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Abstract

The application of machine learning (ML) techniques in materials science has
revolutionized the pace and scope of materials research and design. In the case of
metal-organic frameworks (MOFs), a promising class of materials due to their tunable
properties and versatile applications in gas adsorption and separation, ML has helped
survey the vast material space. This study explores the integration of reinforcement
learning (RL), specifically Q-learning, within an active learning (AL) context, combined
with Gaussian processes (GPs) for predictive modeling of adsorption in MOFs. We
demonstrate the effectiveness of the RL-driven framework in guiding the selection
of training data points and optimizing predictive model performance for methane and
carbon dioxide adsorption, using two different reward metrics. Our results highlight

the integration of RL as an AL method for adsorption predictions in MFs, and how it
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1 | INTRODUCTION

In recent years, the use of machine learning (ML) has been on the rise
in the field of materials, from material discovery!™ to predictive
tasks.>~” This surge in ML applications has significantly contributed to
the accelerated pace of materials research and design, offering inno-
vative solutions to challenges that were once considered insurmount-
able. Among the materials garnering attention, metal-organic
frameworks (MOFs) have emerged as a particularly promising class of
materials due to their tunable porous structures and versatile chemical
composition.®~1°

MOFs, characterized by their crystalline structures comprising
metal nodes interconnected by organic ligands, can exhibit excep-
tional surface areas and tailorable functionalities. These attributes
make MOFs highly desirable for applications in gas adsorption, sepa-

1011 However, the extensive database of

ration, and storage.
MOFs!2716 calls for the adoption of more advanced computational
methods to efficiently screen these materials for their potential

applications.

compares to a previously implemented AL scheme.

adsorption, Gaussian process, metal-organic frameworks, reinforcement learning

In the realm of ML, various methods have been utilized to screen
MOFs and discern their adsorption behavior. These methods encom-

17,18 19-24

pass support vector machines, neural networks, random

17.2526 among others. However, this paper directs its focus

forests,
towards one particularly potent approach—reinforcement learning
(RL). RL stands out by enabling an agent to learn from sequential
experiences and adjust its strategies through trial and error, showcas-
ing distinct capabilities for effectively exploring the extensive land-
scape of MOF-adsorption studies.

Optimizing the prediction of adsorption in MOFs through an RL
framework offers a compelling approach to be studied within the con-
text of active learning (AL) strategies: AL makes requests for data to
be labeled as a surrogate model is being developed. Unlike conven-
tional models, RL provides a dynamic method for selecting the training
data set, which is vital in scenarios where the data set size is vast.
Compared to other models, RL adaptively navigates through extensive
data sets, iteratively identifying training points. Recently, RL has been
used as a tool for the inverse design of MOFs for direct air capture of

carbon dioxide.?” In this study, the goal shifts from exploring

1of 16 | © 2024 American Institute of Chemical Engineers.
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structural configurations to determining optimal training points for a
Gaussian process (GP) model, which, in turn, predicts the adsorption
isotherms of MOFs.

GPs provide a flexible and probabilistic framework for capturing
complex relationships within data sets, taking features as inputs and
have mean predictions and uncertainties as outputs.?®2? In the con-
text of predicting adsorption behaviors in MOFs, GPs offer a versatile
approach to model adsorption isotherms, resulting in predictions of
adsorption loading and uncertainties.>°~3% The integration of GPs into
the proposed framework enhances the robustness and reliability of
the predictive modeling, making it a key component in predicting the
adsorption in MOFs.

Q-learning, also known as Quality learning, treats the selection of
training points as a dynamic decision-making process.2*3> Within this
framework, the RL agent, representing the exploration strategy, learns
to iteratively choose training points based on a reward metric, thereby
optimizing its predictions over the agent's experience. This approach
not only enhances the efficiency of predicting adsorption isotherms
within MOFs but also offers a fresh perspective on leveraging RL in
data-driven materials science. The integration of Q-learning into the
RL-driven design framework signifies a departure from traditional
methodologies, highlighting the model's adaptability to the complexi-
ties inherent in MOF adsorption studies. This research demonstrates
the potential of Q-learning to redefine our approach to training pre-
dictive models for intricate phenomena like adsorption in MOFs.

In this study, we initially apply the Q-learning framework across
eight distinct systems involving methane (CH,4) and carbon dioxide
(CO,) within two MOFs: Cu-BTC and IRMOF-1, at a temperature of
298K. This approach enables us to explore the applicability of the
Q-learning framework across different systems, providing insights into
its versatility and effectiveness. Subsequently, we extend our analysis
by applying RL to a broader set of MOFs from the CoRE MOF data-
base®® for both gases, further expanding the scope of our investiga-

tion and evaluating the generalizability of our approach.

