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Abstract: Coastal highways along narrow barrier islands are vulnerable to flooding due to ocean and 9 

bay-side events, which create hazardous travel conditions and may restrict access to surrounding 10 

communities. This study investigates the vulnerability of a segment of highway passing through 11 

the Pea Island National Wildlife Refuge in the Outer Banks, North Carolina, USA. Publicly available 12 

data, computational modeling, and field observations of shoreline change are synthesized to de- 13 

velop fragility models for roadway flooding and marsh condition. At 99% significance, peak daily 14 

water levels and significant wave heights at nearby monitoring stations are determined as signifi- 15 

cant predictors of roadway closure due to flooding. Computational investigations of bay-side 16 

storms identify peak water levels and buffer distance between the estuarine shoreline and the road- 17 

way as significant predictors of roadway transect flooding. To assess the vulnerability of the marsh 18 

in the buffer area, a classification scheme is proposed and used to evaluate marsh condition due to 19 

long-term and episodic (storm) stressors. Marsh vulnerability is found to be predicted by the long- 20 

term erosion rate and distance from the shoreline to the 5-m depth contour of the nearby flood tidal 21 

channel. Results indicate the importance of erosion mitigation and marsh conservation to enhance 22 

the resilience of coastal transportation infrastructure. 23 
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1. Introduction 29 

Coastal highways and bridges are critical links in the transportation network for the 30 

movement of goods and people on a daily basis and especially for access by emergency 31 

services during post-disaster response. Along narrow barrier islands, this infrastructure 32 

is typically low-lying and near the water, restricting connectivity and posing continuous 33 

risks to operability, maintenance, and resilience. Recent studies predict that flooding of 34 

coastal highways and bridges will continue to increase with rising sea levels and intensi- 35 

fying storm surges due to climate change [1].  36 

Previous studies have analyzed the vulnerability of coastal transportation infrastruc- 37 

ture, including bridges [2-9], near-coast roadways [10-15], and other infrastructure [16] 38 

subject to coastal storm or multi-hazard environmental conditions. Vulnerabilities are of- 39 

ten presented in the form of probabilistic fragility functions relating the likelihood of dam- 40 

age or failure to a hazard intensity measure. For example, Kameshwar and Padgett [3] 41 

developed parameterized fragility functions assessing the probability of structural failure 42 

of highway bridges subject to earthquake and hurricane events. Another study developed 43 

a model for coastal bridges subject to sea level rise, landscape changes, and flooding; 44 

structural failure was estimated based on storm surge, waves, and inundation duration 45 

[4]. Beyond assessing bridge survival or failure, Padgett et al. [2] derived fragility curves 46 

considering bridge parameters and environmental conditions, predicting the likelihood 47 

of bridges exceeding a given damage state based on a four-point damage scale ranging 48 

from minor to complete. Storm surge and number of spans were significant predictors of 49 

damage for the bridges considered in the study. 50 

In addition to bridges, effects of coastal flood hazards on highways and road net- 51 

works have also been analyzed [12, 17]. In an assessment of the cascading effects of hur- 52 

ricane waves and surge on physical (buildings and roadways) and social systems, 53 

Fereshtehnejad, et al. [12] assessed roadway failure in Galveston Island, TX, USA, using a 54 

fragility model based on distance to the roadway from the Gulf of Mexico and inundation 55 

duration. Modes of roadway failure including surface layer loss, cracking and potholes, 56 

and base failure were considered in the model. A failure model for roadways subject to 57 

surface runoff-driven flooding events was developed by Wang et al. [10]; the model dis- 58 

tinguished between direct and indirect roadway failures based on the roadway’s flooded 59 

condition and connectivity to other roadway segments.  60 

Few coastal highway vulnerability studies have also considered local morphological 61 

features that affect roadway fragility to flood impacts. For example, Nasrallah [11] used 62 

remotely sensed data and a morphological numerical model to forecast the storm impacts 63 

on coastal dunes that can lead to overwash and increased vulnerability of the North Car- 64 

olina (N.C.) 12 highway. Three vulnerability indicators for coastal roadways in barrier 65 

islands based on island width, dune crest elevation above the roadway, and distance from 66 

edge of pavement to the ocean shoreline were developed by Velásquez-Montoya et al. 67 

[14]. Another study examined the effectiveness of distinct morphological indicators in 68 

predicting storm impacts to barrier island roadways, with the distance from edge of pave- 69 

ment to the dune toe identified as the most effective indicator of highway vulnerability 70 

[18]. However, these studies have focused mainly on ocean-side events and features (i.e., 71 

dunes), leading to a knowledge gap in the effects of bay-side storm events on coastal trans- 72 

portation corridors based on the extent and condition of the bay-side shoreline. Similar to 73 

ocean-side storms, bay-side storm events can cause significant issues for transportation 74 

facilities, including flooding, shoreline erosion, deposition of sediment and vegetation, 75 

and wave damage in areas with large fetch. 76 

Previous studies have considered the vulnerability or response of barrier island and 77 

marsh shorelines to anthropogenic stressors [19-21], sea level rise [22-24], and episodic 78 

and long-term processes [25-27]. Many studies present marsh response parameters such 79 

as conversion to open water, erosion or accretion, or change in elevation or shoreline po- 80 

sition [22-25, 27], based on aerial imagery [28], field observations [29, 30], and/or compu- 81 

tational modeling [31]. However, few studies have synthesized remotely-sensed, field- 82 
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based, and computationally modeled data to stochastically investigate effects of erosive 83 

stressors on marsh condition as healthy or eroded to varying degrees of severity.  84 

This paper presents a vulnerability assessment for a coastal highway in North Caro- 85 

lina’s Outer Banks, focusing on bay-side impacts, by considering publicly available road- 86 

way closure data and a synthesis of numerical model outputs and rapid-response field 87 

observations following two storm events. We focus on the roadway vulnerability to flood- 88 

ing, which disrupts access and exacerbates degradation of transportation components. We 89 

further consider the interconnected performance of natural elements and transportation 90 

infrastructure by considering both the effect of the marsh buffer distance on the likelihood 91 

of roadway flooding and the vulnerability of the marsh itself to long-term and episodic 92 

erosion. 93 

The remainder of this paper is structured as follows: Section 2 describes the study 94 

area, which comprises the section of a state highway passing through the Pea Island Na- 95 

tional Wildlife Refuge. This section of roadway is vulnerable to bay-side flooding owing 96 

to the absence of dunes on the estuarine side, leaving the road unprotected during ele- 97 

vated bay-side water level conditions. Methods for (i) analysis of roadway closure based 98 

on publicly available traffic information data, (ii) computational modeling of bay-side 99 

storm scenarios, (iii) observations of shoreline change through assessments of aerial im- 100 

agery and shoreline surveys conducted following two storm events, and (iv) fragility 101 

model development for characterizing roadway and marsh vulnerability are detailed in 102 

Section 3. Section 4 presents results of long-term and short-term shoreline change and 103 

significant predictors of roadway or marsh failure, showing fragility curves derived for 104 

roadway flooding and marsh erosion. Finally, Section 5 discusses broader implications, 105 

considerations, and conclusions of this study. 106 

2. Study Site 107 

The N.C. 12 highway is the only coastal roadway connecting the Outer Banks of 108 

