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Gualdrón b and Yamil J. Colón *a

Adsorption is a fundamental process studied in materials science and engineering because it plays a critical

role in various applications, including gas storage and separation. Understanding and predicting gas

adsorption within porous materials demands comprehensive computational simulations that are often

resource intensive, limiting the identification of promising materials. Active learning (AL) methods offer

an effective strategy to reduce the computational burden by selectively acquiring critical data for model

training. Metal–organic frameworks (MOFs) exhibit immense potential across various adsorption

applications due to their porous structure and their modular nature, leading to diverse pore sizes and

chemistry that serve as an ideal platform to develop adsorption models. Here, we demonstrate the

efficacy of AL in predicting gas adsorption within MOFs using “alchemical” molecules and their

interactions as surrogates for real molecules. We first applied AL separately to each MOF, reducing the

training dataset size by 57.5% while retaining predictive accuracy. Subsequently, we amalgamated the

refined datasets across 1800 MOFs to train a multilayer perceptron (MLP) model, successfully predicting

adsorption of real molecules. Furthermore, by integrating MOF features into the AL framework using

principal component analysis (PCA), we navigated MOF space effectively, achieving high predictive

accuracy with only a subset of MOFs. Our results highlight AL's efficiency in reducing dataset size,

enhancing model performance, and offering insights into adsorption phenomenon in large datasets of

MOFs. This study underscores AL's crucial role in advancing computational material science and

developing more accurate and less data intensive models for gas adsorption in porous materials.
Introduction

Metal–organic frameworks (MOFs) stand as versatile porous
materials with exquisitely tunable structures, and tremendous
potential for numerous applications across various elds.1–6 A
large fraction of these applications seek to exploit the adsorption
properties of these materials, which are composed of inter-
connected building blocks (i.e., metallic nodes and organic
linkers).7–10 For instance, numerousMOFs could be imparted with
adsorption properties to substitute ca. 80% of heat-based chem-
ical separations processes with adsorption-based ones.11 There-
fore, harnessing the full potential of MOFs, and accelerating their
development by anticipating MOF designs that embody desired
properties through computation requires reliable predictions of
adsorption behavior within these intricate frameworks.

The vast MOF space, spanning countless unique structures
formed from different combinations of constitutive building
ngineering, University of Notre Dame, IN,

ineering, Colorado School of Mines, 1500

tion (ESI) available. See DOI:

the Royal Society of Chemistry
blocks, poses an immense challenge to predicting gas adsorption
behaviors across this expansive space ofmaterials sufficiently fast.
Depending on the complexity of the molecule model, predicting
the adsorption loading of a molecule within a MOF through
classical techniques such as grand canonical Monte Carlo
(GCMC) simulations12–16 may require substantial and specialized
computational resources. Each GCMC simulation involves
comprehensive exploration of the congurational space of gas
molecules within MOF pores, calculating interaction energies,
and sampling numerous adsorption states. Regardless of the
complexity of the molecule model, the computational expense
escalates signicantly as the number of MOFs, adsorbate mole-
cules, and adsorption conditions under consideration increase.

Machine learning (ML) seems poised to be an important tool
to predict adsorption in MOFs.17–22 However, developing ML
that can comprehensively navigate the immense space formed
by different MOF and molecule pairings demands a high
volume of training data to achieve reliable predictions.
Acquiring such large datasets can be an arduous, time-
consuming, and computationally expensive task. Several ML
adsorption models documented in the literature demand an
extensive dataset ranging from thousands to millions of data
Chem. Sci., 2024, 15, 17671–17684 | 17671
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points. Our solution, active learning (AL), circumvents this
necessity.

To circumvent the above issue, AL could be used as a stra-
tegic approach to optimize the data acquisition process. AL,
a subeld of ML, reduces the data burden to train a model
through an iterative effort that guides the collection of training
data only towards the most informative data points, while
simultaneously using these data points to train a surrogate
model to predict the quantity of interest and the uncertainty
associated with the prediction.23–27 In this work, we will add data
to the training using the points for which the prediction
uncertainty is highest.

We envision AL to play a crucial role in the development of
ML adsorption models by guiding the selection of adsorption
scenarios that offer surrogate models the most information
about adsorption behavior, thereby reducing the computational
expense associated with conducting GCMC simulations to
generate training data. We select specic combinations of
MOFs, molecules, and conditions that contribute to the surro-
gate model's predictions of adsorption.

AL has been demonstrated to reduce the data burden to train
models that predict adsorption of specic molecules. For
instance, in a previous study, Osaro and coworkers28 demon-
strated the development of a model to predict full pure gas
isotherms for methane, nitrogen, hydrogen and carbon dioxide
using few training datapoints across eleven MOFs. In another
instance, Mukherjee and coworkers29 used AL to develop
a model to predict full isotherms for methane and carbon
dioxide in HKUST-1 at different temperatures. AL has addi-
tionally been employed to train a model capable of predicting
adsorption behaviors for various gas pairs, including xenon–
krypton, carbon dioxide–methane, and hydrogen sulde–
carbon dioxide, within a single MOF.30

The ultimate goal of this work is to facilitate the develop-
ment of adsorption models of any gas in any porous material. In
this paper, we make progress towards that goal by reducing the
data burden of alchemical adsorption in MOFs.

