
Elastic Execution of Multi-Tenant DNNs on
Heterogeneous Edge MPSoCs

Soroush Heidari
Arizona State University

sheidar1@asu.edu

Mehdi Ghasemi
Southern Illinois University

mehdi.g@siu.edu

Young Geun Kim
Korea University

younggeun kim@korea.ac.kr

Carole-Jean Wu
Meta Inc.

carolejean.wu@gmail.com

Sarma Vrudhula
Arizona State University

vrudhula@asu.edu

Abstract—The growing complexity of machine learning (ML)
tasks drives the rapid deployment of multi-tenant ML workloads
at the edge presenting unique challenges due to the variable
computational demands and strict latency requirements. This
paper introduces a holistic elastic scheduler, EMERALD, designed
to optimize the execution of multi-tenant machine learning (ML)
workloads on heterogeneous edge (Multiprocessor System on
Chip) MPSoCs under strict runtime constraints. EMERALD

employs input resolution scaling to dynamically adjust the
computational demands of deep neural networks (DNNs), thereby
enhancing the ability to meet stringent latency requirements
while maintaining high accuracy. The scheduler consists of two
main components: a local greedy scheduler and a global sched-
uler. The local scheduler actively manipulates input resolution
in response to deadline violations, selecting the resolutions that
minimally impact accuracy and maximally reduce response time.
The global scheduler, an Integer Linear Programming (ILP)-
based scheduler, fine-tunes the decisions of the local scheduler by
considering factors such as DNN dependencies, scene complexity,
hardware heterogeneity, and the trade-offs between accuracy
and makespan associated with input scaling adjustments. This
hierarchical approach allows EMERALD to effectively balance
computational efficiency and accuracy, significantly reducing
missed deadlines—achieving 11x and 12.3x fewer missed dead-
lines compared to CAMDNN and HEFT, respectively, in scenarios
demanding 30 frames per second. The results underscore the crit-
ical role of adaptive input scaling in managing the complexities
of edge-based ML deployments.

Index Terms—DNN Serving, Multi-tenant DNN, Elastic
Scheduling, Edge Processing, Heterogeneous Edge

I. INTRODUCTION

The growing complexity of applications utilizing machine
learning techniques is leading to the emergence of multi-tenant
workloads. These are networks of customized deep neural
networks (DNNs) where models are executed both serially
and concurrently. They are frequently utilized in emerging
applications like autonomous vehicles (AV), which have strict
deadlines, as well as in others with more flexible deadlines,
such as augmented and virtual reality (AR/VR), smart retail,
and recommendation systems [10], [18].

Figure 1 shows an example of a network of DNNs for
autonomous vehicle applications. After pre-processing, each
input image is subjected to different detection and tracking

OBSTACLE
DETECTION

OBSTACLE
TRACKING

TRAFFIC LIGHT
DETECTION

LANE
DETECTION

LANE
TRACKING

TRAFFIC SIGN
DETECTION

DEPTH
ESTIMATION

M
ETAD

ATA

AV

Fig. 1: Network of DNNs. In AV, several DNN models can be
connected to facilitate a more complicated ML task.

operations performed by different DNNs. These multi-tenant
ML workloads are complex due to the integration of various
specialized models and having to operate under strict latency
constraints.

A typical approach for processing DNN networks involves
utilizing cloud servers, where the user device transmits in-
put data to the cloud and receives the processed results in
return [4], [26], [44]. However, this approach suffers from
significant communication delays and poses security risks.

Modern MPSoCs (Multiprocessor System-on-Chip) are het-
erogeneous multi-core processors comprising CPUs, GPUs,
DSPs, and, in some cases, custom accelerators, each offer-
ing distinct performance and power characteristics. Advances
in their design have enabled running increasingly compute
and data-intensive ML workloads entirely at the edge [6],
[17], [23], [38]. However, efficiently mapping DNN networks
onto such heterogeneous MPSoCs while adhering to real-time
processing constraints presents a number of challenges, as
discussed below.

1) The scheduling and allocation have to be performed
frame-by-frame, as each frame varies in the number
and types of objects, which define scene complexity.
This requires accounting for workload fluctuations due to
varying scene complexity and usage scenarios at runtime.
Figure 2 shows an example of such a scene.

2) Inputs have to be batched and the optimal batch sizes

279

2024 IEEE/ACM Symposium on Edge Computing (SEC)

2837-4827/24/$31.00 ©2024 IEEE
DOI 10.1109/SEC62691.2024.00029

2
0

2
4

 I
E

E
E

/
A

C
M

 S
y
m

p
o

s
iu

m
 o

n
 E

d
g

e
 C

o
m

p
u

t
in

g
 (

S
E

C
) 

|
 9

7
9

-8
-3

5
0

3
-7

8
2

8
-3

/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
S

E
C

6
2

6
9

1
.2

0
2

4
.0

0
0

2
9

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: An example of an input frame for an autonomous vehicle
application, where the objects of interest are defined as people, cars,
traffic lights, street lanes, etc

have to be determined accounting for the heterogeneity
of the MPSoC and the dynamically changing scenes.

3) The required runtime scheduling is a sequential decision
problem because the complexity of the present scene
and the present state of resources have to be considered,
making static scheduling solutions sub-optimal.

4) Deadlines have to be met while maintaining optimal
accuracy during runtime workload fluctuations caused by
varying scene complexities and usage scenarios.

A. Realistic Use Cases
Autonomous Vehicles (AV): These present good examples of
complex multi-tenant, real-time ML workloads at the edge. In
AV, multiple DNNs work in parallel utilizing data from various
sensors to perform critical functions such as navigation and
obstacle detection in real-time. For instance, Figure 1 loosely
resembles the NVIDIA DRIVE Perception pipeline which
includes a set of DNNs [1], [7], [36] that are essential for
detecting driving paths, wait conditions, and other objects in
the vehicle’s environment. The workload can vary substantially
based on the number and types of objects encountered in
a scene. The system may need to process more data and
make quicker decisions in complex environments, such as busy
urban streets, as depicted in Figure 2, in contrast to simpler
scenarios such as a clear highway.
Augmented/Virtual (AR/VR): These applications, shown in
Figure 3, are good examples of real-time, multi-tenant ML
workloads where the processing demands are heavily influ-
enced by the specific usage scenario and the complexity of
the scene [18], [38]. Hand-based interactions in AR may
use cascaded models, such as hand detection followed by
hand tracking. If the initial hand detection model does not
detect a hand, the subsequent hand tracking model does not
need to be executed. Similarly, the Distream [41] workflow
exemplifies another scenario where workload fluctuations are
driven by the count and type of objects in live video analytics.
In scenarios like the EagleEye [40], the workload fluctuates
drastically as the number of faces in a video changes every
frame, significantly affecting the computational demand [14].

KEYWORD
DETECTION

SPEECH
RECOGNITION

HAND
DETECTION

HAND
TRACKING

EYE
SEGMENTATION

EYE
TRACKING

M
ETAD

ATA

Fig. 3: Network of DNNs pipelines. A VR application pipeline.

