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Abstract

This paper presents a proof of concept for a new analogue-based framework for the detection and
attribution of hurricane-related hazards. This framework addresses two important limitations of
existing analogue-based methodologies: the lack of observed similar events, and the unsuitability
of the distance metrics for hurricanes. To do so, we use a track-based metric, and we make use of
synthetic tracks catalogues. We show that our method allows for selecting a sufficient number of
suitable analogues, and we apply it to nine hurricane cases. Our analysis does not reveal any robust

changes in wind hazards, translation speed, seasonality, or frequency over recent decades,
consistent with current literature. This framework provides a reliable alternative to traditional
analogue-based methods in the case of hurricanes, complementing and potentially enhancing
efforts in addressing extreme weather event attribution.

1. Introduction

Extreme weather events’ increasing frequency and/or
intensity are among the most visible and impact-
ful effects of climate change [1, 2]. In this context,
extreme event attribution aims to assess the influ-
ence of human-induced climate change against nat-
ural variability in the occurrence and intensity of spe-
cific extreme events [3].

Hurricanes (tropical cyclones in the North
Atlantic Ocean) are the most devastating extreme
weather events, with the potential to cause significant
social and economic impacts [4]. In the context of cli-
mate change, we know that the proportion of major
hurricanes is likely to increase [1], but we do not
know how the frequency of these events will change
(5, 6].

To this date, it remains difficult to detect and
attribute changes in hurricane climatology [7]. In
the Atlantic, a statistically significant trend is found
in the percentage of Category 4-5, but not in the
mean intensity of hurricanes [8, 9]. While a slow-
ing trend in hurricanes translation speed over the
North American coast has been noticed [10], mul-
tiple studies mentioned that this trend could be due to
related changes in satellite data and hurricane detec-
tion techniques [11-14]. Regarding seasonality, an
expansion of the Atlantic hurricane season has been
found in observations, in particular with more early-
season hurricanes [15, 16].

There are only few studies attempting to attribute
individual hurricanes, using probabilistic attribution
[17, 18], and storyline-based methods [19-23]. They
all but one [19] focused on precipitation. In most

© 2025 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Hurricane cases in this study. Full tracks are shown in black with width proportional to intensity. Tracks 24 h before
landfall are colored by Saffir—Simpson Hurricane Scale (SSHS) category. Dark circles show the landfall points considered in this
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cases, they found that climate change was responsible
for making precipitation more extreme. While this is
in line with the understanding of the thermodynam-
ics of climate change, several studies find increases
that are beyond the sole Clausius—Clapeyron effect
[17, 18,21, 24]. No robust change was found for other
characteristics than precipitation and storm surge.

Analogue-based attribution is a type of storyline
attribution which has been used extensively for the
attribution of extreme events such as heat waves to
anthropogenic climate change [25, 26], but never
to hurricanes. In analogues-based attribution, we
compare the hazards and impacts of events result-
ing from similar atmospheric conditions. In most
cases, such events are found in historical records,
and a ‘factual’ period corresponding to the present
climate with anthropogenic climate change is com-
pared to a ‘counterfactual’ period corresponding to a
past climate with less anthropogenic climate change.
A strength of this approach is that it uses exist-
ing data rather than running event-specific simu-
lations. This allows analogue-based methods to be
used in rapid attribution, which is currently done by
the ‘ClimaMeter’ consortium for publishing routine
press releases on impact extreme events through
www.climameter.org (see section 2.1, [27]). However,
while analogues have been extensively used in the
mid-latitude by conditioning on the synoptic-scale
flow as defined by sea-level pressure (SLP) or mid-
tropospheric geopotential, whether they work in the
tropics remains to be assessed.

In this paper, we assess the suitability of the ana-
logues methodology for hurricane hazard attribution,
showing that with the current ClimaMeter frame-
work, there is a systematic lack of confidence in the
detected changes because of the lack of analogues

(section 2). We then propose an alternative analogue-
based framework that uses synthetic track catalogues
and a track-based distance metric (section 3). We
apply this framework to detect changes in hazards
related to recent Atlantic hurricanes, focusing on
changes in the wind speed of hurricanes, as well as
their probability of occurrence, translation speed and
seasonality (section 4).