Training of a universal adsorption model implies presenting
the model with adsorption data for different molecules, along
with some representation of said molecules. As molecules can
be modeled using some combinations of values for parameters
in intermolecular (e.g., Lennard-Jones and coulombic parame-
ters) and intramolecular potentials, Gómez-Gualdrón and
coworkers showed that to “teach” a model about adsorption,
one does not need to limit the adsorption data to real mole-
cules. Specically, they created 200 alchemical molecules using
arbitrary combinations of potential parameters,31 obtained
adsorption data for them using molecular simulation and used
the data to train a multi-layer perceptron (MLP) model capable
of predicting full isotherms for real, small, non-polar, near-
spherical, rigid molecules.

The above MLP demonstrates the concept of a ML-based
universal adsorption model to be sound. Yet, the feasibility of
a truly universal model is contingent on the ability to incorporate
sufficient adsorption data for molecules (real or alchemical) with
more diverse sizes, shapes, polarity, and exibility. However, the
above MLP required approximately 5 million GCMC data points,
17672 | Chem. Sci., 2024, 15, 17671–17684
encompassing adsorption data for 200 small, non-polar, near-
spherical, rigid alchemical adsorbates, on a relatively small set
of 1800 topologically and chemically diverse ToBaCCo32-gener-
ated MOFs, at fugacities of 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5,
0.75, 1, 5, 10, 50, 75, and 100 bar.31 Overall, each MOF required
about 2800 adsorption data points for training.

In the work above, alchemical adsorbates were adequately
represented by four features, which were explored in a some-
what exhaustive fashion. Expansion of the training data to
include molecules with more diverse sizes, shapes, polarity, and
exibility would require representing the adsorbates with more
features, increasing the dimensionality of the adsorbate space,
whose exhaustive exploration would imply an intractable
number of GCMC simulations. Thus, a critical bottleneck that
needs to be overcome to truly open the path towards a universal
adsorption model is to gain the ability to efficiently explore the
adsorbate (plus adsorbent) space.

Crucially, in this work we demonstrate for the rst time the
ability of AL to cut down the size of training datasets that
includes adsorption data of multiple molecules, using the
adsorbate space explored earlier by Gómez-Gualdrón and
coworkers as a testbed. We rst approached this task on a per
MOF strategy by using AL to generate the training data for each
MOF (1800 MOFs in total), which resulted in 57.5% data
savings. The resulting surrogate models from AL per MOF are
used to generate training data for a new MLP model, which was
shown to retain the original predictive performance of the
original MLP by Gómez-Gualdrón and coworkers. Encouraged
by the results, we then approach this AL task on a joint MOF-
adsorbate basis (alchemical adsorbates and 3445 MOFs).
Excitingly, this approach results in drastic data savings of
99.8%. Lastly, we analyze the AL process, focusing on its
selected features as the model is developed, providing insights
into AL campaigns for adsorption.
Methods

Gaussian process regression (GPR) is a probabilistic ML tech-
nique effectively used for non-linear regression tasks. It operates
on the principles of Bayesian statistics and assumes a prior
distribution over functions, dening a distribution over the entire
space of functions that could describe the underlying data.

The fundamental concept behind GPR involves modeling the
relationship between input features (predictors) and output
variables (predictions) using Gaussian processes (GPs). GPs are
dened by a mean function and a covariance function (also
known as kernel function). The mean function represents the
average trend of the data, while the covariance function
captures the similarity between pairs of data points x and x0.
The GPR is mathematically represented by f ∼ GP(m(x), K(x, x0)),
where the function f has a GP distribution with mean function
(m) and covariance function (K). Here, as K we use the rational
quadratic (RQ) kernel, which takes the mathematical form:

K
�
x; x

0
�
¼
 
1þ

�
x� x

0�2
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The kernel is characterized by x − x0 which is the Euclidean
distance between x and x0 data points (the input data); l is
a parameter that signies the length scale, dening the char-
acteristic length over which variations in the function occur,
and a plays a pivotal role governing the balance between large-
scale and small-scale uctuations within the function.

In this study of gas adsorption in MOFs, GPR was utilized to
model the relationship between various features associated
with MOFs and the adsorption of specic molecules. On the
navigation of fugacity and alchemical molecules across 1800
MOFs, the applied GP model trained individual GPR models for
each MOF to predict the adsorption behavior of different
molecules within that MOF. In the scenario involving the
navigation of fugacity, alchemical molecules, and the 3445
MOFs represented by the principal component derived from
their textural properties, a single GP model is trained to predict
adsorption. The complete training process was carried out
through AL iterations strategically selecting data points that
Fig. 1 AL framework on alchemical molecules. The GPRmodel with the in
and charge is used to predict the target variable of adsorption loading, af
data set (the test input features) with the highest predicted GP uncertain
point is added to the initial training data and the model is retrained and t
until the GP mean uncertainty is less than 0.05 mol kg−1. This procedure
this figure is the initial training data.

