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Abstract—Most 10T devices operate in environments with
limited bandwidth and power, performing real-time dedicated
functions. The sensitive nature of data collected by these devices
can compromise the privacy of individuals under surveillance.
Unfortunately, protecting IoT data becomes challenging when
handling complex, unstructured data such as video, or semi-
structured data like URLs and partially labeled information.
Furthermore, privacy protection methods that do not align with
the IoT devices’ real-time and low-power characteristics can
be counterproductive. In this paper, we propose a memory-
based approach to apply local differential privacy to semi-
structured data on IoT devices. Our technique uses a low-power,
processing-in-memory architecture to introduce noise to sensitive
data during storage, bypassing CPU processing and conserving
energy. This design also allows data curators to accurately derive
statistical information from the noisy data prepared by IoT
devices.

Index Terms—local differential privacy, static random-access
memory, low-power, hardware-software co-design.

I. INTRODUCTION

The proliferation of IoT devices has led to the extensive
collection of data for analytical purposes. IoT devices capture
real-world, real-time data from everyday human activities
through various sensors and cameras, elevating the importance
of data privacy. One robust solution that has emerged is
differential privacy, a mathematical framework designed to
quantify and control the privacy loss associated with the
release of statistical data. This concept, introduced by Dwork
et al., [1] has revolutionized the way organizations approach
data privacy, providing a systematic method to add random
noise to the data in such a way that the privacy of individual
data entries is maintained while still allowing for accurate
aggregate data analysis. The adoption of differential privacy by
major tech companies, such as Google [2] and Microsoft [3],
highlights its significance and effectiveness in today’s digital
landscape, where data security and privacy are of utmost
concern.

Building on the concept of differential privacy, a decentral-
ized approach called Local Differential Privacy (LDP) further
enhances privacy guarantees by adding noise to data before it
leaves the user’s device. Unfortunately, two major concerns
arise when implementing LDP in small IoT devices: (1)
the intrinsic characteristics of IoT devices, including limited
network bandwidth and constrained CPU capabilities, pose
significant challenges in implementing LDP in such a small

device; and (2) although differential privacy preserves the
statistical results of data elements, it often results in the
loss of latent categorical information embedded within semi-
structured data. For instance, URLs is a semi-structured data
with explicit domain suffixes (e.g., .com, .org, and .edu) as
the latent categorical information; while IP addresses sharing
the same higher bits (i.e., the same network ID) is another
example of semi-structured data with implicit latent categorical
information. LDP designs for such semi-structured data should
therefore be considerate to avoid losing essential categorical
information while still maintaining robust data privacy, which
poses technical challenges.

Recognizing the challenges posed by the intrinsic charac-
teristics of IoT devices in implementing LDP, a recent study
by Liu et al. [4] introduces SRAM_DP, an innovative static
random access memory (SRAM) architecture to realize LDP
by design. This design leverages the characteristic failure of
SRAM cells at reduced voltages to introduce LDP noises
to stored data. This approach, which embodies the “privacy
by design” philosophy [5], is power saving and CPU-free in
contrast to software-based LDP methods. In this paper, we aim
to optimize SRAM_DP in two fronts.

1) From the hardware design perspective, we propose
a new SRAM design using custom design 6T array
with multiple supply voltages (Vdd) to support LDP,
greatly reducing silicon area overhead compared with
SRAM_DP. Specifically, 6T columns with a lower Vdd
are used to inject noise and columns with a higher Vdd
are used to store (re-)shuffle pattern information. As
compared to the state-of-the art, the proposed new mem-
ory design saves implementation cost, while enabling
runtime adaptation and full flexibility of wide failure
range for LDP.

2) From the software design perspective, we develop a new
encoding method, which enables IoT devices to flexibly
allocate their privacy budgets between the data and the
categorical information embedded within it, all under
a fixed total privacy budget. Furthermore, our design
enables data curators to accurately gather data statistics,
notably the categorical information. This ensures that
even after data has been perturbed for privacy, it still try
to retains a close relationship with other data where they
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Fig. 1: Failure characteristics of 130nm 6T cells.

share similar characteristics. This balance is essential
for maintaining data integrity and relevance, crucial
elements for the aforementioned fields.

