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Abstract

The application of machine learning (ML) techniques in materials science has

revolutionized the pace and scope of materials research and design. In the case of

metal–organic frameworks (MOFs), a promising class of materials due to their tunable

properties and versatile applications in gas adsorption and separation, ML has helped

survey the vast material space. This study explores the integration of reinforcement

learning (RL), specifically Q-learning, within an active learning (AL) context, combined

with Gaussian processes (GPs) for predictive modeling of adsorption in MOFs. We

demonstrate the effectiveness of the RL-driven framework in guiding the selection

of training data points and optimizing predictive model performance for methane and

carbon dioxide adsorption, using two different reward metrics. Our results highlight

the integration of RL as an AL method for adsorption predictions in MFs, and how it

compares to a previously implemented AL scheme.
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1 | INTRODUCTION

In recent years, the use of machine learning (ML) has been on the rise

in the field of materials, from material discovery1–4 to predictive

tasks.5–7 This surge in ML applications has significantly contributed to

the accelerated pace of materials research and design, offering inno-

vative solutions to challenges that were once considered insurmount-

able. Among the materials garnering attention, metal–organic

frameworks (MOFs) have emerged as a particularly promising class of

materials due to their tunable porous structures and versatile chemical

composition.8–10

MOFs, characterized by their crystalline structures comprising

metal nodes interconnected by organic ligands, can exhibit excep-

tional surface areas and tailorable functionalities. These attributes

make MOFs highly desirable for applications in gas adsorption, sepa-

ration, and storage.10,11 However, the extensive database of

MOFs12–16 calls for the adoption of more advanced computational

methods to efficiently screen these materials for their potential

applications.

In the realm of ML, various methods have been utilized to screen

MOFs and discern their adsorption behavior. These methods encom-

pass support vector machines,17,18 neural networks,19–24 random

forests,17,25,26 among others. However, this paper directs its focus

towards one particularly potent approach—reinforcement learning

(RL). RL stands out by enabling an agent to learn from sequential

experiences and adjust its strategies through trial and error, showcas-

ing distinct capabilities for effectively exploring the extensive land-

scape of MOF-adsorption studies.

Optimizing the prediction of adsorption in MOFs through an RL

framework offers a compelling approach to be studied within the con-

text of active learning (AL) strategies: AL makes requests for data to

be labeled as a surrogate model is being developed. Unlike conven-

tional models, RL provides a dynamic method for selecting the training

data set, which is vital in scenarios where the data set size is vast.

Compared to other models, RL adaptively navigates through extensive

data sets, iteratively identifying training points. Recently, RL has been

used as a tool for the inverse design of MOFs for direct air capture of

carbon dioxide.27 In this study, the goal shifts from exploring
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structural configurations to determining optimal training points for a

Gaussian process (GP) model, which, in turn, predicts the adsorption

isotherms of MOFs.

GPs provide a flexible and probabilistic framework for capturing

complex relationships within data sets, taking features as inputs and

have mean predictions and uncertainties as outputs.28,29 In the con-

text of predicting adsorption behaviors in MOFs, GPs offer a versatile

approach to model adsorption isotherms, resulting in predictions of

adsorption loading and uncertainties.30–33 The integration of GPs into

the proposed framework enhances the robustness and reliability of

the predictive modeling, making it a key component in predicting the

adsorption in MOFs.

Q-learning, also known as Quality learning, treats the selection of

training points as a dynamic decision-making process.34,35 Within this

framework, the RL agent, representing the exploration strategy, learns

to iteratively choose training points based on a reward metric, thereby

optimizing its predictions over the agent's experience. This approach

not only enhances the efficiency of predicting adsorption isotherms

within MOFs but also offers a fresh perspective on leveraging RL in

data-driven materials science. The integration of Q-learning into the

RL-driven design framework signifies a departure from traditional

methodologies, highlighting the model's adaptability to the complexi-

ties inherent in MOF adsorption studies. This research demonstrates

the potential of Q-learning to redefine our approach to training pre-

dictive models for intricate phenomena like adsorption in MOFs.

In this study, we initially apply the Q-learning framework across

eight distinct systems involving methane (CH4) and carbon dioxide

(CO2) within two MOFs: Cu-BTC and IRMOF-1, at a temperature of

298K. This approach enables us to explore the applicability of the

Q-learning framework across different systems, providing insights into

its versatility and effectiveness. Subsequently, we extend our analysis

by applying RL to a broader set of MOFs from the CoRE MOF data-

base16 for both gases, further expanding the scope of our investiga-

tion and evaluating the generalizability of our approach.

2 | METHODS

2.1 | Adsorption ground truth generation for Cu-
BTC and IRMOF-1

The adsorption isotherms were generated through grand canonical

Monte Carlo (GCMC) simulations with the software RASPA36 at

298K. The non-bonded interactions in the MOFs were modeled using

the Universal Forcefield (UFF), while the adsorbate molecules were

modeled using the Transferable Potentials for Phase Equilibria

(TraPPE) and using Lorentz Berthelot mixing rule.37–39 MOF atoms

were held fixed at their crystallographic positions and the charges for

these two MOFs were not considered. The Monte Carlo (MC) moves

were translation, rotation, reinsertion, and swap. A total of

200,000 cycles were executed, preceded by 100,000 initialization

cycles.