© 2024 The Author(s). Published by the Royal Society of Chemistry
improve the predictive accuracy of the model, ultimately
reducing computational cost to generate the training data. The
GPow library33 was used for implementing the AL workow
and the GP used the rational quadratic (RQ) kernel.34–37
AL algorithm implementation on fugacity and adsorbates

The study used an AL algorithm to navigate adsorption
scenarios on 1800 MOFs. The features of the GP model (F) used
for each MOF are fugacity (f), surrogate Lennard-Jones param-
eters epsilon effective (3) and sigma effective (s), bond length (l),
and charges (q); these are the parameters that the AL algorithm
automatically selects at each iteration. The GPmodel uses those
features to make adsorption predictions in the MOF (N),
mathematically N ∼ F(f, 3, s, l, q). Fig. 1 illustrates the AL
convergence criteria set at 0.05 mol kg−1 GP mean uncertainty
and the algorithm workow across iterations for all MOFs
analyzing GP mean uncertainty and R2 behavior.
put features of fugacity, effective epsilon, effective sigma, bond length,
ter the model has been trained with some initial training data. The test
ty is fed into the MLP model and the ground-truth is computed. This
he predictions on the test dataset is done again. This is done iteratively
is conducted independently in each of the 1800 MOFs. Prior as used in

Chem. Sci., 2024, 15, 17671–17684 | 17673
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The choice of a GP mean uncertainty threshold of 0.05 mol
kg−1 was based on empirical validation to balance predictive
accuracy and computational efficiency. There is no universally
accepted standard for GP uncertainty thresholds in AL, partic-
ularly in the context of adsorption modeling in porous mate-
rials. The xed value of 0.05 mol kg−1 was selected to provide
a consistent stopping criterion across diverse MOFs and
adsorbates, ensuring robust model performance without being
overly sensitive to variations in adsorption magnitudes.

Preliminary experiments where we compared two AL policies
demonstrated that this threshold consistently maintained high
predictive accuracy across a broad set of MOFs while reducing
the number of required data points, aligning with the study's
objective of minimizing computational load. These results can
be seen in the section “Active Learning policy choice evaluation”
in the ESI.† To summarize those results, the GP mean uncer-
tainty policy of 0.05 mol kg−1 outperforms the GP maximum
relative error of 2% policy in both predictive accuracy and data
savings. While alternative thresholds, including ratio or
percentage-based criteria, could be further explored in future
research, the chosen threshold was found to be optimal for the
current study's goals.

Multilayer perceptron (MLP) model training

A unied training data set comprising approximately 2.1 million
data points from multiple MOFs was created using the AL
process. A Multilayer Perceptron (MLP) model was trained using
TensorFlow.38 The selected model conguration included 500
epochs a batch size of 128, and a learning rate of 0.00001. The
MLP architecture featured an input layer followed by three
hidden layers, each employing Leaky ReLU39 activation functions.

AL algorithm implementation on fugacity, adsorbates, and
adsorbents

Principal components (PCs) of the MOF textural properties were
generated using scikit-learn.40,41 This was applied to a dataset
containing 3445 MOFs textural properties to identify primary
dimensions signicantly contributing to variance. The AL
process was identical as before but adding PC1 and PC2 as input
features to the AL process: N ∼ F(f, 3, s, l, q, PC1, PC2).

Bagging approach for model testing on fugacity, adsorbates,
and adsorbents section

The GCMC simulation data, exceeding 5 million points and
taken from previous studies31,42 was segmented into 100 bags to
represent diverse adsorbates across 3445 MOFs. Ensuring that
each bag encompassed the PCs of all MOFs for uniformity and
representativity in each bag. These bags were structured to vary
across fugacity and adsorbate types.

Results and discussions
AL on alchemical molecules

The MLP previously developed by Gómez-Gualdrón and
coworkers31 used approximately 5 million training data points
derived from GCMC simulations involving 200 alchemical
17674 | Chem. Sci., 2024, 15, 17671–17684
adsorbates across 1800 MOFs. It established strong correlations
between the predictions generated by the MLP model and the
adsorption results obtained from GCMC simulations and will
be used as a surrogate for GCMC in this study section. In this
section, we demonstrate the efficacy of AL in developing
a similarly predictive model, while reducing the training dataset
on a per MOF basis. We constructed a new MLP model capable
of predicting the adsorption behavior of real molecules using
training data originated from the surrogate GP models devel-
oped by AL for each MOF. Namely, with our rst AL approach,
we executed the AL process in each MOF separately, and
subsequently amalgamated the training datapoints selected by
AL for each of all 1800 MOFs into a unied dataset. The latter
was then utilized to train a newMLPmodel, which was tested to
predict adsorption of real molecules.

The AL algorithm for the above approach is illustrated in
Fig. 1. The adsorbate features that the Gaussian Process (GP)
model (F) developed for each MOF uses to make adsorption
predictions (adsorption loading N) are adsorbate surrogate
Lennard-Jones parameters (effective epsilon (3) and effective
sigma (s)), bond length (l), and charge (q). The adsorbate (which
is dened by the combination of values of the aforementioned
parameters) and fugacity (f) combinations to be iteratively
added to the training data are automatically selected by the AL.
To commence the AL algorithm for each MOF, we curated an
initial set of twenty-six training data points encompassing
fugacities, diverse alchemical adsorbates, and their respective
adsorption values. These data points were chosen to represent
a broad range derived from the training dataset. A sample of the
initial training data for a single MOF is available in the project's
GitHub repository.