2 | METHODS

21 | Adsorption ground truth generation for Cu-
BTC and IRMOF-1

The adsorption isotherms were generated through grand canonical
Monte Carlo (GCMC) simulations with the software RASPA%® at
298K. The non-bonded interactions in the MOFs were modeled using
the Universal Forcefield (UFF), while the adsorbate molecules were
modeled using the Transferable Potentials for Phase Equilibria
(TraPPE) and using Lorentz Berthelot mixing rule.®”-3% MOF atoms
were held fixed at their crystallographic positions and the charges for
these two MOFs were not considered. The Monte Carlo (MC) moves
were translation, rotation, reinsertion, and swap. A total of
200,000 cycles were executed, preceded by 100,000 initialization

cycles.

AI?BIFJ R NALJZLH‘S

2.2 | Adsorption ground truth generation for
CoRE MOFs

The ground truth for carbon dioxide (CO,) and methane (CH,4) was
established through an AL protocol, consistent with our previous
work, where we evaluated various initial training data selection
schemes to predict full isotherms across 11 MOFs.%° Building upon
this methodology, we applied AL to generate complete adsorption
points (64 data points) for both CO, and CH,4 within each MOF from
the CoRE MOFs database.*®

The AL process began with a log-spaced initial data, comprising
pressures ranging from 1le—5 to 100 bar, and corresponding adsorp-
tion values generated from RASPA at 298K. This initial data set, con-
sisting of 19 pressure points, served as the training data for the
Gaussian process regression (GPR) model. Subsequently, predictions
were made on an unlabeled data set, comprising the remaining pres-
sure data points required for the full isotherms.

During the AL iterations, uncertainties from the GP predictions
were collected and utilized to compute the GP relative error. This
error metric guided the selection of the next data point to be added
to the training data set. Specifically, the pressure data point corre-
sponding to the highest relative error was passed to RASPA to com-
pute the actual adsorption value, which was then incorporated into
the training data set. The MOF atoms were also held fixed at their
crystallographic positions and the charges were considered. The
charges were taken from a study on partial charge assignment by Raza
et al.*° The MC moves and cycles are the same as in the previous sec-
tion. This iterative process continued until the maximum GP relative
error reached 0.01. By following this protocol, we successfully gener-
ated complete adsorption isotherms for both gases across MOFs in
the CoRE MOF database.

23 | Q-learning

In this study, we utilize the Q-learning framework within an AL con-
text to optimize the selection of training data points for adsorption
studies. The RL agent begins with an initial limited data set and itera-
tively selects additional data points based on its learned policy. Only
the labels of the selected data points are revealed and used to update
the GP model, ensuring that the remaining data points' labels remain
unknown to the GP model until selected by the agent. The reward
metrics used in this study are the improvements in MRE or R? which
directly measure the enhancement in predictive performance. This
approach allows us to demonstrate the potential of RL in driving the
AL process and optimizing model accuracy.

In this study, we utilize Q-learning as a strategic methodology to
optimize the selection of training data points for predicting adsorption
isotherms within MOFs. Q-learning, rooted in the principles of RL,
operates within the framework of a Markov decision process, where
initial and updated training data serve as states (s), and the selection

of training data points represents actions (a). The fundamental
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objective is to adapt the Q-learning algorithm iteratively to improve
the efficiency of predicting adsorption loading in MOFs.
The Q-learning algorithm updates Q-values based on the Bellman

equation:
Q(s,a) +— (1 —a)Q(s,a) +afr +ymaxy Q(s',a’)]. (1)

The learning rate (), a critical parameter in Q-learning, dictates
the magnitude of Q-value updates. A higher « facilitates rapid adapta-
tion to new information but may risk overshooting optimal values,
while a lower a provides stability but slower convergence. The imme-
diate reward (r) denotes the feedback for a specific action in each
state and guides the Q-value update process. In MOF adsorption,
rewards are associated with the accuracy of predictions for selected
training data points.

The discount factor (y) determines the influence of future rewards
on the Q-value update. A higher y emphasizes long-term rewards,
encouraging the agent to consider future consequences, while a lower
y prioritizes immediate rewards. The next state (s) reflects the updated
training data after the agent's action, guiding the learning process.
States (s) in the MOF adsorption context correspond to the available
training data set, while actions (a) involve the selection of specific
training data points for updating. The Q-learning agent systematically
explores the total available data set by iteratively choosing actions
that maximize the accuracy of predicted adsorption properties.