2.2 | Adsorption ground truth generation for
CoRE MOFs

The ground truth for carbon dioxide (CO2) and methane (CH4) was

established through an AL protocol, consistent with our previous

work, where we evaluated various initial training data selection

schemes to predict full isotherms across 11 MOFs.30 Building upon

this methodology, we applied AL to generate complete adsorption

points (64 data points) for both CO2 and CH4 within each MOF from

the CoRE MOFs database.16

The AL process began with a log-spaced initial data, comprising

pressures ranging from 1e�5 to 100 bar, and corresponding adsorp-

tion values generated from RASPA at 298K. This initial data set, con-

sisting of 19 pressure points, served as the training data for the

Gaussian process regression (GPR) model. Subsequently, predictions

were made on an unlabeled data set, comprising the remaining pres-

sure data points required for the full isotherms.

During the AL iterations, uncertainties from the GP predictions

were collected and utilized to compute the GP relative error. This

error metric guided the selection of the next data point to be added

to the training data set. Specifically, the pressure data point corre-

sponding to the highest relative error was passed to RASPA to com-

pute the actual adsorption value, which was then incorporated into

the training data set. The MOF atoms were also held fixed at their

crystallographic positions and the charges were considered. The

charges were taken from a study on partial charge assignment by Raza

et al.40 The MC moves and cycles are the same as in the previous sec-

tion. This iterative process continued until the maximum GP relative

error reached 0.01. By following this protocol, we successfully gener-

ated complete adsorption isotherms for both gases across MOFs in

the CoRE MOF database.

2.3 | Q-learning

In this study, we utilize the Q-learning framework within an AL con-

text to optimize the selection of training data points for adsorption

studies. The RL agent begins with an initial limited data set and itera-

tively selects additional data points based on its learned policy. Only

the labels of the selected data points are revealed and used to update

the GP model, ensuring that the remaining data points' labels remain

unknown to the GP model until selected by the agent. The reward

metrics used in this study are the improvements in MRE or R2 which

directly measure the enhancement in predictive performance. This

approach allows us to demonstrate the potential of RL in driving the

AL process and optimizing model accuracy.

In this study, we utilize Q-learning as a strategic methodology to

optimize the selection of training data points for predicting adsorption

isotherms within MOFs. Q-learning, rooted in the principles of RL,

operates within the framework of a Markov decision process, where

initial and updated training data serve as states (s), and the selection

of training data points represents actions (a). The fundamental
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objective is to adapt the Q-learning algorithm iteratively to improve

the efficiency of predicting adsorption loading in MOFs.

The Q-learning algorithm updates Q-values based on the Bellman

equation:

Q s,að Þ 1�αð ÞQ s,að Þþα rþ γmaxa0Q s0 ,a0ð Þ½ �: ð1Þ

The learning rate (α), a critical parameter in Q-learning, dictates

the magnitude of Q-value updates. A higher α facilitates rapid adapta-

tion to new information but may risk overshooting optimal values,

while a lower α provides stability but slower convergence. The imme-

diate reward (r) denotes the feedback for a specific action in each

state and guides the Q-value update process. In MOF adsorption,

rewards are associated with the accuracy of predictions for selected

training data points.

The discount factor (γ) determines the influence of future rewards

on the Q-value update. A higher γ emphasizes long-term rewards,

encouraging the agent to consider future consequences, while a lower

γ prioritizes immediate rewards. The next state (s) reflects the updated

training data after the agent's action, guiding the learning process.

States (s) in the MOF adsorption context correspond to the available

training data set, while actions (a) involve the selection of specific

training data points for updating. The Q-learning agent systematically

explores the total available data set by iteratively choosing actions

that maximize the accuracy of predicted adsorption properties.

2.4 | States, actions, rewards, and states

2.4.1 | States

In the initial state (state 0) of the Q-learning process, the training data

set is chosen to lay the foundation for subsequent exploration within

the pressure–adsorption space study. The configuration of this initial

training data set involves the selection of lower and upper bounds for

pressures which are set at 1e�5 and 100 bar, respectively. This

choice results in an initial training data set comprising just two data

points.

2.4.2 | Actions

The actions in the Q-learning context refer to the selection of specific

training data points. Each action influences the subsequent state and

the agent's understanding of the environment. In the described meth-

odology, the actions correspond to choosing data points for training

the GP model, thereby refining its predictions. The action as per-

formed by the agent is done through an exploration–exploitation tra-

deoff, which is a fundamental concept in RL and, specifically,

Q-learning. It involves a delicate balance between exploring new

actions and exploiting known high-reward actions. In this study,

exploration entails selecting data points that have not been queried

much, allowing the algorithm to gather more information about the

data space. Exploitation, on the other hand, involves choosing actions

based on the current knowledge to maximize short-term rewards. The

tradeoff is managed through an epsilon-greedy strategy, where

the agent occasionally explores new actions (with probability ε) and

mostly exploits known high-reward actions.