North Carolina from the communities of Corolla to Hatteras and providing direct access 109 

to the barrier islands from the mainland. The projected 2025 average daily traffic volume 110 

of N.C. 12 is estimated to be 9,600 vehicles per day and 15,400 vehicles per day during the 111 

summer [32]. Given the location of this major roadway along narrow sections of barrier 112 

islands and its exposure to storms and high-water events, the road has been the subject of 113 

multiple vulnerability studies in the last two decades [13,33,34]. Such studies have identi- 114 

fied several vulnerable hotspots where the roadway is subject to frequent flooding and 115 

sand burial due to overwash. Some of these vulnerable hotspots are located towards the 116 

northern end of Hatteras Island, where the Pea Island National Wildlife Refuge is located.  117 

The specific stretch of shoreline and roadway analyzed here is located on the bay side 118 

of the northernmost end of Hatteras Island. The roadway section corresponds to the ap- 119 

proach of the southern terminus of the Marc Basnight Bridge (Fig. 1), located just south of 120 

Oregon Inlet. The bridge is located in Dare County, for which the United States Census 121 

Bureau [35] reports a 2021 population of 37,826; however, the daily population can in- 122 

crease to 225,000 to 300,000 during the summer tourist season from June to August [36]. 123 

The nearest communities to the study area are Nags Head, located 22 km to the north, and 124 

Rodanthe, located 21 km to the south; restricted access to this section of roadway cuts off 125 

access to towns further south including Salvo, Avon, Buxton, and Hatteras Village. While 126 

these communities are exposed to coastal flood hazards due to hurricanes, nor’easters, or 127 

erosion, they are particularly impacted by damage or closure of this stretch of highway, 128 

which may delay or limit access by emergency response teams in the event of closure due 129 

to hazardous conditions or adversely affect tourism during summer months.  130 

At this section of the barrier island, the ocean shoreline is accreting due to the pres- 131 

ence of the terminal groin in the north end of the island [37]. However, the estuarine shore- 132 

line has been eroding at rates up to 3 to 4 m/yr [38]. This shoreline erosion has been at- 133 

tributed to the morphological evolution of the adjacent Oregon Inlet and the rotation of 134 

the main channel that causes the southernmost flood channel of the inlet (location shown 135 
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in Fig. 1(C)) to encroach into the down drift back barrier [39]. This region was also identi- 136 

fied as a potential location for barrier island breaching by the Federal Highway Admin- 137 

istration (FHWA) and North Carolina Department of Transportation (NCDOT) [32], due 138 

to its proximity to Oregon Inlet and the possibility of storm surge flows through adjacent 139 

shore-normal estuarine channels. 140 

 141 

 142 

Figure 1. Location of study site along the US East Coast. Region of panel (B) is indicated in panel (A); 143 
Panel (B) shows the location of water level (Sta. 8652587 OI Marina) and wave height (Sta. 44095 OI 144 
Waverider) stations employed in this work, with an arrow and black rectangle indicating the loca- 145 
tion of Panel (C). Panel (C) shows a detailed view of the study site just south of Oregon Inlet along 146 
with the numerical model output stations (black circles) and the location of the 5-m depth contours 147 
of the inlet flood channel adjacent to the shoreline as of October 2019 (dotted) and April 2021 (solid). 148 
The stations are named with the convention S=shoreline, M=marsh, and R=roadway. 149 

Although the study site is located on the bay-side of the barrier island system, its 150 

proximity to a tidal inlet makes it responsive to both ocean and bay conditions. Monitor- 151 

ing of such conditions at the Albemarle-Pamlico Sound (bay side) and ocean side is avail- 152 

able via permanent observational stations. Four kilometers north of the study site, on the 153 

northern bay-side of Oregon Inlet, there is a NOAA Tides and Currents station (Oregon 154 

Inlet Marina, NC - Station ID: 8652587, herein referred to as the “marina tide gauge”) that 155 

has recorded hourly and six-minute water levels since April 1994 and January 1996, re- 156 

spectively, and two-minute scalar average wind speeds, two-minute vector average wind 157 

directions, and maximum five-second wind gusts since November 2007. Station 44095 - 158 

Oregon Inlet, NC, herein referred to as the “waverider buoy,” is owned by the University 159 

of North Carolina Coastal Studies Institute and provides the closest wave measurements 160 
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to the study site, including significant wave height, dominant wave period, and mean 161 

wave direction every 30 minutes. The station is about 18.5 km offshore of the study site at 162 

a water depth of 18.3 m and has been recording wave parameters intermittently since 2012 163 

(Fig. 1). 164 

The top 10 highest total water levels recorded at the marina tide gauge have been 165 

above 1.02 m (referenced with respect to the North American Datum of 1988 (NAVD88)). 166 

The top three total water levels recorded, referenced with respect to NAVD88, were those 167 

corresponding to Hurricane Irene in 2011 (2.070 m), Hurricane Floyd in 1999 (1.525 m) 168 

and Hurricane Michael in 2018 (1.445 m). Numerical simulations of Hurricane Irene indi- 169 

cate that wind-generated surface waves and wind-driven storm surge are some of the 170 

most important contributors to extreme flooding along estuarine shorelines [40]. In addi- 171 

tion to extreme seasonal events, long-term processes like relative sea level rise contribute 172 

to the potential vulnerability of the stretch of shoreline. The linear relative sea level trend 173 

observed at the marina tide gauge is 5.32 +/- 1.12 mm/yr [41], with low (17th percentile) 174 

and high (83rd percentile) relative sea level rise contributions projected for 2050 ranging 175 

from 0.29 m to 0.45 m considering 0.3 m global sea level rise and from 0.42 m to 0.71 m 176 

considering 2.0 m global mean sea level rise [42]. 177 

3. Methods  178 

3.1. NCDOT Traveler Information Management System Roadway Closure Analysis 179 

NCDOT supports a Traveler Information Management System (TIMS), available to 180 

the public at DriveNC.gov. This system posts real-time notifications of closure or hazard- 181 

ous conditions along North Carolina roadways, enabling travelers to modify behavior ac- 182 

cordingly [43]. The notifications and records of closures can also provide a record of oc- 183 

currence frequency and location of hazardous conditions. A record of the TIMS data was 184 

provided to the authors by NCDOT, comprising incidents on N.C. 12 along the Pea Island 185 

National Wildlife Refuge from September 2017 to November 2019. The dates of closure or 186 

hazardous conditions were recorded, and the corresponding daily maximum significant 187 

wave height and water level data were obtained from the waverider buoy and the marina 188 

tide gauge records, respectively.   189 

3.2. Numerical Model & Description of Storm Scenarios  190 

Field observations of water levels during 4 weeks in 2019 suggest that there are dif- 191 

ferences in the water level signals between the study site located south of Oregon Inlet 192 

and the marina tide gauge located north of the inlet. Such differences in water level signals 193 

may have consequences for predicting flooding [44]. Tidal amplitude at the study site is 2 194 

to 3 times larger than at the marina tide gauge. The lowpass filtered subtidal water levels 195 