For conciseness, our discussion mostly consists of
the case of Hurricane Irma, focusing on its first land-
fall on Barbuda on 6 September, 2017. However, nine
cases were analyzed, shown in figure 1, and figures for
all cases analyzed can be found in the supplement-
ary material. Landfall coordinates and characteristics
for all cases, as well as the rationale for choice, are
described in table Al.

2. ClimaMeter

2.1. Description
ClimaMeter offers a dynamic approach to perform
a detection attribution analysis of weather extremes
within a climate context [27]. Here, we analyse how
tropical cyclones have changed in the ‘factual’ recent
period (1987-2023) compared the ‘counter-factual’
previous past decades (1950-1986). To do so, we
selected the 35 best analogues of MSLP anomalies
between August to November associated with the tar-
get cases in the ERA5 reanalysis [28]. The anom-
alies are computed against the 1950—-2023 climatology
over a 10 x 10° box centered on the location of the
storm’s minimum pressure. Then, we search for signi-
ficant differences between present and past analogues
in terms of pressure and wind speed (wspd).
Following [26], we define analogue quality Q as
the average Euclidean distance of a given event from
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Figure 2. ERA5 Analogues Analysis for 6 September 2017 and the region defined by [66.9W 56.9W 12.7E 22.7E] and the hurricane
season ASON. a—d: sea-level pressure (msl) anomaly during the event (a), averaged over the counter-factual (b) and factual (c)
analogues, and changes between factual and counter-factual analogues (Amsl) (d). In (d) colour-filled areas indicate significant
anomalies with respect to the bootstrap procedure. e~h: Same as a—d but for wind speed (wspd). i: Distribution of counterfactual
(blue) and factual (orange) analogue quality Q. A blue dot marks values for the peak day of the extreme event. Horizontal bars
correspond to the mean (black) and median (red) of the distributions. j: Distribution of analogues in each month.
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its closest 35 analogues. If the target event’s Q belongs
to the distribution of its analogues) then that event is
not considered unprecedented, and attribution can be
performed. If not, the event is considered unpreced-
ented and, therefore, not attributable.

For more technical details regarding the meth-
odology, please see [27]. Note that the ClimaMeter
framework provides more indicators than what is
presented, but we focus on pressure and wind speed
because these are the outputs available for other mod-
els used in this paper

ClimaMeter is the baseline for our study. We
assess its suitability for hurricane-related wind haz-
ard attribution in the next subsection.

2.2. Analysis for Irma

In figure 2 we show the results of this analysis for
Hurricane Irma while it is over the Caribbean on 6
September, 2017.

Panels (d) and (h) show that Irma’s analogues
have deeper (/22 hPa) pressure minima and are asso-
ciated with more intense winds (=<10kmh~!) in the
factual period, compared with the counter-factual
period.

Panel (i) shows that the Irma’s Q value is well
above the distribution of its analogues’. This is true for
both period, although less so in the factual period.

We also find that events similar to Irma have
become less frequent in November, while they pre-
viously mainly occurred in September and October
(figure 2(j)).

2.3. Limitations of the current ClimaMeter
approach

The main shortcoming of the above analysis is the
low quality of the analogues, yielding low confid-
ence in the outcome of ClimaMeter. This is true for
the nine studied hurricanes cases here (see supple-
mentary material), and this is a systematic outcome
for hurricane cases in the reports published in the
ClimaMeter websiste.

Low quality means the selected analogues do not
resemble the actual event. In fact, about half of them
do not correspond to recorded tropical cyclones. If we
take Irma’s analogues check whether they correspond
to a tropical cyclone in IBTrACS, we find a match
for 10/35 counterfactual analogues and 28/35 factual
analogues.

The low quality of the analogues stems from sev-
eral factors:

(i) ERAS does not faithfully represent the structure
of tropical cyclones and largely underestimates
their intensity [29].

(ii) Even if most observed events can be found in
ERAS5 [30], hurricanes are rare events. There
are only 16.0 tropical storms of which 7.7 hur-
ricanes on average every year in the whole
Atlantic basin (based on recorded storms in
IBTrACS over the 1980-2021 period).