B. Need for Elastic Scheduling

Traditional scheduling algorithms often fail to adapt quickly
to rapid fluctuations in the demand for computation time and
resources. The focus of existing methods has been mostly on
minimizing the latency of inference. However, in scenarios
where processing deadlines are crucial—such as in safety-
critical functions of AVs or the real-time interactive nature
of AR/VR applications—ensuring that these delay constraints
are not violated becomes paramount. Missing a deadline in
such applications can lead to outdated or irrelevant data being
processed, which might compromise system performance and
user’s quality of experience. In these scenarios, dropping
frames might seem like a straightforward solution but that
can lead to significant information loss and disrupt continuity,
which is critical in applications requiring temporal context.
These are just a few of numerous examples that justify the
need for elastic scheduling to handle varying workloads and
ensure maximum accuracy within deadlines. This approach
would adapt dynamically by adjusting the input resolution,
using quantized models, or switching to smaller models.

C. Main Contributions of Paper

This paper introduces a holistic elastic scheduler, called
EMERALD1, for multi-tenant DNN workloads on edge MP-
SoCs, that aims to meet real-time deadlines while maintaining
high end-to-end accuracy. In the presence of resource con-
straints and deadlines, execution latency and model accuracy
become interdependent quantities, that present trade-offs. Un-
fortunately, they are not comparable quantities. For this reason,
we define two dimensionless utility functions, associated with
latency and accuracy. Then a combined utility function is
defined, which serves as the objective function to maximize.

EMERALD is a hierarchical scheduling framework with
two main components: a local scheduler, which is a greedy
algorithm that maps batches of each DNN’s inference requests
to the currently best execution target, and an infrequently
invoked global scheduler that adjusts the existing allocation
and scaling of the inputs. The local scheduler responds to
deadline violations by adjusting the input scales of the model.
The model with the lowest impact on overall accuracy and the
highest impact on makespan reduction is selected for scaling.
EMERALD identifies the model with the greatest impact on
makespan, calculating the critical path using execution times,

1Elastic Multi-DNN Edge Resource Allocation and Latency-aware
Deployment

280

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



scene complexity, and hardware compatibility of the models.
When the overall makespan falls below the deadline, the local
scheduler will increase the input resolution of each model,
starting with one that results in the highest increase in the
utility function of accuracy.

The global scheduler uses integer linear programming (ILP)
to determine the optimal allocations and input scales to maxi-
mize a combined utility. It considers the dependencies among
the network of DNNs, scene complexity, specific features of
each DNN, hardware heterogeneity, and the balance between
accuracy and response time. The global scheduler is also
valuable when there is a need to respond to significant changes
in scene complexity, because incremental adjustments to the
input resolutions, if done by the local scheduler, could lead to
highly sub-optimal solutions.

Compared to two state-of-art algorithms, CAMDNN [10]
and Heterogeneous Earliest Finish Time (HEFT) [34], EMER-
ALD reduces the number of deadline misses by more than
a factor of 10. Also demonstrated is how a constraint on the
frames-per-second (FPS) leads to a change in performance and
accuracy.

D. Organization of the Paper

The rest of this paper is organized as follows: Section II
defines elastic scheduling, and its use for multi-tenant DNN
workloads, and includes a motivational example showing the
differences between elastic and non-elastic solutions. Section
III discusses the prior work on scheduling the execution
of single and multi-DNN workloads and shows the gap in
scheduling solutions for a network of DNNs within deadline
constraints. The optimization problem and the proposed two-
stage elastic scheduler are described in Section IV. Results
and conclusions are presented in Section V.

II. BACKGROUND AND MOTIVATION

In this section, we define the elastic task model and then
describe how elastic scheduling can be used for deadline-
constrained, multi-tenant DNN workloads. This is followed
by a motivational example to show the need for an elastic
scheduler for managing such workloads.

A. Elastic Scheduling

Elastic scheduling, as introduced by Buttazzo et al. [2],
represents a flexible framework designed to manage adap-
tive tasks that might require dynamic adjustment of their
operating periods in response to changing workloads or user
requirements. A sporadic task i is represented by a tuple
ωi = (Ci, Ti, Di, where Ci is the worst-case execution
time (WCET), Ti is the period and Di is the deadline.
The elastic task model generalizes the sporadic task model
with ωi = (Ci, Tmin

i , Tmax
i , Ei), where Ti is allowed to vary

within [Tmin
i , Tmax

i ]. The elastic coefficient Ei is a user-defined,

application-dependent parameter. The optimization problem
solved in [2] is expressed as follows.

minimize f(T|C,E) =
n∑

i=1

Ci

Ei

(
1

Tmin
i

→ 1

Ti

)2

such that:
1

Tmax
i

↑ 1

Ti
↑ 1

Tmin
i

Ti ↓ Ci ↔ i

(1)

The decision variables are the task periods Ti, and the goal is
to find the optimal periods that minimize the total deviation
from the preferred (minimum) periods while ensuring schedu-
lability. The smaller value of Ei essentially assigns greater
importance to keeping the period of task i close to Tmin

i , thus
preserving the highest quality of service for that task.

B. Elastic Scheduling for Multi-tenant DNNs
In this paper, we show how elastic scheduling can be

adapted to scheduling multi-tenant DNNs. Instead of adjusting
the periods of tasks as in traditional elastic scheduling, we
adjust the worst-case execution times of DNN models to
meet latency requirements. In multi-tenant DNN workloads,
we dynamically configure DNN models to balance execution
time and accuracy. Our goal is to maximize a combined
utility function that considers both the accuracy of the models
and the latency of execution. By doing so, we aim to meet
real-time deadlines while maintaining maximum end-to-end
accuracy. To achieve this, two key adjustment strategies: model
adaptation and data adaptation can be considered.

Model adaptation involves real-time switching between
models of different complexities and computational demands.
It can switch between models in the same family, like
ResNet18 and ResNet152, which have significantly different
execution times and insignificant differences in accuracy. This
allows systems to select the most suitable models for efficient
responsiveness [42].

Data adaptation involves modifying input data properties,
such as the size of input features, to effectively manage
computational loads. Decreasing input size can help reduce
processing times, which is essential for handling workload
peaks without sacrificing system responsiveness. However,
both approaches come with the unavoidable cost of reduced
accuracy.

Balancing the trade-offs between accuracy and efficiency
is crucial when applying these optimization techniques, as
adjustments can significantly affect the downstream accuracy
of the model. EMERALD exploits model elasticity through
the scaling of input feature maps. It does not include runtime
switching of models as that incurs excessive overhead due
to the limited memory capacity of edge devices. In addition
to input scaling, EMERALD accounts for DNN execution
times, kernel loading times, optimal batch size configuration,
and variations in scene complexity. Each of these factors
plays a critical role in the effective deployment and operation
of DNNs, influencing everything from startup delays and
throughput to computational efficiency and the accuracy-speed
trade-off under varying input content and workload conditions.

281

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: The proposed approach, EMERALD, does not drop any frame while other approaches drop the frames after 3Tmax = 200ms.
CAMDNN and HEFT do not incorporate input data scaling. Therefore, they either operate with maximum accuracy or drop frames and do
not extract any information from the scene. The deadline for processing a frame is approximately Tmax = 66.67ms.

C. Elastic Scheduling Example

In this section, we present a small example to highlight the
differences between EMERALD and non-elastic scheduling.
The details of EMERALD are presented in Section IV and are
not important at this point.

