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Abstract—In precision agriculture, integrating advanced tech-
nologies is crucial for optimizing plant growth and health
monitoring. Cyber-physical system (CPS) platforms tailored to
specific agricultural environments have emerged, but the diversity
of these environments poses challenges in developing adaptive
CPS platforms. This paper explores rapid prototyping methods to
address these challenges, focusing on non-destructive techniques
for estimating plant growth. We present a CPS prototype that
combines sensors, microcontrollers, digital image processing,
and predictive modeling to measure leaf area and biomass
accumulation in hydroponic environments. Our results show that
the prototype effectively monitors and predicts plant growth,
highlighting the potential of rapid CPS prototyping in promoting
sustainability and improving crop yields at a moderate cost of
hardware.

Index Terms—Precision agriculture, Cyber-physical systems,
Crop growth prediction, Cost-effective prototype, Hydroponics

I. INTRODUCTION

The agricultural sector is transforming with the advent of
advanced computing technologies that enable more precise
and sustainable farming practices, namely, precision agricul-
ture [1]. These innovations include non-destructive methods
for estimating plant growth or disease detection as crucial
tools for continuous and accurate plant health monitoring
without causing damage [2], [3]. These methods are essential
to maintaining the integrity of plants throughout their growth
cycle, ensuring accurate assessments of growth patterns and
overall health. Digital image processing techniques have revo-
lutionized the way plant growth measurements are conducted.
Advanced sensors and automated systems can monitor these
environmental conditions, providing real-time data that can be
used to optimize growth conditions and improve plant health.

Integrating cyber-physical systems (CPS) into agriculture
represents a significant advancement towards precision agri-
culture. CPS enables real-time data collection, analysis, and
decision-making, enhancing farm productivity and sustainabil-
ity. By optimizing resource use and reducing labor costs, CPS
contributes to the creation of intelligent farming environments
that are both efficient and sustainable. However, the current
state-of-the-art CPS platforms for precision agriculture mostly
target specific types of crops, and their usage is limited to
particular environments and their requirements. Therefore,
computing platforms must be reengineered and customized
for various environments, leading to delayed deployments and
significant costs for development, upgrades, and maintenance.
For example, mass-production farming environments require

large-scale controls using rovers or drones, with wireless, low-
bandwidth, and intermittent communication.

To address the challenges in diverse precision agriculture
environments [4], [5], a rapid prototyping method for CPS
platforms is sorely needed. This research aims to design and
implement a preliminary cost-effective platform that leverages
CPS to measure and predict environmental impacts on plant
growth. By integrating various sensors, microcontrollers, and
image processing techniques, we aim to develop a system
that provides detailed morphological data critical for assessing
plant growth. Our goal is to explore prototyping methods that
enhance the accuracy of growth measurements, promote more
sustainable and efficient agricultural practices, and minimize
the cost of prototype development.

II. RELATED WORK AND BACKGROUND

As the importance of platforms for precision agriculture
rises, various CPS and Internet-of-Things (IoT) platforms
and prototypes have been proposed. [6]–[13] over the recent
years. A variety of aspects of precision agriculture and CPS
technologies have been leveraged. FarmBeats [6] enables data
collection on different types of sensors and hardware platforms
using IoT technology. Popović et al. [7] also uses the IoT
for ecological monitoring; similarly, Grimblatt et al. [8] build
a prototype integrating the IoT for monitoring of small to
medium size farms. Lanucara et al. [9] propose a platform
based on service-oriented architecture for precision agricul-
ture. Platforms and prototypes have been proposed targeting
specific aspects of precision agriculture such as irrigation
systems [10] and greenhouse environments [11]. There have
been prototype-based approaches focusing on low-cost and
open-source availability [12] and enhancing the effectiveness
of precision agriculture [13].

Non-destructive methods for estimating plant growth are
crucial for continuous monitoring without harming the plant.
Recent advancements focus on digital image processing to
enhance the accuracy and efficiency of these methods. For
instance, Islam et al. [14] and Zhang [15] have developed
algorithms to measure leaf area and dimensions in different
plants using RGB and grayscale image transformations. These
methods provide vital data for analyzing plant health and
growth patterns in a variety of settings, from agricultural fields
to controlled environments like plant factories.