(iii) The SLP-based distance metric for cases
like tropical cyclones, which can reach very
low-pressure values, will necessarily yield large
distance values. In the case of Irma, the pressure
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anomaly is up to —15hPa, and the detected
change is of the order of 2 hPa, while the event’s
distance to its analogues is about 60 hPa in both
periods. Moreover, this imposes collocation
of events, which in our case might not be so
important.

In the following, we propose a new analogue-
based framework that addresses these three limita-
tions: (i) we use observed hurricane tracks directly
to overcome ERAS5’s limitations, (ii) we use synthetic
tracks to expand the number of events, and (iii) we
use a track-based distance.

3. Alternative framework

Analogues-based detection and attribution methodo-
logies rely on the choice of a catalogue and a distance
metric. Our suggestion is to use synthetic tracks as a
catalogue and a track-based distance metric. The spe-
cific catalogues used below are opportunistic, and the
metric is kept simple in order to provide a proof of
concept.

3.1. Track catalogues

The analogues method requires the definition of a
catalogue of events, which is browsed to find sim-
ilar events. In our alternative framework, events are
necessarily tropical cyclones, which are found in dif-
ferent types of track catalogues, described below.

3.1.1. Observations

Addressing limitation (i), instead of using reana-
lysis as a reference for real-world hurricanes, we
use observed hurricane best tracks. We retrieve
them from the National Hurricane Center’s best-
track hurricane database [HURDAT, 31] through
the International Best Track Archive for Climate
Stewardship [IBTrACS, 32, 33]. In the Atlantic, the
record is generally considered reliable since 1950.
However, there are inhomogeneities between the pre-
and post-satellite eras, as we will highlight below.

3.1.2. Synthetic tracks

In any case, the number of observed hurricanes
remains small (ii). Therefore, we use the synthetic
track to expand the sample. Synthetic tracks are
model-produced realistic tracks. Synthetic tracks
were already used in the attribution of Harvey by [20],
but in a probabilistic attribution framework.

Such tracks can be produced by statistical,
statistical-dynamical or fully dynamical models.
Here, we use tracks from three models belonging
to the two latter categories.

3.1.2.1. CHAZ

The Columbia HAZard model, CHAZ, is an open-
source statistical-dynamical downscaling model [34].
As such, CHAZ links physical relationships between

S Bourdin et al

large-scale climate drivers and TC development. The
model seeds weak disturbances at a rate determined
by the Tropical Cyclone Genesis Index [TCGI, 35,
36]. These disturbances are then pushed by the back-
ground steering flow, following a version of the Beta
and Advection Model developed by [37]. The disturb-
ances’ intensity is modelled using an auto-regressive
stochastic intensity model by [38, 39].

In this study, we use synthetic CHAZ TCs down-
scaled from the ERA5 reanalysis [28], similar to the
dataset used by [40]. We generated 60 track ensembles
for the period of 1951-2019. While each synthetic TC
track has 40 intensity ensembles, here we only con-
sider the first intensity ensemble member.

3.1.2.2. MIT open source downscaling model
We also use tracks from the MIT-Open model [41],
which is an open-source derivative of the MIT
(Massachusetts Institute of Technology) TC down-
scaling model [42]. The MIT-Open model is concep-
tually similar to CHAZ, but they differ in storm form-
ation and evolution calculation. On a high level, MIT-
Open randomly seeds weak proto-vortices. It then
evolves these weak seeds in space and time accord-
ing to the large-scale environmental flow (as repres-
ented by ERA5). Tropical cyclones move according to
the beta-and-advection model [43], and intensify/de-
cay according to the FAST intensity model [44]. For
more details, the reader is referred to [41].

The MIT-Open dataset used hereafter was gener-
ated using ERA5 as input, like CHAZ.

3.1.2.3. SEAS5-20 C hindcasts

Lastly, we use unseen TC tracks from seasonal hind-
casts covering the 20th century (20 C) [45]. Hindcasts
are initialized forecast model runs used to verify a pre-
diction system’s performance against existing obser-
vations. For these hindcasts, the European Center for
Medium-Range Forecast’s fifth-generation seasonal
forecast system (SEAS5) was used [46]. The SEAS5-
20 C hindcasts [47] was chosen due to its length, cov-
ering the whole 20th century. The hindcasts con-
sist of two-year forecasts with 10 ensemble mem-
bers. Forecasts are initialized in May and November
each year between 1901 and 2010, with initial states
from CERA-20C [Coupled European ReAnalysis of
the 20th century, 48]. The atmospheric component
has a resolution of 50 km (T199).