(48-hr cutoff period) are correlated with an r2 = 0.42, suggesting differences in response to 196 

winds, waves, and surge. Given the spatial variability of the water level signals around 197 

the inlet, a numerical model was used to predict flooding scenarios for a range of condi- 198 

tions and to specifically investigate flooding by bay-side storm events. 199 

A hydrodynamic two-dimensional Delft 3D [45] model coupled with wave model 200 

Simulating WAves Nearshore (SWAN) [46] is used in this study. The numerical model 201 

resolution varies from 470 m offshore to 15 m and 20 m within the inlet and the marshes 202 

behind N.C. 12. The computational domain includes a large portion of the Albemarle- 203 

Pamlico Sound and extends to the edge of mainland North Carolina and 35 m along the 204 

barrier island system. Wetting and drying thresholds were adjusted to better represent 205 

the flooding extent caused by Hurricane Irene (2011). Implementation of mean depth at 206 

the grid cell faces and a threshold depth of 0.01 m resulted in the best match of the simu- 207 

lated flooding extent and the bay-side wrack line as observed from aerial imagery taken 208 

after Hurricane Irene.  209 

As part of the calibration and validation of the numerical model, simulations’ outputs 210 

were compared to in-situ water levels and depth-averaged velocities for 30 days in the fall 211 
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of 2019 and 15 days in the summer of 2020. The Willmott Skill Scores [47] for both periods 212 

for water levels ranged from 0.87 (very good) to 0.94 (excellent), providing confidence in 213 

the simulated hydrodynamics at the site. More details on the numerical model set up, 214 

calibration, and validation are presented in [14,48]. In addition to comparisons of water 215 

levels and currents, simulated flooding extent was compared against 11 days of field 216 

measurements of high-tide flooding on the study site during October 2019 [44]. Peak 217 

measured water depths near station S3 on the marsh ranged from 0.3 m to 0.8 m. The root- 218 

mean-square (RMS) difference between observed and simulated peak water depths at 219 

each high tide for this location was 0.09 m, with the model tending to overestimate small 220 

peak water depths (< 0.5 m) and show better agreement for higher peak water depths. The 221 

R2 was 0.80, suggesting good agreement between the simulated and observed flood ele- 222 

vations on the marsh. 223 

A total of 42 storm scenarios with varying water level and wave conditions at the 224 

boundary (water levels at the bay boundaries ranging in 0.5-m intervals from 0.5 m to 3.5 225 

m and significant wave heights at the ocean boundary ranging in 1-m intervals from 2 m 226 

to 7 m) were generated in the numerical model. The storm scenarios were set up to simu- 227 

late bay-side water levels and ocean waves below, equal, and above those created by Hur- 228 

ricane Irene (2011), which is the hurricane that has generated the largest bay-side surge 229 

since 1979 [49].  230 

Monitoring stations were set up in the numerical model along ten cross-shore tran- 231 

sects extending from the location of the N.C. 12 highway to the shoreline; locations of each 232 

numerical model output station are shown in Fig. 1(C). Each numerical model output sta- 233 

tion recorded the occurrence (or not) of flooding at that station during a storm scenario. 234 

The placement of the stations along cross-shore transects allowed for the investigation of 235 

marsh buffer distance in mitigating roadway flooding, with buffer distances determined 236 

as the perpendicular distance from the roadway station to the estuarine shoreline. For the 237 

roadway transects considered, existing marsh buffer distances ranged from 38 m to 563 238 

m. Ten numerical model output stations were established along each the roadway, the 239 

marsh, and the estuarine shoreline, (30 total) to assess the frequency and extent of marsh 240 

and roadway flooding during storm events (Fig. 1(C)).   241 

3.3. Shoreline Change Analysis 242 

Bimonthly aerial images from NCDOT taken from September 26, 2003 to April 16, 243 

2021 were digitized in order to identify historic positions of the estuarine shoreline. Shore- 244 

line change rates were calculated as a linear regression between shoreline position and 245 

time, using the Digital Shoreline Analysis System (DSAS) developed by the United States 246 

Geological Survey (USGS) [50]. 247 

In addition to aerial datasets, local estuarine shoreline surveys were conducted peri- 248 

odically from 2019 to 2021 to evaluate seasonal shoreline changes and effects of storms, 249 

including a nor’easter in November 2019 and bay-side Hurricane Isaias in August 2020 250 

(Table 1). Trimble R10 and R12 Global Navigation Satellite System (GNSS) Global Posi- 251 

tioning Systems (GPS) with mobile connection to continuously operating reference sta- 252 

tions (CORS) were used to survey the scarp edge of the marsh or the location of the dense 253 

vegetation for all but the May 2021 survey. These systems have a reported horizontal ac- 254 

curacy of 8 mm and vertical accuracy of 15 mm. The May 2021 survey was conducted with 255 

a hand-held Trimble R1 with maximum precision 50 mm. Effort was made to perform all 256 

surveys as close to low tide as possible. It is estimated that there was up to 30 cm of un- 257 

certainty in visual identification/interpretation of the marsh edge. In some cases, areas 258 

were inaccessible due to hazardous conditions and were not surveyed. These areas and 259 

areas that were not consistently identified as either the marsh edge or the water line (i.e., 260 

sandy portions of the estuarine shoreline) were not considered in the analysis, owing to 261 

differences in measurement location not related to erosion.  262 

 263 
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Table 1. Dates of shoreline surveys performed. 265 

Survey Dates Purpose/Event 

Max Water Level at Marina 

Tide Gauge between Surveys 

(m NAVD88) 

Max Significant Wave 

Height Waverider Buoy 

between Surveys (m) 

November 13, 2019 

(pre-storm) 

November 25, 2019 

(post-storm) 

Nor’easter  

November 16 - 20, 

2019 

0.6 (11/24/2019) 7.6 (11/16/2019) 

June 22, 2020 2020 Baseline --- --- 

August 12, 2020 (post-

storm) 

Hurricane Isaias 

August 4, 2020 
0.9 (08/04/2020) 4.4 (08/04/2020) 

March 08, 2021 2021 Baseline --- --- 

May 03, 2021 2021 Final Shoreline 0.5 (04/29/2021) 

 

5.2 (03/19/2021) 

 

The data points surveyed with the GPS system were imported into ArcGIS and con- 266 

nected by lines using GIS tools. DSAS was used to create a series of transects at 5-m spac- 267 

ing along the shorelines [50]. The distance from the shoreline to the baseline was calcu- 268 

lated for each date to estimate the marsh edge shoreline change. 269 

3.4. Channel Bathymetry Comparison 270 

Two bathymetric datasets were collected in the study area as part of a collaboration 271 

made possible via the During Nearshore Event eXperiment (DuNEX), a multi-institutional 272 

research program organized by the US Coastal Research Program [51]. An initial survey 273 

was conducted on October 10, 2019 by staff from the National Science Foundation (NSF) 274 

Natural Hazards Engineering Research Infrastructure (NHERI) Rapid Response Research 275 

(RAPID) program [52]. The survey was performed using the NHERI RAPID program’s Z- 276 

Boat 1800 with single beam echo sounder. The Z-Boat was remotely controlled by NHERI 277 

staff and performed soundings, which were located using an onboard Digital Global Po- 278 

sitioning System (D-GPS). A second bathymetric survey was conducted on April 20, 2021 279 

by Woods Hole Oceanographic Institution researchers (data release, [53]). The survey was 280 

completed using a single beam echo sounder with an onboard GPS locator mounted on a 281 

remotely-driven vessel [54]. For the initial survey, vertical elevations were adjusted to 282 

NAVD88 using VDatum and validated using water level data from the marina tide gauge. 283 