The logarithms of the adsorbate features were used as input
to the GP model, except in the case of charge and bond-length.
All features underwent z-score standardization before being
inputted into the GP model, which utilized a rational quadratic
(RQ) kernel to perform the regression. At each AL iteration, the
GP model trained (using the initial training dataset) for each
MOF was used to compute the GP mean uncertainty for each
prediction, which is a direct output of the GP model.

Following training, the model was utilized to predict
adsorption based on randomly chosen values of alchemical
parameters and fugacities, referred to as testing data, as
detailed in Table S1 of the ESI.† Importantly, all features in the
testing dataset fell within the bounds of the parameters of the
training data.

The point in the testing dataset with the maximum GP
uncertainty was identied and fed into the Gómez-Gualdrón
and coworkers MLP model to compute the considered ground
truth adsorption value, as it earlier proved to have accurate
correlations with adsorption from GCMC simulations.31

Adsorbate and fugacity combinations continued to be added
iteratively to the training data until the mean predicted uncer-
tainty of the GP was under 0.05 mol kg−1. Once the threshold
was met, the nal GP model was utilized to predict the
adsorption in the testing dataset. For each MOF, the entire
testing dataset is inputted into the MLP model to generate the
MLP ground truth adsorption values for comparisons with the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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GP predicted adsorption. We can use the MLP model to
generate the ground truth data because of the high accuracy of
the model when compared to GCMC simulations.31

We assessed the GP model performance by calculating the R2

between the “MLP ground truth” and the GP model predictions.
Fig. 2 presents the evolution of R2 and GP model uncertainty for
the two most extreme cases within the 1800 MOFs. The one that
required the most AL iterations to reach the 0.05 mol kg−1

(Fig. 2a), and the one that required the fewest iterations (Fig. 2b).
The MOF with the highest number of AL iterations of 1882,

initially had a GP mean uncertainty of 0.142 mol kg−1 and an R2

value of 0.68 in the rst iteration. Over subsequent iterations, it
achieved a nal GP mean uncertainty of 0.049 mol kg−1,
accompanied by an R2 value of 0.99. Conversely, the MOF with
the fewest AL iterations, only 106, started with a higher initial
GP mean uncertainty of 0.496 mol kg−1 and a lower R2 value of
0.46. However, it also reached a nal R2 value of 0.99 at a GP
mean uncertainty of 0.049mol kg−1. Notably, uctuations in the
GP mean uncertainty (represented by the blue line) closely
corresponded to uctuations in the R2 value (represented by the
orange line). These uctuations highlight the correlation
Fig. 2 Perfomance of GPR model across MOFs and data savings. (a) Evo
iterations; (b) evolution of the GP mean uncertainty and R2 of the MOF w
and the corresponding % data savings (right y-axis) at various AL iteratio

© 2024 The Author(s). Published by the Royal Society of Chemistry
between GP mean uncertainty and R2 values, emphasizing the
impact of iterative data inclusion on model performance.

The two cases above show that the GP model can predict the
adsorption of adsorbates with the prescribed ending threshold
regardless of the starting quality of the GP model. Albeit the
efficacy (i.e., number of iterations) with which AL achieves the
desired goal clearly differs across MOFs.

In Fig. S3a,† we illustrate how the textural properties of MOFs
(largest pore diameter (LPD), pore limiting diameter (PLD), void
fraction (VF), surface area (SA), pore size standard deviation
(PSSD), and inverse framework density (IFD)) inuence the
number of AL iterations. Our ndings indicate that MOFs with
low SA and IFD tend to require more iterations. Additionally, in
Fig. S3b,† we represent the structural features using principal
components and observe that MOFs requiring more than 1000
AL iterations predominantly cluster within a specic region in
the principal component space, suggesting a similarity in their
structural features. Further analysis is done in the ESI.†

The percentage of data savings, as a function of AL iterations
can be calculated by eqn (1):
lution of the GP mean uncertainty and R2 of the MOF with the most AL
ith the fewest AL iterations; (c) average R2 across all MOFs (left y-axis)
ns.

Chem. Sci., 2024, 15, 17671–17684 | 17675
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% Data savings ¼ 100� 100�
� ð# of AL iterations� 1800Þ þ# of initial training data across all MOFs

total # of training data points ðoriginal GCMC dataÞ
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Based on the nal GP models for all the MOFs, we achieved
a data savings of 57.5% compared to the original MLP training
data.

Fig. 2c illustrates the collective impact of AL on enhancing
GP predictions across all 1800 MOFs, depicting the average R2

value (red line) at each iteration. In tandem with the improve-
ment in R2, we present the corresponding percentage of data
savings (blue line), as calculated by eqn (1). Notably, as AL
iterations progress, we observe a consistent rise in the average
R2 values, indicative of the AL criterion's efficacy. Around the
500th AL iteration and beyond, the average R2 across all GP
models reaches 0.99, regardless of the GP mean uncertainty
across MOFs. This trend underscores the potency of AL in
optimizing dataset efficiency while upholding predictive accu-
racy, providing valuable insights for rening AL policies and
strategies.