Also, episodes represent discrete iterations of the Q-learning pro-

cess. Each episode involves a sequence of actions, where the agent

dynamically explores and exploits the possible actions. The Q-learning

algorithm refines its strategies across episodes, updating the Q-values

in the process. The goal is to iteratively improve the model's under-

standing of the environment and enhance the accuracy of adsorption

predictions.

The agent is the decision-making entity within the Q-learning

algorithm. It interacts with the environment by selecting actions and

updating its understanding of the MOF adsorption space. The

Q-table, a critical component, maintains Q-values for each state-

action pair. The Q-values represent the expected cumulative rewards

the agent anticipates from choosing a specific action in each state.

During exploration and exploitation, the agent relies on the Q-table to

inform its decision-making. The action selected by the agent is often

the one with the highest Q-value in each state. The dynamics of the

Q-table are shaped by the Q-learning update rule, which incorporates

immediate rewards and anticipated future rewards. The agent learns

from sequential experiences, adjusting its strategies through trial and

error. By maximizing the Q-values, the agent hones its decision-

making skills, progressively selecting actions that lead to higher

rewards and, consequently, more accurate predictions of adsorption

isotherms.

2.4.3 | Rewards

In the context of RL, rewards play a pivotal role in guiding the learning

process of an agent. Rewards in RL encapsulate the desirability or util-

ity associated with the outcomes of an agent's actions. They act as a

form of reinforcement, providing feedback to the agent and influenc-

ing its decision-making processes. In the Q-learning approach tailored

for MOFs, the purpose of rewards is to encourage the agent to learn a

policy that maximizes cumulative rewards over time.

In this methodology, rewards are evaluated using two metrics:

the improvement in the R2 score or mean relative error (MRE)

between predicted and actual adsorption data. The reward (r) is calcu-

lated based on the difference in MRE or R2 between states t and t

+1, reflecting the enhancement in predictive accuracy upon adding a

selected data point to the training set. These rewards drive the update

of Q-values within the training loop, influencing the agent's decision-

making process.

In summary, the methodology incorporates a reward-driven

approach within the Q-learning framework, aligning the agent's learn-

ing objectives with the goal of iteratively enhancing its decision-

making strategies. By prioritizing actions that contribute positively to

the model's accuracy, the methodology aims to achieve refined pre-

dictions of adsorption isotherms in MOFs.
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2.4.4 | States

In the completion of each episode, as outlined above, the addition of

a training data point triggers the formation of a new state within the

Q-learning framework. The concept of episodes, crucial to the itera-

tive learning process, encapsulates a sequence of actions taken by the

agent as it dynamically explores and exploits the MOF adsorption

space.

2.5 | Gaussian process regression

GPs provide a probabilistic and nonparametric approach to regression,

allowing for the modeling of complex relationships between input

parameters and the corresponding output values. In the GP frame-

work, functions are considered random variables, and the joint distri-

bution over functions is governed by a multivariate normal

distribution. The choice of mean function (m) and the covariance func-

tion (K) defines the GP's prior distribution, reflecting beliefs about the

functions before observing any data. This can be mathematically

described in Equation (1).

f ≈GP m xð Þ,K x,x0ð Þð Þ: ð2Þ

For this study, the covariance function (kernel) implemented was

the rational quadratic kernel28,41,42 as described by the mathematical

form in Equation (2):

K x,x0ð Þ ¼ 1þ x�x0ð Þ2
2αl2

 !�α
: ð3Þ

The kernel is defined by x�x0 representing the Euclidean distance

between x and x0, while l denotes the length scale parameter, which

defines the characteristic length over which variations in the function

occur. Additionally, α influences the balance between large-scale and

small-scale fluctuations within the function by adjusting their

respective weights. The Scikit-learn library was used for the GP

implementation.43

In the Q-learning methodology, a surrogate model is used in

approximating the adsorption behavior and guiding the agent's

decision-making process. The GP, acting as this surrogate model, is

trained on the available data, consisting of selected training points fed

into the model during the Q-learning episodes. As the Q-learning algo-

rithm explores the ground truth data, the GP model refines its predic-

tions based on the newly acquired training data points. The agent's

decisions, influenced by the rewards obtained during exploration,

guide the augmentation of the GP model, enhancing its accuracy in

predicting adsorption isotherms. The integration of GPs within the

Q-learning loop ensures a continuous interplay between exploration,

exploitation, and model refinement. The surrogate GP model becomes

an adaptive guide, steering the agent toward selecting informative

training data points.

