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bay-side events, which create hazardous travel conditions and may restrict access to surrounding
communities. This study investigates the vulnerability of a segment of highway passing through
the Pea Island National Wildlife Refuge in the Outer Banks, North Carolina, USA. Publicly available
data, computational modeling, and field observations of shoreline change are synthesized to de-
velop fragility models for roadway flooding and marsh condition. At 99% significance, peak daily
water levels and significant wave heights at nearby monitoring stations are determined as signifi-
cant predictors of roadway closure due to flooding. Computational investigations of bay-side
storms identify peak water levels and buffer distance between the estuarine shoreline and the road-
way as significant predictors of roadway transect flooding. To assess the vulnerability of the marsh
in the buffer area, a classification scheme is proposed and used to evaluate marsh condition due to
long-term and episodic (storm) stressors. Marsh vulnerability is found to be predicted by the long-
term erosion rate and distance from the shoreline to the 5-m depth contour of the nearby flood tidal
channel. Results indicate the importance of erosion mitigation and marsh conservation to enhance
the resilience of coastal transportation infrastructure.

Keywords: Coastal Transportation Infrastructure; Flood Vulnerability; Marsh Erosion; Rapid Re-
sponse; Computational Modeling; Shoreline Assessment; Fragility Modeling
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1. Introduction

Coastal highways and bridges are critical links in the transportation network for the
movement of goods and people on a daily basis and especially for access by emergency
services during post-disaster response. Along narrow barrier islands, this infrastructure
is typically low-lying and near the water, restricting connectivity and posing continuous
risks to operability, maintenance, and resilience. Recent studies predict that flooding of
coastal highways and bridges will continue to increase with rising sea levels and intensi-
fying storm surges due to climate change [1].

Previous studies have analyzed the vulnerability of coastal transportation infrastruc-
ture, including bridges [2-9], near-coast roadways [10-15], and other infrastructure [16]
subject to coastal storm or multi-hazard environmental conditions. Vulnerabilities are of-
ten presented in the form of probabilistic fragility functions relating the likelihood of dam-
age or failure to a hazard intensity measure. For example, Kameshwar and Padgett [3]
developed parameterized fragility functions assessing the probability of structural failure
of highway bridges subject to earthquake and hurricane events. Another study developed
a model for coastal bridges subject to sea level rise, landscape changes, and flooding;
structural failure was estimated based on storm surge, waves, and inundation duration
[4]. Beyond assessing bridge survival or failure, Padgett et al. [2] derived fragility curves
considering bridge parameters and environmental conditions, predicting the likelihood
of bridges exceeding a given damage state based on a four-point damage scale ranging
from minor to complete. Storm surge and number of spans were significant predictors of
damage for the bridges considered in the study.

In addition to bridges, effects of coastal flood hazards on highways and road net-
works have also been analyzed [12, 17]. In an assessment of the cascading effects of hur-
ricane waves and surge on physical (buildings and roadways) and social systems,
Fereshtehnejad, et al. [12] assessed roadway failure in Galveston Island, TX, USA, using a
fragility model based on distance to the roadway from the Gulf of Mexico and inundation
duration. Modes of roadway failure including surface layer loss, cracking and potholes,
and base failure were considered in the model. A failure model for roadways subject to
surface runoff-driven flooding events was developed by Wang et al. [10]; the model dis-
tinguished between direct and indirect roadway failures based on the roadway’s flooded
condition and connectivity to other roadway segments.

Few coastal highway vulnerability studies have also considered local morphological
features that affect roadway fragility to flood impacts. For example, Nasrallah [11] used
remotely sensed data and a morphological numerical model to forecast the storm impacts
on coastal dunes that can lead to overwash and increased vulnerability of the North Car-
olina (N.C.) 12 highway. Three vulnerability indicators for coastal roadways in barrier
islands based on island width, dune crest elevation above the roadway, and distance from
edge of pavement to the ocean shoreline were developed by Veldsquez-Montoya et al.
[14]. Another study examined the effectiveness of distinct morphological indicators in
predicting storm impacts to barrier island roadways, with the distance from edge of pave-
ment to the dune toe identified as the most effective indicator of highway vulnerability
[18]. However, these studies have focused mainly on ocean-side events and features (i.e.,
dunes), leading to a knowledge gap in the effects of bay-side storm events on coastal trans-
portation corridors based on the extent and condition of the bay-side shoreline. Similar to
ocean-side storms, bay-side storm events can cause significant issues for transportation
facilities, including flooding, shoreline erosion, deposition of sediment and vegetation,
and wave damage in areas with large fetch.

Previous studies have considered the vulnerability or response of barrier island and
marsh shorelines to anthropogenic stressors [19-21], sea level rise [22-24], and episodic
and long-term processes [25-27]. Many studies present marsh response parameters such
as conversion to open water, erosion or accretion, or change in elevation or shoreline po-
sition [22-25, 27], based on aerial imagery [28], field observations [29, 30], and/or compu-
tational modeling [31]. However, few studies have synthesized remotely-sensed, field-
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based, and computationally modeled data to stochastically investigate effects of erosive 83
stressors on marsh condition as healthy or eroded to varying degrees of severity. 84
This paper presents a vulnerability assessment for a coastal highway in North Caro- 85
lina’s Outer Banks, focusing on bay-side impacts, by considering publicly available road- 86
way closure data and a synthesis of numerical model outputs and rapid-response field 87
observations following two storm events. We focus on the roadway vulnerability to flood- 88
ing, which disrupts access and exacerbates degradation of transportation components. We 89
further consider the interconnected performance of natural elements and transportation 90
infrastructure by considering both the effect of the marsh buffer distance on the likelihood 91
of roadway flooding and the vulnerability of the marsh itself to long-term and episodic = 92
erosion. 93
The remainder of this paper is structured as follows: Section 2 describes the study 94
area, which comprises the section of a state highway passing through the Pea Island Na- 95
tional Wildlife Refuge. This section of roadway is vulnerable to bay-side flooding owing 96
to the absence of dunes on the estuarine side, leaving the road unprotected during ele- 97
vated bay-side water level conditions. Methods for (i) analysis of roadway closure based 98
on publicly available traffic information data, (ii) computational modeling of bay-side 99
storm scenarios, (iii) observations of shoreline change through assessments of aerial im- 100
agery and shoreline surveys conducted following two storm events, and (iv) fragility 101
model development for characterizing roadway and marsh vulnerability are detailed in 102
Section 3. Section 4 presents results of long-term and short-term shoreline change and 103
significant predictors of roadway or marsh failure, showing fragility curves derived for 104
roadway flooding and marsh erosion. Finally, Section 5 discusses broader implications, 105
considerations, and conclusions of this study. 106