Figure 4 shows a comparison of EMERALD with two
state-of-the-art non-elastic schedulers, CAMDNN [10] and
HEFT [34]. The workloads consist of a network of DNNs
with two object detection models followed by three parallel
classification models (see Figure 8d). The workloads were pro-
filed on a Qualcomm RB5 development kit. Each figure shows
two graphs over a 40-second span, showing makespan and
total accuracy. Makespan, which is the maximum completion
time of the application on all computing units, is indicated
in blue and is the left ordinate. End-to-end model accuracy
is shown on the right ordinate and represents the average
accuracy across all models. Each plot also shows two dashed
lines – the lower dashed line indicates a deadline of 66.67
ms based on an incoming frame rate of 15 FPS. The upper
dashed line represents a threshold, which indicates that if the
makespan exceeds 200ms, then the input frame loses its real-
time relevance and is dropped.

Scene complexity varies over time, leading to fluctuations in
workloads. EMERALD reacts to deadline violations by gradu-
ally changing the scale of the input to maintain the makespan
below the required deadline. As soon as the makespan exceeds
the deadline, indicated by a red circle, the elastic scheduler
begins to downscale the input image size, while meeting
the deadline. As shown in the top plot, the impact of this
downscaling is a slight reduction in accuracy (less than 3%).

In contrast, both CAMDNN and HEFT lack workload ad-
justment strategies, leading to the accumulation of workloads
on processing units until the 200 ms threshold is reached.
After this point, the frame loses its relevance, and dropping
the frame is necessary to prevent an unbounded increase in
total makespan. As a result, the utility function of accuracy
fluctuates between zero and its maximum, by either process-
ing the frame at the maximum input scale or dropping it
entirely. Section IV-D includes examples comparing EMER-
ALD, CAMDNN, and HEFT for two scenarios: bursts of high
complexity scenes, and consistently high complexity scenes.

III. RELATED WORK

The related work relevant to EMERALD can be categorized
by their approach to serving DNN workloads. These are
discussed below.

A. Single DNN on a Single Processor
Runtime DNN inference optimization includes a set of

techniques designed to improve the inference latency of DNN
models, particularly on resource-limited edge devices. Com-
mon methods include adaptive inference [19], [33], [39], quan-
tization [3], [13], [21], [29], and pruning [11], [15], [22], [43].
However, when managing networks of DNN models in near
real-time applications that experience fluctuating workloads
due to variations in scene complexity and usage scenarios,
optimization strategies must extend beyond individual model
adjustments.

B. Single DNN on Multiple Processors
1) Partitioning on the Same Device: The performance

analysis of executing DNNs on several mobile devices from
different hardware vendors (chipsets from Qualcomm, HiSil-
icon, Samsung, MediaTek, and Unisoc) is presented in [12].
There has been a body of work for mapping a single DNN
onto different hardware units of mobile devices. Pipe-it [35]
is an example of such a framework, which partitions the
computation layers between big and LITTLE cores on a multi-
core mobile device.

2) Partitioning and Offloading on Multiple Devices:
Other approaches extend beyond using a single device, dis-
tributing DNN computation across multiple, often resource-
constrained, devices. Frameworks such as MoDNN [27] and
DeepThings [45] partition the computation of DNNs between
resource-constrained mobile devices using input data partition-
ing. Additionally, [8], [9] aims to reduce energy consumption
by offloading DNN segment computation to cloudlets or con-
nected edge devices, but they do not consider scene complexity
or input data variations.

C. Multiple DNNs on Multiple Processors
1) Non-Elastic Approaches: Various non-elastic methods

have been proposed to address scheduling multiple DNNs on
heterogeneous hardware. For example, AutoScale [17] uses

282

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



reinforcement learning to select suitable processing units for
DNN inference, optimizing energy consumption. Although
reinforcement learning (RL) approaches can be effective, they
often entail significant computational overhead due to exten-
sive training requirements and slow convergence rates. This
makes them impractical for runtime scheduling on resource-
constrained devices [25], [26]. Other solutions, such as cloud-
based frameworks like Inferline [4], Clipper [5], and In-
faas [30], focus on serving DNN workloads on cloud servers
by mapping workloads across multiple processors, but they
don’t address edge-specific constraints. Further, Band [14]
explores heterogeneous scheduling by partitioning independent
DNN models into subgraphs, scheduled based on the least
slack time while considering hardware heterogeneity. How-
ever, Band fails to handle networks of DNNs with depen-
dencies and inaccurately calculates slack without considering
scene complexity.

2) Elastic Approaches: Elastic methods, designed for dy-
namic environments, enable adaptability to fluctuating work-
loads. Approaches like Model Switching [42] switch between
DNN models of varying complexity depending on workload
intensity, sacrificing accuracy during load spikes. Similarly,
Jellyfish [28] exploits both data adaptation and model adapta-
tion techniques to meet inference deadlines. However, both
methods are impractical for edge devices due to storage
constraints and significant model loading overheads, making
frequent model switching infeasible.

D. Network of DNNs on Multiple Processors
1) Non-Elastic Approaches: When it comes to networks

of DNNs, frameworks like CAMDNN [10] and DREAM [16]
aim to schedule DNN models on heterogeneous hardware
platforms efficiently. CAMDNN [10] generates a minimum
latency schedule for executing a network of DNN models
on a heterogeneous hardware platform, taking into account
the scene complexity. DREAM [16] addresses the unique
challenges of executing DNN networks in augmented reality
applications on energy-constrained devices. It combines ur-
gency and latency-preference scores to schedule tasks similarly
to the HEFT algorithm. However, DREAM overlooks crucial
factors such as batching opportunities and model duplication,
limiting its effectiveness for heterogeneous edge devices.

2) Elastic Approach: Our proposed work, EMERALD, fills
the gaps left by previous approaches by considering scene
complexity, batching inference requests, and accounting for
hardware heterogeneity and model loading overheads. We
optimize performance by distributing batched requests across
processors and adjusting input scaling rather than switching
models. EMERALD also addresses networks of DNNs with
inter-model dependencies, which are common in edge appli-
cations but often overlooked by existing solutions.

IV. OPTIMIZATION PROBLEM AND PROPOSED APPROACH

A. System Model
The notations used in this paper are shown in Table I. An

application is modeled using a data flow graph G = (M, E)

TABLE I: List of notations.
Notation Description

pj processor j
mi model i
np number of processors
nm number of models
nc number of scales
nb number of batch sizes
M set of all models in application graph {Mi|1 → i → nm}
P set of all available processing units {pj |1 → j → np}

waiti the number of waiting requests for mi

ωi priority of model i
P set of all available processing units {pj |1 → j → np}

remj remaining time for processor j to become idle
k batch size (1 → k → nb)
ri total number of invocations for model i
ai,j set to 1, if

∑
k bi,j,k ↑= 0 for a given i, j

bi,j,k number of instances of mi running on pj with batch k
li,j loading time of model i on processor j
ci,l binary scaling factor for model i with model scale l
ei,j,k execution time for model i on processor j with batch k
Ei,j total execution time for model i on processor j for all allocated batches
ε total completion time or makespan

Tmax total completion time or makespan
wi importance coefficient of model i

acci,l accuracy score of model i with model scale l
Max(UA) maximum accuracy utility across all models

UA weighted average accuracy utility of all models
UL utility based on latency relative to Tmax

UC weighted sum of normalized accuracy and latency utils
scaled execi,j,k,l scaled execution time for model i on processor j with batch k and scale l

where M is the set of all DNN models and E represents
the dependency between the DNNs. Based on the content of
the input data, the number of times a model is called (ri) is
changing. This means that an application cannot be simply
modeled as a directed acyclic graph (DAG). Synchronous
dataflow graph (SDF) [20] is used to model such a content
change. Then the SDF is transformed to a DAG in polynomial
time [32], by replicating each model based on the input.