To ensure the efficiency and accuracy of the RL-GP method, we

implemented two key adjustments. First, initial data points used for

training are excluded from the list of possible actions at the start of

the training process. This prevents the RL agent from selecting these

points again, ensuring that each selected point contributes new infor-

mation to the model. Second, we implemented a mechanism to track

evaluated data points and remove them sequentially from the action

list. This prevents repeated selection and ensures continuous explora-

tion of new areas in the data space.

In Figure 1 below, we show the sequence of the RL algorithm

involving the states, actions, rewards, and the GP in use.

In our modeling approach, it is important to acknowledge the role

of random seeds in influencing the outcomes of the exploration pro-

cess. The random seed affects the selection of exploration points in

the data space. This initial setting can lead to variability in which

points are selected for exploration, potentially impacting the learning

trajectory and the efficiency with which the model converges to an

optimal solution. Recognizing this, we used a random seed of

42, enabling reproducibility. However, in Section 3, we offer a com-

prehensive analysis of different random seeds.

3 | RESULTS AND DISCUSSIONS

In this section of the study, our attention was directed toward the uti-

lization of Q-learning to scrutinize the adsorption characteristics of

two gases, CH4 and CO2, within two distinct MOFs: Cu-BTC and

IRMOF-1. Our investigation encompassed the exploration of various

hyperparameters, including the learning rate, the tradeoff between

exploration and exploitation (ε), and discount factor, to discern their

impact on the learning process. Table 1 offers an overview of the

hyperparameters employed in the Q-learning exercises, facilitating a

systematic evaluation of their efficacy across different adsorbate–

adsorbent pairs. The primary objective was to identify the optimal

combination of parameters tailored to each adsorbate–adsorbent pair

in this paper.

In this investigation, the Q-learning algorithm was capped at a

maximum of 10 episodes. We evaluated two reward metrics: the dif-

ference in MRE between consecutive states, and the difference in R2

values between consecutive states. The MRE reward metric demon-

strated superior performance compared to the R2 reward metric. Con-

sequently, we primarily focus on the MRE metric in this paper, while

presenting results for the R2 metric in the Supporting Information (SI).

The determination of the optimal hyperparameter combination relied

on the achieved final MRE for the MRE reward metric and the final R2

values for the R2 reward metric.

3.1 | MRE as reward metric

In this section, rewards are based on MRE as calculated between pre-

dicted adsorption and actual adsorption data. The reward (r) is
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calculated as the difference in MRE between states t and t+1. Once

the reward has been calculated, it is fed into Equation (1) to construct

the Q-table.

The MRE can be calculated as described by the equation:

1
n

Xn
i¼1

j yactuali �ypredictedi j
yactuali

: ð4Þ

3.1.1 | Q-learning on two pure gases within
two MOFs

For CH₄ adsorption in Cu-BTC, the optimal hyperparameter combina-

tion was determined to be a learning rate (α) of 0.001, a discount fac-

tor (γ) of 0.1, and an exploration/exploitation (ϵ) value of 0.9, with

10 episodes.

Figure 2 illustrates the outcomes for this specific adsorbate–

adsorbent pair based on the identified best hyperparameter

combinations, as stated above. In Figure 2A, the evolution of the MRE

between the GP-predicted adsorption and ground truth adsorption is

depicted as Q-learning episodes progress. Notably, the algorithm

achieved a final MRE of 0.043. Figure 2B presents a comparative anal-

ysis between the predicted and ground truth adsorption, demonstrat-

ing the model's predictive performance, where an R2 of 0.99 and MAE

of 0.237 cm3 STP/g was achieved. Additionally, Figure 2C visualizes

the pressure space sampled by the RL agent. Finally, Figure 2D shows

a good comparison between the simulated isotherm and the GP-

predicted isotherm, as directed by Q-learning.

For the case of CH4 in IRMOF-1, a final MRE of 0.044 was

achieved by the Q-learning agent after the maximum episodes of 10.

The best Q-learning parameters were found to be α of 0.001, γ of 0.5,

and ϵ of 0.9. In Figure 3A, we show the evolution of MRE with the

episodes, with a significant rise in the MRE in the second episode.

Additionally, Figure 3B displays the resulting comparison between the

GCMC and GP-predicted adsorptions, showing good agreements and

a R2 of 0.99 and MAE of 0.763 cm3 STP/g was achieved. In Figure 3C,

we observe the pressure-sampled regions by the agents showing a

distribution across the pressure space. Finally, Figure 3D also shows

a good comparison between the simulated isotherm and the RL-based

GP-predicted isotherm.

CO2 adsorption prediction in both Cu-BTC and IRMOF-1 were

optimized in the same number of Q-learning episodes of 10, to

achieve desirable outcomes. Specifically, in the case of Cu-BTC, the

optimal hyperparameter combination was determined to be a α of

F IGURE 1 Q-learning Schematic: The diagram illustrates the Q-learning process. The initial state (t) represents the starting training data,
where the agent dynamically balances exploration and exploitation influenced by the discount factor. The agent takes action by selecting a data
point from the ground truth, updating the prior data set. Subsequently, these new data points contribute to the training of the GP model. The
reward, quantified as the metrics (MRE or R2) difference between the current state (t) and the next state (t + 1), is computed. GP, Gaussian
process; MRE, mean relative error.