2.4 | States, actions, rewards, and states

241 | States

In the initial state (state 0) of the Q-learning process, the training data
set is chosen to lay the foundation for subsequent exploration within
the pressure-adsorption space study. The configuration of this initial
training data set involves the selection of lower and upper bounds for
pressures which are set at 1e—5and 100 bar, respectively. This
choice results in an initial training data set comprising just two data

points.

242 | Actions

The actions in the Q-learning context refer to the selection of specific
training data points. Each action influences the subsequent state and
the agent's understanding of the environment. In the described meth-
odology, the actions correspond to choosing data points for training
the GP model, thereby refining its predictions. The action as per-
formed by the agent is done through an exploration-exploitation tra-
deoff, which is a fundamental concept in RL and, specifically,
Q-learning. It involves a delicate balance between exploring new
actions and exploiting known high-reward actions. In this study,
exploration entails selecting data points that have not been queried

much, allowing the algorithm to gather more information about the

data space. Exploitation, on the other hand, involves choosing actions
based on the current knowledge to maximize short-term rewards. The
tradeoff is managed through an epsilon-greedy strategy, where
the agent occasionally explores new actions (with probability £) and
mostly exploits known high-reward actions.

Also, episodes represent discrete iterations of the Q-learning pro-
cess. Each episode involves a sequence of actions, where the agent
dynamically explores and exploits the possible actions. The Q-learning
algorithm refines its strategies across episodes, updating the Q-values
in the process. The goal is to iteratively improve the model's under-
standing of the environment and enhance the accuracy of adsorption
predictions.

The agent is the decision-making entity within the Q-learning
algorithm. It interacts with the environment by selecting actions and
updating its understanding of the MOF adsorption space. The
Q-table, a critical component, maintains Q-values for each state-
action pair. The Q-values represent the expected cumulative rewards
the agent anticipates from choosing a specific action in each state.
During exploration and exploitation, the agent relies on the Q-table to
inform its decision-making. The action selected by the agent is often
the one with the highest Q-value in each state. The dynamics of the
Q-table are shaped by the Q-learning update rule, which incorporates
immediate rewards and anticipated future rewards. The agent learns
from sequential experiences, adjusting its strategies through trial and
error. By maximizing the Q-values, the agent hones its decision-
making skills, progressively selecting actions that lead to higher
rewards and, consequently, more accurate predictions of adsorption

isotherms.

243 | Rewards

In the context of RL, rewards play a pivotal role in guiding the learning
process of an agent. Rewards in RL encapsulate the desirability or util-
ity associated with the outcomes of an agent's actions. They act as a
form of reinforcement, providing feedback to the agent and influenc-
ing its decision-making processes. In the Q-learning approach tailored
for MOFs, the purpose of rewards is to encourage the agent to learn a
policy that maximizes cumulative rewards over time.

In this methodology, rewards are evaluated using two metrics:
the improvement in the R? score or mean relative error (MRE)
between predicted and actual adsorption data. The reward (r) is calcu-
lated based on the difference in MRE or R? between states t and t
+ 1, reflecting the enhancement in predictive accuracy upon adding a
selected data point to the training set. These rewards drive the update
of Q-values within the training loop, influencing the agent's decision-
making process.

In summary, the methodology incorporates a reward-driven
approach within the Q-learning framework, aligning the agent's learn-
ing objectives with the goal of iteratively enhancing its decision-
making strategies. By prioritizing actions that contribute positively to
the model's accuracy, the methodology aims to achieve refined pre-

dictions of adsorption isotherms in MOFs.
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244 | States

In the completion of each episode, as outlined above, the addition of
a training data point triggers the formation of a new state within the
Q-learning framework. The concept of episodes, crucial to the itera-
tive learning process, encapsulates a sequence of actions taken by the
agent as it dynamically explores and exploits the MOF adsorption

space.

2.5 | Gaussian process regression

GPs provide a probabilistic and nonparametric approach to regression,
allowing for the modeling of complex relationships between input
parameters and the corresponding output values. In the GP frame-
work, functions are considered random variables, and the joint distri-
bution over functions is governed by a multivariate normal
distribution. The choice of mean function (m) and the covariance func-
tion (K) defines the GP's prior distribution, reflecting beliefs about the
functions before observing any data. This can be mathematically

described in Equation (1).
f ~ GP(m(x),K(x,x')). (2)

For this study, the covariance function (kernel) implemented was
the rational quadratic kernel?®#14? as described by the mathematical

form in Equation (2):

N (X_X/)z -
K(x,x)—<1+ 2 > . )

The kernel is defined by x — x’ representing the Euclidean distance
between x and x/, while | denotes the length scale parameter, which
defines the characteristic length over which variations in the function
occur. Additionally, « influences the balance between large-scale and
small-scale fluctuations within the function by adjusting their
respective weights. The Scikit-learn library was used for the GP
implementation.*®