For the second survey, Post-Processed Kinematic (PPK) processing methodologies were 284 

used with CORS reference station (NCBI) located 10 km from the site to measure the ves- 285 

sel’s position with 3 cm to 5 cm vertical and horizontal accuracy. These surveys were used 286 

to determine the position of the deepest part of the channel and to track channel migration 287 

along the study area via changes in the 5-m NAVD88 depth contour adjacent to the estu- 288 

arine shoreline. This contour was chosen because it marks the boundary of the deeper 289 

portions of the channel where velocities are higher. 290 

3.5. Empirical Fragility Derivation 291 

Three sets of empirical fragility curves were developed: two sets of curves were de- 292 

rived to predict roadway vulnerability to flooding based on either publicly available data 293 
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or numerical model outputs, and one set of fragility curves was developed to identify 294 

marsh vulnerability to erosion. Fragility curves were derived by fitting available data to 295 

the Gaussian probability distribution, consistent with previous studies for engineering 296 

applications that have fit damage data to normal or lognormal probability distributions 297 

[2, 55-57]. Fragility curves derived using Method 1 were based on publicly available data 298 

from 2017 to 2019 of daily environmental conditions from the marina tide gauge and wa- 299 

verider buoy and roadway closure and hazard information for N.C. 12 from the NCDOT 300 

TIMS data. Fragility curves created using Method 2 considered numerical outputs at the 301 

study site from bay-side storm scenarios. Finally, fragility curves were created to assess 302 

marsh vulnerability (Method 3) based on assessments of the marsh condition considering 303 

shoreline surveys following storm events, long-term erosion rates, and proximity of the 304 

nearby channel. For Methods 1 and 2, we define “failure” as the occurrence of flooding on 305 

a section of roadway, leading to either a traffic closure/hazard report in the TIMS data 306 

(Method 1) or a period of flooding at a roadway numerical model output station in the 307 

numerical model simulations (Method 2). Therefore, fragility curves present the probabil- 308 

ity of flood-based roadway closure owing to a vector of environmental and location vari- 309 

ables. For Method 3, failure was defined based on empirical classification of the marsh as 310 

either “healthy,” “eroded,” or “severely eroded” (Table 2). These classifications were de- 311 

veloped based on a literature review [30,58,59] and field observations at the study area. A 312 

detailed classification of the marsh shoreline was performed by the research team in May 313 

2021 and is used in the fragility derivations.  314 

The fragility curves based on publicly available data (Method 1) defined failure as 315 

roadway designation as closed or hazardous in the TIMS data. Thus, curves assessed the 316 

vulnerability of the roadway to flooding or overwash causing hazardous travel conditions 317 

affecting roadway functionality. Independent variables measured at the marina tide 318 

gauge included the maximum daily water level WLmax, peak daily 5-second wind gust, 319 

Vwind, and corresponding wind direction θ. Water levels were referenced with respect to 320 

NAVD88. These variables were considered in addition to the maximum daily significant 321 

wave height Hs,max and corresponding dominant wave period Tpd measured at the wa- 322 

verider buoy. While TIMS data provide the county and often nearby cities of reported 323 

incidents, the precise location of closures along N.C. 12 were not able to be determined, 324 

and all flood-driven closure events (from either the ocean or the bay) were considered. 325 

Therefore, landscape variables such as marsh or beach buffer distances to the roadway 326 

were not able to be disaggregated.  327 
328 
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Table 2. Objective Marsh Classification Scheme for Categorization as Healthy, Eroded, or Severely Eroded. 329 

System 

Rating 
Shoreline Condition Marsh Condition Example 

Healthy 

Gentle slope;  

Plant growth on or 

adjacent to shoreline;  

Minimal to no exposed 

root mat. 

Slope less than 1:30*;  

All or majority of marsh above 

0.61 m (2 ft) elevation;  

Consistent plant growth 

throughout marsh, including 

juvenile plants;  

Intact root mat. 

 

 

 

Eroded 

Scarp less than 0.30 m (1 

ft);  

Evidence of offshore (in-

water) plant growth 

 

May include: Evidence of 

undercutting or cracks, 

chunks of marsh breaking 

off along shoreline 

Slope between 1:30 and 1:10*;  

50% of marsh above 0.61 m (2 

ft) elevation;  

Evidence of dead or otherwise 

removed plants;  

Intact or exposed root mat. 

 

May include: signs of semi-

regular flooding, evidence of 

channel incursion or paleo 

inlets. 

 

Severely 

Eroded 

Scarp greater than 0.30 m 

(1 ft);  

Evidence of offshore (in-

water) plant growth 

 

May include: Visible 

chunks of marsh sloughed 

off into water 

Slope greater than 1:10*;  

Less than 50% of marsh above 

0.61 m (2 ft) elevation;  

Significant evidence of dead 

plants or no plant growth;  

Exposed root mat or no 

evidence of root mat present. 

 

May include: signs of regular 

flooding, evidence of channel 

incursion or paleo inlets.  

 

* Slope parameter as defined in [58] 330 

For Method 2, numerical model outputs from storm scenarios allowed for investiga- 331 

tion of environmental conditions specifically leading to bay-side flooding. Roadway sec- 332 

tion failure was determined based on a numerical model output of whether a station was 333 

shown as flooded (failure) or remained dry over the duration of a storm scenario. Flooding 334 
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was the most likely indicator of roadway closure in this situation, as the limited dimen- 335 

sions of the infrastructure (two-lane roadway with minimal shoulder) provide minimal 336 

opportunity to maintain traffic during inundation events. Variables considered in the nu- 337 

merical model-based fragility curves included significant wave height at the boundary 338 

Hs,boundary, peak water level at the marina tide gauge WLmax,marina, significant wave height at 339 

the shoreline Hs,shoreline, and peak water level at the shoreline WLmax,shoreline. The resolution of 340 

the numerical model outputs further allowed for consideration of the marsh buffer dis- 341 

tance Xmarsh as a potential predictor of roadway vulnerability, where Xmarsh is defined as the 342 

perpendicular distance between the numerical model output station and the estuarine 343 

shoreline. 344 

For fragility curves based on marsh condition (Method 3), two definitions of failure 345 

for marshes were considered: one considering failure when the marsh segment was clas- 346 

sified as “severely eroded” and one considering failure when the marsh segment was clas- 347 

sified as “eroded” or “severely eroded” per Table 2. These conditions are important for 348 

both the persistence of the marsh and the performance of the vegetation in shoreline sta- 349 

bilization and infrastructure protection. Possible predictor variables influencing marsh 350 

failure included (i) distance from the marsh shoreline to the shoreline-adjacent 5-m depth 351 

contour in the channel X5mcontour based on bathymetric measurements taken in either Octo- 352 

ber 2019 or April 2021 (Fig. 1), (ii) the slope of the channel between the 2-m contour and 353 

5-m contour m2mto5m, (iii) the rapid response erosion rate RR determined using a linear re- 354 

gression of shoreline positions between November 2019 and March 2021 (Table 1), (iv) the 355 

long term erosion rate LTR measured from satellite images of the shoreline at low tide 356 

taken between 2003-2021, and (v) the percentage of time TBSS>0.2 that the modeled bed shear 357 

stress exceeded a critical threshold (0.2 N/m2) near the marsh shoreline. This threshold 358 

was defined based on the median grain size d50 for the study site of 205 μm [44] and the 359 