TABLE 1 Q-learning hyperparameters.

Learning rate (α) Discount factor (γ) Epsilon (ϵ)

0.001 0.1 0.1

0.01 0.5 0.5

0.1 0.9 0.9

5 of 16 OSARO and COLÓN
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F IGURE 2 Results for CH4 in Cu-BTC. (A) Evolution of MRE with the Q-learning episodes. (B) Comparison between GCMC adsorption and
the RL-GP predicted adsorption values. (C) RL sampled region of pressures by the Q-learning agent for the final GP model. In addition to the
initial training data, 10 more pressure points were sampled by the RL Scheme making a total of 12 pressure points. (D) GCMC and RL-GP
predicted isotherms comparison. GCMC, grand canonical Monte Carlo; GP, Gaussian process; MRE, mean relative error; RL, reinforcement
learning.

F IGURE 3 Results for CH4 in IRMOF-1. (A) Evolution of MRE with the Q-learning episodes. (B) Comparison between GCMC adsorption and
the RL-GP predicted adsorption values. (C) RL sampled region of pressures by the Q-learning agent for the final GP model. In addition to the
initial training data, 10 more pressure points were sampled by the RL Scheme making a total of 12 pressure points. (D) GCMC and RL-GP
predicted isotherms comparison. GCMC, grand canonical Monte Carlo; GP, Gaussian process; MRE, mean relative error; RL, reinforcement
learning.
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F IGURE 4 Results for CO2 in Cu-BTC. (A) Evolution of MRE with the Q-learning episodes. (B) Comparison between GCMC adsorption and
the RL-GP predicted adsorption values. (C) RL sampled region of pressures by the Q-learning agent for the final GP model. In addition to the
initial training data, 10 more pressure points were sampled by the RL Scheme making a total of 12 pressure points. (D) GCMC and RL-GP
predicted isotherms comparison. GCMC, grand canonical Monte Carlo; GP, Gaussian process; MRE, mean relative error; RL, reinforcement
learning.

F IGURE 5 Results for CO2 in IRMOF-1. (A) Evolution of MRE with the Q-learning episodes. (B) Comparison between GCMC adsorption and
the RL-GP predicted adsorption values. (C) RL sampled region of pressures by the Q-learning agent for the final GP model. In addition to the
initial training data, 10 more pressure points were sampled by the RL Scheme making a total of 12 pressure points. (D) GCMC and RL-GP
predicted isotherms comparison. GCMC, grand canonical Monte Carlo; GP, Gaussian process; MRE, mean relative error; RL, reinforcement
learning.
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0.001, γ of 0.9, and an ϵ value of 0.9, with 10 episodes. In Figure 4A, a

final MRE value of 0.046 was achieved after a consistent increase in

MRE from the second to fourth episodes, followed by a drop in MRE

from the fifth episode, indicating the dynamic nature of the learning

process. Furthermore, Figure 4B showcases a comparison between

GP-predicted and GCMC adsorption in Cu-BTC, demonstrating com-

mendable agreement between the two. An R2 of 0.99 and MAE of

0.764 cm3 STP/g. Figure 4C provides insights into the pressure space

sampled by the agent, highlighting the agent's ability to determine the

optimal points. In Figure 4D, we show a good prediction of the iso-

therm as compared to the GCMC-simulated isotherm, indicating that

the RL-based GP can predict the isotherm.

Similarly, for IRMOF-1, the optimal hyperparameter combination

was determined to be a α of 0.001, γ of 0.5, and ϵ value of 0.9, with

F IGURE 6 The comparison between RL-based Gaussian process (GP) predicted and actual CH4 isotherms. The plot showcases the first four

MOF models with the lowest MRE values, followed by the next four MOF models with the highest MRE values. MOF, metal–organic framework;
MRE, mean relative error; RL, reinforcement learning.

OSARO and COLÓN 8 of 16

 15475905, 2024, 12, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18611 by U

niversity O
f N

otre D
am

e, W
iley O

nline Library on [27/02/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



10 episodes. A final MRE of 0.1 was accomplished by the last episode.

The evolution of MRE scores is depicted in Figure 5A with notable

increases in MRE observed during the fourth episode, which shows

the iterative nature of the learning process. Figure 5B illustrates the

comparison between GP-predicted and GCMC adsorption in

IRMOF-1, revealing robust agreement between the two predictions,

with failure in the highest-pressure regions. This failure is evident in

Figure 5C, where the algorithm fails to explore high-pressure regions.

In Figure 5C, the pressure space sampled by the agent in IRMOF-1

indicates an exploration of the diverse pressure regions. In Figure 5D,

we show a good agreement between the simulated and RL-GP pre-

dicted isotherms. An R2 of 0.99 and MAE of 4.232 cm3 STP/g was

achieved.