In the Q-learning methodology, a surrogate model is used in
approximating the adsorption behavior and guiding the agent's
decision-making process. The GP, acting as this surrogate model, is
trained on the available data, consisting of selected training points fed
into the model during the Q-learning episodes. As the Q-learning algo-
rithm explores the ground truth data, the GP model refines its predic-
tions based on the newly acquired training data points. The agent's
decisions, influenced by the rewards obtained during exploration,
guide the augmentation of the GP model, enhancing its accuracy in
predicting adsorption isotherms. The integration of GPs within the
Q-learning loop ensures a continuous interplay between exploration,
exploitation, and model refinement. The surrogate GP model becomes
an adaptive guide, steering the agent toward selecting informative

training data points.

AI?BIFJ R NALJ‘;;H‘S

To ensure the efficiency and accuracy of the RL-GP method, we
implemented two key adjustments. First, initial data points used for
training are excluded from the list of possible actions at the start of
the training process. This prevents the RL agent from selecting these
points again, ensuring that each selected point contributes new infor-
mation to the model. Second, we implemented a mechanism to track
evaluated data points and remove them sequentially from the action
list. This prevents repeated selection and ensures continuous explora-
tion of new areas in the data space.

In Figure 1 below, we show the sequence of the RL algorithm
involving the states, actions, rewards, and the GP in use.

In our modeling approach, it is important to acknowledge the role
of random seeds in influencing the outcomes of the exploration pro-
cess. The random seed affects the selection of exploration points in
the data space. This initial setting can lead to variability in which
points are selected for exploration, potentially impacting the learning
trajectory and the efficiency with which the model converges to an
optimal solution. Recognizing this, we used a random seed of
42, enabling reproducibility. However, in Section 3, we offer a com-

prehensive analysis of different random seeds.

3 | RESULTS AND DISCUSSIONS

In this section of the study, our attention was directed toward the uti-
lization of Q-learning to scrutinize the adsorption characteristics of
two gases, CHs and CO,, within two distinct MOFs: Cu-BTC and
IRMOF-1. Our investigation encompassed the exploration of various
hyperparameters, including the learning rate, the tradeoff between
exploration and exploitation (¢), and discount factor, to discern their
impact on the learning process. Table 1 offers an overview of the
hyperparameters employed in the Q-learning exercises, facilitating a
systematic evaluation of their efficacy across different adsorbate-
adsorbent pairs. The primary objective was to identify the optimal
combination of parameters tailored to each adsorbate-adsorbent pair
in this paper.

In this investigation, the Q-learning algorithm was capped at a
maximum of 10 episodes. We evaluated two reward metrics: the dif-
ference in MRE between consecutive states, and the difference in R?
values between consecutive states. The MRE reward metric demon-
strated superior performance compared to the R? reward metric. Con-
sequently, we primarily focus on the MRE metric in this paper, while
presenting results for the R? metric in the Supporting Information (Sl).
The determination of the optimal hyperparameter combination relied
on the achieved final MRE for the MRE reward metric and the final R?

values for the R? reward metric.

3.1 | MRE as reward metric

In this section, rewards are based on MRE as calculated between pre-

dicted adsorption and actual adsorption data. The reward (r) is
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Agent
Q-learning
algorithm for the
exploration/
exploitation of data

N

State (Sy)
Initial Training
Data

Rewards
MRE or R? (between
the GP predicted and
ground truth
adsorption) difference
state(t) and state(t+1)

Action (A,)
Selection of just
one data point to
be added to the

initial training data

Environment
Training the GP
model with the

data.

FIGURE 1

Q-learning Schematic: The diagram illustrates the Q-learning process. The initial state (t) represents the starting training data,

where the agent dynamically balances exploration and exploitation influenced by the discount factor. The agent takes action by selecting a data
point from the ground truth, updating the prior data set. Subsequently, these new data points contribute to the training of the GP model. The
reward, quantified as the metrics (MRE or R?) difference between the current state (t) and the next state (t + 1), is computed. GP, Gaussian

process; MRE, mean relative error.

TABLE 1 Q-learning hyperparameters.
Learning rate (a) Discount factor (y) Epsilon (e)
0.001 0.1 0.1
0.01 0.5 0.5
0.1 0.9 0.9

calculated as the difference in MRE between states t and t + 1. Once
the reward has been calculated, it is fed into Equation (1) to construct
the Q-table.

The MRE can be calculated as described by the equation:

Ei ‘ Yactual,v - Ypredictedi | (4)
n i—1 yactual;

311 |
two MOFs

Q-learning on two pure gases within

For CH,, adsorption in Cu-BTC, the optimal hyperparameter combina-
tion was determined to be a learning rate (o) of 0.001, a discount fac-
tor (y) of 0.1, and an exploration/exploitation (¢) value of 0.9, with
10 episodes.