Technological advancements have extended into the moni-
toring and management of crop health, emphasizing the inte-
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Fig. 1: An overview of our prototype.

gration of sensors and data analytics in agriculture. Kagalingan
et al. [16] discuss the use of sensors and automated systems
for controlling environmental conditions in indoor vertical
gardens, demonstrating the potential of technology to repli-
cate optimal growth conditions. Additionally, Weraduwage et
al. [17] present a model exploring the relationship between
leaf area growth and biomass accumulation in Arabidopsis
thaliana1, showing how variations in carbon allocation can
influence plant health. Niklas [18] contributes to this area by
discussing the importance of modeling plant growth dynamics
and biological scaling, providing a foundational understanding
of the relationship between plant form and function.

The integration of CPS in farming and agriculture marks a
significant shift towards more precise and automated farming
practices. Recent projects like AFarCloud [19] and specialized
models for intelligent husbandry farms [20] utilize CPS to en-
hance real-time data collection, analysis, and decision-making.
These systems not only improve farm productivity and animal
health but also contribute to sustainability by optimizing
resource use and reducing labor costs. The developments in
CPS highlight the future direction of agriculture, aiming for
high efficiency and minimal environmental impact.

III. PROTOTYPE DESIGN AND IMPLEMENTATION

In this section, we outline the design and implementation of
our prototype, allowing rapid prototyping of a CPS platform
for precision agriculture with a focus on crop growth.

A. Prototype Design

Fig. 1 outlines an overview of our prototype for environmen-
tal monitoring and analysis, incorporating various technologies
to measure and predict environmental impacts on objects
within a specific area. At the cyber-physical interface of
this prototype, distance sensor (shown in Fig. 1–(4)) and a
camera (shown in Fig. 1–(3)) work together to collect images
and sensors (shown in Fig. 1–(1)) to collect environmental
data. These sensors (shown in Fig. 1–(1)) can measure a
wide range of environmental parameters, such as temperature,
humidity, and light, providing a comprehensive dataset on the
surrounding environment.

The collected sensor data and images are then processed by
a microcontroller (shown in Fig. 1–(2)) and a microprocessor
(shown in Fig. 1–(5)), respectively, for data handling and

1A small plant from the mustard family, also known as thale cress.
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Fig. 2: Hardware components diagram illustrating the setup
of our prototype using ESP32, DHT11 and AS7341 with a
legend represents the wire connections.

processing The microcontroller performs initial data collection
and preliminary processing, acting as a bridge to the more
powerful computational resources in the server (or worksta-
tion), which further analyzes the images.

This processed information is subsequently sent to a remote
server via TCP, indicating the use of remote computing or re-
mote storage to aggregate and store the data. The server plays
a crucial role in the data analysis phase, where algorithms
and models can be applied to interpret the collected data. This
analysis involves identifying the area and biomass of objects
within the captured images, as well as their heights, possibly
using machine learning (ML) techniques or other forms of
predictive modeling to estimate future conditions or changes.

B. Hardware Components
Fig. 2 shows the hardware components diagram that

presents our prototype hardware setup combining an ESP32
[21] microcontroller with two sensors: the DHT11 [22] for
measuring temperature and humidity, and the AS7341 [23] for
light sensing. The DHT11 sensor is connected to the ESP32
through a single data line to GPIO16, which is a standard
approach for digital sensors that communicate through a
single-wire protocol. Power to the DHT11 is supplied through
a 3.3V connection, as indicated by the red wire, and a black
wire serves as the common ground, which is essential for
completing the circuit and allowing current to flow.

In contrast, the AS7341 sensor employs an I2C commu-
nication protocol, necessitating two connections: the SDA
(serial data line) and SCL (serial clock line), connected to
GPIO21 and GPIO22 on the ESP32, respectively. The SDA
line, marked with a green wire, allows for bidirectional data
transfer between the sensor and the microcontroller, while the
yellow SCL wire provides the clock signal that synchronizes
data transmission. This configuration is typical for I2C devices,
where multiple sensors can share the same SDA and SCL lines
if needed, allowing for an expandable sensor array. Power is
again supplied by a 3.3V connection, and a shared ground
completes the necessary power circuit for the AS7341.