2. Study Site 107

The N.C. 12 highway is the only coastal roadway connecting the Outer Banks of 108
North Carolina from the communities of Corolla to Hatteras and providing direct access 109
to the barrier islands from the mainland. The projected 2025 average daily traffic volume 110
of N.C. 12 is estimated to be 9,600 vehicles per day and 15,400 vehicles per day during the 111
summer [32]. Given the location of this major roadway along narrow sections of barrier 112
islands and its exposure to storms and high-water events, the road has been the subject of 113
multiple vulnerability studies in the last two decades [13,33,34]. Such studies have identi- 114
fied several vulnerable hotspots where the roadway is subject to frequent flooding and 115
sand burial due to overwash. Some of these vulnerable hotspots are located towards the 116
northern end of Hatteras Island, where the Pea Island National Wildlife Refuge is located. 117

The specific stretch of shoreline and roadway analyzed here is located on the bay side 118
of the northernmost end of Hatteras Island. The roadway section corresponds to the ap- 119
proach of the southern terminus of the Marc Basnight Bridge (Fig. 1), located just south of 120
Oregon Inlet. The bridge is located in Dare County, for which the United States Census 121
Bureau [35] reports a 2021 population of 37,826, however, the daily population can in- 122
crease to 225,000 to 300,000 during the summer tourist season from June to August [36]. 123
The nearest communities to the study area are Nags Head, located 22 km to the north, and 124
Rodanthe, located 21 km to the south; restricted access to this section of roadway cuts off 125
access to towns further south including Salvo, Avon, Buxton, and Hatteras Village. While 126
these communities are exposed to coastal flood hazards due to hurricanes, nor’easters, or 127
erosion, they are particularly impacted by damage or closure of this stretch of highway, 128
which may delay or limit access by emergency response teams in the event of closure due 129
to hazardous conditions or adversely affect tourism during summer months. 130

At this section of the barrier island, the ocean shoreline is accreting due to the pres- 131
ence of the terminal groin in the north end of the island [37]. However, the estuarine shore- 132
line has been eroding at rates up to 3 to 4 m/yr [38]. This shoreline erosion has been at- 133
tributed to the morphological evolution of the adjacent Oregon Inlet and the rotation of 134
the main channel that causes the southernmost flood channel of the inlet (location shown 135
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in Fig. 1(C)) to encroach into the down drift back barrier [39]. This region was also identi-
fied as a potential location for barrier island breaching by the Federal Highway Admin-
istration (FHWA) and North Carolina Department of Transportation (NCDOT) [32], due
to its proximity to Oregon Inlet and the possibility of storm surge flows through adjacent
shore-normal estuarine channels.
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Figure 1. Location of study site along the US East Coast. Region of panel (B) is indicated in panel (A);

Panel (B) shows the location of water level (Sta. 8652587 OI Marina) and wave height (Sta. 44095 OI
Waverider) stations employed in this work, with an arrow and black rectangle indicating the loca-
tion of Panel (C). Panel (C) shows a detailed view of the study site just south of Oregon Inlet along
with the numerical model output stations (black circles) and the location of the 5-m depth contours
of the inlet flood channel adjacent to the shoreline as of October 2019 (dotted) and April 2021 (solid).
The stations are named with the convention S=shoreline, M=marsh, and R=roadway.

Although the study site is located on the bay-side of the barrier island system, its
proximity to a tidal inlet makes it responsive to both ocean and bay conditions. Monitor-
ing of such conditions at the Albemarle-Pamlico Sound (bay side) and ocean side is avail-
able via permanent observational stations. Four kilometers north of the study site, on the
northern bay-side of Oregon Inlet, there is a NOAA Tides and Currents station (Oregon
Inlet Marina, NC - Station ID: 8652587, herein referred to as the “marina tide gauge”) that
has recorded hourly and six-minute water levels since April 1994 and January 1996, re-
spectively, and two-minute scalar average wind speeds, two-minute vector average wind
directions, and maximum five-second wind gusts since November 2007. Station 44095 -
Oregon Inlet, NC, herein referred to as the “waverider buoy,” is owned by the University
of North Carolina Coastal Studies Institute and provides the closest wave measurements
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to the study site, including significant wave height, dominant wave period, and mean 161
wave direction every 30 minutes. The station is about 18.5 km offshore of the study site at 162
a water depth of 18.3 m and has been recording wave parameters intermittently since 2012 163
(Fig. 1). 164

The top 10 highest total water levels recorded at the marina tide gauge have been 165
above 1.02 m (referenced with respect to the North American Datum of 1988 (NAVDS88)). 166
The top three total water levels recorded, referenced with respect to NAVDSS8, were those 167
corresponding to Hurricane Irene in 2011 (2.070 m), Hurricane Floyd in 1999 (1.525 m) 168
and Hurricane Michael in 2018 (1.445 m). Numerical simulations of Hurricane Irene indi- 169
cate that wind-generated surface waves and wind-driven storm surge are some of the 170
most important contributors to extreme flooding along estuarine shorelines [40]. In addi- 171
tion to extreme seasonal events, long-term processes like relative sea level rise contribute 172
to the potential vulnerability of the stretch of shoreline. The linear relative sea level trend 173
observed at the marina tide gauge is 5.32 +/- 1.12 mm/yr [41], with low (17th percentile) 174
and high (83rd percentile) relative sea level rise contributions projected for 2050 ranging 175
from 0.29 m to 0.45 m considering 0.3 m global sea level rise and from 0.42 m to 0.71 m 176

considering 2.0 m global mean sea level rise [42]. 177
3. Methods 178
3.1. NCDOT Traveler Information Management System Roadway Closure Analysis 179

NCDOT supports a Traveler Information Management System (TIMS), available to 180
the public at DriveNC.gov. This system posts real-time notifications of closure or hazard- 181
ous conditions along North Carolina roadways, enabling travelers to modify behavior ac- 182
cordingly [43]. The notifications and records of closures can also provide a record of oc- 183
currence frequency and location of hazardous conditions. A record of the TIMS data was 184
provided to the authors by NCDOT, comprising incidents on N.C. 12 along the Pea Island 185
National Wildlife Refuge from September 2017 to November 2019. The dates of closure or 186
hazardous conditions were recorded, and the corresponding daily maximum significant 187
wave height and water level data were obtained from the waverider buoy and the marina 188
tide gauge records, respectively. 189

3.2. Numerical Model & Description of Storm Scenarios 190

Field observations of water levels during 4 weeks in 2019 suggest that there are dif- 191
ferences in the water level signals between the study site located south of Oregon Inlet 192
and the marina tide gauge located north of the inlet. Such differences in water level signals 193
may have consequences for predicting flooding [44]. Tidal amplitude at the study siteis2 194
to 3 times larger than at the marina tide gauge. The lowpass filtered subtidal water levels 195
(48-hr cutoff period) are correlated with an 2= 0.42, suggesting differences in response to 196
winds, waves, and surge. Given the spatial variability of the water level signals around 197
the inlet, a numerical model was used to predict flooding scenarios for a range of condi- 198
tions and to specifically investigate flooding by bay-side storm events. 199