The objective of EMERALD is to obtain the mapping of
DNN models onto the hardware units such that the combined
utility function is maximized. The combined utility function
depends on the completion time, deadline, and end-to-end
accuracy. The control knobs are batch variables bi,j,k, model
scaling factors ci,l and start and finish times si,j and fi,j .

The overall structure of EMERALD is shown in Figure 5.
The time horizon is divided into intervals of fixed duration call
epochs. Initially, the scheduler starts with a mapping provided
by the global scheduler, assuming that only one instance of
each DNN model is needed. As EMERALD processes incom-
ing frames, it counts them based on the number of occurrences
of a dummy destination (dst) node. When this count reaches
the predefined epoch length, the global scheduler is invoked
again to re-calibrate the allocation and model scaling factors
using the collected scene complexity (ri) data, hardware
availability (remj), and current allocations (ai,j) reported by
the local scheduler. If the epoch length is not reached, the local
scheduler continues to operate at runtime, serving inference
requests by heuristically adjusting the allocation and scaling
factors to adapt to immediate workload changes.

B. Global Scheduler

The objective of the global scheduler is to achieve optimal
scheduling and scaling of DNNs across computing resources,
with the knowledge of all the DNNs inside a frame to
maximize a combined utility including both accuracy and
latency. The problem can be formulated precisely as an Integer

283

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: The overall scheme of our proposed approach (EMERALD)
showing how the global and local schedulers work together.

Linear Programming (ILP) problem. However, the execution
overhead of the ILP solver becomes prohibitive at runtime. To
overcome this, a local scheduler is designed to schedule and
scale inference requests between infrequent invocations of the
global scheduler.

The ILP formulation incorporates DNN-specific profiling
data, scene complexity, accuracy information specific to each
DNN, and the current residual workloads on the available
hardware units. The profiling data for each DNN includes the
execution time scaled execi,j,k,l for model i on processor j
with batch size k and model scale l, and the accuracy score
for model i at scale l. The ILP formulation is given below.

Decision Variables:
The decision variables consist of the start and finish times
(si,j , fi,j) for model i on processor j, bi,j,k and ci,l. The
total number of decision variables in the ILP formulation is
((nm · np)↗ (2 + nb) + (nm · nc)), derived as follows: Each
model has two timing variables (start and finish times) and
nb batch size variables for each of the np hardware units,
contributing ((nm · np) ↗ (2 + nb)). Additionally, there are
nc scaling factors per model, resulting in (nm ·nc) additional
variables.

Objective Function:
The objective function is the total combined utility that is
dependent on both latency and accuracy utilities. In soft real-
time systems, the highest utility is achieved when data is
processed within a certain time frame. If the makespan is
higher than the threshold, the data becomes irrelevant or
useless, and both its accuracy and latency utility will drop
to zero [18]. The latency utility is defined as:

UL =






Umax ω ↑ Tmax,

Umax →m(ω → Tmax) Tmax < ω ↑ 3Tmax,

0 otherwise.
(2)

Makespan ω is the maximum finish time of all nodes on all
processors.

The overall pipeline accuracy is a complex function of the
individual model’s contribution to the final output. For this
reason, we use accuracy scores [18] — accj,l, which is a
dimensionless quantity in [0,1], with larger values denoting
better or preferred performance. This allows us to add the
scores when models are organized as a pipeline. In fact, the
accuracy utility UA is a weighted sum of individual scores
(Eq. 3), which is also in [0,1]. The elasticity coefficient wi

acts as a weighting factor, with lower values of wi giving
more importance to that model’s accuracy in the overall
utility calculation. This allows for prioritizing certain models
based on their criticality or sensitivity to input changes. The
maximum accuracy utility (Max(UA)) is achieved when no
input scaling is applied.

UA =
nm∑

i=1

nc∑

l=1

1

wi
↗ ci,l ↗ acci,l (3)

Max(UA) =
nm∑

i=1

1

wi
↗ acci,0 (4)

The combined utility function (Eq. 5) is a convex combination
of latency and accuracy utilities, with the weights ε and ϑ
allowing the scheduler to adapt based on the use-case and
scene content. These weights, where (ε + ϑ = 1), prioritize
either accuracy or latency as needed.

UC =

(
ε

UA

Max(UA)
+ ϑ

UL

Max(UL)

)
↗ 100 (5)

Constraints:
• The finish time of model i on processor j is equal to its
start time plus execution time based on mapped batching plus
the loading time if the model is not loaded:

fi,j = si,j + Ei,j + loading time, (6)

Ei,j =
∑

k

(
bi,j,k ·

∑

l

(ci,l · scaled execi,j,k,l)

)
, (7)

loading time =
diff(i, j)↗ li,j

epoch
, (8)

diff(i, j) = ([ai,j ]
new.[ai,j ]old), (9)

bi,j,k ↘ Z+, fi,j , si,j ↘ R+, ci,l ↘ {0, 1}. (10)

diff(i, j) = 1 if model i is required to be allocated on
processor j. Note that Equation 7 is non-linear. In the final
implementation, the product of integer and binary decision
variables is linearized using the Big-M method [37].
• The start times of successors ↓ finish times of predecessors:

i1 ≃ i2 : si2,j ↓ fi1,j ↔j. (11)

• The priority constraints based on the critical path determine
the order in which DNN models must be executed:

ϖi1 > ϖi2 ⇐ si2,j ↓ si1,j + Ei1,j . (12)

284

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



• The sum of batch size for each model over all processors
equals to the total number of instances of that model:

np∑

j=1

nb∑

k=1

k ↗ bi,j,k = ri. (13)

• Set allocation variables based on batch size variables. ! to
be a large integer number (e.g., maximum execution time):

nb∑

k=1

bi,j,k ↓ (1→ !↗ (1→ ai,j)) ↔i, j, (14)

nb∑

k=1

bi,j,k ↑ !↗ ai,j ↔i, j. (15)

• Limit the maximum number of models that are allocated to
processor j:

nm∑

i=1

ai,j ↑ Nj ↔j. (16)

C. Local Scheduler
The local scheduler consists of two parts: (1) A dynamic

batch allocation mechanism, and (2) An elastic workload
adjustment mechanism. Upon the arrival of each new frame,
the scheduler first examines the remaining workload on all
processors. If this workload exceeds three times the maximum
allowed latency (3 ↗ Tmax), the new frame is dropped to
prevent system overload. Otherwise, the dynamic batch al-
location mechanism schedules all incoming DNN inference
requests onto the available hardware units for the received
frame. After scheduling, the scheduler evaluates the makespan
for the frame. If the makespan exceeds the deadline, the elastic
workload adjustment mechanism is activated to scale down
the input feature maps, reducing execution times to meet
the deadline. Conversely, if the makespan is less than 80%
of the deadline, the elastic workload adjustment mechanism
may scale up any previously scaled-down models to enhance
accuracy while still satisfying timing constraints.

1) Dynamic Batch Allocation: The Dynamic Batch Al-
location is a four-step heuristic devised to calculate the op-
timal batch size of inference requests for each DNN model
and efficiently allocate them across available heterogeneous
hardware units at runtime. The algorithm starts by computing
the preferred batch sizes for each model and hardware unit,
followed by a cost score calculation that takes into account the
hardware units’ current workload and execution efficiency. The
next step allocates an initial distribution of model instances
based on the calculated cost score. Finally, the balancing stage
ensures the sum of allocated batches matches the repetition
number for a given model.
Step 1.1: Initial Batch Allocation Computation

• Preferred Batch Size Calculation: For each DNN model
i on every hardware unit j, calculate the preferred batch
size based on the sorted list of the average execution time
per request for different batch sizes.