3.1.2 | Q-learning on CH4 gas within CoRE MOFs

The optimal Q-learning parameters established for CH4 adsorption in

Cu-BTC and IRMOF-1 were α of 0.001, γ of 0.5, and s of 0.9. Using

these established parameters, we extended the RL framework to the

CoRE MOF database,16 encompassing 8671 MOFs using those

parameters.

The initial state is the initial training data containing the minimum

(1 Pa) and maximum pressure (1E7 Pa) and their corresponding

adsorption. Employing this RL criteria, we conducted RL for each

structure within the database, enabling a comparison between RL-GP

predicted adsorption and actual adsorption values across various

MOFs within the data set. The actual adsorption values are obtained

from an AL-based method as described in Section 2.2, and we recog-

nize the potential for inaccuracies in the surrogate AL-GP models

trained on few GCMC data. Figure 6 visualizes the comparison for

select MOFs within the database, shedding light on the efficacy of RL

in predicting adsorption. The initial four frames showcase the top-

performing MOFs with the lowest MRE, while the subsequent four

frames present the worst-performing MOFs characterized by the

highest MRE values. Upon aggregating all predictions across

the entirety of MOFs, we achieved a conclusive R2 value of 0.99, as

depicted in Figure 7A. Additionally, the mean absolute error was

0.113 cm3 STP/g, which indicates a good performance of the model.

Upon delving deeper, we examined the critical points sampled by the

RL agent, revealing a diverse pattern in their distribution across

the pressure input space. This sampling of several pressures signifies

the RL agents' adeptness in identifying pivotal regions influencing

adsorption behavior. By strategically targeting certain pressures (par-

ticularly the lower and higher-pressure regions) regions, as shown in

Figure 7B, RL agents facilitate the acquisition of crucial data points

essential for constructing accurate GP models.

3.1.3 | Q-learning on CO2 gas within CoRE MOFs

Given the established Q-learning parameters for CO2 from IRMOF-1

and Cu-BTC, the RL scheme is applied to the same CoRE MOFs as in

the previous sections. Figure 8 below shows the isotherms of some

selected MOFs for CO2. The first four frames indicate the best perfor-

mance in terms of lowest MRE(s) and the next four frames are the

least performing cases in terms of highest MRE(s).

In the case of CO2, our analysis of the combined actual and RL-

based GP predictions across all MOFs yielded an R2 value of 0.99,

as depicted in Figure 9A below. The MAE stood at 0.4667 cm3

STP/g. The differences in R2 and MAE values between CO2 and

CH4 can be attributed to the stronger interactions of CO2, leading

to more complex adsorption isotherms with sharper transitions.

This complexity poses a challenge for accurate prediction, poten-

tially resulting in higher MAE value, compared to CH4. Upon closer

examination, as depicted in Figure 9B, we analyzed the critical

points sampled by the RL agent, revealing a distribution across the

pressure input space, particularly in the lower-pressure regions.

The convergence in sampling behavior underscores the robustness

of the RL-guided exploration approach in identifying critical regions

within the pressure space with significant implications for adsorp-

tion behavior.

F IGURE 7 (A) Comparison between the CH4 actual adsorption
and the RL-GP predicted adsorption across the entire CoRE MOFs
structures studied in this work. The final R2 and mean absolute error
attained is 0.99 and 0.113 cm3 STP/g. (B) Pressure space exploration
for CH4. The data points collected by the RL agent across all 8671
MOFs are utilized for constructing individual GP models. Many of
these points cluster towards the low-pressure and high-pressure
regions, with fewer points distributed in other pressure regions. These
points exclude the initial state points of 1 and 1E7 Pa. GP, Gaussian
process; MOF, metal–organic framework; MRE, mean relative error;

RL, reinforcement learning.
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In the SI, we show the results of using an R2 reward metric in the

sequence used in this paper. First, we applied the RL framework to

CH4 both in Cu-BTC and IRMOF-1 and used the optimal Q-learning

parameters (based on highest R2) in the case of the CoRE MOFs.

For CH₄ adsorption in Cu-BTC (Figure S1), we determined the

optimal combination of hyperparameters to be α = 0.001, γ =0.9, and

ϵ=0.9. For the case of CH₄ in IRMOF-1 (Figure S2), the parameters

α=0.001, γ =0.1, and ϵ=0.9, yielded the best results.

The results for CO2 in Cu-BTC and IRMOF-1 are shown in

Figures S5 and S6. The optimal parameters were α = 0.001, γ =0.1,

and ϵ=0.9 for CuBTC and parameters α=0.001, γ =0.1, and ϵ=0.5,

for IRMOF-1.

Based on the consistency of the hyperparameters (α = 0.001, γ

=0.1, and ϵ=0.9) across the four systems, we employed the estab-

lished Q-learning parameters for CH4 and CO₂ to the 8671 CoRE

MOFs. For both CH4 and CO2, RL was conducted for each structure.