0.2 N/m2 minimum critical shear stress for sands with d50= 200 μm as reported from flume 360 

experiments [60,61].  361 

Backward multiple regression was used to determine fragility models for each track 362 

within each method, and variables were assessed for importance based on their statistical 363 

p-value considering the 99% percent significance level [62]. Univariate regressions testing 364 

the significance of individual variables were also considered for roadway and marsh vul- 365 

nerability. For the three sets of fragility curve derivations, multiple variable “tracks” were 366 

evaluated such that only one variable representative of an independent predictor was con- 367 

sidered in any regression model. For example, marsh failure was modeled as a function 368 

of distance to the 5-m depth contour in the channel. While distances were available from 369 

both the 2019 and 2021 bathymetry data, only one distance (from either the 2019 or the 370 

2021 bathymetry data) was included in a given regression analysis. The resulting fragili- 371 

ties were then compared to determine which variable (e.g., X5mcontour,2019, the distance from 372 

shoreline to the 2019 bathymetry 5-m depth contour or X5mcontour,2021, the distance from 373 

shoreline to the 2021 bathymetry 5-m depth contour) was the more significant predictor 374 

of marsh vulnerability. Goodness of fit was assessed based on each model’s deviance and 375 

R2 value, which describes the proportion of the variance in the data that is explained by 376 

the predictor variables. 377 

4. Results 378 

4.1. Long-and Short-Term Shoreline Changes 379 

Figure 2 shows the long-term shoreline change rates along the estuarine shoreline as 380 

determined from the aerial imagery shorelines. The most severe erosion was observed in 381 

the northern portion of the study area, with rates of over 4 m/year of shoreline recession. 382 

Along the more southern portions of the study site, the shoreline was observed to be stable 383 

to slightly accreting (less than 0.6 m/year of accretion). The shoreline classification on May 384 

03, 2021 according to Table 2 is also shown in the figure. Areas of ongoing long-term 385 
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erosion were often classified as severely eroded or eroded, and sections observed to be 386 

stable were typically classified as healthy.  387 

The results of the estuarine shoreline surveys illustrated that changes in shoreline 388 

position over the shorter term could vary significantly depending on characteristics of the 389 

events between surveys (Table 1). Despite this variation, evidence of marsh erosion was 390 

observed during each of the rapid response shoreline surveys (following the nor’easter in 391 

November 2019 and Hurricane Isaias in 2020), including marsh platform cracking and 392 

scarps.   393 

 394 

Figure 2. (A) Long-term shoreline change rate (m/year) at each transect (shore-perpendicular green-to- 395 
red lines), determined using bimonthly aerial imagery. September 26, 2003 shoreline position (light 396 
blue) and April 16, 2021 shoreline position (darker blue) shown to illustrate the severity of ongoing 397 
erosion in the study area. (B) May 03, 2021 shoreline classification, showing severely eroded, eroded, 398 
healthy, and sandy shorelines. 399 

During the nor’easter in November 2019, ocean-side flooding and sand overwash led 400 

to closure of the N.C. 12 Highway from the Basnight Bridge to Rodanthe, NC, from 17:00 401 

November 16 to 10:00 November 20 [63,64]. During the rapid response shoreline survey 402 

on November 25, many of the areas that exhibited signs of ongoing undercutting in the 403 

pre-storm survey had eroded further, with escarpments observed throughout most of the 404 

shoreline except within the southern pocket beach. The primary mechanism of erosion 405 

appeared to be undercutting and slumping of the marsh platform, leading to sections of 406 

marsh breaking away from the shoreline. The average marsh edge erosion during the 407 

event, excluding the southern pocket beach region, was approximately 2.5 m along the 408 

surveyed area. The recession was generally between 1 m and 3 m, with a maximum of 5.3 409 

m measured just north of the pocket beach.  410 

Hurricane Isaias, with a track landward of the barrier island system (Fig. 1), affected 411 

the study area on August 04, 2020, and the rapid response shoreline survey was conducted 412 

A. B. 
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on August 12, 2020. Results of the shoreline survey indicated that the highest rates of ero- 413 

sion were in the northern to middle sections of the study area, consistent with historical 414 

analyses. In general, there was more erosion during the November 2019 nor’easter than 415 

during Hurricane Isaias. The average shoreline recession observed during Hurricane 416 

Isaias was approximately 0.8 m, less than half that observed during the 2019 nor’easter. It 417 

is theorized that this difference in shoreline response could be because of the longer du- 418 

ration that the nor’easter affected the shoreline (~5 days) compared to the duration that 419 

the hurricane affected the study area (~1 day). Additionally, differences in water levels 420 

during each storm may have affected erosion rates. Hurricane Isaias’s maximum water 421 

level was approximately 0.3 m higher than that of the 2019 nor’easter (Table 1). This higher 422 

water level may have reduced the erosion by inundating the marsh and decreasing the 423 

impact of waves on the marsh edge. Likely, a combination of these factors led to the re- 424 

duced shoreline recession during Hurricane Isaias compared to the 2019 nor’easter. 425 

The 2021 survey events were widely spaced and reflected ongoing difficulties with 426 

travel during the coronavirus pandemic. Between March 08 and May 03, 2021, there were 427 

several smaller nor’easter events with a maximum water level at the marina of 0.5 m on 428 

April 29, 2021, and maximum significant wave height at the waverider buoy of 5.2 m on 429 

March 19, 2021 (Table 1). The marsh edge change between these surveys ranged from a 430 

maximum of approximately 2 m of recession in the northern area to 3 m of advance in the 431 

southern area due to seasonal marsh growth.  432 

4.2. Marsh and Roadway Flooding due to Storm Scenarios  433 

Numerical model output variables included peak water level at the marina tide 434 

gauge, peak significant wave height and water level at each estuarine shoreline numerical 435 

model output station, and occurrence of roadway or marsh flooding at each of the respec- 436 

tive stations. For the range of storm scenarios considered, peak water levels at the marina 437 

ranged from 0.46 m to 2.27 m, and resulting peak significant wave heights and peak water 438 

levels at the shoreline numerical model output stations ranged from 0.01 m to 0.11 m and 439 