• Batch Combination Determination: Determine the opti-
mal combination of batch sizes for each hardware unit,

aiming to find the most efficient batch configuration for
processing model instances.

Step 1.2: Cost Score Calculation
• Computing Cost Score: For each hardware unit j, cal-

culate the Cost Score Tj(b), considering the residual
load (remj) and the execution time for the best batch
combinations.

Tj(b) = remj +
∑

k

(bi,j,k ↗ ei,j,k) (17)

Step 1.3: Initial Repetition Distribution
• Distribution Based on Cost Score: Allocate initial model
i instances to each hardware unit j proportional to the
inverse of the unit’s Cost Score.

bi,j =

⌊
(1/Tj)∑
j(1/Tj)

↗ ri

⌋
(18)

Step 1.4: Balancing Repetitions Across Hardware Units
• Ensuring Total Repetition Match: Verify if the sum of

allocated repetitions matches the total required repetitions
ri. Adjust if necessary.

• Load Balancing: Incrementally adjust repetitions as-
signed to each hardware unit, focusing on minimal ad-
ditional cost.
– Identify the hardware unit j that minimizes
j→ = argminj(Cost Score(bi,j,k=1 + 1)).

– Increase the bi,j→,k=1 by one for the selected hardware
unit.

– Repeat until
∑np

j=1

∑nb

k=1 k ↗ bi,j,k = ri.
2) Elastic Workload Adjustment: The second stage of the

local scheduler handles deadline misses. The scheduler starts
by computing the critical path of the graph. Models on the
critical path are sorted based on their elasticity coefficient
where higher priority is given to those with higher elasticity
for scaling. This is repeated until the required deadline is met.

The calculation of the critical path is complicated because
of the different execution times, varying scene complexity, and
hardware compatibility of models. These are accounted for in
the definitions of earliest start time (EST), latest finish time
(LFT), and slack, as follows.

EST(mi) = max
j↑pred(i)

(EST(mj) + AVG(ej |rj)) (19)

LFT(mi) = min
j↑succ(i)

(LFT(mj)→ AVG(ej |rj)) (20)

Slack(mi) = LFT(mi)→ EST(mi)→ AVG(ei|ri) (21)

AVG(ei|ri) is the average execution time of ri instances of
model i, distributed across all heterogeneous processing units.
This average is estimated by assuming that the ri instances
are distributed equally across compatible processing units and
solving a Min-Max Optimization problem as follows.

AVG(ei | ri) = min

(
max

j
(ri,j ↗ ei,j)

)

subject to
∑

j

ri,j = ri, ri,j ↓ 0
(22)

285

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



An elastic workload adjustment algorithm is designed to
scale models iteratively, by adjusting the input size to reduce
the execution time until the required deadline is met. Addi-
tionally, if the makespan falls below a predefined threshold
(e.g., 80% of the required deadline), the input size will be
recursively increased back to its original size to maintain the
highest accuracy possible. The algorithm steps are as follows:
Step 2.1: Compute Critical Path

• For each model mi in the application graph, calculate the
EST, LFT, and Slack.

• Identify the models on the critical path, i.e. Slack(mi) ↑
0.

• Find mi will smallest slack.
Step 2.2: Sort Models Based on Elasticity

• Sort the models on the critical path in descending order
of their elasticity coefficient wi:

sorted models = sort desc(critical path models, wi)

Step 2.3: Scaling Down Models
• Decrease the current input size for the most elastic model

to reduce the total makespan.
• Update model scales in the BatchAllocation algorithm for

scheduling the next batch of incoming requests.
This module iteratively modifies the model scales until the
deadline constraint is met.
Step 2.4: Scaling Up Models

• If the current makespan falls below a predefined thresh-
old, start reverting the scaling decisions:
– Revert to lower input scales for the least elastic model

where reducing the input size yields the greatest gain
in accuracy.

• This method iteratively adjusts the model scales while
makespan stays under the threshold and all the models
return to the original input size.

D. Examples of EMERALD vs. non-Elastic Schedulers
In this section, we illustrate the benefits and distinctions of

elastic scheduling using EMERALD over non-elastic methods
such as CAMDNN and HEFT executing a network of DNNs.
The example network is shown in Figure 8d. It consists of two

object detection models followed by three parallel classifica-
tion models. The data consists of a sequence of images with
two types of objects: cars and people. We explore two different
scenarios which are shown in Figures 6 and 7. Note that
the required FPS is 15 and frames must be processed within
3Tmax, where Tmax = 66.6 ms represents the maximum
allowable processing time for maintaining a 15 FPS input rate.
Scenario 1: Burst of High Complexity Scenes: Figure 6
shows a situation where there is a temporary surge in scene
complexity: 8 people and 13 cars in frame 132 to 10 people
and 13 cars in frame 134. At frame 134 both EMERALD
and CAMDNN violate the 66.6 ms deadline necessary to
maintain a 15 FPS rate, with HEFT lagging significantly
behind. In response to this deadline violation, EMERALD
quickly adjusts by scaling down inputs, minimally affecting
the combined utility, which is shown in the score changing
from 99.9% to 99.1%. Both CAMDNN and HEFT violate the
deadline by substantial amounts resulting in the accumulation
of unprocessed workloads from previous frames.

As the scene becomes less complex from frames 148 to
156, with 3 people and 11 cars, EMERALD returns to an
optimal normalized utility of 100%, demonstrating its dynamic
adaptability and quick recovery. In contrast, CAMDNN strug-
gles with the backlog of delayed frames, taking 15 frames to
stabilize and resume normal processing. HEFT shows even
poorer performance, failing to process within 3Tmax and
displaying difficulty in coping with the increased computa-
tional requirements. This example shows the key advantage
of EMERALD’s elastic scheduling over CAMDNN and HEFT.
It rapidly adjusts to high computational demand and recovers
quickly, ensuring higher combined utility.
Scenario 2: Consistent High Complexity Scenes: This
scenario is shown in Figure 7. There is a continuous influx
of scenes with high complexity challenging the scheduling
capabilities of EMERALD, CAMDNN, and HEFT. At frame
256, the scene complexity peaks with 15 people and 11 cars,
pushing the makespan of EMERALD and CAMDNN above
the 66.6 ms threshold while HEFT’s makespan significantly
exceeds this limit already. EMERALD reacts promptly by
scaling down inputs, slightly affecting the utility score of
accuracy but efficiently preventing a buildup of unprocessed

Fig. 6: This figure shows a comparative analysis between our proposed elastic scheduling approach (EMERALD) and traditional non-elastic
methods (CAMDNN and HEFT). EMERALD demonstrates rapid adjustment to workload changes, swiftly returning to optimal performance.
CAMDNN also recovers to normal processing speeds after a delay, while HEFT exhibits the slowest recovery to meet the required deadlines.
Notably, both CAMDNN and EMERALD leverage batch processing effectively, minimizing the accumulation of residual processing times
from previous frames, which is more pronounced in HEFT.