II. PRIVACY BY DESIGN IN SRAM MEMORY

A. Preliminary Knowledge

SRAM has been the workhorse for embedded memory
design to all electronics devices [6]. In the past decade,
low-power SRAM designs through reducing supply voltage
have been widely investigated. Among different designs, 6T
is the most widely used SRAM cell structure due to its
super area efficiency, particularly for IoT devices. However,
as technology continues to scale due to the process variation,
the failure probability of 6T cells grows significantly as
voltage scales down. Fig. 1 shows the failure rates of four
different sized 6T cells using the 130nm CMOS technology
from SkyWater technology. All the simulations performed
with NgSpice software. In our analysis, 1,000 Monte Carlo
simulations were conducted to obtain the failure rates at
different voltages at its worst process corner (fast NMOS
and slow PMOS for read operations) [7]. The variations in
multiple process parameters including transistor gate oxide
thickness, threshold voltage, and sub-threshold voltage offset,
have been considered based on the model provided by the
fab. Also, to study the impact of transistor sizing on the
failure probability of 6T, the sizing of the transistor ratios
was varied based on the base cell. Specifically, the sizing of
the base 6T cell was designed as follows: access transistors
(AX) = 0.42um/0.15um, pull-up (PU) = 0.55um/0.15um, and
pull-down (PD) = 1.26um/0.15um; based on it, a 10%, 50%,
and 100% increase in each device’s width-length ratio was
applied. It can be seen from Fig. 1 that the failure rate of a
specific cell grows as voltage is reduced. Also, at the same
voltage, the failure rate decreases as the size of 6T increases.

B. Principle of SRAM_DP

Consider that IoT devices collect and locally store sensitive
semi-structured data, which implicitly or explicitly contains
category information. This category information can natu-
rally sort the data into different groups, forming a dataset
D = Uf;l Dy where Dy’s are the non-overlapping subsets
of D curating all the data belonging to the k™ group, i.e.,
Dy={Bj|l < j < |Dgl|}. Any data can be encoded into a
binary string, defined as B = {by, ...bu, bi+1, .- -Dmsn }. In our
design, the first m bits, referred to as “label bits”, explicitly
encode the categorical information; while the subsequent n
bits, referred to as “data bits”, encode the normal data infor-
mation. For the label bits, we apply ordinal encoding which
requires m = [log,(K)] bits for the full representation of K
groups. While for the data bits, they are encoded using the
number of Is. That is to say, for the data belonging to the
same group, they are encoded to carry the same number of
1s but differing to each other in bit locations. The motivation
of this design is to let the same categorical data embeds their
group information for the subsequent data recovery by the data
curator. With this encoding scheme, the length of data bits n
will depend on the maximum number of data elements across
all groups; specifically, n must pick

min {n ezt ( > max |Dk|} (1)

1<k<K

)
[n/2]
In the encoding process, for each binary string in group Dy,
we randomly select ay bits, i.e., ax is the number of 1s, from
the “data bits” and set these bits to ’1°, while the remaining
bits are set to '0’. The value a; depends on the number of
data elements in group Dy, i.e., |Dg|. Consequently, a; for
any 1 < k < K should pick

min{ak€Z+:(n)2|Dk|},1§k§K. 2)
ak

This implies that the number of bit-location permutations using
ay bits out of n bits is sufficient to uniquely encode |Dy| data
elements. Note that while the data within the same group can
be completely differentiated by the n “data bits”, the data from
different groups could be encoded into the same “data bits”
but such collision can be resolved when combined with the m
“label bits”.

Following the above encoding principle, an [oT device
will encode its collected data into a bit string and store it
in the device’s SRAM cells C = {c1, ..., Cins Crntls -oer Contn }
Upon reporting their information to a data curator, the binary
string read out as O = {01, ..., Oy, Omtls s Omin t from a IoT
device’s SRAM which has been subjected to LDP noise.