A hydrodynamic two-dimensional Delft 3D [45] model coupled with wave model 200
Simulating WAves Nearshore (SWAN) [46] is used in this study. The numerical model 201
resolution varies from 470 m offshore to 15 m and 20 m within the inlet and the marshes 202
behind N.C. 12. The computational domain includes a large portion of the Albemarle- 203
Pamlico Sound and extends to the edge of mainland North Carolina and 35 m along the 204
barrier island system. Wetting and drying thresholds were adjusted to better represent 205
the flooding extent caused by Hurricane Irene (2011). Implementation of mean depth at 206
the grid cell faces and a threshold depth of 0.01 m resulted in the best match of the simu- 207
lated flooding extent and the bay-side wrack line as observed from aerial imagery taken 208
after Hurricane Irene. 209

As part of the calibration and validation of the numerical model, simulations’ outputs 210
were compared to in-situ water levels and depth-averaged velocities for 30 days in the fall ~ 211
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of 2019 and 15 days in the summer of 2020. The Willmott Skill Scores [47] for both periods 212
for water levels ranged from 0.87 (very good) to 0.94 (excellent), providing confidence in 213
the simulated hydrodynamics at the site. More details on the numerical model set up, 214
calibration, and validation are presented in [14,48]. In addition to comparisons of water 215
levels and currents, simulated flooding extent was compared against 11 days of field 216
measurements of high-tide flooding on the study site during October 2019 [44]. Peak 217
measured water depths near station S3 on the marsh ranged from 0.3 m to 0.8 m. The root- 218
mean-square (RMS) difference between observed and simulated peak water depths at 219
each high tide for this location was 0.09 m, with the model tending to overestimate small 220
peak water depths (< 0.5 m) and show better agreement for higher peak water depths. The 221
R? was 0.80, suggesting good agreement between the simulated and observed flood ele- 222
vations on the marsh. 223

A total of 42 storm scenarios with varying water level and wave conditions at the 224
boundary (water levels at the bay boundaries ranging in 0.5-m intervals from 0.5 m to 3.5 225
m and significant wave heights at the ocean boundary ranging in 1-m intervals from 2 m 226
to 7 m) were generated in the numerical model. The storm scenarios were set up to simu- 227
late bay-side water levels and ocean waves below, equal, and above those created by Hur- 228
ricane Irene (2011), which is the hurricane that has generated the largest bay-side surge 229
since 1979 [49]. 230

Monitoring stations were set up in the numerical model along ten cross-shore tran- 231
sects extending from the location of the N.C. 12 highway to the shoreline; locations of each ~ 232
numerical model output station are shown in Fig. 1(C). Each numerical model output sta- 233
tion recorded the occurrence (or not) of flooding at that station during a storm scenario. 234
The placement of the stations along cross-shore transects allowed for the investigation of =~ 235
marsh buffer distance in mitigating roadway flooding, with buffer distances determined 236
as the perpendicular distance from the roadway station to the estuarine shoreline. For the = 237
roadway transects considered, existing marsh buffer distances ranged from 38 m to 563 238
m. Ten numerical model output stations were established along each the roadway, the 239
marsh, and the estuarine shoreline, (30 total) to assess the frequency and extent of marsh 240
and roadway flooding during storm events (Fig. 1(C)). 241

3.3. Shoreline Change Analysis 242

Bimonthly aerial images from NCDOT taken from September 26, 2003 to April 16, 243
2021 were digitized in order to identify historic positions of the estuarine shoreline. Shore- 244
line change rates were calculated as a linear regression between shoreline position and 245
time, using the Digital Shoreline Analysis System (DSAS) developed by the United States 246
Geological Survey (USGS) [50]. 247

In addition to aerial datasets, local estuarine shoreline surveys were conducted peri- 248
odically from 2019 to 2021 to evaluate seasonal shoreline changes and effects of storms, 249
including a nor’easter in November 2019 and bay-side Hurricane Isaias in August 2020 250
(Table 1). Trimble R10 and R12 Global Navigation Satellite System (GNSS) Global Posi- 251
tioning Systems (GPS) with mobile connection to continuously operating reference sta- 252
tions (CORS) were used to survey the scarp edge of the marsh or the location of the dense 253
vegetation for all but the May 2021 survey. These systems have a reported horizontal ac- 254
curacy of 8 mm and vertical accuracy of 15 mm. The May 2021 survey was conducted with 255
a hand-held Trimble R1 with maximum precision 50 mm. Effort was made to perform all 256
surveys as close to low tide as possible. It is estimated that there was up to 30 cm of un- 257
certainty in visual identification/interpretation of the marsh edge. In some cases, areas 258
were inaccessible due to hazardous conditions and were not surveyed. These areas and 259
areas that were not consistently identified as either the marsh edge or the water line (i.e, 260
sandy portions of the estuarine shoreline) were not considered in the analysis, owing to 261
differences in measurement location not related to erosion. 262

263
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264
Table 1. Dates of shoreline surveys performed. 265
Max Water Level at Marina Max Significant Wave
Survey Dates Purpose/Event Tide Gauge between Surveys Height Waverider Buoy
(m NAVDS8) between Surveys (m)
November 13, 2019 i
(pre-storm) Nor’easter
16 -2 .6 (11/24/201 7.6 (11/16/201
November 25, 2019 November 16 - 20, 0.6 (11/24/2019) 6 (11/16/2019)
2019
(post-storm)
June 22, 2020 2020 Baseline --- ---
August 12, 2020 (post- Hurricane Isaias
0.9 (08/04/2020 4.4 (08/04/2020
storm) August 4, 2020 (08/04/ ) (08/04/ )
March 08, 2021 2021 Baseline - -
May 03, 2021 2021 Final Shoreline 0.5 (04/29/2021) 5.2 (03/19/2021)

The data points surveyed with the GPS system were imported into ArcGIS and con- 266
nected by lines using GIS tools. DSAS was used to create a series of transects at 5-m spac- 267
ing along the shorelines [50]. The distance from the shoreline to the baseline was calcu- 268
lated for each date to estimate the marsh edge shoreline change. 269

3.4. Channel Bathymetry Comparison 270

Two bathymetric datasets were collected in the study area as part of a collaboration 271
made possible via the During Nearshore Event eXperiment (DuNEX), a multi-institutional =~ 272
research program organized by the US Coastal Research Program [51]. An initial survey 273
was conducted on October 10, 2019 by staff from the National Science Foundation (NSF) 274
Natural Hazards Engineering Research Infrastructure (NHERI) Rapid Response Research 275
(RAPID) program [52]. The survey was performed using the NHERI RAPID program’s Z- 276
Boat 1800 with single beam echo sounder. The Z-Boat was remotely controlled by NHERI ~ 277
staff and performed soundings, which were located using an onboard Digital Global Po- 278
sitioning System (D-GPS). A second bathymetric survey was conducted on April 20, 2021 279
by Woods Hole Oceanographic Institution researchers (data release, [53]). The survey was 280
completed using a single beam echo sounder with an onboard GPS locator mounted ona 281
remotely-driven vessel [54]. For the initial survey, vertical elevations were adjusted to 282
NAVDS88 using VDatum and validated using water level data from the marina tide gauge. 283
For the second survey, Post-Processed Kinematic (PPK) processing methodologies were 284
used with CORS reference station (NCBI) located 10 km from the site to measure the ves- 285
sel’s position with 3 cm to 5 cm vertical and horizontal accuracy. These surveys were used = 286
to determine the position of the deepest part of the channel and to track channel migration 287
along the study area via changes in the 5-m NAVD88 depth contour adjacent to the estu- 288
arine shoreline. This contour was chosen because it marks the boundary of the deeper 289
portions of the channel where velocities are higher. 290