In the present work, we only consider the hur-
ricane tracks simulated during the months of June
to November in the first year of the May initial-
ized forecasts—hence with a lead time of one month
with respect to the Atlantic TC season. Not using the
first month of forecast allows us to make sure that
the hurricanes we study were not in the initialisa-
tion and are purely synthetic. This selection means
we have 10 ensemble members per hurricane season.
The TCs were detected and tracked using the TRACK
algorithm [49].

4
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3.1.3. Periods

For IBTrACS, CHAZ and MIT-Open, the years 1950—
1984 are chosen for the counterfactual period, and
1985-2019 for the factual period, splitting in two the
common available period. For SEAS5-20 C, we take
advantage of the long span of the dataset and use
1901-1955 as counterfactual and 1956-2010 as fac-
tual. Due to different natural and forced variability
over these periods, it means the same changes might
not be detected in the catalogues. However, since we
do not attempt any actual attribution here, we argue
that using as much as the sample as possible is more
important for our methodological discussion.

3.2. Track-based distance metric for analogues
selection

3.2.1. Motivation

To overcome limitations in using SLP-based ana-
logues (iii), we suggest switching to an alternative
track-based distance metric for analogue selection.

ClimaMeter identifies similar days based on SLP
patterns at the time of hurricane landfall. This
approach seeks to match depressions with atmo-
spheric conditions resembling those of the target hur-
ricane. In the following, we propose to look for trop-
ical storms with trajectories similar to those of a
given hurricane, similarly what was done [50] for
extra-tropical cyclones. This means that we are con-
ditioning on the type of event (tropical storms) and
their approach towards the coast. We argue that this
object-oriented approach should yield greater con-
fidence in the results. Potential changes in analogue
characteristics with time are more likely to be rel-
evant for the target event if there is a physical con-
sistency in the type of event analogues represent.
Moreover, we know that the direction of a hurricane
at landfall is important for hazard patterns, as the
surface wind speed has an asymmetrical footprint
[51,52].

This track-based metric also has the advantage of
being usable for datasets that do not provide full phys-
ical fields but only track data—which is the case for all
of the catalogues above except SEAS5-20 C. For data
in the form of spatial, physical fields, it means that
tropical cyclones need to be tracked beforehand.

Also, in the standard ClimaMeter method, the
35 closest analogues are selected, and the quality is
checked posteriorly. Here, we reverse the paradigm:
we impose a level of quality and check posteriorly
that we have enough analogues. The level of qual-
ity is imposed by selecting analogues within a given
distance dp,y of the target event. Previous studies on
analogue-based attribution showed that approxim-
ately 30 analogues or more per period are desirable
for a robust statistical analysis [26, 27].

S Bourdin et al

3.2.2. Implementation
In the following, all track data are interpolated to 1 h.
We define a cyclone C as an ensemble of points in time
and space: C = (c;)ie[1,n]> Where N¢ is the number
of hours for which the cyclone has been recorded.
Let H = (h;)ie,n, be the hurricane that we are
targeting, with f; (I € [[1,Ng])) the landfall point. For
each cyclone C in a track catalogue, we find ¢ the
closest point in space to h; (based on the haversine
distance). We then define the distance d between C
and H as :

23
1
d(H, C) = ﬂ Z ||h17k,lekH,
k=0

where || -]| is the haversine distance in space. This
procedure is illustrated in figure Al.

We define the analogues of H as all cyclones C
such that 0 < d(H, C) < day, Where dp,y is a max-
imum distance selected arbitrarily for each catalogue
to optimize the number and quality of analogues,
specified in table 1. The first inequality prevents us
from including the target case in the analogues. The
method is designed to select as analogues cyclones
with a close landfall location and a track that has
a similar approach to H. To illustrate this, figure 3
shows the selected analogues for three cases.