286

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7: In this example, we compare our proposed elastic approach (EMERALD) to non-elastic solutions (CAMDNN and HEFT). In non-
elastic solutions, when the scene complexity consistently remains high, they fail to respond in real-time to incoming frames.

workloads from previous frames. In contrast, CAMDNN begins
to struggle significantly by frame 270, where its makespan
soars to 215 ms, effectively dropping to a 0% normalized
combined utility due to the severe delay. This deterioration
highlights CAMDNN’s inability to cope with prolonged high
demands, taking several frames to recover and ultimately
failing to process subsequent frames within 3Tmax. HEFT
displays the worst performance, with its makespan jumping
to 300 ms by frame 264, leading to a complete failure with
minimum utility. The high makespan shows that HEFT cannot
manage such high computational loads, and results in the
scheduler failing to process frames within 3Tmax.

This example emphasizes the importance of using an elastic
scheduler that can effectively handle both sudden and sus-
tained increases in demand for computing power in real-time
processing pipelines. The adaptive and dynamic nature of the
elastic scheduler ensures that systems can maintain perfor-
mance standards and process tasks on time, even when facing
fluctuating workloads over extended periods. This example
clearly shows that while traditional static scheduling methods
may perform adequately under stable conditions, dynamic
environments with varying input rates and computational
demands necessitate an elastic approach like EMERALD to
maintain system performance and output relevance.

V. EXPERIMENTAL RESULTS

A. Hardware Setup

The Qualcomm RB5 development kit was used as the
experimental platform. It is equipped with a Kyro 585 ARM
CPU, a Qualcomm Adreno 650, and a Qualcomm Hexagon
DSP. Extensive profiling of the various DNNs was performed
to measure their execution and loading times.

B. Workloads

The different networks of DNNs used in our experiments
are shown in Figure 8. They consist of instances of a sin-
gle object detection model, ssd mobilenet v1, and three
object classification models, mobilenet v1, inception v1,
and EfficientNetB0. These DNNs were executed on the
MPSoC using TFLite. We considered four levels of input
scaling based on the original image size of 224 ↗ 224 pixels
(with l = 0 showing no downscaling). The input images were
downscaled to create three additional scales: l = 1 at 192↗192

pixels, l = 2 at 160 ↗ 160 pixels, and l = 3 at 128 ↗ 128
pixels. The elasticity coefficient for all models is assumed to
be one, which means that no priority is given to any model for
scaling. Models are scaled based solely on their impact on the
overall makespan. However, depending on the application, the
system designer can assign different coefficients to indicate
the importance of individual models on end-to-end accuracy.

C. Comparison with Previous Work
EMERALD was compared with state-of-the-art solutions

HEFT and CAMDNN in terms of the number of dropped
frames and combined utility. Despite its earlier introduction,
HEFT [34] remains a widely recognized baseline due to its
efficiency and near-optimal performance in makespan mini-
mization [24], [31]. HEFT is a greedy algorithm that is not
sensitive to the content of the data, batching opportunities, or
the deadline. The scheduling decisions are based solely on
the execution time of DNNs on the hardware units and the
remaining work on each hardware unit. CAMDNN is aware of
the input content and tries to minimize the delay. However, it
does not consider meeting the deadline by lowering the input
data size. EMERALD appears to outperform both CAMDNN
and HEFT in terms of deadline misses, dropped frames, and
normalized utility. The dropping of frames happens when the
execution time exceeds 3Tmax. Table II shows that CAMDNN
and HEFT miss a significant number of frames whereas
EMERALD misses deadlines less than 13% of the time, even
in the worst-case scenario of a 30 FPS for the 2OD-4OC
Figure 8e application graph.

Table III shows EMERALD’s reactive strategy of gradually
adapting to workload changes results in the least number of
missed frames. In contrast, CAMDNN and HEFT, the rate at
which frames are dropped exceeds 40%.

Figure 9 shows that EMERALD maintains a consistent
combined utility above 95%, while the values of the same
for CAMDNN and HEFT fall below 11% and 9%, respec-
tively. Additionally, the performance of CAMDNN and HEFT
decreases noticeably at higher FPS rates. Their performance
predictably worsens as the number of parallel and sequential
models increases. In contrast, EMERALD adapts to changes in
the application graph and input FPS. It is also evident in both
Figures 9 and 10 that both the normalized combined utility Uc

and average accuracy reduce significantly for CAMDNN and
HEFT as FPS increases. Despite optimal CAMDNN allocation,

287

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



r1
EfficientNetB0

r2
mobilenet_v1

M
ETAD

ATA

r1
inception_v1

(a) 3OC-Sequential Graph

EfficientNetB0

mobilenet_v1

M
ETAD

ATA

r1

r1

r2
inception_v1

(b) 3OC-Parallel Graph

r1
ssd_mobilnet_v1 mobilenet_v1

r2
ssd_mobilnet_v1

M
ETAD

ATA

inception_v1

(c) 2OD-2OC Graph

r1
ssd_mobilnet_v1 mobilenet_v1

ssd_mobilnet_v1

inception_v1

r2 mobilenet_v1

M
ETAD

ATA

(d) 2OD-3OC Graph

ssd_mobilnet_v1

inception_v1

r2 mobilenet_v1

M
ETAD

ATA

ssd_mobilnet_v1

inception_v1

r2 mobilenet_v1

(e) 2OD-4OC Graph

Fig. 8: The application includes object detection and classification models, incorporating a mix of parallel and sequential models to represent
different multi-tenant DNN applications with various dependency structures. All of these graphs are meant to show arbitrary multi-DNN
graphs rather than a specific real application.

TABLE II: Comparison of deadline misses between EMERALD,
CAMDNN, and HEFT over 30000 random scenes for different
applications.

FPS EMERALD CAMDNN HEFT
7 0 (0.0%) 0 (0.0%) 0 (0.0%)

3OC-Sequential 15 559 (1.9%) 5657 (18.9%) 11925 (39.7%)
30 3844 (12.8%) 23616 (78.7%) 23749 (79.2%)
7 0 (0.0%) 0 (0.0%) 0 (0.0%)

3OC-Parallel 15 291 (1.0%) 1243 (4.1%) 7909 (26.4%)
30 3513 (11.7%) 19840 (66.1%) 20468 (68.2%)
7 0 (0.0%) 0 (0.0%) 0 (0.0%)

2OC-2OD 15 0 (0.0%) 0 (0.0%) 595 (2.0%)
30 1912 (6.4%) 21154 (70.5%) 23462 (78.2%)
7 0 (0.0%) 0 (0.0%) 0 (0%)

2OD-3OC 15 690 (2.0%) 6575 (21.9%) 12185 (40.6%)
30 3457 (11.5%) 25449 (84.8%) 26676 (88.9%)
7 0 (0.0%) 0 (0.0%) 241 (0.8%)

2OD-4OC 15 3092 (10.3%) 14866 (49.6%) 19121 (63.7%)
30 3902 (13.00%) 28208 (94.0%) 28376 (94.6%)

the total workload exceeds the capacity of the edge device,
making non-elastic schedulers such as CAMDNN impractical.
Note that the average overhead of decision-making for 30,000
random scenes for EMERALD is close to that of CAMDNN and
HEFT, which makes it suitable for run-time decision-making.

Figure 11 shows that as the required input FPS increases
and enforces tighter deadlines, EMERALD can consistently
reduce the average makespan with optimal input resolution
adjustments, irrespective of the graph structure. However,
both CAMDNN and HEFT perform with significantly higher
average latency for complex graphs like 2OD-4OC, especially
at higher FPS inputs, where the rate of missed deadlines and
frame drops also increases. For simpler graphs and lower FPS,

TABLE III: Comparison of number of dropped frames between
EMERALD, CAMDNN, and HEFT over 30000 random scenes for
different applications.