C. Hardware Prototype Design
Fig. 3 shows our prototype’s support structure, which we

engineered to maintain the data acquisition hardware at a



Fig. 3: Support structure to hold the hardware components
above the plant.
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Fig. 4: Internal hardware configuration consisting of Raspberry
Pi [24], camera [25], and distance sensor, presented as (a) a
2D image, (b) a 3D image, and (c) an actual picture.

height of 13 inches from the base. The gray skeletal part
provides stable support for the black hardware setup (shown
in Fig. 3) , ensuring the precise positioning of the sensors and
camera.

The internal hardware setup of our prototype shown in Fig. 4
includes a microprocessor that is interfaced with a distance
sensor for measuring plant height, a key variable for biomass
estimation. This setup captures detailed morphological data
critical for assessing plant growth.

In Fig. 5, we attached the camera strategically close to
the microprocessor, alongside the distance sensor components.
This arrangement facilitates the simultaneous capture of visual
and spatial data, allowing for a comprehensive analysis of the
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Fig. 5: Distance sensor and camera placed close to each other
to measure the distance and take images respectively presented
as (a) a 2D image, (b) a 3D image, and (c) an actual picture.

Object Actual
area

(cm2)

Area
measured by

ultrasonic
sensor
(cm2)

Error of
ultrasonic

sensor
(%)

Area
mea-

sured by
TF-Luna

(cm2)

% error
of

TF-Luna

2⇥2 cube 25.00 25.63 2.49 24.50 2.02
Leaf 1 3.42 2.22 53.89 3.04 12.19
Leaf 2 15.78 10.34 52.65 14.71 7.27
Leaf 3 18.98 14.88 27.55 20.16 5.84
Leaf 4 7.85 4.46 76.09 9.53 17.63

TABLE I: Measurement results using an ultrasonic sensor
(HC-SR04) [26] and a TF-Luna sensor [27] with actual area
measured using vernier caliper.

plant’s physical characteristics.

IV. CROP GROWTH ESTIMATION

We measured and estimated crop growth using the leaf area
of plants as discussed in Section II. The evaluation of area
measurements using different sensors is presented in TABLE I,
which combines the results from both the ultrasonic sensor
(HC-SR04) [26] and the TF-Luna sensor2. This table provides
a detailed assessment of area measurements for a 2⇥2 cube of
dimensions 5cm ⇥ 5cm and four different leaves from differ-
ent plants, specifically Portulacaria afra3 (Leaf 1), Scutellaria
baicalensis4 (Leaf 2), Capsicum annuum ‘jalapeño’5 (Leaf 3),
and Ocimum basilicum6 (Leaf 4), comparing the performance
of the two sensors against actual areas measured using a
vernier caliper.

For the 2⇥2 cube, the ultrasonic sensor measured an average
area of 25.63cm2, deviating from the actual area of 25.00cm2

by a percentage error of 2.46%. The TF-Luna sensor measured
an average area of 24.50cm2, resulting in a lower percentage
error of 2.02%. This showcases the high precision of the TF-
Luna sensor in measuring simple geometries.

For the leaves, the ultrasonic sensor showed significant
discrepancies. Leaf 1’s average measured area was 2.22cm2

against an actual area of 3.42cm2, resulting in a high per-
centage error of 53.89%. Leaf 2’s average measured area of
10.34cm2 with a percentage error of 52.65% compared to the
actual area of 15.78cm2. Leaf 3’s measured area averaged
14.88cm2, with a percentage error of 27.55% compared to
the actual area of 18.98cm2. Leaf 4 demonstrated the greatest
error, with an average measured area of 4.46cm2 against an
actual area of 7.85cm2, with a percentage error of 76.09%.

In contrast, the TF-Luna sensor provided more accurate and
consistent measurements. Leaf 1’s average measured area was
3.05cm2 against an actual area of 3.42cm2, resulting in a lower
percentage error of 12.19%. Leaf 2’s measurements indicated
an average area of 14.71cm2 with a percentage error of 7.27%
compared to the actual area of 15.78cm2. Leaf 3’s measured

2TF-Luna is a low-cost,single-point LiDAR sensor utilizing the time-
of-flight technology for accurate distance measurement (0.2-8m) with 1cm
resolution and ±6cm accuracy.

