after a storm should be analyzed to
520 determine what human interventions are needed and over what time scales recovery occurs.
521 Currently, no model in Table 2 incorporates survivability; mangroves are assumed to survive no
522 matter how severe the event and associated environmental conditions. However, damage assessments
523 show that mangrove tree limbs break during extreme events due to wind or debris impact, and can be
524 at risk of delayed mortality due to extreme ponding or other ecological stressors (Radabaugh et al.,
525 2020; Tomiczek et al., 2020a). In the future, process-based ecological models (Charbonneau et al.,

526 2022) could be adapted for emergent vegetation. These models could also be coupled with wave and
527 nearshore hydrodynamic models for better predictions over time (Hagen et al., 2013).

528 **6 Conclusion**

529 This paper presents a review of the state of the art in leveraging emergent vegetation for coastal
530 engineering design through a synthesis of expert opinion and recent literature. It further provides a
531 design framework for emergent vegetation, identifying critical ecological and morphological
532 parameters affecting system evolution and capability, required variables for wave height attenuation
533 calculations, selection criteria for wave numerical models used for evaluating system performance,
534 and scenarios to build up a set of performance outputs that can be evaluated based on project
535 requirements to make design decisions. Following the methodology presented in Figures 3 and 4 is
536 anticipated to yield estimates of wave attenuation to adequately inform the design and assessment of
537 wave attenuation engineering performance of emergent vegetation NNBF.

538 Future research priorities are outlined to advance scientific knowledge and to reduce the uncertainty
539 associated with the engineering performance of these systems, which can result in the development of
540 design standards for emergent vegetation. While additional work is needed to provide the same level
541 of detail as for conventional engineering systems, engineers must start broadening the
542 implementation of emergent vegetation and other NNBF systems in the near-term future with the
543 existing knowledge in systems engineering performance. Engineering coastal feasibility studies and
544 design should also broaden the definition of performance objectives from solely engineering
545 requirements to include ecological and social objectives. In the face of sea level rise and climate
546 change, a paradigm shift is required in engineering design to embrace risk management
547 methodologies and propose projects within a long-term adaptive management strategy.

548 **7 Conflict of Interest**

549 T.T. is presently serving as a Guest Editor for this Special Issue on Natural and Nature-Based
550 Features for Flood Risk Management.

551 The remaining authors declare that the research was conducted in the absence of any commercial or
552 financial relationships that could be construed as a potential conflict of interest.

553 **8 Author Contributions**

554 Conceptualization, E.L.B., D.T.C., G.G., K.O., and T.T.; Methodology, E.L.B., D.T.C., G.G., K.O.,
555 and T.T.; Formal Analysis, K.O.; Investigation, E.L.B., D.T.C., G.G., K.O., and T.T.; Writing –
556 Original Draft Preparation, E.L.B., D.T.C., G.G., K.O., and T.T.; Writing – Review & Editing,
557 E.L.B., D.T.C., G.G., K.O., and T.T.; Visualization, K.O., G.G.; Supervision, E.L.B., D.T.C., G.G.,
558 K.O., and T.T.; Project Administration, E.L.B., D.T.C., G.G., K.O., and T.T.; Funding Acquisition,
559 D.T.C., G.G., T.T.

560 **9 Funding**

561 This project was supported by funding from the National Science Foundation CBET Grant #2110262
562 and National Science Foundation OIA Grant # 1946412. Any opinions, findings, and conclusions or
563 recommendations expressed in this material are those of the authors and do not necessarily reflect the
564 views of the National Science Foundation or United States Naval Academy.

565 **10 Acknowledgments**

566 The authors are grateful to those individuals who provided expert opinion on the state of the art in
 567 emergent vegetation.

568 **11 Contribution to the Field Statement**

569 While there is ample evidence that natural and nature-based features are a viable alternative to
 570 structural engineering as coastal adaptation measures, these strategies are not yet adequately
 571 implemented in practice. This is due to myriad factors, including engineering, ecological, and social
 572 challenges, which are described in the manuscript. This paper focuses on emergent vegetation, one
 573 type of natural and nature-based feature that contains, for example, mangroves and salt marshes. Two
 574 important challenges for implementing emergent vegetation in engineering design are (1) the lack of
 575 engineering design standards for emergent vegetation, which are heavily used for designing structural
 576 alternatives, and (2) uncertainty in the numerical and analytical models available to engineers.
 577 Additionally, some generalizations of NNBF characteristics inadvertently overestimate storm
 578 protection. Besides demonstrating these limitations, this paper presents a framework that can be used
 579 for evaluating the wave attenuation performance of emergent vegetation. This framework provides a
 580 step toward the creation of engineering design guidelines.

581 **12 References**

582 Allen, J. (1998). Mangroves as alien species: the case of Hawaii. *Glob. Ecol. Biogeogr. Lett.* 7, 61–
 583 71. doi: 10.1111/j.1466-8238.1998.00272.x.

584 Alongi, D. M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to
 585 global climate change. *Estuar. Coast. Shelf Sci.* 76, 1–13. doi: 10.1016/j.ecss.2007.08.024.

586 Anderson, M. E., and Smith, J. M. (2014). Wave attenuation by flexible, idealized salt marsh
 587 vegetation. *Coast. Eng.* 83, 82–92. doi: 10.1016/j.coastaleng.2013.10.004.

588 Anderson, M. E., and Smith, J. M. (2015). Implementation of Wave Dissipation by Vegetation in
 589 STWAVE. Vicksburg, MS: U.S. Army Engineer and Research Development Center.

590 Arkema, K. K., Guannel, G., Verutes, G., Wood, S. A., Guerry, A., Ruckelshaus, M., et al. (2013).
 591 Coastal habitats shield people and property from sea-level rise and storms. *Nat. Clim. Change* 3,
 592 913–918. doi: 10.1038/nclimate1944.

593 Arkema, K. K., Verutes, G. M., Wood, S. A., Clarke-Samuels, C., Rosado, S., Canto, M., et al.
 594 (2015). Embedding ecosystem services in coastal planning leads to better outcomes for people and
 595 nature. *Proc. Natl. Acad. Sci.* 112, 7390–7395. doi: 10.1073/pnas.1406483112.