We developed 1800 GP models for MOFs using AL, necessi-
tating a separate prediction case for each MOF when making
predictions for other alchemical molecules. We leverage the
Fig. 3 Perfomance of the newly developed MLP model. The new MLP m
among the range of alchemical training adsorbates (a) argon, (b) methane
(c) hydrogen, and (d) propane.

17676 | Chem. Sci., 2024, 15, 17671–17684
datapoints used to train the nal GP models at the 0.05 mol
kg−1 uncertainty level for each of the 1800 MOFs to produce
a new MLP model. All these datapoints were collected into one
single training data featuring 2.1 million data points (57.5%
data savings relative to the 5 million used to train the original
MLP). Next, we utilized TensorFlow43 to train a new MLP model
while optimizing its associated hyperparameters and a MAE
loss function (details can be found in the ESI†), which was used
to predict the adsorption of real molecules within different
MOFs, as done previously by Gómez-Gualdrón and coworkers.31

Fig. 3 shows a comparison between our GP-informed MLP and
the GCMC simulations.

Notice that the predictions in Fig. 3 correspond to real
molecules despite the training data corresponding to alchem-
ical molecules. Note that molecules such as argon and methane
(Fig. 3a and b, respectively) can be considered interpolations
between alchemical molecules used in the training. The new
MLP also retains the same limitations of the original MLP when
predicting adsorption for real molecules that fall below and
odel was evaluated in the prediction of adsorption of real molecules
, and extrapolated outside the range of alchemical training adsorbates

© 2024 The Author(s). Published by the Royal Society of Chemistry
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above the alchemical parameter “range” considered for
training. While hydrogen predictions remain accurate (Fig. 3c),
predictions for larger molecules like propane prove to be less
successful (Fig. 3d). These results reemphasize the need to
expand the training data to include, for instance, larger
alchemical adsorbates, but we show that could be achieve effi-
ciently using AL. Additional results and predictions can be
found in the ESI.†

We further compared the predictions of the new MLP and
the original MLP model. The results of these predictions of the
adsorption of real molecules from both models are shown in
Table 1. The new MLP model, trained on 57.5% less data than
the original MLP model, exhibited a comparable performance
to the original MLP model. A similar level of performance by
both MLP models was maintained for molecules within and
outside the alchemical range. These results show that AL is
useful in scaling down on the training data required by MLP
models. Specically, for the same molecules in Fig. 3, we show
the low-pressure region (0.02, 0.04, 0.06, and 0.08 bar) predic-
tions in Fig. S7 of the ESI.† Themodel predicts the adsorption at
the low-pressure regions fairly, with R2 values of 0.647, 0.777,
0.867 and 0.87 for argon, methane, ethane and xenon
respectively.
Simultaneous AL on adsorbate, fugacity, and MOF space

The approximate halving of the training data by applying AL to
the adsorbate space was encouraging, but arguably represents
Table 1 R2 comparison between the original MLP model and new MLP m
molecules extrapolated outside the range of the alchemical training ads

© 2024 The Author(s). Published by the Royal Society of Chemistry
insufficient data savings for the increase in adsorbate space
dimensionality that would occur if one expanded the types of
adsorbates included in the training dataset to account for
higher adsorbate complexity. Additionally, developing indi-
vidual GP models for each MOF to generate the training data is
notably demanding and tasking, as it requires performing AL
on each MOF. To address this challenge, we decided to adopt
a strategy where AL operates simultaneously on the adsorbate
and MOF space. The underlying hypothesis was that what
a model learns about adsorption in one MOF may be applicable
to other similar MOFs, making exhaustive training data gener-
ation for all MOFs in a database unnecessary.

To achieve the above, we sought to incorporate the MOF
features as additional input to a GP surrogate model within an
AL framework that also selects the most “informative” MOFs to
be used in training data generation. However, as the MOF space
is inherently high-dimensional—where each MOF can be
described as combination of chemical and textural character-
istics such as node and linker types, void fraction, surface area,
pore sizes, and so forth—it is imperative to reduce the dimen-
sionality of the MOF representation to make AL exploration
more efficient.

To this end, we resorted to principal component
analysis44–48 (PCA), which is a widely employed technique to
transform high-dimensional data into a lower-dimensional
space, while retaining the essential patterns and structures
inherent in the original data. In this study, PCA was applied to
the textural properties of a larger number of MOFs (3445) than
odel trained on the GP model final training data. The red items refer to
orbates

Chem. Sci., 2024, 15, 17671–17684 | 17677
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Fig. 4 Analysis of the GP-PCA model. (a) Evolution of average R2, average GP MAE, and number of MOFs attained during 6000 iterations. (b)
Number of MOFs navigated as a function of the number of iterations.
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in our rst approach. We used the following properties for
PCA: largest pore diameter (LPD), diffusion-limiting pore
diameter (DLPD), void fraction (VF), surface area (SA), stan-
dard deviation of the pore size distribution (PSSD), and the
inverse framework density (IFD). These 3445 MOFs were the
dataset MOFs from two previous studies.31,42 These MOF
properties were chosen due to their deemed importance in
predicting adsorption.49–51 The resulting principal compo-
nents can be effectively interpreted as representative
descriptors that capture the prevailing patterns and variabil-
ities in the textural properties of the MOFs. Fig. S15† shows
that the rst two principal component directions (PC1 and
PC2) account for 91% of the cumulative variance, suggesting
they are sufficient for the AL to meaningfully navigate the MOF
space. Formally, the inclusion of the MOF into the AL process
makes it so that N ∼ F(f, 3, s, l, q, PC1, PC2).