3.3. Validation
In this section, we demonstrate the ability of this new
framework to select good-quality analogues.

The number of analogues found in each catalogue
and for each period is shown in table 1. Comparing
the number of analogues among the cases reflects how
‘unusual’ their trajectory was: hurricanes like Maria,
Dean and Irma yield the highest number of ana-
logues for all catalogues because they had very typ-
ical westward trajectories in the Caribbean. In con-
trast, Hurricane Matthew, which had a northward
approach to Haiti, has much fewer analogues in all
catalogues.

Figure 3 shows the tracks of the analogues found
in each catalogue for three selected cases (figures A2
& A3 shows them for all nine cases). Irma has the
most analogues across all catalogues. In figure 3, we
show that in all catalogues there are analogues with
westward trajectories similar to Irma’s observed track,
but refining dp.y allows for tightening them around
the observed track. In particular, we find analogues
with landfall locations closer to Irma’s observed land-
fall. Katrina has an intermediate number of analogues
across all catalogues. In the case of IBTrACS, there
are 78 analogues with tracks spread across the Gulf of
Mexico; using STGs leads to a selection of analogues
with tracks that are closer to that of Katrina itself, with
landfall within 300 km of Katrina’s landfall position.
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Table 1. Number of analogues selected for each case and each catalogue. Cases are ordered by the number of analogues in IBTrACS for
the factual period. Numbers below 30 are printed in italic with a star(GCD stands for Great Circle Distance).

IBTrACS CHAZ MIT-Open SEAS5-20C
dmax (°GCD) 4° 0.75° 0.75° 1°
#TClyear 13 339 504 131
CE F CF F CF F CF F

IRMA 2 68 87 89 249 231 162 198
DEAN 14¢ 67 9 110 223 201 87 89
MARIA 2 64 50 50 216 168 60 57
KATRINA 19° 59 66 60 138 104 19° 37
IAN 17 53 27 50 109 106 18° 30
FLORENCE 26" 49  14° 13"  12° I3 5% 10*
IKE 23" 44 67 6 109 107 29° 36
HARVEY 19° 37 44 57 65 98 43 43
MATTHEW ¢ 2 6 13 15 26" 4 8

IBTFACS (dymax = 4°) CHAZ (dypax = 0.75°)

MIT-Lin (dypax = 0.75°)

SEAS5-20C (dppax = 1°)

T TwNTTT

MATTHEW

—— Counter-factual (CF) |

= A~ —— Factual (F) 3
R aara™ AN NN

o

Figure 3. Analogues for hurricanes Irma (top), Katrina (middle) and Matthew (bottom), in each catalogue (columns).
Counter-factual analogues are in blue and factual ones in orange. The black track is the observed hurricane track. The numbers
on the top-left of each panel are the number of analogues for each period. Tracks for all analogues are shown in figures A2 & A3.

Matthew has the fewest number of analogues across
all catalogues due to its unusual northward traject-
ory. In IBTrACS, 30 analogues were found, but the
permissive dp.y allowed for track analogues follow-
ing with different direction and that do not hit Haiti.
In CHAZ and SEAS5-20 C, there are fewer analogues
than in other cases, but they do have similar traject-
ories as the observed track and do make landfall in

Haiti. The very large track sample size produced by
the MIT-Open model yields 41 analogues, highlight-
ing the usefulness of a very high sample size for events
with unusual tracks.

We see from this analysis that, in general, the lar-
ger the sample size in a catalogue, the smaller the
value of d,,, that can be used, which is beneficial for
analogue quality.
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Here the 30 analogues threshold is attained for
several cases, including Irma, so we can move forward
with our analysis of hazard changes.

4. Changes in hurricane characteristics

Having demonstrated the suitability of our frame-
work, we apply it to the detection of potential changes
in the characteristics of the tracks of Irma’s and eight
other hurricane analogues.

In figure 4, we compare the characteristics of the
analogues in the factual and counter-factual periods
for Irma, which has the most analogues across cata-
logues. The number of Irma’s analogues in all cata-
logues but IBTrACS is well above 30. For IBTrACS, the
counter-factual only has 21 analogues, but we show
it here nonetheless for completeness because it is an
observational reference, because it gives the oppor-
tunity for a discussion on the homogeneity of the
dataset, and because it illustrates well the advantage
of using synthetic tracks. Similar figures for all cases
can be found in the supplementary material and we
provide a conclusion over all cases for each studied
characteristic below.