3A succulent plant with a reddish stem and small green leaves.
4A flowering plant, also known by its common name, Baikal skullcap.
5a fruiting plant, also known as sweet and chili pepper.
6A culinary herb, also called basil or great basil.
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Fig. 6: Measuring the number of pixels from the top view of
a basil plant (binomial name: Ocimum basilicum).

area averaged 20.16cm2, with a percentage error of 5.84%
compared to the true area of 18.98cm2. Leaf 4 showed a
measured area of 9.53cm2 against an actual area of 7.85cm2,
resulting in a percentage error of 17.63%.

The data from TABLE I clearly indicates that the TF-
Luna sensor has substantially lower percentage errors across
various samples, suggesting a higher degree of precision and
reliability. The TF-Luna sensor proves to be more suitable
for accurately measuring areas of both simple and complex
geometries, as evidenced by the lower percentage errors
compared to the ultrasonic sensor. The TF-Luna’s enhanced
measurement consistency and accuracy make it a preferable
option for tasks requiring high precision and fine detail.
Consequently, the TF-Luna sensor was selected for use in
further measurements and analyses.

To measure the leaf area of the plant, we follow a structured
image processing workflow, enhanced by using reference ob-
jects and distance adjustments. Initially, an image of the plant
is captured by the camera, as shown in Fig. 6a. This image
is processed to enhance its quality and clarity, ensuring that
the plant’s features are well-defined. The next step involves
isolating the target area, specifically the green part of the
leaves, using color thresholding techniques. Fig. 6b shows
the result of this step, where only the green regions, which
represent the leaves, are highlighted, ensuring that non-leaf
elements are excluded from the analysis.

Following this, a mask is applied to the image to clearly
differentiate the leaf area from the background. Fig. 6c demon-
strates this process, where the leaf area is isolated by applying
a binary mask that effectively separates the leaf pixels from
the non-leaf pixels. In Fig. 6c, the masked image is analyzed
to determine the leaf area in pixels by counting the number
of pixels that fall within the masked region. For instance, the
green area of the image is calculated as 680,505.0 pixels.

To accurately measure the leaf area, we used a reference
object with a known area. The base ratio is calculated using
the formula:

base ratio =
reference object pixel area

reference object real area cm2 (1)

(a) A plant far from the camera. (b) A plant near the camera.

Fig. 7: Plant images at different distances from the camera.

This ratio helps in converting pixel measurements to real-
world units. The area is then computed to account for any
changes in the distance between the camera and the object,
using the formula:

area = base ratio ⇥ (
current distance

reference distance
)2 (2)

Since the width and height of the object scale linearly
with distance, the distance ratio is squared to adjust the
measurements accurately. In this example, the area of the green
object is calculated as 259.93cm2 by converting the pixel count
of 680,505 pixels using the distance-adjusted ratio.

In Fig. 7a, the plant is placed at a distance from the camera,
while in Fig. 7b, the plant is closer to the camera. The
formula is implemented to ensure that the images taken by
the camera in Fig. 7a and Fig. 7b yield the same leaf area
measurement, regardless of the distance. This comprehensive
approach ensures that accurate measurements are obtained
regardless of the camera’s position relative to the plant, as
outlined in the accompanying algorithm. The resulting data,
representing the leaf area in square centimeters, is recorded
and utilized for further analysis.

TABLE II and TABLE III present the results of measuring
leaf area using two different sensors: the TF-Luna sensor
and the ultrasonic sensor. We took measurements to evaluate
the accuracy and effectiveness of these sensors when used
with the image processing method described earlier, involving
steps from Fig. 6 for capturing, processing, and analyzing the
images. We used basil (Ocimum basilicum) for the rest of the
experiments.

TABLE II summarizes the data collected using the TF Luna
sensor. The “Actual distance (AD)” is consistently 22.00cm
across all measurements. The “Measured distance (MD)”
varies slightly from 24.00 to 25.00cm, resulting in a percentage
error in the distance measurement ranging from 8.33% to 12%.
The leaf area calculated using the AD and the MD is provided,
showing small differences between the two. The percentage
error in the area measurement using the TF Luna sensor is
relatively low, with an average error of 6.82%, indicating that
this sensor provides reasonably accurate distance and area
measurements.