3.5. Empirical Fragility Derivation 291

Three sets of empirical fragility curves were developed: two sets of curves were de- 292
rived to predict roadway vulnerability to flooding based on either publicly available data 293
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or numerical model outputs, and one set of fragility curves was developed to identify 294
marsh vulnerability to erosion. Fragility curves were derived by fitting available data to 295
the Gaussian probability distribution, consistent with previous studies for engineering 296
applications that have fit damage data to normal or lognormal probability distributions 297
[2, 55-57]. Fragility curves derived using Method 1 were based on publicly available data 298
from 2017 to 2019 of daily environmental conditions from the marina tide gauge and wa- 299
verider buoy and roadway closure and hazard information for N.C. 12 from the NCDOT 300
TIMS data. Fragility curves created using Method 2 considered numerical outputs at the 301
study site from bay-side storm scenarios. Finally, fragility curves were created to assess 302
marsh vulnerability (Method 3) based on assessments of the marsh condition considering 303
shoreline surveys following storm events, long-term erosion rates, and proximity of the 304
nearby channel. For Methods 1 and 2, we define “failure” as the occurrence of flooding on 305
a section of roadway, leading to either a traffic closure/hazard report in the TIMS data 306
(Method 1) or a period of flooding at a roadway numerical model output station in the 307
numerical model simulations (Method 2). Therefore, fragility curves present the probabil- 308
ity of flood-based roadway closure owing to a vector of environmental and location vari- 309
ables. For Method 3, failure was defined based on empirical classification of the marsh as 310
either “healthy,” “eroded,” or “severely eroded” (Table 2). These classifications were de- 311
veloped based on a literature review [30,58,59] and field observations at the study area. A 312
detailed classification of the marsh shoreline was performed by the research team in May 313
2021 and is used in the fragility derivations. 314
The fragility curves based on publicly available data (Method 1) defined failure as 315
roadway designation as closed or hazardous in the TIMS data. Thus, curves assessed the 316
vulnerability of the roadway to flooding or overwash causing hazardous travel conditions 317
affecting roadway functionality. Independent variables measured at the marina tide 318
gauge included the maximum daily water level WLmax, peak daily 5-second wind gust, 319
Vwing, and corresponding wind direction 0. Water levels were referenced with respect to 320
NAVDS88. These variables were considered in addition to the maximum daily significant 321
wave height Hsmex and corresponding dominant wave period Tp: measured at the wa- 322
verider buoy. While TIMS data provide the county and often nearby cities of reported 323
incidents, the precise location of closures along N.C. 12 were not able to be determined, 324
and all flood-driven closure events (from either the ocean or the bay) were considered. 325
Therefore, landscape variables such as marsh or beach buffer distances to the roadway 326
were not able to be disaggregated. 327
328
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Table 2. Objective Marsh Classification Scheme for Categorization as Healthy, Eroded, or Severely Eroded.

Syst-em Shoreline Condition Marsh Condition Example
Rating
Slope less than 1:30%;
All or majority of marsh above
Gentle slope; 0.61 m (2 ft) elevation;
Plant growth on or Consistent plant growth
Healthy adjacent to shoreline; throughout marsh, including
Minimal to no exposed juvenile plants;
root mat. Intact root mat.
Slope between 1:30 and 1:10%;
Scarp less than 0.30 m (1 50% of marsh above 0.61 m (2
ft); ft) elevation;
Evidence of offshore (in-  Evidence of dead or otherwise
water) plant growth removed plants;
Eroded Intact or exposed root mat.
May include: Evidence of
undercutting or cracks, May include: signs of semi-
chunks of marsh breaking  regular flooding, evidence of
off along shoreline channel incursion or paleo
inlets.
Slope greater than 1:10%;
Scarp greater than 0.30 m Less than 50% of marsl'1 above
0.61 m (2 ft) elevation;
(10; Significant evidence of dead
Evidence of offshore (in-
plants or no plant growth;
Severely water) plant growth
Exposed root mat or no
Eroded

May include: Visible
chunks of marsh sloughed
off into water

evidence of root mat present.

May include: signs of regular
flooding, evidence of channel
incursion or paleo inlets.

* Slope parameter as defined in [58]

For Method 2, numerical model outputs from storm scenarios allowed for investiga-
tion of environmental conditions specifically leading to bay-side flooding. Roadway sec-
tion failure was determined based on a numerical model output of whether a station was
shown as flooded (failure) or remained dry over the duration of a storm scenario. Flooding
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was the most likely indicator of roadway closure in this situation, as the limited dimen- 335
sions of the infrastructure (two-lane roadway with minimal shoulder) provide minimal 336
opportunity to maintain traffic during inundation events. Variables considered in the nu- 337
merical model-based fragility curves included significant wave height at the boundary 338
Hspoundary, peak water level at the marina tide gauge WLuaxmaring, significant wave height at 339
the shoreline Hsshoreline, and peak water level at the shoreline WLunaxshoreline. The resolution of 340
the numerical model outputs further allowed for consideration of the marsh buffer dis- 341
tance Xwmarsh as a potential predictor of roadway vulnerability, where Xuarsi is defined as the 342
perpendicular distance between the numerical model output station and the estuarine 343
shoreline. 344

For fragility curves based on marsh condition (Method 3), two definitions of failure 345
for marshes were considered: one considering failure when the marsh segment was clas- 346
sified as “severely eroded” and one considering failure when the marsh segment was clas- 347
sified as “eroded” or “severely eroded” per Table 2. These conditions are important for 348
both the persistence of the marsh and the performance of the vegetation in shoreline sta- 349
bilization and infrastructure protection. Possible predictor variables influencing marsh 350
failure included (i) distance from the marsh shoreline to the shoreline-adjacent 5-m depth 351
contour in the channel Xsmcontorr based on bathymetric measurements taken in either Octo- 352
ber 2019 or April 2021 (Fig. 1), (ii) the slope of the channel between the 2-m contour and 353
5-m contour m2mesm, (iii) the rapid response erosion rate RR determined using a linear re- 354
gression of shoreline positions between November 2019 and March 2021 (Table 1), (iv) the 355
long term erosion rate LTR measured from satellite images of the shoreline at low tide 356
taken between 2003-2021, and (v) the percentage of time Tsss-02 that the modeled bed shear 357
stress exceeded a critical threshold (0.2 N/m2) near the marsh shoreline. This threshold 358
was defined based on the median grain size dso for the study site of 205 um [44] and the 359
0.2 N/m? minimum critical shear stress for sands with dse= 200 um as reported from flume 360
experiments [60,61]. 361