4.1. Number of analogues per period

First we analyze whether there is a significant change
in the number of analogues between the two peri-
ods, a statistically significant increase in the number
of analogues would indicate an increase in the likeli-
hood of similar events—and vice-versa. In the case of
Irma, there is no statistically significant change in the
number of analogues, except in the case of IBTrACS
(figure 4, top row). It should be noted that a signi-
ficant increase in the number of IBTrACS analogues
in the factual period is found for all cases analyzed.
This is more likely due to instrumentation-related
inhomogeneities in the best-track dataset [53] than
an actual change in the likelihood of those events
between the two periods.

Two other statistically significant increases in the
number of analogues are found (table A2): Hurricane
Ian’s analogues in CHAZ and Hurricane Harvey’s
analogues in MIT-Open, and Hurricane Katrina’s
analogues in SEAS5-20C. Note that the p-values
remain above 1%, and these changes are not robust
across multiple catalogues, so we conclude that they
are more likely to be spurious.

4.2. Intensity

Next, we examine whether the intensity of the events
has changed across the two periods. Intensity, as
measured by the analogue’s maximum wind speed,
Irma’s analogues do not have a statistically signi-
ficant change in wind speed in any of the cata-
logues (figure 4, second row). A statistically signi-
ficant decrease in wind speeds associated with Ike’s
analogues is found in IBTrACS but is likely spurious

S Bourdin et al

owing to the low number of analogues and the well-
known technological changes present in best-track
datasets [53] (table A3).

Intensity, as measured by minimum SLP, is avail-
able only for IBTrACS and SEAS-20 C. A statistically
significant decrease is found in Katrina’s analogues’
minimum SLP in SEAS5-20 C (table A4). It means
that Katrina’s analogues are more intense in the fac-
tual period (first half of the 20th century for SEAS5-
20 C) compared to the counterfactual (second half of
the 20th century).

4.3. Translation speed

Translation speed is a crucial characteristic of hur-
ricane tracks, as stalling hurricanes are more likely
to cause large accumulated precipitation values at
a given location, such as in the case of Hurricane
Harvey.

In our analysis, no statistically significant change
is found in translation speed for Irma’s analogues
in any catalogue (figure 4, third row). Changes in
translation speed are detected for Ian’s analogues
in IBTrACS and Florence’s analogues in SEAS5-20 C
(table A5).

This is particularly interesting as there is a con-
troversy regarding changes in TC translation speed.
Kossin [10] found a detectable change in observed
translation speed globally. Still, this result could be
dependent on the period used in the analysis [11, 12]
and is not present in some model simulations in the
historical period [13]. Hassanzadeh ef al [14] shows
that the climate change impact on TC translation
speed may be regionally dependent. In the present
analysis, we find a statistically significant reduction
in the translation speed of Ian’s analogues in obser-
vations, which is not found using other catalogues
nor for other cases. This is interesting in the context
where the case of Ian is reminiscent of Debby this year
(2024), which stalled, bringing important rainfall to
Florida.

4.4. Seasonality

Changes in seasonality are investigated, as hurricane
characteristics and potential impacts depend on when
they occur.

A significant change in seasonality is found for
Irma’s analogues in CHAZ only (figure 4, fourth row)
and Florence’s analogues in IBTrACS only (table A6).
For Irma, factual analogues in CHAZ are generally
found earlier in the season, with a maximum in
August, compared to the counterfactual when most
analogues are found in September. For Florence, fac-
tual analogues are found in IBTrACS slightly earlier
in the factual compared to the counterfactual, but in
both cases, the maximum is in September.

Regarding all of the above statistically significant
changes highlighted, we stress that because they are
not found across catalogues, we do not think this stat-
istical significance reflects an actual robust trend. We
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Figure 4. Characteristics of Irma’s analogues in each catalogue (columns). The first line shows the number of analogues per year
for each period, with the error bar showing the standard error. The p-value is shown for a T-test for the mean, in bold when
statistically significant at the 5% level. The second line shows the empirical cumulative distribution functions of maximum wind
speed at the surface (for SEAS5-20 C at 850 hPa). The third line shows the empirical cumulative distribution functions of the
translation speed during the 24 h before landfall. The fourth line shows the month of the formation of the analogues in both
periods. For lines 2—4, the results of a Cramer von Mises test are shown, which determines whether the samples in each period are
drawn from different distributions, in bold when the p-value is <5%. In the fourth line, the test was performed for the

also performed sensitivity tests to the values of dpmax
that show small but existent sensitivity of the results.
For that reason, we do not make any statement about
a detected change in hurricane-related hazard in this
study.