596 ASCE (2014). *Flood Resistant Design and Construction*. ASCE/SEI 24-14. Reston, VA: American
 597 Society of Civil Engineers doi: 10.1061/9780784413791.

598 ASCE (2022). *Minimum Design Loads and Associated Criteria for Buildings and Other Structures*.
 599 ASCE/SEI 7-22. doi: 10.1061/9780784415788.

600 ASCE (n.d.). Code of Ethics. *Am. Soc. Civ. Eng.* Available at: <https://www.asce.org/career-growth/ethics/code-of-ethics> [Accessed April 18, 2022].

602 Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. (2011). The
603 value of estuarine and coastal ecosystem services. *Ecol. Monogr.* 81, 169–193. doi: 10.1890/10-
604 1510.1.

605 Baron-Hyppolite, C., Lashley, C. H., Garzon, J., Miesse, T., Ferreira, C., and Bricker, J. D. (2019).
606 Comparison of Implicit and Explicit Vegetation Representations in SWAN Hindcasting Wave
607 Dissipation by Coastal Wetlands in Chesapeake Bay. *Geosciences* 9, 8. doi:
608 10.3390/geosciences9010008.

609 Biondi, E. L., and Guannel, G. (2018). Practical tools for quantitative analysis of coastal vulnerability
610 and sea level rise impacts—application in a Caribbean island and assessment of the 1.5 °C threshold.
611 *Reg. Environ. Change* 18, 2227–2236. doi: 10.1007/s10113-018-1397-4.

612 Blackmar, P. J., Cox, D. T., and Wu, W.-C. (2014). Laboratory Observations and Numerical
613 Simulations of Wave Height Attenuation in Heterogeneous Vegetation. *J. Waterw. Port Coast.*
614 *Ocean Eng.* 140, 56–65. doi: 10.1061/(ASCE)WW.1943-5460.0000215.

615 Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal
616 regions: 1. Model description and validation. *J. Geophys. Res. Oceans* 104, 7649–7666. doi:
617 10.1029/98JC02622.

618 Borchert, S. M., Osland, M. J., Enwright, N. M., and Griffith, K. T. (2018). Coastal wetland
619 adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. *J.*
620 *Appl. Ecol.* 55, 2876–2887. doi: 10.1111/1365-2664.13169.

621 Bridges, T. S., King, J. K., Simm, J. D., Beck, M. W., Collins, G., Lodder, Q., et al. (2021).
622 International Guidelines on Natural and Nature-Based Features for Flood Risk Management.
623 Engineer Research and Development Center (U.S.) Available at: <https://hdl.handle.net/11681/41946>.

624 Bridges, T. S., Wagner, P. W., Burks-Copes, K. A., Bates, M. E., Collier, Z. A., Fischenich, C. J., et
625 al. (2015). Use of Natural and Nature-Based Features (NNBF) for coastal resilience. Vicksburg, MS:
626 U.S. Army Engineer and Research Development Center Available at:
627 <https://hdl.handle.net/11681/4769>.

628 Browder, G., Ozment, S., Rehberger Bescos, I., Gartner, T., and Lange, G.-M. (2019). *Integrating*
629 *Green and Gray: Creating Next Generation Infrastructure*. Washington, DC: World Bank Group doi:
630 10.1596/978-1-56973-955-6.

631 Chang, C.-W., Mori, N., Tsuruta, N., and Suzuki, K. (2019). Estimation of Wave Force Coefficients
632 on Mangrove Models. *J. Jpn. Soc. Civ. Eng. Ser B2 Coast. Eng.* 75, I_1105-I_1110. doi:
633 10.2208/kaigan.75.I_1105.

634 Charbonneau, B. R., Duarte, A., Swannack, T. M., Johnson, B. D., and Piercy, C. D. (2022).
635 DOONIES: A process-based ecogeomorphological functional community model for coastal dune
636 vegetation and landscape dynamics. *Geomorphology* 398, 108037. doi:
637 10.1016/j.geomorph.2021.108037.

638 Chen, Q., Li, Y., Kelly, D. M., Zhang, K., Zachry, B., and Rhome, J. (2021). Improved modeling of
639 the role of mangroves in storm surge attenuation. *Estuar. Coast. Shelf Sci.* 260, 107515. doi:
640 10.1016/j.ecss.2021.107515.

641 Cherry, C., Dix, B., Asam, S., Webb, B., and Douglass, S. (2018). Peer Exchange Summary Report:
642 Nature-Based Solutions for Coastal Highway Resilience. Washington, DC: Federal Highway
643 Administration Available at: <https://trid.trb.org/view/1539901>.

644 Cintrón, G., and Schaeffer-Novelli, Y. (1984). "Methods for studying mangrove structure," in *The*
645 *mangrove ecosystem: research methods* Monographs on oceanographic methodology., eds. S. C.
646 Snedaker and J. G. Snedaker (UNESCO), 251.

647 Close, S. L., Montalto, F., Orton, P., Antoine, A., Peters, D., Jones, H., et al. (2017). Achieving
648 sustainability goals for urban coasts in the US Northeast: research needs and challenges. *Local*
649 *Environ.* 22, 508–522. doi: 10.1080/13549839.2016.1233526.

650 Coops, H., Geilen, N., Verheij, H. J., Boeters, R., and van der Velde, G. (1996). Interactions between
651 waves, bank erosion and emergent vegetation: an experimental study in a wave tank. *Aquat. Bot.* 53,
652 187–198. doi: 10.1016/0304-3770(96)01027-3.

653 Craighead, F. C., and Gilbert, V. C. (1962). The Effects of Hurricane Donna on the Vegetation of
654 Southern Florida. *Q. J. Fla. Acad. Sci.* 25, 1–28.

655 Cunha, J., Cardona, F. S., Bio, A., and Ramos, S. (2021). Importance of Protection Service Against
656 Erosion and Storm Events Provided by Coastal Ecosystems Under Climate Change Scenarios. *Front.*
657 *Mar. Sci.* 8. doi: 10.3389/fmars.2021.726145.

658 Cunniff, S., and Schwartz, A. (2015). Performance of Natural Infrastructure and Nature-based
659 Measures as Coastal Risk Reduction Features. Environmental Defense Fund.