0.51 m to 1.90 m, respectively. Excluding the cases driven by the lowest surge level (0.5 440 

m), maximum water levels at the marina station were roughly 60% of the magnitude of 441 

the surge level forced at the bay-side boundary. Given the extreme bay-surge conditions 442 

imposed in the simulations, waves at the waverider buoy had minor contributions to wa- 443 

ter level, with 0.08 m variability due to waves offshore of Oregon Inlet in the cases driven 444 

by the lowest surge level (0.5 m) and decreasing in contribution as surge level inside the 445 

sound increased (0.006 m variability in maximum water level at the marina tide gauge is 446 

due to offshore waves).  447 

Of the ten numerical model output stations established along the length of the road- 448 

way (Fig. 1), stations R3, R4, R6, R7, R8, and R9 did not have any flooding for any of the 449 

storm scenarios considered. Stations R0 and R5 flooded when the marina tide gauge water 450 

levels exceeded 1.91 m NAVD88. Stations R1 and R2 were also flooded when marina wa- 451 

ter levels exceeded 2.27 m NAVD88. Numerical model output stations along the landward 452 

marsh edge suggested that all marsh stations flooded when the marina water levels ex- 453 

ceeded 0.46 m NAVD88, except for stations S0, S1, and S2, which flooded when marina 454 

water levels exceeded 1.18 m NAVD88, 1.91 m NAVD88, and 0.50 m NAVD88, respec- 455 

tively. 456 

4.3. Fragility Curves  457 

Results of the multivariate logistic regression for publicly available data (Method 1) 458 

indicate that the maximum daily water level at the marina tide gauge and maximum sig- 459 

nificant wave height at the waverider buoy are significant predictors (p < 0.01) of roadway 460 

closure due to either ocean or bay-side flooding (Table 3). Figure 3 provides an example 461 

of fragility curves for Method 1, showing probability of roadway closure P(f)1 for four 462 

different water levels as a function of significant wave height. Larger significant wave 463 
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heights and larger water levels cause increased probability of failure (i.e., roadway closure 464 

due to flooding). The ranges of water levels and significant wave heights considered in 465 

the fragility model are -0.20 m < WLmax < 1.43 m and 0.44 m < Hs,max < 7.59 m, respectively. 466 

The R2 value for the fragility model is 0.26, indicating that 26% of the variance in the data 467 

is accounted for by maximum daily significant wave height and water level at the wa- 468 

verider buoy and marina tide gauge, respectively.  469 

While a model including peak wind gusts, wind direction, water levels, and signifi- 470 

cant wave heights improves the R2 value compared to the model considering only water 471 

levels and significant wave heights by 0.05 (from 0.26 to 0.31), both wind speed and wind 472 

direction are not significant predictors of roadway closure due to flooding (p > 0.01), alt- 473 

hough wind direction is statistically significant at the 0.05 level. Univariate models con- 474 

sidering wind speed or wind direction individually indicate that wind speed is a signifi- 475 

cant predictor of roadway closure due to flooding, with p < 0.01. However, wind direction 476 

is not a significant predictor, potentially because bay-side and ocean-side flooding events 477 

are not distinguished in the fragility model based on TIMS roadway closure data. These 478 

results suggest that combinations of high wind speeds and directions may be correlated 479 

with water levels at the marina tide gauge, with high marina water levels associated with 480 

sustained periods of high westerly winds, while wind direction does not predict roadway 481 

flooding without the co-occurrence of high directional wind speeds. 482 

The low R2 of the final model considering peak water levels and significant wave 483 

heights (0.26) may partially be owing to differences in local drivers of flooding (e.g., the 484 

water level at the shoreline of Pea Island [44]) from what was measured at publicly avail- 485 

able gauges. In addition, other variables not able to be determined from publicly available 486 

data (e.g., buffer distance, elevation of flooded roadway) are likely to contribute to road- 487 

way vulnerability. Similarly, temporal considerations may also contribute to roadway in- 488 

undation, such as previous flooding or rainfall events that saturate the soil, duration of 489 

sustained directional winds, or duration of flooding and elevated significant wave height 490 

conditions. 491 
492 
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Table 3. Summary of Fragility Model Derivation Methods, Definition of Failure, Data Sources, Variables Considered, Significant 493 
Variables based on p < 0.01, and model R2 values. 494 

Method Failure Definition Data Sources 
Variables 

Considered 

Significant 

Variables 

(p-value) 

R2 

1 
Roadway closure 

due to flooding 

Publicly available 

from TIMS, marina 

tide gauge, 

waverider buoy 

Hs,max, WLmax, Tpd Vwind, 

θ 

Hs,max (1.14e-12) 

WLmax (1.17e-04) 
0.26 

2 
Roadway transect 

flooding 

Numerical model 

outputs 

Hs,boundary, WLmax,marina, 

Hs,shoreline, WLmax,shoreline, 

Xmarsh, 

WLmarina (8.2e-09) 

Xmarsh (2.6e-06) 
0.48 

3 

Marsh condition as 

severely eroded 

Bathymetry data 

(2019, 2021), aerial 

shoreline imagery 

(2003 - 2021), rapid 

response shoreline 

measurements 

X5mcontour,2019, 

X5mcontour,2021, m2mto5m,, 

RR, LTR, TBSS>0.2. 

X5mcontour,2019 (2.48e-04) 0.46 

LTR (1.39e-04) 0.52 

Marsh condition as 

eroded or severely 

eroded 

X5mcontour,2019 (3.11e-04) 0.35 

LTR (1.39e-07) 0.52 

 495 

Figure 3. Probability of roadway failure P(f)1, defined as roadway closure due to flooding based on TIMS 496 
data, as a function of peak significant wave height Hs,max (waverider buoy) for four peak water levels 497 
(NAVD88, marina tide gauge). 498 

Considering the results of numerical model outputs for storm scenarios (Method 2), 499 

roadway vulnerability to bay-side flooding is dependent on peak water level at the marina 500 

tide gauge and buffer distance between the roadway transect and shoreline (p < 0.01), for 501 

marina water levels ranging 0.4 m to 2.2 m NAVD88 and buffer distances ranging from 502 
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38 m to 563 m. Significant wave height at the boundary and significant wave height at the 503 

shoreline are not significant indicators of bay-side flooding. The little significance of 504 

waves in this method results from simulations only accounting for bay-side storms, where 505 

the main flooding driver is bay-side surge that counteracts the effects of waves as they try 506 

to propagate through the neighboring Oregon Inlet. While both water level at the marina 507 

tide gauge and water level at the shoreline are found in separate models to be significant 508 

predictors of bay-side roadway flooding, both models exhibit similar performance (R2 = 509 

0.48), even though there may be local variability in water levels at the shoreline that is not 510 

captured consistently at the marina tide gauge. Water level at the marina tide gauge is 511 

selected as the predictor variable in Fig. 4, owing to it being readily obtained from publicly 512 

available data.  513 

Figure 4(A) shows the probability of roadway transect flooding P(f)2 as a function of 514 

water level at the marina tide gauge for a buffer distance of 50 m. 95% confidence intervals 515 

are shown as dashed curves, and the solid fragility curve indicates that the probability of 516 

roadway flooding increases with increased water levels at the marina tide gauge. Figure 517 

4(B) shows the effect of buffer distance on roadway transect flood vulnerability, depicting 518 

fragility curves for four buffer distances from the roadway based on water level at the 519 

marina tide gauge. Probability of roadway transect flooding increases with decreasing 520 

marsh buffer distance: for a water level at the marina tide gauge of 2.5 m (NAVD88), the 521 

probability of a roadway transect flooding increases from 0.18 for a 200-m buffer to 0.95 522 

for a 50-m buffer. These results highlight the importance of mitigating erosion to maintain 523 

large buffer distances between the bay-side shoreline and the roadway. 524 

 525 

Figure 4. Probability P(f)2 of roadway transect flooding as a function of water level WL at the marina tide 526 
gauge (NAVD88) for (A) buffer distance X = 50 m (black curve) and 95% confidence intervals (black 527 
dashed curves); (B) buffer distances X = 50 m, 100 m, 150 m, and 200 m (black, red, blue, and green 528 
curves, respectively). 529 