Backward multiple regression was used to determine fragility models for each track 362
within each method, and variables were assessed for importance based on their statistical ~ 363
p-value considering the 99% percent significance level [62]. Univariate regressions testing 364
the significance of individual variables were also considered for roadway and marsh vul- 365
nerability. For the three sets of fragility curve derivations, multiple variable “tracks” were 366
evaluated such that only one variable representative of an independent predictor was con- 367
sidered in any regression model. For example, marsh failure was modeled as a function 368
of distance to the 5-m depth contour in the channel. While distances were available from 369
both the 2019 and 2021 bathymetry data, only one distance (from either the 2019 or the 370
2021 bathymetry data) was included in a given regression analysis. The resulting fragili- 371
ties were then compared to determine which variable (e.g., Xsmeontour,2019, the distance from 372
shoreline to the 2019 bathymetry 5-m depth contour or Xsmeontour,2021, the distance from 373
shoreline to the 2021 bathymetry 5-m depth contour) was the more significant predictor 374
of marsh vulnerability. Goodness of fit was assessed based on each model’s deviance and 375
R? value, which describes the proportion of the variance in the data that is explained by 376

the predictor variables. 377
4. Results 378
4.1. Long-and Short-Term Shoreline Changes 379

Figure 2 shows the long-term shoreline change rates along the estuarine shoreline as 380
determined from the aerial imagery shorelines. The most severe erosion was observed in 381
the northern portion of the study area, with rates of over 4 m/year of shoreline recession. 382
Along the more southern portions of the study site, the shoreline was observed to be stable 383
to slightly accreting (less than 0.6 m/year of accretion). The shoreline classification on May 384
03, 2021 according to Table 2 is also shown in the figure. Areas of ongoing long-term 385
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erosion were often classified as severely eroded or eroded, and sections observed to be
stable were typically classified as healthy.

The results of the estuarine shoreline surveys illustrated that changes in shoreline
position over the shorter term could vary significantly depending on characteristics of the
events between surveys (Table 1). Despite this variation, evidence of marsh erosion was
observed during each of the rapid response shoreline surveys (following the nor’easter in
November 2019 and Hurricane Isaias in 2020), including marsh platform cracking and
scarps.

Long-term shoreline change
{2003-2021)

Linear Regression Rate (m/yr)

-06-0.0 Accretion

00
1.0
2.0
3.0
4.0

-1.0
-20
-3.0
-4.0
-5.0

Erosion

Shoreline Position

9/26/2003
— 4/16/2021

Classification

® Severely Eroded

Eroded
Healthy
Sandy

Figure 2. (A) Long-term shoreline change rate (m/year) at each transect (shore-perpendicular green-to-

red lines), determined using bimonthly aerial imagery. September 26, 2003 shoreline position (light
blue) and April 16, 2021 shoreline position (darker blue) shown to illustrate the severity of ongoing
erosion in the study area. (B) May 03, 2021 shoreline classification, showing severely eroded, eroded,
healthy, and sandy shorelines.

During the nor’easter in November 2019, ocean-side flooding and sand overwash led
to closure of the N.C. 12 Highway from the Basnight Bridge to Rodanthe, NC, from 17:00
November 16 to 10:00 November 20 [63,64]. During the rapid response shoreline survey
on November 25, many of the areas that exhibited signs of ongoing undercutting in the
pre-storm survey had eroded further, with escarpments observed throughout most of the
shoreline except within the southern pocket beach. The primary mechanism of erosion
appeared to be undercutting and slumping of the marsh platform, leading to sections of
marsh breaking away from the shoreline. The average marsh edge erosion during the
event, excluding the southern pocket beach region, was approximately 2.5 m along the
surveyed area. The recession was generally between 1 m and 3 m, with a maximum of 5.3
m measured just north of the pocket beach.

Hurricane Isaias, with a track landward of the barrier island system (Fig. 1), affected
the study area on August 04, 2020, and the rapid response shoreline survey was conducted
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on August 12, 2020. Results of the shoreline survey indicated that the highest rates of ero- 413
sion were in the northern to middle sections of the study area, consistent with historical 414
analyses. In general, there was more erosion during the November 2019 nor’easter than 415
during Hurricane Isaias. The average shoreline recession observed during Hurricane 416
Isaias was approximately 0.8 m, less than half that observed during the 2019 nor’easter. It 417
is theorized that this difference in shoreline response could be because of the longer du- 418
ration that the nor’easter affected the shoreline (~5 days) compared to the duration that 419
the hurricane affected the study area (~1 day). Additionally, differences in water levels 420
during each storm may have affected erosion rates. Hurricane Isaias’s maximum water 421
level was approximately 0.3 m higher than that of the 2019 nor’easter (Table 1). This higher 422
water level may have reduced the erosion by inundating the marsh and decreasing the 423
impact of waves on the marsh edge. Likely, a combination of these factors led to the re- 424
duced shoreline recession during Hurricane Isaias compared to the 2019 nor’easter. 425

The 2021 survey events were widely spaced and reflected ongoing difficulties with 426
travel during the coronavirus pandemic. Between March 08 and May 03, 2021, there were = 427
several smaller nor’easter events with a maximum water level at the marina of 0.5 m on 428
April 29, 2021, and maximum significant wave height at the waverider buoy of 5.2 mon 429
March 19, 2021 (Table 1). The marsh edge change between these surveys ranged from a 430
maximum of approximately 2 m of recession in the northern area to 3 m of advance in the 431
southern area due to seasonal marsh growth. 432

4.2. Marsh and Roadway Flooding due to Storm Scenarios 433

Numerical model output variables included peak water level at the marina tide 434
gauge, peak significant wave height and water level at each estuarine shoreline numerical 435
model output station, and occurrence of roadway or marsh flooding at each of the respec- 436
tive stations. For the range of storm scenarios considered, peak water levels at the marina 437
ranged from 0.46 m to 2.27 m, and resulting peak significant wave heights and peak water 438
levels at the shoreline numerical model output stations ranged from 0.01 m to 0.11 m and 439
0.51 m to 1.90 m, respectively. Excluding the cases driven by the lowest surge level (0.5 440
m), maximum water levels at the marina station were roughly 60% of the magnitude of 441
the surge level forced at the bay-side boundary. Given the extreme bay-surge conditions 442
imposed in the simulations, waves at the waverider buoy had minor contributions to wa- 443
ter level, with 0.08 m variability due to waves offshore of Oregon Inlet in the cases driven 444
by the lowest surge level (0.5 m) and decreasing in contribution as surge level inside the = 445
sound increased (0.006 m variability in maximum water level at the marina tide gauge is 446
due to offshore waves). 447