660 Dalrymple, R. A., Kirby, J. T., and Hwang, P. A. (1984). Wave Diffraction Due to Areas of Energy
661 Dissipation. *J. Waterw. Port Coast. Ocean Eng.* 110, 67–79. doi: 10.1061/(ASCE)0733-
662 950X(1984)110:1(67).

663 de Looff, H., Welp, T., Snider, N., and Wilmink, R. (2021). "Chapter 7: Adaptive Management," in
664 *International Guidelines on Natural and Nature-Based Features for Flood Risk Management*, eds. T. T.
665 S. Bridges, J. K. King, J. D. Simm, M. W. Beck, G. Collins, Q. Lodder, et al. (Vicksburg, MS: U.S.
666 Army Engineer Research and Development Center).

667 Ding, Y., Chen, Q. J., Zhu, L., Rosati, J. D., and Johnson, B. D. (2022). Implementation of flexible
668 vegetation into CSHORE for modeling wave attenuation. Vicksburg, MS: Engineer Research and
669 Development Center (U.S.) doi: 10.21079/11681/43220.

670 Dong, S., Abolfathi, S., Salauddin, M., Tan, Z. H., and Pearson, J. M. (2020). Enhancing climate
671 resilience of vertical seawall with retrofitting - A physical modelling study. *Appl. Ocean Res.* 103,
672 102331. doi: 10.1016/j.apor.2020.102331.

673 Doyle, T. W. (1995). Wind Damage Effects of Hurricane Andrew on Mangrove Communities Along
674 the Southwest Coast of Florida, USA. *J. Coast. Res.*, 11.

675 Duncan, S., Cox, D., Barbosa, A. R., Lomónaco, P., Park, H., Alam, M. S., et al. (2021). Physical
676 modeling of progressive damage and failure of wood-frame coastal residential structures due to surge
677 and wave forces. *Coast. Eng.* 169, 103959. doi: 10.1016/j.coastaleng.2021.103959.

678 Elko, N., Briggs, T. R., Benedet, L., Robertson, Q., Thomson, G., Webb, B. M., et al. (2021). A
679 century of U.S. beach nourishment. *Ocean Coast. Manag.* 199, 105406. doi:
680 10.1016/j.ocecoaman.2020.105406.

681 Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. *Nature*
682 436, 686–688. doi: 10.1038/nature03906.

683 European Environment Agency, Castellari, S., Zanderson, M., Davis, M., Veerkamp, C., Förster, J.,
684 et al. (2021). *Nature-based solutions in Europe policy, knowledge and practice for climate change*
685 *adaptation and disaster risk reduction*. Publications Office doi: 10.2800/919315.

686 Feagin, R. A., Bridges, T. S., Bledsoe, B., Losos, E., Ferreira, S., Corwin, E., et al. (2021).
687 Infrastructure investment must incorporate Nature's lessons in a rapidly changing world. *One Earth*
688 4, 1361–1364. doi: 10.1016/j.oneear.2021.10.003.

689 FEMA (2011). Principles and Practices of Planning, Siting, Designing, Constructing, and
690 Maintaining Residential Buildings in Coastal Areas (Fourth Edition). FEMA.

691 FEMA (2021). Guidance for Flood Risk Analysis and Mapping: Coastal Overland Wave
692 Propagation. FEMA.

693 Figueira-Alfaro, R. W., van Rooijen, A., Garzon, J. L., Evans, M., and Harris, A. (2022). Modelling
694 wave attenuation by saltmarsh using satellite-derived vegetation properties. *Ecol. Eng.* 176, 106528.
695 doi: 10.1016/j.ecoleng.2021.106528.

696 Foster-Martinez, M. R., Alizad, K., and Hagen, S. C. (2020). Estimating wave attenuation at the
697 coastal land margin with a GIS toolbox. *Environ. Model. Softw.* 132, 104788. doi:
698 10.1016/j.envsoft.2020.104788.

699 Garzon, J. L., Miesse, T., and Ferreira, C. M. (2019). Field-based numerical model investigation of
700 wave propagation across marshes in the Chesapeake Bay under storm conditions. *Coast. Eng.* 146,
701 32–46. doi: 10.1016/j.coastaleng.2018.11.001.

702 Goda, Y. (2010). *Random Seas and Design of Maritime Structures*. 3rd ed. World Scientific doi:
703 10.1142/7425.

704 Guannel, G., Arkema, K., Ruggiero, P., and Verutes, G. (2016). The Power of Three: Coral Reefs,
705 Seagrasses and Mangroves Protect Coastal Regions and Increase Their Resilience. *PLOS ONE* 11,
706 e0158094. doi: 10.1371/journal.pone.0158094.

707 Guannel, G., Ruggiero, P., Faries, J., Arkema, K., Pinsky, M., Gelfenbaum, G., et al. (2015).
708 Integrated modeling framework to quantify the coastal protection services supplied by vegetation. *J.*
709 *Geophys. Res. Oceans* 120, 324–345. doi: 10.1002/2014JC009821.

710 Hagen, S. C., Morris, J. T., Bacopoulos, P., and Weishampel, J. F. (2013). Sea-Level Rise Impact on
711 a Salt Marsh System of the Lower St. Johns River. *J. Waterw. Port Coast. Ocean Eng.* 139, 118–125.
712 doi: 10.1061/(ASCE)WW.1943-5460.0000177.

713 Heller, V. (2011). Scale effects in physical hydraulic engineering models. *J. Hydraul. Res.* 49, 293–
714 306. doi: 10.1080/00221686.2011.578914.

715 Higuera, P., Lara, J. L., and Losada, I. J. (2014). Three-dimensional interaction of waves and porous
 716 coastal structures using OpenFOAM®. Part I: Formulation and validation. *Coast. Eng.* 83, 243–258.
 717 doi: 10.1016/j.coastaleng.2013.08.010.

718 Hochard, J. P., Hamilton, S., and Barbier, E. B. (2019). Mangroves shelter coastal economic activity
 719 from cyclones. *Proc. Natl. Acad. Sci.* 116, 12232–12237. doi: 10.1073/pnas.1820067116.

720 Hudson, R. Y. (1958). Design of Quarry-Stone Cover Layers for Rubble-Mound Breakwaters.
 721 Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.