For fragility curves investigating marsh failure (Method 3), the horizontal distance 530 

from the marsh shoreline to the 5-m contour in the channel (ranging from 13.2 m to 66.5 531 

m from 2019 data and 7.8 m to 49.5 m from 2021 data), long term erosion rate (ranging 532 

from -2.3 m/yr (accretion) to 5.6 m/yr), and slope between the 2-m and 5-m contours in the 533 

channel offshore of the marsh segment (ranging from 0.12 to 0.58) obtained from the 2021 534 

bathymetry data are identified in univariate regression as significant variables predicting 535 

marsh failure (p < 0.01). While the distance to the 5-m contour is identified as significant 536 

from both the 2021 and 2019 bathymetry data, the fragility model using the 2019 bathym- 537 

etry data provides a better description of the proportion of the variance in the data (se- 538 

verely eroded model, R2 = 0.46, severely eroded or eroded model, R2 = 0.35) compared to 539 
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that fragility model using the 2021 bathymetry data (severely eroded model, R2 = 0.40, 540 

severely eroded or eroded model, R2 = 0.22). The better performance of the fragility model 541 

derived based on 2019 bathymetry data compared to the fragility model based on the 542 

more recent survey suggests a lag between channel proximity (determined from bathy- 543 

metric measurements) and shoreline erosion on a temporal scale of several months to 544 

years.  545 

The 2-m contour was not continuous, resulting in insufficient data to construct a fra- 546 

gility model using the 2019 bathymetry data. However, sufficient data were available to 547 

calculate the slope between the 2-m and 5-m contours obtained from the 2021 data, which 548 

is identified as a significant predictor of marsh condition. The performance of the fragility 549 

model based on channel slope (severely eroded model, R2 = 0.33, severely eroded or 550 

eroded model, R2 = 0.37) is similar to that fragility model based on the distance to the 2019 551 

5-m contour, slightly under-performing in its prediction of marsh classification as severely 552 

eroded and slightly improving the prediction of marsh condition as either eroded or se- 553 

verely eroded.  554 

The best overall predictor variable based on statistical significance and R2 value is the 555 

long-term erosion rate, determined from overhead imagery of the marsh shoreline ob- 556 

tained at low tide between 2003 and 2021 (severely eroded model, R2 = 0.52, severely 557 

eroded or eroded model, R2 = 0.52). Notably, multivariate regression considering both long 558 

term erosion rate and distance from shoreline to the 5-m depth contour produces a fragil- 559 

ity model with slightly better performance compared to univariate model (severely 560 

eroded model, R2 = 0.54, severely eroded or eroded model, R2 = 0.53), but non-significant 561 

p-values, indicating collinearity of these two predictor variables. Fragility curves are 562 

shown in Fig. 5 for marsh classification as severely eroded (black curve with markers) or 563 

eroded/severely eroded (black curve) as a function of (A) distance to the 2019 5-m contour 564 

X5mcontour,2019 and (B) long term erosion rate LTR. Shoreline data are shown as colored sym- 565 

bols, using a similar classification color scheme as in Fig. 2(B). As indicated in Fig. 2, many 566 

of the areas classified as severely eroded or eroded (red squares and orange triangles in 567 

Fig. 5, respectively) are associated with locations of high long-term erosion rates in the 568 

northern to central sections of the study area. These areas, similarly, are associated with 569 

closer proximity to the channel as indicated by the 5-m depth contour (Fig. 1). 570 

 571 

Figure 5. Probability P(f)3 of marsh being classified as severely eroded (black curve with markers), prob- 572 
ability P(f)3 of marsh being classified as eroded/severely eroded (black curve), with empirical data 573 
showing shoreline classification as healthy (green circles), eroded (orange triangles), or severely 574 
eroded (red squares) as a function of (A) distance (m) to 2019 5-m contour X5mcontour,2019; (B) long term 575 
erosion rate LTR (m/yr). 576 
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5. Discussion & Conclusion 577 

5.1. Implications for Planning 578 

Empirical fragility curves derived from publicly available data and storm scenario 579 

simulations indicate the importance of measurements at nearby monitoring stations in 580 

predicting roadway inundation or closure due to flooding, particularly for bay-side 581 

events. Therefore, results of this study may contribute to risk management programs in 582 

the area: transportation planners may identify elevated water level conditions and take 583 

precautionary action to mitigate roadway flooding or prevent unsafe travel conditions, 584 

and coastal managers may identify adaptation alternatives to improve the resilience and 585 

robustness of transportation infrastructure. The fragility curves based on numerical sim- 586 

ulations identified marsh buffer distance as a significant predictor of bay-side roadway 587 

flooding. An increased buffer distance of 150 m (from 50 m to 200 m) for a 2.5-m water 588 

level reduces the likelihood of roadway transect flooding by over 75% for the hydrody- 589 

namic conditions considered here, highlighting the importance of a healthy marsh buffer 590 

between the shoreline and the roadway for mitigating flooding impacts.  591 

SLR may exacerbate the vulnerability of coastal transportation infrastructure by in- 592 

undating marshes and reducing the buffer distance between the shoreline and the road- 593 

way. Interactions between marshes and developed near-shore infrastructure must also be 594 

considered. While no adverse effects of the roadway on marsh erosion were observed at 595 

this study area (i.e., marsh erosion was driven more by proximity to the channel and long- 596 

term erosion rates related to channel velocity and/or sediment budget), effects of coastal 597 

squeeze by near-shore infrastructure may limit the ability of vegetation to adapt to rising 598 

sea levels [65,66]. Marsh condition is an essential component of roadway vulnerability (or 599 

robustness) to bay-side flooding for the ranges of hydrodynamic conditions considered 600 

here, in addition to its ecosystem services provided such as habitat for migratory birds 601 

and loggerhead turtles [67] and carbon sequestration [68], which are particularly im- 602 

portant given the location of the study area in a National Wildlife Refuge. Therefore, re- 603 

sults indicate the importance of marsh monitoring and adaptive management through 604 

conservation, restoration, and erosion mitigation measures.  605 

As identified in the marsh vulnerability analysis, long-term erosion rates and prox- 606 

imity to a tidal inlet flood channel affect marsh condition as severely eroded or eroded. 607 

Therefore, steps may be required to reduce long term erosion rates by relocating the chan- 608 

nel or providing some type of shoreline edge stabilization. Rapid response erosion rate 609 

was not identified as a significant predictor of marsh condition in the fragility model, but 610 

as observed in pre-and post-storm surveys for the 2019 nor’easter and 2020 Hurricane 611 

Isaias, episodic events caused further erosion of already-eroding areas of the marsh shore- 612 

line. These observations suggest that the pre-storm condition of the marsh may affect of 613 

the severity of impact from episodic events: already-eroding marsh is vulnerable to more 614 

erosion during storms, while healthier marsh (with more established vegetation and gen- 615 

tle shoreline slope) may be more robust and resistant to storm damage. In other words, 616 

for this study area, while the main drivers of shoreline condition are long term erosion 617 

rates associated with proximity of the inlet flood channel, episodic events can exacerbate 618 

existing erosion issues. A systems approach must be used to consider marsh vulnerability 619 

and its connection to the vulnerability of coastal transportation infrastructure. 620 