We selected four MOFs positioned at the boundaries of PC1
and PC2 to initiate the AL iterations. For eachMOF, we provided
adsorption data for a single alchemical adsorbate, chosen
randomly, at a random fugacity. The initial training dataset
comprises this data, while the remaining data from all the
MOFs, fugacity, and adsorbates constitute the testing dataset in
this context.

The bagging approach was applied to the full testing dataset.
This approach involves the segmentation of the large dataset
into bags of smaller datasets for predictions. The dataset,
comprising 3445 MOFs and over 5 million simulation data
points31,42 obtained through GCMC simulations, was systemat-
ically organized into 100 bags. Each bag was designed to
contain diverse data samples, systematically categorized by
fugacities and adsorbates. This categorization also ensured
variability and comprehensive coverage within each set while
incorporating all 3445 MOFs (represented by their PCs) in every
bag. The purpose of the bagging process was simply to paral-
lelize the testing of the model.

Upon segmentation, the initial GP model is evaluated on
each bag, where the uncertainties in each data point are
collected across all the bags. Upon compilation of uncer-
tainties from the bags, the maximum GP uncertainty across all
bags was estimated. At this point, the test array corresponding
17678 | Chem. Sci., 2024, 15, 17671–17684
to adsorption at that specic point of maximum uncertainty
was retrieved. Subsequently, this array, along with its corre-
sponding GCMC adsorption data, was used to update the
training dataset. This process was repeated 6000 times (see
Fig. S17†).

Upon 6000 iterations, the nal training dataset selected by
AL consists of 6004 data points. The evolution of the average
R2 and GP mean uncertainty as a function of iteration is
shown in Fig. 4a. Initially, the model had a GP mean uncer-
tainty of 0.87 mol kg−1 and a low R2 of 0.1, which were
substantially improved to a nal average GP mean uncertainty
of 0.27 mol kg−1 and an R2 of 0.94. Fig. 4b shows the number
of MOFs used by the AL as the iterations increase, which by
the 6000th iteration corresponds to 893 MOFs. Using just
0.11% of the data, encompassing only 26% of the MOFs in the
database, we constructed a GP-PCA model with an R2 of 0.94.
This kind of data savings are extremely encouraging for future
exploration of datasets including a larger variety of adsorbate
types.

We extended the AL iterations by an additional 1000 points,
bringing the total to 7004 points. The nal performance ach-
ieved an R2 of 0.941 and a mean absolute error (MAE) of
0.27 mol kg−1. This very minimal improvement in performance
came at the cost of signicantly increasing the amount of
training data.

Fig. 5a through 5b highlight predictions made for real
molecules utilizing the newly developed GP model. Fig. 5a and
b show adsorption predictions for argon and methane in the
3445 MOFs at a range of fugacities between 1 × 10−2 and 100
bar. Results for other real molecules are shown in Fig. S18.†
With these results, it is possible to say that the model does well
in predicting the adsorption of real molecules. In Fig. S19 of the
ESI,† We also show the low-pressure adsorption (0.02, 0.04,
0.06, and 0.08 bar) performance of the GP-PCA model for the
adsorbates in Fig. 5.

Notice that while we showed the possibility of training
a suitable adsorption model using only 6004 datapoints, AL is
directly responsible for that outcome. To illustrate this point,
we t GPs to 100 randomly selected training data sets, each with
6004 datapoints. Fig. 5c shows the signicant variability in the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Performance of the GP-PCA model, and random sampled training data performance. (a) and (b) Model prediction of real molecules
(argon, andmethane). (c) R2(s) and GPMAE(s) across all randomly selected training data. Each point on the graph corresponds to a unique training
dataset, with its associated R2 and GP MAE values.
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average R2 and GP mean uncertainty for these 100 randomly
selected training datasets. The lowest achieved R2 was 0.75,
coupled with a GP mean uncertainty of 0.368 mol kg−1.
Conversely, the highest R2 obtained was 0.91, accompanied by
a GP mean uncertainty of 0.282 mol kg−1. On average, across all
100 randomly selected training datasets, the average R2 was
0.84, while the GP mean uncertainty averaged 0.312 mol kg−1,
which are worse than the R2 of 0.94 and GP mean uncertainty of
0.27 mol kg−1 attained by the AL-selected dataset (star symbol
in Fig. 5c).