722 Hudson, R. Y. (1974). Concrete armor units for protection against wave attack. Vicksburg, MS: U.S.
 723 Army Engineer Waterways Experiment Station.

724 IPCC (2013). *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
 725 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.*, eds. T. F.
 726 Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. Cambridge, United
 727 Kingdom and New York, NY, USA: Cambridge University Press doi: 10.1017/CBO9781107415324.

728 Jacobsen, N. G., McFall, B. C., and van der A, D. A. (2019). A frequency distributed dissipation
 729 model for canopies. *Coast. Eng.* 150, 135–146. doi: 10.1016/j.coastaleng.2019.04.007.

730 Jasak, H., Jemcov, A., and Tukovic, Z. (2007). OpenFOAM: A C++ Library for Complex Physics
 731 Simulations. in *International Workshop on Coupled Methods in Numerical Dynamics* (Dubrovnik,
 732 Croatia), 20.

733 Kelty, K., Tomiczek, T., Cox, D. T., Lomonaco, P., and Mitchell, W. (2022). Prototype-Scale
 734 Physical Model of Wave Attenuation Through a Mangrove Forest of Moderate Cross-Shore
 735 Thickness: LiDAR-Based Characterization and Reynolds Scaling for Engineering With Nature.
 736 *Front. Mar. Sci.* 8. doi: <https://doi.org/10.3389/fmars.2021.780946>.

737 King, J. K., Simm, J. D., and Bridges, T. S. (2021). “Chapter 2: Principles, Frameworks, and
 738 Outcomes,” in *International Guidelines on Natural and Nature-Based Features for Flood Risk
 739 Management*, eds. T. S. Bridges, J. K. King, J. D. Simm, M. W. Beck, G. Collins, Q. Lodder, et al.
 740 (Vicksburg, MS: U.S. Army Engineer Research and Development Center).

741 Kobayashi, N., Raichle, A. W., and Asano, T. (1993). Wave Attenuation by Vegetation. *J. Waterw.
 742 Port Coast. Ocean Eng.* 119, 30–48. doi: 10.1061/(ASCE)0733-950X(1993)119:1(30).

743 Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. *Nature* 558, 104–107.
 744 doi: 10.1038/s41586-018-0158-3.

745 Kyrioti, A. P., Taflanidis, A. A., and Kennedy, A. B. (2021). Dissipation Effects of Coastal
 746 Vegetation on Nearshore Structures under Wave Runup Loading. *J. Struct. Eng.* 147, 06020010. doi:
 747 10.1061/(ASCE)ST.1943-541X.0002902.

748 La, T. V., Yagisawa, J., and Tanaka, N. (2015). Efficacy of Rhizophora Apiculata and Nypa
 749 Fruticans on Attenuation of Boat-Generated Waves under Steep Slope Condition. *Int. J. Ocean Water
 750 Resour.* 19, 1103–1111.

751 Lagomasino, D., Fatoynbo, T., Castañeda-Moya, E., Cook, B. D., Montesano, P. M., Neigh, C. S.
752 R., et al. (2021). Storm surge and ponding explain mangrove dieback in southwest Florida following
753 Hurricane Irma. *Nat. Commun.* 12, 4003. doi: 10.1038/s41467-021-24253-y.

754 Lei, J., and Nepf, H. (2019). Wave damping by flexible vegetation: Connecting individual blade
755 dynamics to the meadow scale. *Coast. Eng.* 147, 138–148. doi: 10.1016/j.coastaleng.2019.01.008.

756 Lovelock, C. E., Cahoon, D. R., Friess, D. A., Guntenspergen, G. R., Krauss, K. W., Reef, R., et al.
757 (2015). The vulnerability of Indo-Pacific mangrove forests to sea-level rise. *Nature* 526, 559–563.
758 doi: 10.1038/nature15538.

759 Lynett, P. J., Wu, T.-R., and Liu, P. L.-F. (2002). Modeling wave runup with depth-integrated
760 equations. *Coast. Eng.* 46, 89–107. doi: 10.1016/S0378-3839(02)00043-1.

761 Ma, G., Kirby, J. T., Su, S.-F., Figlus, J., and Shi, F. (2013). Numerical study of turbulence and wave
762 damping induced by vegetation canopies. *Coast. Eng.* 80, 68–78. doi:
763 10.1016/j.coastaleng.2013.05.007.

764 Ma, G., Shi, F., and Kirby, J. T. (2012). Shock-capturing non-hydrostatic model for fully dispersive
765 surface wave processes. *Ocean Model.* 43–44, 22–35. doi: 10.1016/j.ocemod.2011.12.002.

766 Maza, M., Lara, J. L., and Losada, I. J. (2015). Tsunami wave interaction with mangrove forests: A
767 3-D numerical approach. *Coast. Eng.* 98, 33–54. doi: 10.1016/j.coastaleng.2015.01.002.

768 Maza, M., Lara, J. L., and Losada, I. J. (2016). Solitary wave attenuation by vegetation patches. *Adv.*
769 *Water Resour.* 98, 159–172. doi: 10.1016/j.advwatres.2016.10.021.

770 Maza, M., Lara, J. L., and Losada, I. J. (2019). Experimental analysis of wave attenuation and drag
771 forces in a realistic fringe Rhizophora mangrove forest. *Adv. Water Resour.* 131, 103376. doi:
772 10.1016/j.advwatres.2019.07.006.

773 Maza, M., Lara, J. L., and Losada, I. J. (2021). Predicting the evolution of coastal protection service
774 with mangrove forest age. *Coast. Eng.* 168, 103922. doi: 10.1016/j.coastaleng.2021.103922.

775 Mazda, Y., Magi, M., Kogo, M., and Hong, P. N. (1997). Mangroves as a coastal protection from
776 waves in the Tong King delta, Vietnam. *Mangroves Salt Marshes* 1, 127–135. doi:
777 10.1023/A:1009928003700.

778 McIvor, A. L., Möller, I., Spencer, T., and Spalding, M. (2012). Reduction of Wind and Swell Waves
779 by Mangroves. The Nature Conservancy and Wetlands International.

780 Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L. (2012). The impact of climate
781 change on global tropical cyclone damage. *Nat. Clim. Change* 2, 205–209. doi:
782 10.1038/nclimate1357.