Figure 2 illustrates the outcomes for this specific adsorbate-

adsorbent pair based on the identified best hyperparameter

combinations, as stated above. In Figure 2A, the evolution of the MRE
between the GP-predicted adsorption and ground truth adsorption is
depicted as Q-learning episodes progress. Notably, the algorithm
achieved a final MRE of 0.043. Figure 2B presents a comparative anal-
ysis between the predicted and ground truth adsorption, demonstrat-
ing the model's predictive performance, where an R? of 0.99 and MAE
of 0.237 cm® STP/g was achieved. Additionally, Figure 2C visualizes
the pressure space sampled by the RL agent. Finally, Figure 2D shows
a good comparison between the simulated isotherm and the GP-
predicted isotherm, as directed by Q-learning.

For the case of CH,4 in IRMOF-1, a final MRE of 0.044 was
achieved by the Q-learning agent after the maximum episodes of 10.
The best Q-learning parameters were found to be « of 0.001, y of 0.5,
and ¢ of 0.9. In Figure 3A, we show the evolution of MRE with the
episodes, with a significant rise in the MRE in the second episode.
Additionally, Figure 3B displays the resulting comparison between the
GCMC and GP-predicted adsorptions, showing good agreements and
a R? of 0.99 and MAE of 0.763 cm® STP/g was achieved. In Figure 3C,
we observe the pressure-sampled regions by the agents showing a
distribution across the pressure space. Finally, Figure 3D also shows
a good comparison between the simulated isotherm and the RL-based
GP-predicted isotherm.

CO, adsorption prediction in both Cu-BTC and IRMOF-1 were
optimized in the same number of Q-learning episodes of 10, to
achieve desirable outcomes. Specifically, in the case of Cu-BTC, the

optimal hyperparameter combination was determined to be a a of
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FIGURE 6 The comparison between RL-based Gaussian process (GP) predicted and actual CH, isotherms. The plot showcases the first four
MOF models with the lowest MRE values, followed by the next four MOF models with the highest MRE values. MOF, metal-organic framework;

MRE, mean relative error; RL, reinforcement learning.

0.001, y of 0.9, and an ¢ value of 0.9, with 10 episodes. In Figure 4A, a
final MRE value of 0.046 was achieved after a consistent increase in
MRE from the second to fourth episodes, followed by a drop in MRE
from the fifth episode, indicating the dynamic nature of the learning
process. Furthermore, Figure 4B showcases a comparison between
GP-predicted and GCMC adsorption in Cu-BTC, demonstrating com-
mendable agreement between the two. An R? of 0.99 and MAE of

0.764 cm® STP/g. Figure 4C provides insights into the pressure space
sampled by the agent, highlighting the agent's ability to determine the
optimal points. In Figure 4D, we show a good prediction of the iso-
therm as compared to the GCMC-simulated isotherm, indicating that
the RL-based GP can predict the isotherm.

Similarly, for IRMOF-1, the optimal hyperparameter combination
was determined to be a a of 0.001, y of 0.5, and ¢ value of 0.9, with
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10 episodes. A final MRE of 0.1 was accomplished by the last episode.
The evolution of MRE scores is depicted in Figure 5A with notable
increases in MRE observed during the fourth episode, which shows
the iterative nature of the learning process. Figure 5B illustrates the
comparison between GP-predicted and GCMC adsorption in
IRMOF-1, revealing robust agreement between the two predictions,
with failure in the highest-pressure regions. This failure is evident in
Figure 5C, where the algorithm fails to explore high-pressure regions.
In Figure 5C, the pressure space sampled by the agent in IRMOF-1
indicates an exploration of the diverse pressure regions. In Figure 5D,
we show a good agreement between the simulated and RL-GP pre-
dicted isotherms. An R? of 0.99 and MAE of 4.232cm?® STP/g was
achieved.

3.1.2 | Q-learning on CH, gas within CoRE MOFs
The optimal Q-learning parameters established for CH,4 adsorption in
Cu-BTC and IRMOF-1 were « of 0.001, y of 0.5, and s of 0.9. Using
these established parameters, we extended the RL framework to the
CoRE MOF database,*® encompassing 8671 MOFs using those
parameters.