Finally, we developed another MLP model trained using the
6004 data points from the GP-PCA model. Employing the same
method and hyperparameters as previously applied, we ne-
tuned the MLP model to ensure consistency and compara-
bility with our earlier methodologies. Subsequently, we utilized
this MLP model to predict the adsorption of real molecules
across multiple MOFs. However, upon evaluation, our ndings
revealed a reduction in accuracy compared to the GP-PCA
model. This divergence in predictive performance underscores
the intricate challenges inherent in modeling gas adsorption
phenomena within MOFs using traditional MLP approaches.
For instance, employing the GP-PCA model to argon adsorption
prediction yields an R2 value of 0.972, whereas the MLP model
achieves an R2 value of 0.922. Other real molecules predictions
can be found in the ESI (Fig. S23†).
© 2024 The Author(s). Published by the Royal Society of Chemistry
Feature navigation and evolution of the GP-PCA model

Looking to understand how AL made the selection of fugacity
and adsorbate and MOF features to be included in the training
dataset, Fig. 6a through 6d show the analysis of the some of the
feature regions (fugacity, seff, PC1, and PC2). From the obser-
vations for fugacity, the model requires more training data at
the boundaries of the feature. While it is not clear whether this
is coincidental or not, it is worth noting that such fugacities
tend to inform the model about adsorption at dilute (i.e.,
Henry's region) and near-pore saturation conditions. Contrast-
ingly, the model required more evenly distributed training data
along the seff, PC1, and PC2 input features. From these results,
we can see that AL intelligently selects what regions to sample
and that it requires more diverse sampling for the adsorbates
than any other input feature of the model. To get a more
meaningful interpretation of the explored MOF space, we revert
the PC1 and PC2 back to their textural properties, and in Fig. 6e
and f, we show the regions navigated by the AL in terms of the
surface area and void fraction. Remarkably, the observed
distribution of textural properties in the 893 MOFs picked by AL
mimics closely the distribution of these properties in the
complete 3445-MOF set. This suggests that the AL picks
a representative sample of MOFs for each combination textural
property values.
Chem. Sci., 2024, 15, 17671–17684 | 17679
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Fig. 6 Training data sampled by the AL GP-PCA model. (a)–(d) AL selected training data regions for fugacity, effective sigma, PC1 and PC2,
respectively. (e) and (f) AL sampled regions of surface area and void fraction as a comparison to the distribution of the available MOF dataset.
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Summary and conclusions

AL has emerged as a critical methodology to optimize the data
selection and acquisition for gas adsorption in MOFs and
therefore to understand the most important features to predict
their adsorption isotherms. Initially in this work, through
a systematic application of AL to a dataset of 1800 MOFs,
signicant strides were made in reducing the dataset while
continuously enhancing model performance. This iterative
17680 | Chem. Sci., 2024, 15, 17671–17684
process was marked by a noticeable correlation between the
reduction in GP mean uncertainty and the increment in R2

values through the iterative process, indicating a consistent
improvement trend across multiple MOFs.

For the rst approach with 1800 MOFs, we performed AL on
each MOF by setting a convergence criterion of 0.05 mol kg−1

for the GP mean uncertainty, the resultant amalgamation of
training data from diverse MOFs formed a comprehensive
dataset encompassing approximately 2.1 million data points,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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which was used to train a new MLP model. This newly created
MLP model showcased precision in predicting the adsorption
behaviors of real molecules within the specied alchemical
range. It was notable that the model's performance was
comparable to the original one. This achievement highlights
the efficiency of AL in selecting informative datasets while
signicantly saving computational resources.

To effectively extend our AL approach to new MOFs not
included in the original dataset, it is crucial that these new
materials share similar functional group densities and textural
properties with the 1800 MOFs previously used in training the
surrogate multilayer perceptron (MLP) model. This alignment is
essential as it ensures the robustness of the AL process in
selecting data points that effectively reduce model uncertainty,
thereby preserving the accuracy and generalizability of the
predictions. The initial dataset for these new MOFs must be
carefully curated to encapsulate a comprehensive range of
adsorption behaviors, enabling the AL algorithm to initiate an
effective learning and optimization cycle. Thus, while our
model demonstrates a signicant capability in reducing data
demands and efficiently predicting adsorption, its successful
application to new MOFs hinges on the careful integration of
these MOFs into the existing framework, ensuring that their
properties do not deviate substantially from those within the
original training set.

Furthermore, employing the same AL framework enables
precise predictions of adsorption across different fugacities and
adsorbates for these new, structurally and chemically similar
MOFs, for which in this case the original MLP model can serve
as the surrogate ground-truth model, ensuring accuracy and
reliability in the prediction of adsorption properties.

While the MLP model demonstrates strong performance
across various pressure ranges, the observed R2 values of 0.647,
0.777, 0.867, and 0.87 for argon, methane, ethane, and xenon at
low pressures highlight inherent difficulties in accurately pre-
dicting adsorption at low loadings. These challenges suggest
that the model's reduced performance in low-pressure regions
may be due to the loss function (MAE) used, which might not
adequately capture errors specic to these low-property areas.

To improve model accuracy in low-pressure regimes, future
studies could explore alternative loss functions which may
emphasize low-loading data regions, such as weighted mean
squared error, mean absolute percentage loss and quantile loss.