Of the ten numerical model output stations established along the length of the road- 448
way (Fig. 1), stations R3, R4, R6, R7, R8, and R9 did not have any flooding for any of the = 449
storm scenarios considered. Stations R0 and R5 flooded when the marina tide gauge water ~ 450
levels exceeded 1.91 m NAVDSS. Stations R1 and R2 were also flooded when marina wa- 451
ter levels exceeded 2.27 m NAVD88. Numerical model output stations along the landward 452
marsh edge suggested that all marsh stations flooded when the marina water levels ex- 453
ceeded 0.46 m NAVDSS8, except for stations SO, S1, and S2, which flooded when marina 454
water levels exceeded 1.18 m NAVDS88, 1.91 m NAVDS8S8, and 0.50 m NAVDSS, respec- 455
tively. 456

4.3. Fragility Curves 457

Results of the multivariate logistic regression for publicly available data (Method 1) 458
indicate that the maximum daily water level at the marina tide gauge and maximum sig- 459
nificant wave height at the waverider buoy are significant predictors (p <0.01) of roadway 460
closure due to either ocean or bay-side flooding (Table 3). Figure 3 provides an example 461
of fragility curves for Method 1, showing probability of roadway closure P(f): for four 462
different water levels as a function of significant wave height. Larger significant wave 463
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heights and larger water levels cause increased probability of failure (i.e., roadway closure 464
due to flooding). The ranges of water levels and significant wave heights considered in 465
the fragility model are -0.20 m < WLmax < 1.43 m and 0.44 m < Hsmax <7.59 m, respectively. 466
The R? value for the fragility model is 0.26, indicating that 26% of the variance in the data 467
is accounted for by maximum daily significant wave height and water level at the wa- 468
verider buoy and marina tide gauge, respectively. 469
While a model including peak wind gusts, wind direction, water levels, and signifi- 470
cant wave heights improves the R? value compared to the model considering only water 471
levels and significant wave heights by 0.05 (from 0.26 to 0.31), both wind speed and wind 472
direction are not significant predictors of roadway closure due to flooding (p > 0.01), alt- 473
hough wind direction is statistically significant at the 0.05 level. Univariate models con- 474
sidering wind speed or wind direction individually indicate that wind speed is a signifi- 475
cant predictor of roadway closure due to flooding, with p <0.01. However, wind direction 476
is not a significant predictor, potentially because bay-side and ocean-side flooding events 477
are not distinguished in the fragility model based on TIMS roadway closure data. These 478
results suggest that combinations of high wind speeds and directions may be correlated 479
with water levels at the marina tide gauge, with high marina water levels associated with 480
sustained periods of high westerly winds, while wind direction does not predict roadway 481
flooding without the co-occurrence of high directional wind speeds. 482
The low R? of the final model considering peak water levels and significant wave 483
heights (0.26) may partially be owing to differences in local drivers of flooding (e.g., the 484
water level at the shoreline of Pea Island [44]) from what was measured at publicly avail- 485
able gauges. In addition, other variables not able to be determined from publicly available 486
data (e.g., buffer distance, elevation of flooded roadway) are likely to contribute to road- 487
way vulnerability. Similarly, temporal considerations may also contribute to roadway in- 488
undation, such as previous flooding or rainfall events that saturate the soil, duration of 489
sustained directional winds, or duration of flooding and elevated significant wave height 490
conditions. 491
492
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Table 3. Summary of Fragility Model Derivation Methods, Definition of Failure, Data Sources, Variables Considered, Significant 493
Variables based on p < 0.01, and model R? values. 494
Significant
Variabl
Method  Failure Definition Data Sources arl'a bles Variables R2
Considered
(p-value)
Publicly available
1 Roadway closure from TIMS, marina Hs,max, WLmax, Tpd Vwilld, Hs/max (1149-12) 0.26
due to flooding tide gauge, 0 WLinax (1.17e-04) '
waverider buoy
Hs, oundary, WLmax,murina,
Roadway transect Numerical model oo WLmarina (8.2€-09)
2 . Hs,shoreline, WLmax,shnreline, 048
flooding outputs X Xonarsh (2.6e-06)
marsh,
Marsh Condition as Bathymetry data X5mcontuur,2019 (2489-04) 046
2019, 2021 ial
severely eroded (2019, 2021), aeria Kmeontour 2019, LTR (1.39%-04) 0.52
shoreline imagery
3 . X5mcontuur,2021, M2mto5m,,
Marsh conditionas ~ (2003-2021),rapid = gt i T Xomcontowr2019 (3.11e-04) 0.35
eroded or severely ~ response shoreline
eroded measurements LTR (1.39e-07) 0.52
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Figure 3. Probability of roadway failure P(f);, defined as roadway closure due to flooding based on TIMS 496
data, as a function of peak significant wave height Hsmna (Waverider buoy) for four peak water levels 497
(NAVDSS, marina tide gauge). 498

Considering the results of numerical model outputs for storm scenarios (Method 2), 499
roadway vulnerability to bay-side flooding is dependent on peak water level at the marina 500
tide gauge and buffer distance between the roadway transect and shoreline (p <0.01), for 501
marina water levels ranging 0.4 m to 2.2 m NAVDS88 and buffer distances ranging from 502
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P(),
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0.6

0.4

0.2

38 m to 563 m. Significant wave height at the boundary and significant wave height at the
shoreline are not significant indicators of bay-side flooding. The little significance of
waves in this method results from simulations only accounting for bay-side storms, where
the main flooding driver is bay-side surge that counteracts the effects of waves as they try
to propagate through the neighboring Oregon Inlet. While both water level at the marina
tide gauge and water level at the shoreline are found in separate models to be significant
predictors of bay-side roadway flooding, both models exhibit similar performance (R?=
0.48), even though there may be local variability in water levels at the shoreline that is not
captured consistently at the marina tide gauge. Water level at the marina tide gauge is
selected as the predictor variable in Fig. 4, owing to it being readily obtained from publicly
available data.

Figure 4(A) shows the probability of roadway transect flooding P(f): as a function of
water level at the marina tide gauge for a buffer distance of 50 m. 95% confidence intervals
are shown as dashed curves, and the solid fragility curve indicates that the probability of
roadway flooding increases with increased water levels at the marina tide gauge. Figure
4(B) shows the effect of buffer distance on roadway transect flood vulnerability, depicting
fragility curves for four buffer distances from the roadway based on water level at the
marina tide gauge. Probability of roadway transect flooding increases with decreasing
marsh buffer distance: for a water level at the marina tide gauge of 2.5 m (NAVDS8), the
probability of a roadway transect flooding increases from 0.18 for a 200-m buffer to 0.95
for a 50-m buffer. These results highlight the importance of mitigating erosion to maintain
large buffer distances between the bay-side shoreline and the roadway.
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Figure 4. Probability P(f): of roadway transect flooding as a function of water level WL at the marina tide

gauge (NAVDS88) for (A) buffer distance X =50 m (black curve) and 95% confidence intervals (black
dashed curves); (B) buffer distances X =50 m, 100 m, 150 m, and 200 m (black, red, blue, and green
curves, respectively).