By changing the voltage v of a IoT device’s SRAM, the
failure rates of SRAM cells can be adjusted. The mathematical
outcome of this step for a bit is

0  with probability 1 f;
with probability  f;
b; with probability 1 — f;

o; = 1



Specifically, a bit b; € B will maintain its original value with
a probability of 1 — f; and will be in an uncertain state with
a probability of f;. This fits perfectly with the randomized
response mechanism [8] mechanism, originally designed to
enable the collection of sensitive data while maintaining the
privacy of individual respondents, and gradually becomes a
classical implementation of LDP. In reality, the data curator
will carefully choose f; to meet the analysts’ requirements.
Here, we define that “label bits” have the same probability f”
while the “data bits” have the same probability f”’. Given a
privacy budget € = €] +€,, where €] denotes the privacy budget
for “label bits”, and €, denotes the privacy budget for “data
bits”. Our mechanism will divide it to two parts for implicit
information encoding and data itself, respectively.

After receiving the encoding map and privacy budget allo-
cation, IoT devices store the data in SRAM and adjust its
Vdd’s accordingly to inject noise into failed cell positions
when reporting to server.

C. Hardware Architecture of SRAM_DP

The proposed novel SRAM memory architecture shown in
Fig. 2 is based on the design by Liu et al. [4]. Here, different
supply voltages are used for additional noise injection to the
data stored in the SRAM_DP by changing the voltage on the
cells in different columns. As shown in Fig. 2, the cells in
different columns can be powered by different supply voltages
and each voltage can be determined by the target failure rate.
Similar to [4], the memory peripherals, such as row decoder,
data shuffler and re-shuffler, and random generator, will use
nominal supply voltage to support read and write operations.
As aresult, the proposed architecture enables full flexibility for
noise injection using different memory columns. It is important
to note that, as another major advantage as compared to [4],
the proposed memory can adapt noise injection by adjusting
the supply voltages in real time, which has potential to support
different applications using the same memory chip.

III. PERFORMANCE EVALUATION
A. Evaluation Metrics

Categorization Success Rate (CSR): In scenarios where
analysts prioritize category statistics over the distribution of
the data itself, the objective is to ensure that even if the data
has been perturbed for privacy, it still has a higher probability
of being accurately categorized into a group with the same
categorical information after recovery. This concept is known
as ’categorization success’. Therefore, we define the CSR as
the probability that data, once subjected to noise addition
and subsequently recovered by the data curator, is accurately
categorized into the correct label group after recovery.

Mean Square Error (MSE): Specifically, we use MSE to
evaluate the fidelity of the reconstructed normalized frequency
distribution of dataset elements compared to the original
distribution. This metric provides a clear indication of how
closely the reconstructed data mirrors the original data in terms
of element frequency, offering a straightforward and effective
measure of reconstruction accuracy. The lower the MSE,

the closer the reconstructed distribution is to the original,
indicating a more accurate approximation

B. Input Data

We sampled 10,000 times from our candidate dataset €,
which consists of 50 data elements, each uniquely labeled
with one of 8 different labels. Sampling followed three
common real-world distributions: exponential(d = 0.2041),
Gaussian(u = 24.5, o = 5), Zipf(s = 1.5). This process
resulted in three datasets, each containing 10,000 9-bit binary
strings as input data.

C. Recovery Algorithm

The Expectation-Maximization (EM) algorithm is used to
estimate parameters in probabilistic models. In our context,
it is suitable for identifying the most likely candidate B*
that, after noise has been added by our designed SRAM,
corresponds to the observed binary string O.

D. Privacy Analysis

Liu et al. [4] have proven that the design of SRAM_DP,
which incorporates noise addition in hardware, satisfies LDP.
When a specific voltage v is applied to the cells, the rela-
tionship between cell failure rate and voltage is illustrated in
Fig. 1. It is evident that the failure rate determines whether a
bit b; € B can retain its original value. The probability of a
bit maintaining its original value is given by:

P(Oi = bi) =1 — Pv,ci-

Here, p,,, represents the probability of cell ¢; fail at a
given voltage v. By utilizing the characteristic failure rate of
the chip’s cells, we adjust the voltages applied to these cells
to meet analysts’ requirements.