783 Mendez, F. J., and Losada, I. J. (2004). An empirical model to estimate the propagation of random
784 breaking and nonbreaking waves over vegetation fields. *Coast. Eng.* 51, 103–118. doi:
785 10.1016/j.coastaleng.2003.11.003.

786 Menéndez, P., Losada, I. J., Torres-Ortega, S., Narayan, S., and Beck, M. W. (2020). The Global
787 Flood Protection Benefits of Mangroves. *Sci. Rep.* 10, 4404. doi: 10.1038/s41598-020-61136-6.

788 Miller, J. K., Rella, A., Williams, A., and Sproule, E. (2015). Living Shorelines Engineering
789 Guidelines. New Jersey Department of Environmental Protection.

790 Mitchell, W. T. (2021). Effect of an Idealized Mangrove Forest of Moderate Cross-shore Width on
791 Loads Measured on a Sheltered Structure and Comparison with Predicted Forces.

792 Montgomery, J. M., Bryan, K. R., Mullarney, J. C., and Horstman, E. M. (2019). Attenuation of
793 Storm Surges by Coastal Mangroves. *Geophys. Res. Lett.* 46, 2680–2689. doi:
794 10.1029/2018GL081636.

795 Mori, N., Chang, C.-W., Inoue, T., Akaji, Y., Hinokidani, K., Baba, S., et al. (2022).
796 Parameterization of Mangrove Root Structure of Rhizophora stylosa in Coastal Hydrodynamic
797 Model. *Front. Built Environ.* 7, 782219. doi: 10.3389/fbuil.2021.782219.

798 Narayan, S., Beck, M. W., Reguero, B. G., Losada, I. J., Wesenbeeck, B. van, Pontee, N., et al.
799 (2016). The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based
800 Defences. *PLOS ONE* 11, e0154735. doi: 10.1371/journal.pone.0154735.

801 Narayan, S., Beck, M. W., Wilson, P., Thomas, C. J., Guerrero, A., Shepard, C. C., et al. (2017). The
802 Value of Coastal Wetlands for Flood Damage Reduction in the Northeastern USA. *Sci. Rep.* 7, 9463.
803 doi: 10.1038/s41598-017-09269-z.

804 Narayan, S., Thomas, C., Matthewman, J., Shepard, C. C., Geselbracht, L., Nzerem, K., et al. (2019).
805 Valuing the Flood Risk Reduction Benefits of Florida's Mangroves. Arlington, VA: The Nature
806 Conservancy.

807 NAS (1977). Methodology for Calculating Wave Action Effects Associated with Storm Surges.
808 Washington, DC: National Academy of Sciences.

809 Odum, W. E., McIvor, C. C., and Smith, T. J. (1982). The ecology of the mangroves of South
810 Florida: a community profile. U.S. Fish and Wildlife Service.

811 Ohira, W., Honda, K., Nagai, M., and Ratanasuwan, A. (2013). Mangrove stilt root morphology
812 modeling for estimating hydraulic drag in tsunami inundation simulation. *Trees* 27, 141–148. doi:
813 10.1007/s00468-012-0782-8.

814 Ozeren, Y., Wren, D. G., and Wu, W. (2014). Experimental Investigation of Wave Attenuation
815 through Model and Live Vegetation. *J. Waterw. Port Coast. Ocean Eng.* 140, 04014019. doi:
816 10.1061/(ASCE)WW.1943-5460.0000251.

817 PIANC (2018). Environmental Commission Guide for Applying Working with Nature to Navigation
818 Infrastructure Projects. Brussels: PIANC.

819 Piercy, C. D., Pontee, N., Narayan, S., Davis, J., and Meckley, T. (2021). "Chapter 10: Coastal
820 Wetlands and Tidal Flats," in *International Guidelines on Natural and Nature-Based Features for
821 Flood Risk Management*, eds. T. S. Bridges, J. K. King, J. D. Simm, M. W. Beck, G. Collins, Q.
822 Lodder, et al. (Vicksburg, MS: U.S. Army Engineer Research and Development Center).

823 Pinsky, M. L., Guannel, G., and Arkema, K. K. (2013). Quantifying wave attenuation to inform
824 coastal habitat conservation. *Ecosphere* 4, art95. doi: 10.1890/ES13-00080.1.

825 Prato, T., and Hey, D. (2006). Economic Analysis of Wetland Restoration Along the Illinois River.
826 *JAWRA J. Am. Water Resour. Assoc.* 42, 125–131. doi: 10.1111/j.1752-1688.2006.tb03828.x.

827 Pueyo-Ros, J., Garcia, X., Ribas, A., and Fraguell, R. M. (2018). Ecological Restoration of a Coastal
828 Wetland at a Mass Tourism Destination. Will the Recreational Value Increase or Decrease? *Ecol.*
829 *Econ.* 148, 1–14. doi: 10.1016/j.ecolecon.2018.02.002.

830 Radabaugh, K. R., Moyer, R. P., Chappel, A. R., Dontis, E. E., Russo, C. E., Joyse, K. M., et al.
831 (2020). Mangrove Damage, Delayed Mortality, and Early Recovery Following Hurricane Irma at
832 Two Landfall Sites in Southwest Florida, USA. *Estuaries Coasts* 43, 1104–1118. doi:
833 10.1007/s12237-019-00564-8.

834 Rey, J. R., Walton, W. E., Wolfe, R. J., Connelly, C. R., O'Connell, S. M., Berg, J., et al. (2012).
835 North American Wetlands and Mosquito Control. *Int. J. Environ. Res. Public. Health* 9, 4537–4605.
836 doi: 10.3390/ijerph9124537.

837 Robertson, I. N., Riggs, H. R., Yim, S. C., and Young, Y. L. (2007). Lessons from Hurricane Katrina
838 Storm Surge on Bridges and Buildings. *J. Waterw. Port Coast. Ocean Eng.* 133, 463–483. doi:
839 10.1061/(ASCE)0733-950X(2007)133:6(463).

840 Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., and Lescinski, J.
841 (2009). Modelling storm impacts on beaches, dunes and barrier islands. *Coast. Eng.* 56, 1133–1152.
842 doi: 10.1016/j.coastaleng.2009.08.006.