5.2. Study Considerations 621 

While the fragility models considered here identified significant variables influenc- 622 

ing roadway flooding or marsh condition, several idealizations and assumptions were 623 

made in fragility model derivation. First, models were derived by fitting fragility data to 624 

a Gaussian distribution and assume that data are normally distributed. Future work may 625 

consider fitting data to alternative distributions such as the Weibull distribution or gener- 626 

alized extreme value distribution [3, 12]. Similarly, variables not considered in fragility 627 

model derivation owing to unavailability or insufficient data may be significant 628 
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contributors to roadway or marsh fragility. The relatively low R2 values for all fragility 629 

models considered indicate that other variables are required to explain the variance in the 630 

fragility models, or that larger sample sizes are required to improve confidence in fragility 631 

model outputs. For example, publicly available data could not identify locations of road- 632 

way flooding, and therefore effects of buffer distance or flooded roadway elevation could 633 

not be included. While roadway elevations were available in the numerical model, marsh 634 

elevations were variable between the shoreline and roadway transect, and the range of 635 

elevations for roadway numerical model output stations was small (<1.0 m). Therefore, 636 

marsh buffer distance was selected as the landscape parameter mitigating roadway flood- 637 

ing, although greater elevations in the marsh or roadway are expected to further mitigate 638 

flooding impacts.   639 

Similarly, sustained periods of high directional winds likely play an important role 640 

in bay-side roadway flooding, and wave direction may be important in driving flooding 641 

from the bay or ocean. While wind speed and direction are included in the fragility model 642 

based on publicly available data, multi-variate regression indicates correlation between 643 

hydrodynamic conditions (water levels at the marina tide gauge and significant wave 644 

heights at the waverider buoy) and wind speed and/or direction. For example, high water 645 

levels at the marina tide gauge are associated with high sustained westerly wind events. 646 

The significance of wind speed and direction variables are likely reduced in the fragility 647 

model based on publicly available roadway closure data, which does not distinguish be- 648 

tween bay-side and ocean-side flooding-related closures. Fragility model derivations 649 

based on numerical model outputs indirectly account for wind speed and direction, con- 650 

sidering only water levels at the marina tide gauge and shoreline and significant wave 651 

heights at the shoreline and boundary. However, peak directional wind speeds must be 652 

sustained for durations sufficient to generate significant fetch-generated waves and water 653 

level setup. Therefore, future work may consider explicitly including threshold wind 654 

speeds, directions, and durations in fragility investigations.  655 

Other temporal considerations likely play a role in both roadway vulnerability to 656 

flooding and marsh vulnerability to erosion, such as duration of elevated water levels 657 

and/or wave heights and pre-storm marsh or roadway condition based on the timing and 658 

frequency of previous rainfall or inundation events. As indicated in the analysis of short- 659 

term shoreline change following episodic events, longer-duration, lower intensity storms 660 

(e.g., 2019 nor’easter) may have a more significant effect on event-driven shoreline erosion 661 

(and flooding) than shorter duration, higher peak-intensity storms (e.g., 2020 Hurricane 662 

Isaias). Processes occurring at longer temporal scales such as climate change, long-term 663 

scour, and infrastructure deterioration, as well as the occurrence of multiple hazards, 664 

should also be considered [8, 9]. Future work may thus consider the importance of time- 665 

dependent predictors in roadway or marsh fragility.  666 

Models presented here are case-specific to the study area considered, and only valid 667 

for the range of water levels, wave heights, and landscape conditions observed at nearby 668 

monitoring stations or tested in the numerical model. Future work may consider process- 669 

based relationships between sediment transport and hydrodynamic forcing (e.g., current, 670 

wave, and water level effects on bed shear stress or sediment transport). Relationships 671 

identified here as significant must be verified with additional modeling or field observa- 672 

tions for a range of sites and conditions before these features can effectively be incorpo- 673 

rated into design guidance [58,69]. 674 

While this study identified key relationships between roadway and marsh vulnera- 675 

bility, environmental conditions, and landscape features, other considerations and vul- 676 

nerabilities may make climate change adaptation in the area more complex. For example, 677 

the subsidence [70] of the Outer Banks contributing to relative sea level rise may create 678 

long-term challenges for adaptation at the study area, particularly considering issues of 679 

coastal squeeze if the marsh is not able to retreat owing to the presence of the roadway. In 680 

addition, implications of interventions at regional scales must be considered for both up- 681 

drift and downdrift locations. Critical next steps for future work include the integration 682 
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of fragility curves presented here, coupling the marsh vulnerability to the resulting dis- 683 

ruption in roadway functionality and, ultimately, the losses suffered by affected commu- 684 

nities. Risk-based approaches may further help to understand hazard probabilities with 685 

community exposure and vulnerability. Finally, implications of mitigation actions (or in- 686 

actions) on populations must be considered to ensure equitable shoreline management 687 

approaches. Communication among stakeholders, engineers, and decision-makers is es- 688 

sential to develop equitable and robust solutions for future climate change challenges.  689 

5.3. Study Contributions 690 

One contribution of this study is the proposed methodology for characterizing the 691 

marsh shoreline as “healthy,” “eroded,” or “severely eroded” (Table 2). While guidance 692 

exists for shoreline assessment providing criteria for healthy or eroding marshes based on 693 

marsh slope or scarp height [58] and other studies have evaluated shoreline condition 694 

following extreme events [30,59,71], vulnerability to erosion [72-77], and recovery after 695 

storms [71,78], a standardized engineering methodology is required for assessing shore- 696 

line condition considering the status of erosion, vegetation persistence, and other land- 697 

scape factors. Therefore, Table 2 may be refined, expanded, and generalized for evaluation 698 

of the condition of marsh shorelines or other nature-based shoreline protection alterna- 699 

tives. 700 

This study further provides a framework for assessing vulnerability of coastal trans- 701 

portation infrastructure to chronic and extreme bay-side flooding events as a function of 702 

hydrodynamic characteristics and interconnected with existing landscape geomorpholog- 703 

ical processes. We present observations, modeled results, and empirical fragility curves 704 

showing (i) relationships between roadway flooding, water levels, wave heights, and/or 705 

marsh buffer distances and (ii) relationships between marsh condition and long-term ero- 706 

sion and proximity to an encroaching flood channel. Results may be particularly useful 707 

for emergency and transportation planners; generally, roadways are closed when flood- 708 

ing or debris on the roadway create unsafe driving conditions. The fragility curves pre- 709 

sented here allow for identification of water levels at which roadway flooding exceeds a 710 

threshold likelihood, providing infrastructure agencies with the ability to address poten- 711 

tially hazardous driving conditions or to mitigate potential flooding in advance of actual 712 

impacts (e.g. dune reinforcement). Methods for reducing roadway vulnerability (e.g., by 713 

increasing marsh buffer distance between the roadway and the bay-side shoreline) are 714 

also identified; these results suggest the potential of nature-based alternatives such as 715 

healthy wetland systems in bolstering the resilience of coastal transportation infrastruc- 716 

ture. While results are specific to the study area, curves may be tested, calibrated, and 717 

validated for other locations and predictor variables to inform future planning and flood 718 

risk management efforts. 719 

As coastal communities consider adaptation pathways to manage future coastal 720 

flood hazards in the face of climate change and sea level rise, the interconnectivities be- 721 

tween shoreline condition and infrastructure vulnerability may play a greater role in flood 722 

risk management. Understanding these processes may allow decision-makers to best lev- 723 

erage nature-based and conventional infrastructure to improve the resilience of coastal 724 

transportation infrastructure and surrounding communities. 725 
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