F IGURE 8 The comparison between RL-based Gaussian process (GP) predicted and actual CO2 isotherms. The plot showcases the first four
MOF models with the lowest MRE values, followed by the next four MOF models with the highest MRE values. MOF, metal–organic framework;
MRE, mean relative error; RL, reinforcement learning.
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For CH4, the combined actual and RL-based GP predictions yielded an

R2 of 0.99, with an MAE of 0.278 cm3 STP/g (Figure S4A), which is

higher than the MAE value realized using the MRE reward metric. For

CO2 (Figure S8A), R2 of 0.99 and MAE of 0.914 cm3 STP/g.

3.1.4 | Influence of random seed number on RL
results

As mentioned in Section 2, the choice of random seed plays a crucial

role in shaping the outcomes of the RL framework, particularly in the

process of selecting exploration points. While this paper maintains

consistency by using random seed 42, we conducted a comprehensive

analysis to evaluate the influence of 1000 distinct random seeds

across four systems: CH4 in CuBTC and IRMOF-1, as well as CO2 in

CuBTC and IRMOF-1. Table 2 below offers a comparison between

the performance metrics (MAE, MRE, and R2) obtained using seed

42 and the averaged metrics derived from the 1000 random seeds.

These results shed light on the robustness of our approach, indicating

that variations in the choice of random seed have minimal impact on

the overall outcomes. This observation underscores the stability and

reliability of the RL framework in selecting exploration points across

diverse systems.

In the SI, we show a table of the pressure points selected for five

different MOFs from the CoRE MOFs, for five different random

seeds, showing the impact of the random seed selection.

3.1.5 | Performance comparison of AL and RL: CH4

and CO2 adsorption in Cu-BTC and IRMOF-1

In this section, we compare the outcomes of AL and RL (random seed

of 42) on CH4 and CO2 adsorption in two MOFs: Cu-BTC and

IRMOF-1. Initially, a training data set with two pressure points (1 and

1E7 Pa) was utilized to train a GP model. Predictions were made on

an unlabeled data set, and uncertainties were computed, followed by

calculating the relative error. The unlabeled data set with the highest

relative error was selected, and actual adsorption was simulated at

that point. Subsequently, the initial training data was updated with

this pressure point and actual adsorption, and this AL protocol contin-

ued iteratively until the maximum relative error across all predictions

was less than 2%. It is important to note that for the CoRE MOFs

used in our study (previous sections), the initial data set consisted of

19 points, which were derived from GCMC simulations.

F IGURE 9 (A) Comparison between the CO2 actual adsorption
and the RL-GP predicted adsorption across the entire CoRE MOFs
structures studied in this work. The final R2 and mean absolute error
attained is 0.99 and 0.4667 cm3 STP/g framework. (B) Pressure space
exploration for CO2. The data points collected by the RL agent across
all 8671 MOFs are utilized for constructing individual GP models.
Many of these points cluster toward the low-pressure and high-
pressure regions, with fewer points distributed in other pressure
regions. These points exclude the initial state points of 1 and 1E7
Pa. GP, Gaussian process; MOF, metal–organic framework; MRE,
mean relative error; RL, reinforcement learning.

TABLE 2 Comparison between
average metrics from 1000 different
seeds to a random seed of 42.

Mean MAE

(cm3 STP/g)

MAE for random
seed

of 42 (cm3 STP/g)

Mean

MRE

MRE for
random

seed of 42

Mean

R2

R2 for
random

seed for 42

CH4 in CuBTC

0.3301 0.237 0.048 0.043 0.99 0.99

CH4 in IRMOF-1

0.761 0.763 0.040 0.044 0.99 0.99

CO2 in CuBTC

0.791 0.764 0.049 0.046 0.99 0.99

CO2 in IRMOF-1

4.3 4.232 0.1 0.1 0.99 0.99

Abbreviations: MAE, mean absolute error; MRE, mean relative error.
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F IGURE 10 (A) AL final GP model training data. (B) RL sampled region of pressures by the Q-learning agent for the final GP model.
(C) Isotherm comparison between GCMC simulation, RL-GP, and AL-GP predictions. AL, active learning; GCMC, grand canonical Monte Carlo;
GP, Gaussian process; RL, reinforcement learning.

F IGURE 11 (A) AL final GP model training data. (B) RL sampled region of pressures by the Q-learning agent for the final GP model.
(C) Isotherm comparison between GCMC simulation, RL-GP, and AL-GP predictions. AL, active learning; GCMC, grand canonical Monte Carlo;
GP, Gaussian process; RL, reinforcement learning.
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Generally, while both approaches yield favorable comparisons

to the GCMC ground truth data, RL generally outperforms AL. An

exception to this trend is observed in the prediction of CH4

adsorption in IRMOF-1, where AL achieved a mean absolute

error (MAE) of 0.538 cm3 STP/g compared to RL's MAE of

0.763 cm3 STP/g.