843 Ross, P. M., and Adam, P. (2013). Climate Change and Intertidal Wetlands. *Biology* 2, 445–480. doi:
844 10.3390/biology2010445.

845 Ruckelshaus, M. H., Guannel, G., Arkema, K., Verutes, G., Griffin, R., Guerry, A., et al. (2016).
846 Evaluating the Benefits of Green Infrastructure for Coastal Areas: Location, Location, Location.
847 *Coast. Manag.* 44, 504–516. doi: 10.1080/08920753.2016.1208882.

848 Saintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., et al. (2020).
849 Thresholds of mangrove survival under rapid sea level rise. *Science* 368, 1118–1121. doi:
850 10.1126/science.aba2656.

851 Salimi, S., Almuktar, S. A. A. A. N., and Scholz, M. (2021). Impact of climate change on wetland
852 ecosystems: A critical review of experimental wetlands. *J. Environ. Manage.* 286, 112160. doi:
853 10.1016/j.jenvman.2021.112160.

854 Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M. F., Benson, L., et al. (2018). A global
855 map of mangrove forest soil carbon at 30 m spatial resolution. *Environ. Res. Lett.* 13, 055002. doi:
856 10.1088/1748-9326/aabe1c.

857 Sarasota Bay Estuary Program (2018). Living Shorelines: Guidance for Sarasota Bay Watershed.
858 Sarasota, FL.

859 Science for Environment Policy (2021). The solution is in nature. Bristol: Science Communication
860 Unit, UWE Bristol.

861 Scyphers, S. B., Powers, S. P., Jr, K. L. H., and Byron, D. (2011). Oyster Reefs as Natural
862 Breakwaters Mitigate Shoreline Loss and Facilitate Fisheries. *PLOS ONE* 6, e22396. doi:
863 10.1371/journal.pone.0022396.

864 Silver, J. M., Arkema, K. K., Griffin, R. M., Lashley, B., Lemay, M., Maldonado, S., et al. (2019).
865 Advancing Coastal Risk Reduction Science and Implementation by Accounting for Climate,
866 Ecosystems, and People. *Front. Mar. Sci.* 6. doi: 10.3389/fmars.2019.00556.

867 Smith, J. M., Sherlock, A. R., and Resio, D. T. (2001). STWAVE: Steady-State Spectral Wave
868 Model User's Manual for STWAVE, Version 3.0. Vicksburg, MS: U.S. Army Engineer and
869 Research Development Center.

870 Spalding, M., and Parrett, C. L. (2019). Global patterns in mangrove recreation and tourism. *Mar.
871 Policy* 110, 103540. doi: 10.1016/j.marpol.2019.103540.

872 Struve, J., and Falconer, R. A. (2001). Hydrodynamic and Water Quality Processes in Mangrove
873 Regions. *J. Coast. Res.*, 65–75.

874 Suzuki, T., Hu, Z., Kumada, K., Phan, L. K., and Zijlema, M. (2019). Non-hydrostatic modeling of
875 drag, inertia and porous effects in wave propagation over dense vegetation fields. *Coast. Eng.* 149,
876 49–64. doi: 10.1016/j.coastaleng.2019.03.011.

877 Suzuki, T., Zijlema, M., Burger, B., Meijer, M. C., and Narayan, S. (2012). Wave dissipation by
878 vegetation with layer schematization in SWAN. *Coast. Eng.* 59, 64–71. doi:
879 10.1016/j.coastaleng.2011.07.006.

880 Sweet, W. V., Hamlington, B. D., Kopp, R. E., Weaver, C. P., Barnard, P. L., Bekaert, D., et al.
881 (2022). Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean
882 Projections and Extreme Water Level Probabilities Along U.S. Coastlines. Silver Spring, MD:
883 National Oceanic and Atmospheric Administration, National Ocean Service Available at:
884 [https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-
885 scenarios-US.pdf](https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf).

886 Taylor, E. B., Gibeaut, J. C., Yoskowitz, D. W., and Starek, M. J. (2015). Assessment and Monetary
887 Valuation of the Storm Protection Function of Beaches and Foredunes on the Texas Coast. *J. Coast.
888 Res.* 31, 1205–1216. doi: 10.2112/JCOASTRES-D-14-00133.1.

889 Thuy, N. B., Nandasena, N. A. K., Dang, V. H., Kim, S., Hien, N. X., Hole, L. R., et al. (2017).
890 Effect of river vegetation with timber piling on ship wave attenuation: Investigation by field survey
891 and numerical modeling. *Ocean Eng.* 129, 37–45. doi: 10.1016/j.oceaneng.2016.11.004.

892 Tomiczek, T., O'Donnell, K., Furman, K., Webbmartin, B., and Scyphers, S. (2020a). Rapid Damage
893 Assessments of Shorelines and Structures in the Florida Keys after Hurricane Irma. *Nat. Hazards
894 Rev.* 21, 05019006. doi: 10.1061/(ASCE)NH.1527-6996.0000349.

895 Tomiczek, T., Wargula, A., Lomónaco, P., Goodwin, S., Cox, D., Kennedy, A., et al. (2020b).
896 Physical model investigation of mid-scale mangrove effects on flow hydrodynamics and pressures
897 and loads in the built environment. *Coast. Eng.* 162, 103791. doi: 10.1016/j.coastaleng.2020.103791.

908 Tomiczek, T., Wargula, A., O'Donnell, K., LaVeck, V., Castagno, K. A., and Scyphers, S. (2022).
909 Vessel-Generated Wake Attenuation by *Rhizophora Mangle* in Key West, Florida. *J. Waterw. Port
900 Coast. Ocean Eng.* 148, 04022002. doi: 10.1061/(ASCE)WW.1943-5460.0000704.

901 Uddin, Md. S., de Ruyter van Steveninck, E., Stuip, M., and Shah, M. A. R. (2013). Economic
902 valuation of provisioning and cultural services of a protected mangrove ecosystem: A case study on
903 Sundarbans Reserve Forest, Bangladesh. *Ecosyst. Serv.* 5, 88–93. doi: 10.1016/j.ecoser.2013.07.002.