The initial state is the initial training data containing the minimum
(1 Pa) and maximum pressure (1E7 Pa) and their corresponding
adsorption. Employing this RL criteria, we conducted RL for each
structure within the database, enabling a comparison between RL-GP
predicted adsorption and actual adsorption values across various
MOFs within the data set. The actual adsorption values are obtained
from an AL-based method as described in Section 2.2, and we recog-
nize the potential for inaccuracies in the surrogate AL-GP models
trained on few GCMC data. Figure 6 visualizes the comparison for
select MOFs within the database, shedding light on the efficacy of RL
in predicting adsorption. The initial four frames showcase the top-
performing MOFs with the lowest MRE, while the subsequent four
frames present the worst-performing MOFs characterized by the
highest MRE values. Upon aggregating all predictions across
the entirety of MOFs, we achieved a conclusive R? value of 0.99, as
depicted in Figure 7A. Additionally, the mean absolute error was
0.113 cm?® STP/g, which indicates a good performance of the model.
Upon delving deeper, we examined the critical points sampled by the
RL agent, revealing a diverse pattern in their distribution across
the pressure input space. This sampling of several pressures signifies
the RL agents' adeptness in identifying pivotal regions influencing
adsorption behavior. By strategically targeting certain pressures (par-
ticularly the lower and higher-pressure regions) regions, as shown in
Figure 7B, RL agents facilitate the acquisition of crucial data points
essential for constructing accurate GP models.

3.1.3 | Q-learning on CO, gas within CoRE MOFs

Given the established Q-learning parameters for CO, from IRMOF-1
and Cu-BTC, the RL scheme is applied to the same CoRE MOFs as in
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FIGURE 7 (A) Comparison between the CH, actual adsorption
and the RL-GP predicted adsorption across the entire CORE MOFs
structures studied in this work. The final R? and mean absolute error
attained is 0.99 and 0.113 cm® STP/g. (B) Pressure space exploration
for CH,. The data points collected by the RL agent across all 8671
MOFs are utilized for constructing individual GP models. Many of
these points cluster towards the low-pressure and high-pressure
regions, with fewer points distributed in other pressure regions. These
points exclude the initial state points of 1 and 1E7 Pa. GP, Gaussian
process; MOF, metal-organic framework; MRE, mean relative error;
RL, reinforcement learning.

the previous sections. Figure 8 below shows the isotherms of some
selected MOFs for CO,. The first four frames indicate the best perfor-
mance in terms of lowest MRE(s) and the next four frames are the
least performing cases in terms of highest MRE(s).

In the case of CO,, our analysis of the combined actual and RL-
based GP predictions across all MOFs yielded an R? value of 0.99,
as depicted in Figure 9A below. The MAE stood at 0.4667 cm®
STP/g. The differences in R2 and MAE values between CO, and
CHy can be attributed to the stronger interactions of CO,, leading
to more complex adsorption isotherms with sharper transitions.
This complexity poses a challenge for accurate prediction, poten-
tially resulting in higher MAE value, compared to CH,4. Upon closer
examination, as depicted in Figure 9B, we analyzed the critical
points sampled by the RL agent, revealing a distribution across the
pressure input space, particularly in the lower-pressure regions.
The convergence in sampling behavior underscores the robustness
of the RL-guided exploration approach in identifying critical regions
within the pressure space with significant implications for adsorp-

tion behavior.
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FIGURE 8 The comparison between RL-based Gaussian process (GP) predicted and actual CO, isotherms. The plot showcases the first four
MOF models with the lowest MRE values, followed by the next four MOF models with the highest MRE values. MOF, metal-organic framework;

MRE, mean relative error; RL, reinforcement learning.

In the SI, we show the results of using an R? reward metric in the
sequence used in this paper. First, we applied the RL framework to
CHy4 both in Cu-BTC and IRMOF-1 and used the optimal Q-learning
parameters (based on highest R?) in the case of the CoRE MOFs.

For CH, adsorption in Cu-BTC (Figure S1), we determined the
optimal combination of hyperparameters to be o = 0.001, y =0.9, and
€=0.9. For the case of CH, in IRMOF-1 (Figure S2), the parameters
a=0.001, 7 =0.1, and ¢ =0.9, yielded the best results.

The results for CO, in Cu-BTC and IRMOF-1 are shown in
Figures S5 and Sé. The optimal parameters were « = 0.001, y =0.1,
and ¢ =0.9 for CuBTC and parameters a =0.001, y =0.1, and ¢=0.5,
for IRMOF-1.