FPS EMERALD CAMDNN HEFT
7 0 (0.0%) 0 (0.0%) 0 (0.0%)

3OC-Sequential 15 0 (0.0%) 123 (0.4%) 1323 (4.4%)
30 0 (0.0%) 7346 (24.5%) 8519 (28.4%)
7 0 (0.0%) 0 (0.0%) 0 (0.0%)

3OC-Parallel 15 0 (0.0%) 0 (0.0%) 336 (3.4%)
30 0 (0.0%) 4826 (16.1%) 6527 (21.8%)
7 0 (0.0%) 0 (0.0%) 0 (0.0%)

2OD-2OC 15 0 (0.0%) 0 (0.0%) 0 (0.0%)
30 0 (0.0%) 3403 (11.3%) 5564 (18.5%)
7 0 (0.0%) 0 (0%) 0 (0%)

2OD-3OC 15 0 (0.0%) 238 (0.8%) 1470 (4.9%)
30 0 (0.0%) 8321 (27.7%) 10365 (34.6%)
7 0 (0.0%) 0 (0.0%) 0 (0.0%)

2OD-4OC 15 8 (0.03%) 1844 (6.1%) 3810 (12.7%)
30 8 (0.03%) 12098 (40.3%) 13839 (46.1%)

such as 3OC-Parallel shown in Figure 8b at 7 FPS, all sched-
ulers show an average makespan below required deadlines with
CAMDNN and EMERALD outperforming HEFT due to their
optimal batch allocation.

D. EMERALD Performance Across Different Elasticity Coef-
ficients

The performance of the EMERALD is evaluated by applying
two different sets of elasticity coefficients to the 2OD-3OC
graph. Previously, our experiments assumed equal elasticity
across all models, allowing the scheduler to select models
for scaling on the critical path that most significantly in-

288

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9: Combined Utility differences between EMERALD, CAMDNN, and HEFT over 30000 random scenes for different applications.

Fig. 10: Accuracy Utility differences between EMERALD, CAMDNN, and HEFT over 30000 random scenes for different applications.

Fig. 11: Average makespan differences between EMERALD, CAMDNN, and HEFT over 30000 random scenes for different applications.

fluenced the makespan while minimally affecting accuracy.
This approach aimed to optimize overall utility. However,
assigning distinct elasticity coefficients to nodes modifies the
accuracy utility as detailed in Equation 3, resulting in different
EMERALD behavior.

Figure 12(a) shows that when object detection models
with a repetition count of one are assigned lower elasticity,
EMERALD’s behavior aligns closely with scenarios involving
uniform elasticity. This occurs because models with higher
repetition rates, which significantly affect the makespan, are

prioritized for scaling.

In contrast, Figure 12(b) shows that assigning lower elas-
ticity to object classification models with high repetition
requires the EMERALD to make more effort to meet the re-
quired deadline. This strategy involves initially scaling object
detection models before object classification models, which
leads to an increase in deadline misses and dropped frames
shown in Table IV to maintain an acceptable makespan. These
experiments also show the significance of scene complexity in
scheduling decisions.

289

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: Comparison of two different sets of elasticity coefficients
for the 2OD-3OC graph.

(a) (b)
Deadline Misses 2622 (8.74%) 4036 (13.45%)
Dropped Frames 0 (0.00%) 11 (0.04%)
Avg. Makespan (ms) 29.68 3045
Norm. Accuracy (%) 96.11% 93.97%
Norm. Utility (%) 97.82 95.88

1 2

44

1

METADATA

1

244

1

METADATA

(a) (b)

Fig. 12: Comparison of two sets of elasticity coefficients for the 2OD-
3OC graph. Node size and value indicate elasticity coefficients, with
larger nodes representing higher elasticity. (a) shows lower elasticity
in object detection models, while (b) shows lower elasticity in object
classification models.

E. Performance of Local and Global Schedulers

The local scheduler uses a greedy heuristic approach with a
runtime overhead of approximately 2 ms, which means that
it needs time to gradually adjust the workload imbalances
across different hardware units. This adjustment process in-
volves scaling the model effectively to meet the deadline.
Consequently, this leads to significant fluctuations in both the
makespan and combined utility, as shown in Figure 13. The
global scheduler which is based on the optimal ILP solution,
maintains the accuracy and the performance requirement for
30 FPS. However, the overhead of ILP is not included in
the makespan. The overhead is approximately 100 ms which
makes it infeasible to be used at every frame.

Fig. 13: Although the global scheduler is optimal, it is infeasible to
be used for decision-making at every frame due to high overhead.

TABLE V: Comparison between EMERALD and local scheduler over
30000 random scenes.

EMERALD Local
Deadline Misses 1747 (5.83%) 2837 (9.46%)
Dropped Frames 0 (0.00%) 1 (0.01%)
Avg. Makespan 25.83 29.48
Norm. Utility (%) 97% 97%
Overhead (ms) 3.5 2.6

F. Performance of EMERALD vs The Local Scheduler

As shown in Table V, EMERALD outperforms the local
scheduler in terms of deadline misses and average makespan,
while maintaining similar scheduling overhead. This efficiency
is achieved because the global scheduler is invoked infre-
quently, avoiding significant overhead increases. Furthermore,
the global scheduler helps EMERALD to quickly revert to
higher input scales without waiting for a scale-up threshold,
leading to better accuracy utility.

VI. CONCLUSIONS

Existing non-elastic and elastic methods offer valuable
scheduling frameworks for scheduling DNN workloads, but
they fail to address the specific challenges of resource-
constrained, multi-DNN workloads on heterogeneous MP-
SoCs. This paper introduced a novel elastic scheduling frame-
work that fills this gap by integrating considerations for scene
complexity, batching, input scaling, and hardware heterogene-
ity. Our framework effectively enhances both efficiency and
performance under dynamic, real-time constraints.

The proposed scheduler is tailored for multi-tenant DNN
workloads on edge MPSoCs, prioritizing real-time deadlines
while preserving end-to-end accuracy. By dynamically ad-
justing input resolutions in response to deadline violations,
it achieves significant reductions in response times without
compromising accuracy. The framework demonstrates notable
performance improvements, achieving 11x and 12.3x reduc-
tions in missed deadlines, alongside 34% and 40% improve-
ments in average accuracy compared to CAMDNN and HEFT,
respectively.

This work highlights the critical need for an elastic sched-
uler capable of adapting to fluctuating workloads at runtime,
providing a robust solution for real-time DNN execution in
resource-constrained environments.

ACKNOWLEDGMENTS

This research was supported in part by NSF Grant Numbers
2008244, CCF-1652132, and CCF-1618039, by the Center
for Embedded Systems, NSF Grant 1361926, and by the
Center for Intelligent, Distributed, Embedded, Applications
and Systems, NSF Grant 2231620.

REFERENCES

[1] M. Bojarski, C. Chen, J. Daw, A. Değirmenci, J. Deri, B. Firner,
B. Flepp, S. Gogri, J. Hong, L. Jackel, et al. The NVIDIA PilotNet
experiments. arXiv preprint arXiv:2010.08776, 2020.

[2] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive
rate control. In Proceedings 19th IEEE Real-Time Systems Symposium,
pages 286–295. IEEE, 1998.

290

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 



[3] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Bina-
rized neural networks: Training deep neural networks with weights and
activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830,
2016.