As a second approach applied to 3445 MOFs, PCA was
instrumental in identifying signicant dimensions contributing
to variance within MOF textural properties enhancing the MOF
textural space exploration. Including PC1 and PC2 in the AL
process contributed to robust model training and enhanced
predictive accuracy. Furthermore, an in-depth analysis of
textural properties within the navigated MOF subset shows the
preservation of the overall distribution of textural properties
compared with the available data. This diverse and extensive
coverage across MOF textural properties is observed in the
comparative histograms. This fact is proof of the navigation
process's effectiveness in encapsulating and representing
essential material characteristics within the navigated subset.
© 2024 The Author(s). Published by the Royal Society of Chemistry
In our second approach, the successful application of this
approach to new MOFs presents a challenge, primarily in
ensuring that the PCA accurately represents these additional
MOFs. It is essential that the textural properties of newMOFs do
not deviate signicantly from those encapsulated by the orig-
inal PCA model used in training. If new MOFs introduce
substantially different features, the PCA model might require
recalibration or expansion to include these new dimensions.
Such adjustments will ensure that the model maintains its
reliability and continues to offer precise adsorption predictions
as it is extended to include a wider variety of MOF structures.

To enhance the applicability of our GP-PCA model and
address MOFs that fall outside the current scope of this study
(MOFs that have their textural properties outside the range of
MOFs in this study), the dataset can be expanded to include
a broader range of MOFs with diverse textural properties. By
incorporating these MOFs, we can improve the model's
robustness and predictive accuracy.

The scope of this work is primarily constrained by the
limited range of considered adsorbates, delineated by the
parameters of the alchemical model. However, this constraint
mirrors that of previous models. Specically, the study focuses
on predicting adsorption isotherms for small, nearly spherical,
nonpolar, monoatomic, and diatomic adsorbates across various
fugacities, at 298 K, consistent with the conditions of GCMC
simulations. Despite these limitations, the integration of AL in
data generation represents a signicant advancement toward
establishing a more comprehensive and universally applicable
adsorption model for gases within MOFs. This approach
signies progress in rening predictive models, particularly in
terms of reducing data requirements. Importantly, it sets a clear
path for expanding the model's versatility by incorporating new
data, thereby enhancing its applicability across a broader range
of scenarios.

In summary, these cumulative ndings highlight the efficacy
of AL in navigating complex MOF and adsorbate spaces, accu-
rately predicting adsorption, and enriching our understanding
of the phenomena, specically in MOFs. This evidence solidies
AL as a valuable and necessary methodology in material science
research, offering an effective way to overcome data-scarcity
while paving the way for future advancements in this domain.

In future studies, we hope to use AL to navigate even more
complex scenarios like alchemical mixture adsorptions. In
a previous study, Mukherjee and coworkers showed that they
can use AL to make predictions of three different sets of binary
gases varying pressure, composition, and temperature simul-
taneously. For low pressure regions, they also showed that the
Ideal Adsorbed Solution Theory (IAST) works well in predicting
mixture adsorption from pure component adsorptions.30 Also,
Gómez-Gualdrón and coworkers showed that that IAST can
predict binary adsorption for mixtures at multiple compositions
and pressures.42 With these tools, we are condent that we
would be able to navigate the complex alchemical mixture
space.

Also, the AL methodology demonstrated in this paper with
MOFs holds immense potential for broader applications to
other porous materials. Due to their vast structural and
Chem. Sci., 2024, 15, 17671–17684 | 17681
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chemical diversity, MOFs encompass a wide array of pore types
and chemical compositions that are representative of most
adsorbents. This diversity positions MOFs as an ideal model
system, suggesting that the AL approach can be effectively
extended to optimize and predict adsorption properties across
a wide spectrum of porous materials.

Finally, it is worth mentioning that in this study, the
alchemical concept is applied solely to the adsorbates and not
the MOFs. However, previous research by Fanourgakis and
coworkers52 has demonstrated one of the potential ways of
alchemical modications in MOFs by articially adjusting the
interaction parameters of framework components, such as
linkers and nodes, to enhance their adsorption properties.
Fanourgakis and coworkers52 introduced these MOFs by modi-
fying the sizes of framework atoms and increasing the interac-
tion strength between the framework and guest molecules
(Lennard-Jones parameters). This approach highlights the
broader utility of alchemical modications in enriching the
dataset for AL driven models and enhancing their predictive
power.

In this work, we have focused exclusively on alchemical
adsorbates to streamline the model development and validation
process, ensuring a clear and controlled exploration of the
adsorbate space. In future studies, we intend to extend our
approach to include both alchemical adsorbates and MOFs,
thereby leveraging the full potential of alchemical modica-
tions to further rene and expand the capabilities of MLmodels
in predicting adsorption.

Data availability

The data used in this study was obtained from two previous
studies.31,42 However, the data was reorganized to be used for
this research study. The reorganized data can be found on the
GitHub page via: https://github.com/theOsaroJ/Active-Learning-
of-alchemical-adsorption-simulations-towards-a-universal-
adsorption-model.

Code availability

The AL algorithms, along with examples of the GP model and
the newly developed MLP model tailored for fugacity and
adsorbate scenarios, are accessible on GitHub. Additionally,
both the GP-PCA and MLP models, designed to encompass
fugacity, adsorbate, and adsorbent space, are available on
GitHub at https://github.com/theOsaroJ/Active-Learning-of-
alchemical-adsorption-simulations-towards-a-universal-
adsorption-model.
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