5. Conclusion

In this study, we propose a new analogue-based
framework that can be used as a foundation for the
detection and attribution of hurricane-related hazard
changes. This new framework identifies analogues as
tropical cyclones with similar tracks. It makes use of
available synthetic track catalogues. Sampling among
many more events allows us to make statements with
more confidence than in the current ClimaMeter

framework when dealing with tropical cyclones, as the
quality of the analogues has improved. It is also very
quick to run for new cases. As such, it has the poten-
tial to be used even in a rapid attribution context.
Although our analysis does not include as many indic-
ators as ClimaMeter does, most importantly precipit-
ation and variability, these could certainly be added
in the future.

A specific novelty of this work is also treat-
ing seasonal hindcasts as synthetic track generators
and comparing them to statistical-dynamical STGs.
While statistical-dynamical generators are fast to
run, they rely on simplified assumptions, especially
regarding genesis, and only include a few TC-related
hazards. Seasonal prediction systems as dynamical
STGs provide an alternative physically consistent
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framework including both wind speed, SLP and rain-
fall. These models are very costly to run, but such sim-
ulations can be used for many purposes.

Relying on synthetic tracks can potentially intro-
duce biases associated with the models. However, the
potential impacts of these biases are minimized by
comparing tracks from a single model. Provided the
biases are consistent across periods, they should not
impact the differences. In some cases, however, the
models’ deficiencies might prevent the attribution,
e.g. in the case that not enough analogues can be
found for a given model.

Applying this methodology to nine hurricane
cases, we do not identify any robust change in the
wind hazards, probability of occurrence, translation
speed or seasonality. This aligns with the existing lit-
erature, where the only signal that is robustly identi-
fied as having emerged regards precipitation [1, 7].

This work paves the way for further research in
improving the detection and attribution of tropical
cyclones. This constitutes a proof of concept, and
there is room for improvement. For example, we
deliberately chose a simple distance metric, but if
one is interested in using this method for attributing
downstream impacts, conditioning on intensity could
be relevant, as was done in [54]. Importantly, includ-
ing precipitation in our analysis would be inform-
ative, as this is the most impactful hazard, and it is
expected to increase. Moreover, this method could
easily be extended to future projections after carefully
considering their reliability.
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Appendix. Supplementary figures and tables

Table Al. Landfall coordinates and characteristics of the nine hurricanes studied in this article. These cases have been chosen to
represent a diversity of landfall locations, as well as hurricane trajectories. We have been careful to include a few non-major hurricanes
(cat. 1 or 2) (Florence and Dean) to determine if that would improve the quality of the analogues.

Name Year Landfall date Long. Lat. SLP (hPa) Wind (knots) SSHS cat.
KATRINA 2005 2005-08-29 11:00:00 —89.6 29.3 919.8 110.5 4
MATTHEW 2016 2016-10-04 11:00:00 —74.3 18.3 935.0 130.0 5
IRMA 2017 2017-09-06 06:00:00 —61.9 17.7 914.0 155.0 5
MARIA 2017 2017-09-20 10:00:00 —65.9 18.0 919.4 135.2 5
IAN 2022 2022-09-28 19:00:00 —82.2 26.7 940.8 130.4 5
FLORENCE 2018 2018-09-14 11:00:00 —77.8 34.2 955.8 80.2 2
HARVEY 2017 2017-08-26 03:00:00 —96.9 28.0 937.0 115.0 4
IKE 2008 2008-09-13 07:00:00 —94.7 29.3 950.0 95.0 3
DEAN 2007 2007-08-17 09:00:00 —60.8 14.3 971.0 85.0 2

Table A2. p-values of the ¢-test for difference in means of sample number per period. Values below 5% are bolded with a star.