F IGURE 12 (A) AL final GP model training data. (B) RL sampled region of pressures by the Q-learning agent for the final GP model.
(C) Isotherm comparison between GCMC simulation, RL-GP, and AL-GP predictions. AL, active learning; GCMC, grand canonical Monte Carlo;
GP, Gaussian process; RL, reinforcement learning.

F IGURE 13 (A) AL final GP model training data. (B) RL sampled region of pressures by the Q-learning agent for the final GP model.
(C) Isotherm comparison between GCMC simulation, RL-GP, and AL-GP predictions. AL, active learning; GCMC, grand canonical Monte Carlo;
GP, Gaussian process; RL, reinforcement learning.
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Although RL outperformed AL in three of the studied cases, this

enhanced performance can be attributed to RL having access to all

labels (data) upfront, whereas AL does not have this advantage.

CH4 in Cu-BTC

Figure 10A shows the pressure points collected by AL for the final GP

model, while Figure 10B shows the RL sampled point by the

Q-learning agent. For this case, we observe that the RL approach with

a lesser MAE of 0.237 cm3 STP/g outperforms that of AL with an

MAE of 0.538 cm3 STP/g, as shown in Figure 10C.

CH4 in IRMOF-1

Figure 11A displays the pressure points collected by AL for the final

GP model, and Figure 11B shows the RL sampled point by the

Q-learning agent. In this scenario, it was observed that the AL

approach with a lesser MAE of 0.461 cm3 STP/g outperforms that of

RL with an MAE of 0.763 cm3 STP/g, as shown in Figure 11C.

CO2 in Cu-BTC

Figure 12A shows the pressure points collected by AL for the final GP

model, and Figure 12B shows the RL sampled point by the Q-learning

agent. We observed that the RL approach with a lesser MAE of

0.764 cm3 STP/g outperforms that of AL with an MAE of 5.815 cm3

STP/g, as shown in Figure 12C.

CO2 in IRMOF-1

Figure 13A shows the pressure points collected by AL for the final GP

model, while Figure 13B shows the RL sampled point by the

Q-learning agent. For this case, we observe that the RL approach with

a lesser MAE of 4.232 cm3 STP/g outperforms that of AL with an

MAE of 5.377 cm3 STP/g, as shown in Figure 13C.

4 | CONCLUSION AND
RECOMMENDATIONS

In this study, we introduced an approach that integrates Q-learning

with GPs to optimize predictive modeling in MOF adsorption studies.

By strategically selecting training data points based on rewards

derived from predictive accuracy, the Q-learning algorithm efficiently

explores the vast MOF adsorption space, offering a dynamic and

adaptive framework for materials research. Our investigations across

different MOF systems and gas adsorbates demonstrate the adapt-

ability and effectiveness of this approach, showcasing its potential.

Through several experiments, we identified the best tradeoff

between an RL agent exploration and exploitation. This balance

proved pivotal in optimizing the training data set selection process,

enhancing the adaptability and effectiveness of the learning mecha-

nism. Moreover, our results highlight the robustness and reliability of

Q-learning-guided exploration, as evidenced by the consistent perfor-

mance across different systems and conditions.

A pivotal aspect of our approach lies in the strategic sampling of

critical points by the RL agent within the pressure input space. By

systematically exploring the pressure space, our methodology shows

that there are informative pressure regions to develop an accurate

adsorption model across all MOFs. Our findings underscore the signif-

icance of systematically probing these regions. The general RL code

for both the MRE and R2 reward metrics, and the isotherms generated

through AL for both CH4, and CO2 can all be found via the GitHub

repository.

In this study, we acknowledge that RL is computationally expen-

sive compared to previous AL schemes or random sampling and

requires access to all labels for its learning process. While fitting all

the data or randomly selected points into a GP model can be suffi-

cient, RL distinguishes itself by learning a policy that balances explora-

tion and exploitation of the data points.

The adoption of RL for modeling adsorption isotherms as an AL

method is justified by its capabilities in managing the exploration–

exploitation tradeoff. This exploration is guided by an algorithm that

not only seeks to uncover potentially more efficient adsorption points

but also that each iteration contributes maximally to the accuracy of

the resulting model. Hence, the integration of RL in this context

enhances the accuracy of adsorption isotherm surrogate models.

Looking ahead, the advancements presented in this study lay a solid

foundation for future research endeavors in predictive modeling and

materials science. The seamless integration of RL with GPs opens new

avenues for accelerating materials discovery; RL can be used for other

studies where determining a model training data is of extreme impor-

tance. Further, alternative RL techniques beyond Q-learning, such as

Deep Q-Networks44 or Actor-Critic methods,45 could enhance the

efficiency and scalability of predictive modeling. Additionally, the inte-

gration of transfer learning techniques could facilitate knowledge

transfer between related tasks or domains, accelerating model conver-

gence and improving generalization capabilities, especially in scenarios

with limited training data.
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