904 UNDRR (2020). Ecosystem-Based Disaster Risk Reduction: Implementing Nature-based Solutions
905 for Resilience. Bangkok, Thailand: United Nations Office for Disaster Risk Reduction – Regional
906 Office for Asia and the Pacific.

907 UNEP-Nairobi Convention/USAID/WIOMSA (2020). Guidelines on Mangrove Ecosystem
908 Restoration for the Western Indian Ocean Region. NAIROBI: UNEP Available at:
909 <https://www.nairobiconvention.org/CHM%20Documents/WIOSAP/guidelines/GuidelinesonMangroveRestorationForTheWIO.pdf>.

911 USACE (1977). Shore Protection Manual. Vicksburg, MS: U.S. Army Coastal Engineering Research
912 Center.

913 USACE (1984). Shore Protection Manual. Vicksburg, MS: U.S. Army Engineer Waterways
914 Experiment Station.

915 USACE (2002). Coastal Engineering Manual. Washington, DC: USACE.

916 USFWS (1999). South Florida Multi-Species Recovery Plan. Atlanta, GA: U.S. Fish and Wildlife
917 Service.

918 van Rooijen, A. A., McCall, R. T., van Thiel de Vries, J. S. M., van Dongeren, A. R., Reniers, A. J.
919 H. M., and Roelvink, J. A. (2016). Modeling the effect of wave-vegetation interaction on wave setup:
920 Wave Setup Damping by Vegetation. *J. Geophys. Res. Oceans* 121, 4341–4359. doi:
921 10.1002/2015JC011392.

922 van Veelen, T. J., Fairchild, T. P., Reeve, D. E., and Karunaratna, H. (2020). Experimental study on
923 vegetation flexibility as control parameter for wave damping and velocity structure. *Coast. Eng.* 157,
924 103648. doi: 10.1016/j.coastaleng.2020.103648.

925 van Zanten, B., Arkema, K., Swannack, T., Griffin, R., Narayan, S., Penn, K., et al. (2021). “Chapter
926 6: Benefits and Costs of NNBF,” in *International Guidelines on Natural and Nature-Based Features
927 for Flood Risk Management*, eds. T. S. Bridges, J. K. King, J. D. Simm, M. W. Beck, G. Collins, Q.
928 Lodder, et al. (Vicksburg, MS: U.S. Army Engineer Research and Development Center).

929 Vuik, V., Jonkman, S. N., Borsje, B. W., and Suzuki, T. (2016). Nature-based flood protection: The
930 efficiency of vegetated foreshores for reducing wave loads on coastal dikes. *Coast. Eng.* 116, 42–56.
931 doi: 10.1016/j.coastaleng.2016.06.001.

932 Wang, M., Zhang, J., Tu, Z., Gao, X., and Wang, W. (2010). Maintenance of estuarine water quality
933 by mangroves occurs during flood periods: a case study of a subtropical mangrove wetland. *Mar.*
934 *Pollut. Bull.* 60, 2154–2160. doi: 10.1016/j.marpolbul.2010.07.025.

935 Waryszak, P., Gavoille, A., Whitt, A. A., Kelvin, J., and Macreadie, P. I. (2021). Combining gray
936 and green infrastructure to improve coastal resilience: lessons learnt from hybrid flood defenses.
937 *Coast. Eng. J.* 63, 335–350. doi: 10.1080/21664250.2021.1920278.

938 Webb, B. M., Dix, B., Douglass, S. L., Asam, S., Cherry, C., Buhring, B., et al. (2019). Nature-Based
939 Solutions for Coastal Highway Resilience: An Implementation Guide.

940 Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelsohn, I. A., and Saintilan, N.
941 (2016). Mangrove Sedimentation and Response to Relative Sea-Level Rise. *Annu. Rev. Mar. Sci.* 8,
942 243–266. doi: 10.1146/annurev-marine-122414-034025.

943 World Bank (2017). Implementing nature-based flood protection: Principles and implementation
944 guidance. Washington, DC: World Bank.

945 Yang, Z., Tang, J., and Shen, Y. (2018). Numerical study for vegetation effects on coastal wave
946 propagation by using nonlinear Boussinesq model. *Appl. Ocean Res.* 70, 32–40. doi:
947 10.1016/j.apor.2017.09.001.

948 Yoshikai, M., Nakamura, T., Suwa, R., Rollon, R., and Nadaoka, K. (2021). “Measurement and
949 Modeling of Above-Ground Root Systems as Attributes of Flow and Wave Attenuation Function of
950 Mangroves,” in *Mangroves: Ecology, Biodiversity and Management*, eds. R. P. Rastogi, M.
951 Phulwaria, and D. K. Gupta (Singapore: Springer), 279–303. doi: 10.1007/978-981-16-2494-0_12.

952 Zhang, K., Liu, H., Li, Y., Xu, H., Shen, J., Rhome, J., et al. (2012). The role of mangroves in
953 attenuating storm surges. *Estuar. Coast. Shelf Sci.* 102–103, 11–23. doi: 10.1016/j.ecss.2012.02.021.

954 Zhang, X., Chua, V. P., and Cheong, H.-F. (2015). Hydrodynamics in mangrove prop roots and their
955 physical properties. *J. Hydro-Environ. Res.* 9, 281–294. doi: 10.1016/j.jher.2014.07.010.

956 Zijlema, M., Stelling, G., and Smit, P. (2011). SWASH: An operational public domain code for
957 simulating wave fields and rapidly varied flows in coastal waters. *Coast. Eng.* 58, 992–1012. doi:
958 10.1016/j.coastaleng.2011.05.015.

959 Zuniga-Teran, A. A., Staddon, C., de Vito, L., Gerlak, A. K., Ward, S., Schoeman, Y., et al. (2020).
960 Challenges of mainstreaming green infrastructure in built environment professions. *J. Environ. Plan.*
961 *Manag.* 63, 710–732. doi: 10.1080/09640568.2019.1605890.