To meet a given privacy budget, €, we first divide the
budget into €; and e, for the data elements and the embedded
information within the data, respectively, as specified by the
data curator. For any given bit b;, with a failure rate f;, this

. . 1-15
bit contributes In(— )i

) to €, as per [2]. For simplicity, we
2Ji . . .

assume that the first m bits each have the same bit failure

rate f’ and the last n bits each have the same bit failure rate

f". Therefore, the relationship is established as € = €] + €, =

e _Lgn e
m~ln(112f)+n'ln(1,2f ) where € = m-ln(llzf) and
Efll o 7\f‘// z~f‘l

€& =n-1In( 2/ ) as shown in Fig. 3.

lf//
2
E. Simulation Results and Analysis

Simulation Setup: To simulate the entire procedure of
SRAM_DP and statistical re-construction, we use PyCharm
Community Edition 2023.2.1 to implement the procedure in
section II-B, and MATLAB_R2024a for the statistical recov-
ery. Specifically, after constructing the encoding map based
on the candidate dataset, we sample 10,000 times following
a specific distribution and encode those 10,000 elements into
binary strings. Given a specific privacy budget €, we construct
an independent and identically distributed (i.i.d.) Bernoulli
failure rate vector to mimic the cell fail in hardware. We keep
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the unchanged bits as they are and replace the changed bits
with random Os or 1s to report them to the data curator. For
the statistical reconstruction phase, we use an EM algorithm.

CSR Analysis: The straightforward method for encoding
a non-numeric dataset is through binary encoding, which we
refer to as the baseline here. This method requires at least
log, N bits to encode a dataset with N elements. For our
baseline method, N is 6. We compare our encoding method
with this baseline, and the results are shown in TABLE 1.
Given an € = 9, the baseline requires 6 bits, with each bit
having a failure rate of 0.36485 while our method requires 8
bits, with each bit having a failure rate of 0.49000. Apparently,
our method outperforms the baseline method in terms of CSR,
with a similar MSE of the recovery distribution. We further
elucidate, later in this section, how the flexible failure rate of
our method contributes to these CSR enhancements under a

consistent € compared to a uniform bit failure rate.

TABLE I: CSR/MSE of different failure rate patterns.

Failure Rate Patterns CSR MSE CSR MSE
(%) (107%) A% A(1073)
baseline, Exp 46.48% 2.6384 - -
baseline, Gauss 52.01% 09515 - -
baseline, Zipf 69.21% 3.4249 - -
our method, Exp 55.24% 2.2099 +8.76% -0.4285
our method, Gauss 54.03% 1.9139 +2.02% +0.9624
our method, Zipf  72.30% 2.3304 +3.09% -1.0945

Data Re-construction: Fig. 5 shows the CSR and MSE
results. The results of € = 3 and 6 truncated because the e
values are so small so that, even if we allocated the entire
privacy budget to ’label bits’, achieving the required failure
rate is not feasible. From Fig. 5a to Fig. 5c, we can observe
that a higher € results in a higher CSR. Our method performs
relatively better with Zipf distributions, which simulate real-
world datasets where a few elements with the same label occur
extremely frequently. From Fig. 5d to Fig. 5f, we observe
that a higher € results in a lower MSE which means we
get a better histogram frequency recovery. This situation is
expected because a higher € implies weaker privacy protection.
Typically, in the industrial sector, € is chosen to be on the order
of a few tens. Comparing the results between CSR and MSE,
we find that a higher CSR typically comes at the expense of
MSE.