For fragility curves investigating marsh failure (Method 3), the horizontal distance
from the marsh shoreline to the 5-m contour in the channel (ranging from 13.2 m to 66.5
m from 2019 data and 7.8 m to 49.5 m from 2021 data), long term erosion rate (ranging
from -2.3 m/yr (accretion) to 5.6 m/yr), and slope between the 2-m and 5-m contours in the
channel offshore of the marsh segment (ranging from 0.12 to 0.58) obtained from the 2021
bathymetry data are identified in univariate regression as significant variables predicting
marsh failure (p < 0.01). While the distance to the 5-m contour is identified as significant
from both the 2021 and 2019 bathymetry data, the fragility model using the 2019 bathym-
etry data provides a better description of the proportion of the variance in the data (se-
verely eroded model, R? = 0.46, severely eroded or eroded model, R? = 0.35) compared to
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P(7)

that fragility model using the 2021 bathymetry data (severely eroded model, R? = 0.40,
severely eroded or eroded model, R?= 0.22). The better performance of the fragility model
derived based on 2019 bathymetry data compared to the fragility model based on the
more recent survey suggests a lag between channel proximity (determined from bathy-
metric measurements) and shoreline erosion on a temporal scale of several months to
years.

The 2-m contour was not continuous, resulting in insufficient data to construct a fra-
gility model using the 2019 bathymetry data. However, sufficient data were available to
calculate the slope between the 2-m and 5-m contours obtained from the 2021 data, which
is identified as a significant predictor of marsh condition. The performance of the fragility
model based on channel slope (severely eroded model, R? = 0.33, severely eroded or
eroded model, R?= 0.37) is similar to that fragility model based on the distance to the 2019
5-m contour, slightly under-performing in its prediction of marsh classification as severely
eroded and slightly improving the prediction of marsh condition as either eroded or se-
verely eroded.

The best overall predictor variable based on statistical significance and R? value is the
long-term erosion rate, determined from overhead imagery of the marsh shoreline ob-
tained at low tide between 2003 and 2021 (severely eroded model, R? = 0.52, severely
eroded or eroded model, R?=0.52). Notably, multivariate regression considering both long
term erosion rate and distance from shoreline to the 5-m depth contour produces a fragil-
ity model with slightly better performance compared to univariate model (severely
eroded model, R? = 0.54, severely eroded or eroded model, R?= 0.53), but non-significant
p-values, indicating collinearity of these two predictor variables. Fragility curves are
shown in Fig. 5 for marsh classification as severely eroded (black curve with markers) or
eroded/severely eroded (black curve) as a function of (A) distance to the 2019 5-m contour
Xsmeontour2019 and (B) long term erosion rate LTR. Shoreline data are shown as colored sym-
bols, using a similar classification color scheme as in Fig. 2(B). As indicated in Fig. 2, many
of the areas classified as severely eroded or eroded (red squares and orange triangles in
Fig. 5, respectively) are associated with locations of high long-term erosion rates in the
northern to central sections of the study area. These areas, similarly, are associated with
closer proximity to the channel as indicated by the 5-m depth contour (Fig. 1).

P(),

X5mcontour,2019

40 60 80
(m) LTR (m/yr)

Figure 5. Probability P(f)s of marsh being classified as severely eroded (black curve with markers), prob-

ability P(f); of marsh being classified as eroded/severely eroded (black curve), with empirical data
showing shoreline classification as healthy (green circles), eroded (orange triangles), or severely
eroded (red squares) as a function of (A) distance (m) to 2019 5-m contour Xsmcontour,2019; (B) long term
erosion rate LTR (m/yr).
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5. Discussion & Conclusion 577
5.1. Implications for Planning 578

Empirical fragility curves derived from publicly available data and storm scenario 579
simulations indicate the importance of measurements at nearby monitoring stations in 580
predicting roadway inundation or closure due to flooding, particularly for bay-side 581
events. Therefore, results of this study may contribute to risk management programs in 582
the area: transportation planners may identify elevated water level conditions and take 583
precautionary action to mitigate roadway flooding or prevent unsafe travel conditions, 584
and coastal managers may identify adaptation alternatives to improve the resilience and 585
robustness of transportation infrastructure. The fragility curves based on numerical sim- 586
ulations identified marsh buffer distance as a significant predictor of bay-side roadway 587
flooding. An increased buffer distance of 150 m (from 50 m to 200 m) for a 2.5-m water 588
level reduces the likelihood of roadway transect flooding by over 75% for the hydrody- 589
namic conditions considered here, highlighting the importance of a healthy marsh buffer 590
between the shoreline and the roadway for mitigating flooding impacts. 591

SLR may exacerbate the vulnerability of coastal transportation infrastructure by in- 592
undating marshes and reducing the buffer distance between the shoreline and the road- 593
way. Interactions between marshes and developed near-shore infrastructure must alsobe 594
considered. While no adverse effects of the roadway on marsh erosion were observed at 595
this study area (i.e., marsh erosion was driven more by proximity to the channel and long- 59
term erosion rates related to channel velocity and/or sediment budget), effects of coastal 597
squeeze by near-shore infrastructure may limit the ability of vegetation to adapt to rising 598
sea levels [65,66]. Marsh condition is an essential component of roadway vulnerability (or 599
robustness) to bay-side flooding for the ranges of hydrodynamic conditions considered 600
here, in addition to its ecosystem services provided such as habitat for migratory birds 601
and loggerhead turtles [67] and carbon sequestration [68], which are particularly im- 602
portant given the location of the study area in a National Wildlife Refuge. Therefore, re- 603
sults indicate the importance of marsh monitoring and adaptive management through 604
conservation, restoration, and erosion mitigation measures. 605

As identified in the marsh vulnerability analysis, long-term erosion rates and prox- 606
imity to a tidal inlet flood channel affect marsh condition as severely eroded or eroded. 607
Therefore, steps may be required to reduce long term erosion rates by relocating the chan- 608
nel or providing some type of shoreline edge stabilization. Rapid response erosion rate 609
was not identified as a significant predictor of marsh condition in the fragility model, but 610
as observed in pre-and post-storm surveys for the 2019 nor’easter and 2020 Hurricane 611
Isaias, episodic events caused further erosion of already-eroding areas of the marsh shore- 612
line. These observations suggest that the pre-storm condition of the marsh may affect of 613
the severity of impact from episodic events: already-eroding marsh is vulnerable to more 614
erosion during storms, while healthier marsh (with more established vegetation and gen- 615
tle shoreline slope) may be more robust and resistant to storm damage. In other words, 616
for this study area, while the main drivers of shoreline condition are long term erosion 617
rates associated with proximity of the inlet flood channel, episodic events can exacerbate 618
existing erosion issues. A systems approach must be used to consider marsh vulnerability 619
and its connection to the vulnerability of coastal transportation infrastructure. 620