[4] D. Crankshaw, G.-E. Sela, X. Mo, C. Zumar, I. Stoica, J. Gonzalez,
and A. Tumanov. Inferline: Latency-aware provisioning and scaling for
prediction serving pipelines. In Proceedings of the 11th ACM Symposium
on Cloud Computing, pages 477–491, 2020.

[5] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica. Clipper: A low-latency online prediction serving system. In
14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17), pages 613–627, 2017.

[6] M. Farhadi, M. Ghasemi, S. Vrudhula, and Y. Yang. Enabling incremen-
tal knowledge transfer for object detection at the edge. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 396–397, 2020.

[7] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, and D. Wierstra. Pathnet: Evolution channels gradient descent
in super neural networks. arXiv preprint arXiv:1701.08734, 2017.

[8] M. Ghasemi, S. Heidari, Y. G. Kim, A. Lamb, C.-J. Wu, and S. Vrud-
hula. Energy-efficient mapping for a network of DNN models at the
edge. In 2021 IEEE International Conference on Smart Computing
(SMARTCOMP), pages 25–30. IEEE, 2021.

[9] M. Ghasemi, D. Rakhmatov, C.-J. Wu, and S. Vrudhula. Edgewise:
Energy-efficient CNN computation on edge devices under stochastic
communication delays. ACM Transactions on Embedded Computing
Systems (TECS), 21(5):1–27, 2022.

[10] S. Heidari, M. Ghasemi, Y. G. Kim, C.-J. Wu, and S. Vrudhula.
CAMDNN: Content-aware mapping of a network of deep neural
networks on edge MPSoCs. IEEE Transactions on Computers,
71(12):3191–3202, 2022.

[11] Y. Hu, S. Sun, J. Li, X. Wang, and Q. Gu. A novel channel
pruning method for deep neural network compression. arXiv preprint
arXiv:1805.11394, 2018.

[12] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu,
L. Xu, and L. Van Gool. Ai benchmark: All about deep learning on
smartphones in 2019. In CVF International Conference on Computer
Vision Workshop (ICCVW), pages 3617–3635.

[13] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2704–
2713, 2018.

[14] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G.
Chun. Band: coordinated multi-DNN inference on heterogeneous mobile
processors. In Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services, pages 235–247, 2022.

[15] Y. Ji, L. Liang, L. Deng, Y. Zhang, Y. Zhang, and Y. Xie. Tetris:
Tile-matching the tremendous irregular sparsity. Advances in neural
information processing systems, 31, 2018.

[16] S. Kim, H. Kwon, J. Song, J. Jo, Y.-H. Chen, L. Lai, and V. Chandra.
Dream: A dynamic scheduler for dynamic real-time multi-model ml
workloads. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 4, pages 73–86, 2023.

[17] Y. G. Kim and C.-J. Wu. Autoscale: Energy efficiency optimization
for stochastic edge inference using reinforcement learning. In MICRO,
2020.

[18] H. Kwon, K. Nair, J. Seo, J. Yik, D. Mohapatra, D. Zhan, J. Song,
P. Capak, P. Zhang, P. Vajda, et al. Xrbench: An extended reality (XR)
machine learning benchmark suite for the metaverse. Proceedings of
Machine Learning and Systems, 5:1–20, 2023.

[19] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane.
Spinn: synergistic progressive inference of neural networks over device
and cloud. In Proceedings of the 26th annual international conference
on mobile computing and networking, pages 1–15, 2020.

[20] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[21] F. Li, B. Liu, X. Wang, B. Zhang, and J. Yan. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016.

[22] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning
filters for efficient ConvNets. arXiv preprint arXiv:1608.08710, 2016.

[23] L. Liu, J. Tang, S. Liu, B. Yu, Y. Xie, and J.-L. Gaudiot. ω-rt: A
runtime framework to enable energy-efficient real-time robotic vision
applications on heterogeneous architectures. Computer, 54(4):14–25,
2021.

[24] J. Mack, S. E. Arda, U. Y. Ogras, and A. Akoglu. Performant, multi-
objective scheduling of highly interleaved task graphs on heterogeneous
system on chip devices. IEEE Transactions on Parallel and Distributed
Systems, 33(9):2148–2162, 2021.

[25] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource man-
agement with deep reinforcement learning. In HotNets, pages 50–56,
2016.

[26] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh. Learning scheduling algorithms for data processing clusters. In
Proceedings of the ACM special interest group on data communication,
pages 270–288. 2019.

[27] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen. MoDNN:
Local distributed mobile computing system for deep neural network. In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, pages 1396–1401. IEEE, 2017.

[28] V. Nigade, P. Bauszat, H. Bal, and L. Wang. Jellyfish: Timely inference
serving for dynamic edge networks. In 2022 IEEE Real-Time Systems
Symposium (RTSS), pages 277–290. IEEE, 2022.

[29] E. Park, S. Yoo, and P. Vajda. Value-aware quantization for training
and inference of neural networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 580–595, 2018.

[30] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis. INFaaS:
Automated model-less inference serving. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 397–411, 2021.

[31] R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling on
heterogeneous systems. In 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings., page 111. IEEE, 2004.

[32] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Schedul-
ing and Synchronization. CRC press, 2018.

[33] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Branchynet: Fast
inference via early exiting from deep neural networks. In 2016 23rd
international conference on pattern recognition (ICPR), pages 2464–
2469. IEEE, 2016.

[34] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
transactions on parallel and distributed systems, 13(3):260–274, 2002.

[35] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra. High-throughput CNN inference on embedded ARM big. little
multicore processors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(10):2254–2267, 2019.

[36] Z. Wang, W. Ren, and Q. Qiu. LaneNet: Real-time lane detection
networks for autonomous driving. arXiv preprint arXiv:1807.01726,
2018.

[37] L. A. Wolsey. Integer Programming. John Wiley & Sons, 2020.
[38] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,

K. Hazelwood, E. Isaac, Y. Jia, B. Jia, et al. Machine learning
at facebook: Understanding inference at the edge. In 2019 IEEE
international symposium on high performance computer architecture
(HPCA), pages 331–344. IEEE, 2019.

[39] F. Xue, V. Likhosherstov, A. Arnab, N. Houlsby, M. Dehghani, and
Y. You. Adaptive computation with elastic input sequence. arXiv
preprint arXiv:2301.13195, 2023.

[40] J. Yi, S. Choi, and Y. Lee. EagleEye: Wearable camera-based person
identification in crowded urban spaces. In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking,
pages 1–14, 2020.

[41] X. Zeng, B. Fang, H. Shen, and M. Zhang. Distream: scaling live
video analytics with workload-adaptive distributed edge intelligence. In
Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, pages 409–421, 2020.

[42] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg. Model-Switching:
Dealing with fluctuating workloads in Machine-Learning-as-a-Service
systems. In 12th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

[43] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang. A
systematic DNN weight pruning framework using alternating direction
method of multipliers. In Proceedings of the European conference on
computer vision (ECCV), pages 184–199, 2018.

[44] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri. Hetero-
edge: Orchestration of real-time vision applications on heterogeneous
edge clouds. In INFOCOM. IEEE, 2019.

[45] Z. Zhao, K. M. Barijough, and A. Gerstlauer. DeepThings: Distributed
adaptive deep learning inference on resource-constrained IoT edge
clusters. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2348–2359, 2018.

291

Authorized licensed use limited to: Arizona State University. Downloaded on February 27,2025 at 15:52:22 UTC from IEEE Xplore.  Restrictions apply. 