IBTrACS CHAZ MIT SEAS5

KATRINA 6.8 X 10 7% 6.2x1071 1.0x107! 2.6 X 102
MATTHEW 1.2 X 10 *x 1.9x107! 2.3%x107! 2.7%x1071
IRMA 1.7 X 10> 8.9x107! 5.4x107! 1.0x107!
MARIA 1.3 X 10> 1.0x10° 5.2x1072 7.7%x107!
IAN 1.4 X 10 %« 2.3 X 10 2% 8.8x107! 6.8x1072
FLORENCE 4.4 X 10 3% 8.6x107! 8.6x107! 2.0x107!
HARVEY 3.6 X 102« 2.9%107! 4.8 X 10 2% 1.0x10°
IKE 3.7 X 107 2% 8.8x107! 9.1x107! 3.7x107!
DEAN 8.7 X 10~ 7% 3.7x107! 4.7x107! 8.9%x107!

Table A3. p-values of the Cramer-von-Mises for difference in distribution of wind in each period. Values below 5% are bolded with a star.

IBTrACS CHAZ MIT SEAS5

KATRINA 5.7x107! 6.8x107! 8.4%x1072 3.7x107!
MATTHEW 6.8x107! 3.8x107! 5.0x107! 8.9%1072
IRMA 5.4x107! 9.3x107! 6.6x107! 4.1x107!
MARIA 3.4x107! 3.4x107! 9.4x107! NaN

IAN 7.9%107! 1.9%107! 5.9%107! 4.6x107!
FLORENCE 2.9%x107! 6.2x1072 5.9%107! 7.0x107!
HARVEY 8.8x1072 5.3x107! 3.7x1071 8.1x107!
IKE 4.2 X 10 %% 8.1x107! 2.2x1071 1.8x107!
DEAN 4.4x107! 1.1x107! 53%x107! 1.1x107!

Table A4. p-values of the Cramer-von-Mises for difference in distribution of minimum SLP in each period. Values below 5% are bolded

with a star.
IBTrACS SEAS5
KATRINA 7.0x107! 1.0 X 10 %%
MATTHEW 4.2x107! 5.5%x107!
IRMA 6.6x107! 4.2x107"
MARIA 2.6x1071 52x107!
IAN 9.6x107! 3.5%x107!
FLORENCE 47x107! 52x107!
HARVEY 2.2x107! 9.4x107!
IKE 2.2x107! 8.0x1072
DEAN 6.7x107! 7.0x107!
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Table A5. p-values of the Cramer-von-Mises for difference in distribution of translation speed in each period. Values below 5% are
bolded with a star.

IBTrACS CHAZ MIT SEAS5
KATRINA 43%x107! 2.9%x107! 7.5%x107! 1.1x107!
MATTHEW 8.2x107! 2.2x107! 9.6x107! 3.5%x107!
IRMA 6.9x107! 1.5x107! 7.5%x1072 7.4%x107!
MARIA 6.8x107! 7.1x107! 6.6x1072 2.9%x107!
IAN 6.5 X 10 3% 2.1x107! 4.7%107! 6.7x107!
FLORENCE 6.7x107! 9.8x107! 3.8x107! 7.7%x1072
HARVEY 1.6x107! 8.3%x1072 8.9x107! 2.0x107!
IKE 9.2x1072 5.5x107! 6.2x107! 3.6x107!
DEAN 8.0x107! 9.8x107! 2.7x107! 6.8x107!
Defining H = (h;), Iy Defining C' = (&), ¢

ho

Tracks 24h before landfall

Figure Al. Illustration of the distance computation described in section 3.2.2.

11



S Bourdin et al

Environ. Res. Lett. 20 (2025) 024042

10P Publishing

CHAZ MIT-Lin SEAS5-20C

IBTrACS
KATRINA

MATTHEW

Figure A2. Same as figure 3 but for all 9 cases (continued in figure A3).

12



10P Publishing

Environ. Res. Lett. 20 (2025) 024042

S Bourdin et al

IBTrACS
FLORENCE

CHAZ

SEAS5-20C

SIS

EE
VNN

<

Figure A3. Same as figure 3 but for all 9 cases (continued from figure A2).

IBTrACS
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IRMA
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5.5x107!
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8.6x107!
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3.0 X 10 2%
7.9%1072

2.1x107!
2.5x107!

Table A6. p-values of the Cramer-von-Mises for difference in distribution of day-of-year in each period. Values below 5% are bolded
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