962 1 Data Availability Statement

963 The datasets presented in this study can be found by contacting the authors.

964

965 Table 1. Protection provided by common NNBF typologies.

966

Habitat	What makes it protect				How does it protect			Protection Service			Long-Term Viability	Non-Engineering Benefits
	Performance factor	"Uncontrollable" performance variable	"Controllable" performance variable	Failure variable during storm	Reduce nearshore wave energy	Reduce nearshore currents	Reduce surge height	Reduce inundation level	Reduce risk of erosion of private property		Storm water storage	Keeps up with SLR
									Chronic	Acute		
Beaches¹	Height, width	Sediment size, beach slope	Sediment supply, vegetation	Consecutive storms prevent replenishment	Strong ² – forms sandbars	No	No	Moderate ³ – height of berm	Strong – width		No	Strong - landward migration
Sand Dunes	Height, width	Sediment size	Beach height and width, vegetation	Fails if erodes too much, consecutive storms prevent replenishment	No	No	No	Strong – barrier (until fails)	Strong – height and width		No	Strong - landward migration
Salt marshes	Physical characteristics, width	Climate, species	Sediment and water supply, water quality	Flattens, breaks	Strong – drag force	Strong* – drag force	Low ⁴ – drag force	Low-Moderate*	Strong		Strong	Moderate - build up or landward migration
Mangroves	Physical characteristics, width	Climate, species	Sediment and water supply, water quality	Branches break, trees uproot	Strong – drag force	Strong* – drag force	Moderate – drag force	Moderate	Strong		Strong	Moderate - build up or landward migration
Seagrasses	Physical characteristics, water depth, distance to shore	Climate, species	Nearshore water quality	Flattens, uproots	Strong – drag force	Moderate* – drag force	No	No	Strong*	Low*	No	Moderate - moves in newly created bed
Oyster Reef	Height, width, percent cover, water depth, distance to shore	Ocean water quality	Nearshore water quality	Destroyed	Strong – relative depth and roughness	Moderate*	No*	No*	Strong*	No*	No	Low - build up
Coral Reef	Water depth, distance to shore, percent cover (roughness)	Ocean water quality	Nearshore water quality	Coral destroyed	Strong – relative depth and roughness	Moderate*	Low*	Low*	Strong*	Moderate*	No	Low - build up

967 *More research is needed to fully prove the claim

968 1. Excludes the nourishment process

969 2. Strong measurable impact

970 3. Moderate measurable impact

971 4. Low measurable impact

972 Table 2. Commonly used computational and analytical models for determining wave height attenuation through emergent vegetation.

973

Computational Effort / Level of Physics Included	High → Medium									Low		
Type of Model	RANS		Other Phase Resolving			Phase Averaging		Overland	Empirical			
Model Name	OpenFOAM	NHWAVE	SWASH	COULWAVE	XBeach	SWAN	STWAVE	WHAFIS	WATTE			
Model Reference	Jasak et al., 2007; Higuera et al., 2014		Ma et al., 2012	Zijlema et al., 2011	Lynett et al., 2002	Roelvink et al., 2009	Booij et al., 1999	Smith et al., 2001	FEMA, 2021	Foster-Martinez et al., 2020		
Processes Included	Wave, Nearshore Circulation		Wave, Nearshore Circulation	Wave, Nearshore Circulation	Wave, Nearshore Circulation	Wave, Nearshore Circulation	Wave	Wave	Wave	Wave		
Approach	Vegetation Reference	Maza et al., 2015; 2016	Maza et al., 2015	Ma et al., 2013	Suzuki et al., 2019	Yang et al., 2018	van Rooijen et al., 2016	Jacobsen et al., 2019	Suzuki et al., 2012	Anderson and Smith, 2015	FEMA, 2021	Foster-Martinez et al., 2020
	"Microscopic"	"Macroscopic"	Non-hydrostatic				Surfbeat ¹					
	Underlying Equation for Vegetation	N/A	Morison-type	Morison-type	Morison-type	Morison-type	Mendez and Losada, 2004	Morison-type	Mendez and Losada, 2004	Modified NAS, 1977	Kobayashi et al., 1993	
	Flexibility	Y	Y	N	N	N	N	N	Y	N		
	Inertial Force	Y	Y	Y	N	N	N	N	N	N		
	Layering	Y	Y	Y	N	Y	N	Y	N	N		
	Horizontal Cylinders	Y	N	Y	N	N	N	N	N	N		
	Canopy and Porosity Hydrodynamics	Y	Porosity incorporated as modified k - ϵ and drag force	Canopy flow through turbulence	Porosity, Canopy flow converted to TKE	N	Porous in-canopy flow	Nonlinearity in canopy flow	N	N	N	
Inputs	Maximum Dimensionality	3D		3D	3D	2D	2D	2D	2D	1D	1D	
	Vegetation	Exact morphology		Section height, density, stem size, Young's modulus	Section height, stem size, density	Average height, stem size, density	Section height, stem size, density	Average height, stem size, density	Section height, stem size, density	Average height, stem size, density	Average height, stem size, density, fraction of coverage, frontal area ratio ²	
	Calibrated Parameters	N/A	Drag coefficient	Drag coefficient, virtual mass coefficient	Added mass coefficient, drag coefficient, TKE and dissipation rate coefficients	Drag coefficient	Drag coefficient	Drag coefficient	Drag coefficient	Drag coefficients, seacoast region parameters ²	Exponential decay constant	

Validation and Verification	Vegetation Implementation	Reduced scale lab	Reduced scale lab	Analytical (Mendez and Losada, 2004), Reduced scale lab, Numerical (SWAN)	Reduced scale lab	Reduced scale lab	Reduced scale lab	Analytical (Mendez and Losada, 2004), Reduced scale lab	Analytical (Mendez and Losada, 2004)	Field
-----------------------------	---------------------------	-------------------	-------------------	---	-------------------	-------------------	-------------------	---	--------------------------------------	-------

974 1. Short wave phase averaged

975 2. Inputs vary with vegetation type

976 Figure 1. Frequency of categories of future engineering needs for emergent vegetation
977 implementation cited by experts in survey responses (N=32).

978 Figure 2. Frequency of categories of future socioeconomic and policy needs for emergent vegetation
979 implementation cited by experts in survey responses (N=32).

980 Figure 3. Framework for characterizing the wave attenuation performance of an emergent vegetation
981 system.

982 Figure 4. Expanded framework for NNBF describing objectives, variables affecting system
983 performance, models for assessing performance, and engineering, ecological and social, and
984 unintended outcomes.