Based on the consistency of the hyperparameters (@ = 0.001, y
=0.1, and ¢=0.9) across the four systems, we employed the estab-
lished Q-learning parameters for CH, and CO, to the 8671 CoRE
MOFs. For both CH4 and CO,, RL was conducted for each structure.
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For CHg, the combined actual and RL-based GP predictions yielded an
R? of 0.99, with an MAE of 0.278cm?® STP/g (Figure S4A), which is
higher than the MAE value realized using the MRE reward metric. For
CO, (Figure S8A), R? of 0.99 and MAE of 0.914 cm® STP/g.
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FIGURE 9 (A) Comparison between the CO, actual adsorption

and the RL-GP predicted adsorption across the entire CoORE MOFs
structures studied in this work. The final R? and mean absolute error
attained is 0.99 and 0.4667 cm® STP/g framework. (B) Pressure space
exploration for CO,. The data points collected by the RL agent across
all 8671 MOFs are utilized for constructing individual GP models.
Many of these points cluster toward the low-pressure and high-
pressure regions, with fewer points distributed in other pressure
regions. These points exclude the initial state points of 1 and 1E7

Pa. GP, Gaussian process; MOF, metal-organic framework; MRE,
mean relative error; RL, reinforcement learning.

TABLE 2 Comparison between
average metrics from 1000 different
seeds to a random seed of 42.

Mean MAE
(cm® STP/g)

CH4 in CuBTC
0.3301

CH, in IRMOF-1
0.761

CO, in CuBTC
0.791

CO, in IRMOF-1
4.3

3.14 |
results

Influence of random seed number on RL

As mentioned in Section 2, the choice of random seed plays a crucial
role in shaping the outcomes of the RL framework, particularly in the
process of selecting exploration points. While this paper maintains
consistency by using random seed 42, we conducted a comprehensive
analysis to evaluate the influence of 1000 distinct random seeds
across four systems: CH4 in CuBTC and IRMOF-1, as well as CO, in
CuBTC and IRMOF-1. Table 2 below offers a comparison between
the performance metrics (MAE, MRE, and R?) obtained using seed
42 and the averaged metrics derived from the 1000 random seeds.
These results shed light on the robustness of our approach, indicating
that variations in the choice of random seed have minimal impact on
the overall outcomes. This observation underscores the stability and
reliability of the RL framework in selecting exploration points across
diverse systems.

In the SI, we show a table of the pressure points selected for five
different MOFs from the CoRE MOFs, for five different random

seeds, showing the impact of the random seed selection.

3.1.5 | Performance comparison of AL and RL: CH4
and CO, adsorption in Cu-BTC and IRMOF-1

In this section, we compare the outcomes of AL and RL (random seed
of 42) on CH4 and CO, adsorption in two MOFs: Cu-BTC and
IRMOF-1. Initially, a training data set with two pressure points (1 and
1E7 Pa) was utilized to train a GP model. Predictions were made on
an unlabeled data set, and uncertainties were computed, followed by
calculating the relative error. The unlabeled data set with the highest
relative error was selected, and actual adsorption was simulated at
that point. Subsequently, the initial training data was updated with
this pressure point and actual adsorption, and this AL protocol contin-
ued iteratively until the maximum relative error across all predictions
was less than 2%. It is important to note that for the CoRE MOFs
used in our study (previous sections), the initial data set consisted of

19 points, which were derived from GCMC simulations.

MAE for random MRE for R? for

seed Mean random Mean random

of 42 (cm®STP/g)  MRE seed of 42 R? seed for 42
0.237 0.048 0.043 0.99 0.99

0.763 0.040 0.044 0.99 0.99

0.764 0.049 0.046 0.99 0.99

4.232 0.1 0.1 0.99 0.99

Abbreviations: MAE, mean absolute error; MRE, mean relative error.
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FIGURE 10 (A) AL final GP model training data. (B) RL sampled region of pressures by the Q-learning agent for the final GP model.
(C) Isotherm comparison between GCMC simulation, RL-GP, and AL-GP predictions. AL, active learning; GCMC, grand canonical Monte Carlo;

GP, Gaussian process; RL, reinforcement learning.
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FIGURE 11 (A) AL final GP model training data. (B) RL sampled region of pressures by the Q-learning agent for the final GP model.
(C) Isotherm comparison between GCMC simulation, RL-GP, and AL-GP predictions. AL, active learning; GCMC, grand canonical Monte Carlo;

GP, Gaussian process; RL, reinforcement learning.
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FIGURE 12 (A) AL final GP model training data. (B) RL sampled region of pressures by the Q-learning agent for the final GP model.
(C) Isotherm comparison between GCMC simulation, RL-GP, and AL-GP predictions. AL, active learning; GCMC, grand canonical Monte Carlo;
GP, Gaussian process; RL, reinforcement learning.
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FIGURE 13 (A) AL final GP model training data. (B) RL sampled region of pressures by the Q-learning agent for the final GP model.
(C) Isotherm comparison between GCMC simulation, RL-GP, and AL-GP predictions. AL, active learning; GCMC, grand canonical Monte Carlo;
GP, Gaussian process; RL, reinforcement learning.