5.2. Study Considerations 621

While the fragility models considered here identified significant variables influenc- 622
ing roadway flooding or marsh condition, several idealizations and assumptions were 623
made in fragility model derivation. First, models were derived by fitting fragility data to 624
a Gaussian distribution and assume that data are normally distributed. Future work may 625
consider fitting data to alternative distributions such as the Weibull distribution or gener- 626
alized extreme value distribution [3, 12]. Similarly, variables not considered in fragility =~ 627
model derivation owing to unavailability or insufficient data may be significant 628
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contributors to roadway or marsh fragility. The relatively low R? values for all fragility =~ 629
models considered indicate that other variables are required to explain the variance in the 630
fragility models, or that larger sample sizes are required to improve confidence in fragility = 631
model outputs. For example, publicly available data could not identify locations of road- 632
way flooding, and therefore effects of buffer distance or flooded roadway elevation could 633
not be included. While roadway elevations were available in the numerical model, marsh 634
elevations were variable between the shoreline and roadway transect, and the range of 635
elevations for roadway numerical model output stations was small (<1.0 m). Therefore, 636
marsh buffer distance was selected as the landscape parameter mitigating roadway flood- 637
ing, although greater elevations in the marsh or roadway are expected to further mitigate 638
flooding impacts. 639

Similarly, sustained periods of high directional winds likely play an important role 640
in bay-side roadway flooding, and wave direction may be important in driving flooding 641
from the bay or ocean. While wind speed and direction are included in the fragility model 642
based on publicly available data, multi-variate regression indicates correlation between 643
hydrodynamic conditions (water levels at the marina tide gauge and significant wave 644
heights at the waverider buoy) and wind speed and/or direction. For example, high water 645
levels at the marina tide gauge are associated with high sustained westerly wind events. 646
The significance of wind speed and direction variables are likely reduced in the fragility 647
model based on publicly available roadway closure data, which does not distinguish be- 648
tween bay-side and ocean-side flooding-related closures. Fragility model derivations 649
based on numerical model outputs indirectly account for wind speed and direction, con- 650
sidering only water levels at the marina tide gauge and shoreline and significant wave 651
heights at the shoreline and boundary. However, peak directional wind speeds must be 652
sustained for durations sufficient to generate significant fetch-generated waves and water 653
level setup. Therefore, future work may consider explicitly including threshold wind 654
speeds, directions, and durations in fragility investigations. 655

Other temporal considerations likely play a role in both roadway vulnerability to 656
flooding and marsh vulnerability to erosion, such as duration of elevated water levels 657
and/or wave heights and pre-storm marsh or roadway condition based on the timing and 658
frequency of previous rainfall or inundation events. As indicated in the analysis of short- 659
term shoreline change following episodic events, longer-duration, lower intensity storms 660
(e.8., 2019 nor’easter) may have a more significant effect on event-driven shoreline erosion 661
(and flooding) than shorter duration, higher peak-intensity storms (e.g., 2020 Hurricane 662
Isaias). Processes occurring at longer temporal scales such as climate change, long-term 663
scour, and infrastructure deterioration, as well as the occurrence of multiple hazards, 664
should also be considered [8, 9]. Future work may thus consider the importance of time- 665
dependent predictors in roadway or marsh fragility. 666

Models presented here are case-specific to the study area considered, and only valid 667
for the range of water levels, wave heights, and landscape conditions observed at nearby 668
monitoring stations or tested in the numerical model. Future work may consider process- 669
based relationships between sediment transport and hydrodynamic forcing (e.g., current, 670
wave, and water level effects on bed shear stress or sediment transport). Relationships 671
identified here as significant must be verified with additional modeling or field observa- 672
tions for a range of sites and conditions before these features can effectively be incorpo- 673
rated into design guidance [58,69]. 674

While this study identified key relationships between roadway and marsh vulnera- 675
bility, environmental conditions, and landscape features, other considerations and vul- 676
nerabilities may make climate change adaptation in the area more complex. For example, 677
the subsidence [70] of the Outer Banks contributing to relative sea level rise may create 678
long-term challenges for adaptation at the study area, particularly considering issues of 679
coastal squeeze if the marsh is not able to retreat owing to the presence of the roadway.In 680
addition, implications of interventions at regional scales must be considered for both up- 681
drift and downdrift locations. Critical next steps for future work include the integration 682
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of fragility curves presented here, coupling the marsh vulnerability to the resulting dis- 683
ruption in roadway functionality and, ultimately, the losses suffered by affected commu- 684
nities. Risk-based approaches may further help to understand hazard probabilities with 685
community exposure and vulnerability. Finally, implications of mitigation actions (or in- 686
actions) on populations must be considered to ensure equitable shoreline management 687
approaches. Communication among stakeholders, engineers, and decision-makers is es- 688
sential to develop equitable and robust solutions for future climate change challenges. 689

5.3. Study Contributions 690

One contribution of this study is the proposed methodology for characterizing the 691
marsh shoreline as “healthy,” “eroded,” or “severely eroded” (Table 2). While guidance 692
exists for shoreline assessment providing criteria for healthy or eroding marshes based on 693
marsh slope or scarp height [58] and other studies have evaluated shoreline condition 694
following extreme events [30,59,71], vulnerability to erosion [72-77], and recovery after 695
storms [71,78], a standardized engineering methodology is required for assessing shore- 696
line condition considering the status of erosion, vegetation persistence, and other land- 697
scape factors. Therefore, Table 2 may be refined, expanded, and generalized for evaluation = 698
of the condition of marsh shorelines or other nature-based shoreline protection alterna- 699
tives. 700

This study further provides a framework for assessing vulnerability of coastal trans- 701
portation infrastructure to chronic and extreme bay-side flooding events as a function of ~ 702
hydrodynamic characteristics and interconnected with existing landscape geomorpholog- 703
ical processes. We present observations, modeled results, and empirical fragility curves 704
showing (i) relationships between roadway flooding, water levels, wave heights, and/or 705
marsh buffer distances and (ii) relationships between marsh condition and long-term ero- 706
sion and proximity to an encroaching flood channel. Results may be particularly useful 707
for emergency and transportation planners; generally, roadways are closed when flood- 708
ing or debris on the roadway create unsafe driving conditions. The fragility curves pre- 709
sented here allow for identification of water levels at which roadway flooding exceeds a 710
threshold likelihood, providing infrastructure agencies with the ability to address poten- 711
tially hazardous driving conditions or to mitigate potential flooding in advance of actual 712
impacts (e.g. dune reinforcement). Methods for reducing roadway vulnerability (e.g., by 713
increasing marsh buffer distance between the roadway and the bay-side shoreline) are 714
also identified; these results suggest the potential of nature-based alternatives such as 715
healthy wetland systems in bolstering the resilience of coastal transportation infrastruc- 716
ture. While results are specific to the study area, curves may be tested, calibrated, and 717
validated for other locations and predictor variables to inform future planning and flood 718
risk management efforts. 719

As coastal communities consider adaptation pathways to manage future coastal 720
flood hazards in the face of climate change and sea level rise, the interconnectivities be- 721
tween shoreline condition and infrastructure vulnerability may play a greater role in flood 722
risk management. Understanding these processes may allow decision-makers to best lev- 723
erage nature-based and conventional infrastructure to improve the resilience of coastal 724
transportation infrastructure and surrounding communities. 725
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