F. Experiment Results and Analysis

After comparing the results from the software simulation
and the hardware experiment, as shown in Fig. 4a and 4b,
we found significant differences in the MSE. The MSE for
the hardware experiment is 239.13 X 1073, whereas for the
software simulation, it is 13.59 x 1073, as depicted in Fig. 4c
and 4d. The hardware results are notably less favorable, likely
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due to discrepancies in failure rate patterns between the actual
hardware and the simulation. Improvements are needed in
technology to accurately control voltage and achieve effective
random noise addition. Despite this, the Correct Success Rate
(CSR) for both the hardware experiment and software simula-
tion are closely matched at 76.57% and 75.58%, respectively.
This demonstrates our success in maintaining similarity with
other data in the same category, even after data perturbation
for privacy.

G. Hardware Results

Layout design: Fig. 6 shows the layout design of 6T SRAM
with 32 words x 10 bits using the Skywater 130nm technology.
Three supply voltages are used for the implementation of
different failure rates: Vddpemina = 1.8V is applied to bit cell
columns related to the pattern selection bits, Vdd; = 486mV
is administered to the bit cells related to the 3 MSBs, while
Vdd; =455mV is used for the remaining 5 LSBs. In our layout
design process, in order to avoid the silicon area overhead to
integrate columns with different supply voltages, the SRAM
6T cells are laid out on a mirrored fashion and therefore
cells in the same column can share the same supply voltage
interconnect, but cells in the save row (word) can use different
supply voltages. Accordingly, due to the column distribution
of the bit cells, no additional area is introduced by the use
of these 3 different voltage supply lines. Since the proposed
memory enables efficient integration of 6T cells without the
need of 8T cells, it can enable significant silicon area reduction
as compared to the state-of-the art [5].

Power consumption: Two power consumption measure-
ments are conducted based on post-layout simulations includ-
ing parasitic extraction. First, only the nominal voltage is
used as the baseline design (i.e. Vddyominat = Vdd; = Vdd,

= 1.8V), and next a test case using the voltages mentioned
above (i.e., Vdd; = 486mV and Vdd, = 455 mV) to enable
the target failure rates to support DP. For each test case,
the average power consumption is measured to a random
word with the clock period for each operation as 100ns.
Specifically, the selected word is initialized to the binary
value “0110100101”, and then “1000001111” is written to the
same word, followed by an immediate read operation from
the same word. Therefore, all read/write memory operations
are equally included (i.e., reading ‘0’ and ‘1’, and writing ‘0’
to ‘0’, ‘0’ to ‘1’, 1’ to ‘0’, and ‘1’ to ‘1’) on all bit-lines
corresponding to Vdd; and Vdd,. The results show that the
average power consumption in the baseline design is 214uW,
while the average power consumption when introducing noise
is 93uW, providing a 56.54% power savings.

IV. RELATED WORK

In the realm of differential privacy, recent research primarily
concentrates on developing cross-disciplinary DP strategies
tailored for a broad range of applications [9], [10], [11].
Despite the rich theoretical foundation of DP, practical imple-
mentations of these methods remain poorly explored. Cynthia
Dwork, the pioneer of differential privacy, appeals for more
attention to DP implementations in her paper [12].

Fortunately, in recent years, a small number of researchers
have begun exploring the use of specific hardware characteris-
tics to implement DP. For instance, Yang et al. [13] developed
a method to inject DP Gaussian noise into deep learning model
training by reducing the supply voltage, thereby inducing
SRAM bit errors. Similarly, Fu et al. [14] harnessed the
natural Gaussian noise arising from imperfections in mem-
ristor operations to construct a differentially private deep
learning model. Additionally, [4] designed SRAM_DP, which
fully implements true randomness in hardware and is less
susceptible to manipulations by attackers who might control
the software-based randomizer, as discussed in [15]. These
approaches showcase innovative strategies for harnessing in-
herent hardware properties to enhance privacy in IoT devices.

V. CONCLUSION

In this work, we have developed a new SRAM_DP design
using 6T cells with multiple supply voltages, which enables
lower implementation cost and higher flexibility as compared
to the state-of-the art. We have also introduced a new encoding
method that supports LDP for semi-structured data and allows
data curators to flexibly adjust privacy allocations to meet
various analytical needs. The analytical and experimental
results confirmed the LDP conformation, accuracy in statistics
recovery, and system power saving.
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