Generally, while both approaches yield favorable comparisons adsorption in IRMOF-1, where AL achieved a mean absolute
to the GCMC ground truth data, RL generally outperforms AL. An error (MAE) of 0.538 cm® STP/g compared to RL's MAE of
exception to this trend is observed in the prediction of CH,4 0.763 cm® STP/g.
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Although RL outperformed AL in three of the studied cases, this
enhanced performance can be attributed to RL having access to all

labels (data) upfront, whereas AL does not have this advantage.

CH4 in Cu-BTC

Figure 10A shows the pressure points collected by AL for the final GP
model, while Figure 10B shows the RL sampled point by the
Q-learning agent. For this case, we observe that the RL approach with
a lesser MAE of 0.237 cm® STP/g outperforms that of AL with an
MAE of 0.538 cm® STP/g, as shown in Figure 10C.

CH4 in IRMOF-1

Figure 11A displays the pressure points collected by AL for the final
GP model, and Figure 11B shows the RL sampled point by the
Q-learning agent. In this scenario, it was observed that the AL
approach with a lesser MAE of 0.461 cm® STP/g outperforms that of
RL with an MAE of 0.763 cm® STP/g, as shown in Figure 11C.

CO, in Cu-BTC

Figure 12A shows the pressure points collected by AL for the final GP
model, and Figure 12B shows the RL sampled point by the Q-learning
agent. We observed that the RL approach with a lesser MAE of
0.764 cm® STP/g outperforms that of AL with an MAE of 5.815 cm®
STP/g, as shown in Figure 12C.

CO, in IRMOF-1

Figure 13A shows the pressure points collected by AL for the final GP
model, while Figure 13B shows the RL sampled point by the
Q-learning agent. For this case, we observe that the RL approach with
a lesser MAE of 4.232 cm® STP/g outperforms that of AL with an
MAE of 5.377 cm® STP/g, as shown in Figure 13C.

4 | CONCLUSION AND
RECOMMENDATIONS

In this study, we introduced an approach that integrates Q-learning
with GPs to optimize predictive modeling in MOF adsorption studies.
By strategically selecting training data points based on rewards
derived from predictive accuracy, the Q-learning algorithm efficiently
explores the vast MOF adsorption space, offering a dynamic and
adaptive framework for materials research. Our investigations across
different MOF systems and gas adsorbates demonstrate the adapt-
ability and effectiveness of this approach, showcasing its potential.

Through several experiments, we identified the best tradeoff
between an RL agent exploration and exploitation. This balance
proved pivotal in optimizing the training data set selection process,
enhancing the adaptability and effectiveness of the learning mecha-
nism. Moreover, our results highlight the robustness and reliability of
Q-learning-guided exploration, as evidenced by the consistent perfor-
mance across different systems and conditions.

A pivotal aspect of our approach lies in the strategic sampling of

critical points by the RL agent within the pressure input space. By

AICBE R AL 20T

systematically exploring the pressure space, our methodology shows
that there are informative pressure regions to develop an accurate
adsorption model across all MOFs. Our findings underscore the signif-
icance of systematically probing these regions. The general RL code
for both the MRE and R? reward metrics, and the isotherms generated
through AL for both CH4, and CO, can all be found via the GitHub
repository.

In this study, we acknowledge that RL is computationally expen-
sive compared to previous AL schemes or random sampling and
requires access to all labels for its learning process. While fitting all
the data or randomly selected points into a GP model can be suffi-
cient, RL distinguishes itself by learning a policy that balances explora-
tion and exploitation of the data points.

The adoption of RL for modeling adsorption isotherms as an AL
method is justified by its capabilities in managing the exploration-
exploitation tradeoff. This exploration is guided by an algorithm that
not only seeks to uncover potentially more efficient adsorption points
but also that each iteration contributes maximally to the accuracy of
the resulting model. Hence, the integration of RL in this context
enhances the accuracy of adsorption isotherm surrogate models.
Looking ahead, the advancements presented in this study lay a solid
foundation for future research endeavors in predictive modeling and
materials science. The seamless integration of RL with GPs opens new
avenues for accelerating materials discovery; RL can be used for other
studies where determining a model training data is of extreme impor-
tance. Further, alternative RL techniques beyond Q-learning, such as
Deep Q-Networks** or Actor-Critic methods,*® could enhance the
efficiency and scalability of predictive modeling. Additionally, the inte-
gration of transfer learning techniques could facilitate knowledge
transfer between related tasks or domains, accelerating model conver-
gence and improving generalization capabilities, especially in scenarios

with limited training data.
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