TABLE III shows the data collected using the ultrasonic
sensor. Similar to Table IV, the AD is 22.00cm. However,
the MD exhibits larger variations, ranging from 29.03% to



Actual
distance
(AD) in

cm

Measured
distance
(MD) in

cm

% error
in dif-

ference

Area
using

AD in
cm2

Area
using

MD in
cm2

% error
in area

22.00 24.00 8.33 1.28 1.46 12.33
22.00 25.00 12.00 1.35 1.42 4.93
22.00 25.00 12.00 1.24 1.31 5.34
22.00 25.00 12.00 1.24 1.33 6.77
22.00 25.00 12.00 1.3 1.22 6.56
22.00 24.00 8.33 1.50 1.66 9.64
22.00 25.00 12.00 1.35 1.53 11.76
22.00 24.00 8.33 1.44 1.42 1.41
22.00 24.00 8.33 1.33 1.40 5.00
22.00 24.00 8.33 1.51 1.58 4.43

Average % error 10.17 Average % error 6.82

TABLE II: Measurement results using TF Luna sensor.

Actual
distance
(AD) in

cm

Measured
distance
(MD) in

cm

% error
in dif-

ference

Area
using

AD in
cm2

Area
using

MD in
cm2

% error
in area

22.00 35.00 37.14 1.56 8.04 80.60
22.00 32.00 31.25 1.38 7.00 80.29
22.00 33.00 33.33 1.56 7.73 79.82
22.00 32.00 31.25 1.25 7.45 83.22
22.00 34.00 35.29 1.44 7.33 80.35
22.00 35.00 37.14 1.33 8.02 83.42
22.00 34.00 35.29 1.35 7.67 82.4
22.00 38.00 42.11 1.52 13.35 88.61
22.00 36.00 38.89 1.46 12.56 88.38
22.00 33.00 33.33 1.40 7.67 81.75
22.00 31.00 29.03 1.35 8.03 83.19

Average % error 34.91 Average % error 82.91

TABLE III: Measurement results using ultrasonic sensor.

42.11%, leading to a significantly higher percentage error in
the distance measurement, averaging 34.91%. This larger error
impacts the leaf area calculation. The area calculated using
the AD and the MD shows substantial differences, with the
percentage error in the area measurement using the ultrasonic
sensor averaging 82.91%. This high error rate suggests that
the ultrasonic sensor is less accurate in measuring distances
and, consequently, in determining the leaf area.

In conclusion, the TF Luna sensor demonstrates a lower
average percentage error in both distance and area measure-
ments compared to the ultrasonic sensor. The TF Luna sensor’s
average percentage error in area measurement is significantly
lower at 6.82%, compared to the ultrasonic sensor’s 82.91%,
highlighting its superior performance in this application. These
results suggest that the TF Luna sensor is more suitable for
accurate leaf area measurements using the described image
processing method.

V. CROP GROWTH PREDICTION MODEL

According to Niklas [18], the use of log transformation can
simplify complex relationships between variables in plants.
This method helps convert non-linear relationships into linear
forms, facilitating easier analysis and interpretation.

The key formulas used in our analysis are:
1. Power Function Equation:

Y1 = �Y ↵
2 (3)

In the equation (3), Y1 represents the dependent variable
(e.g., biomass accumulation), Y2 represents the independent
variable (e.g., leaf area), ↵ is the scaling exponent that
indicates how changes in Y2 affect Y1, and � is a scaling
coefficient. This equation suggests a non-linear relationship
between the biomass accumulation and leaf area.

2. Log-Transformed Linear Equation:

log Y1 = log � + ↵ log Y2 (4)

By taking the logarithm of both sides of the power function
equation, we obtain a linear relationship (equation (4)) where
log Y1 is the dependent variable, log Y2 is the independent
variable, ↵ is the slope of the line, and log � is the intercept.
This transformation simplifies the complexity of the non-linear
relationship, making it easier to analyze and interpret using
linear regression techniques.

We chose to use linear regression and Bayesian linear
regression for several reasons. Linear regression, particularly
on log-transformed data, simplifies the complexity of non-
linear relationships by converting them into linear forms.
This transformation allows for easier assessment of statistical
significance and more straightforward interpretation of the
parameters. By log-transforming the data, we can linearize
power functions, which facilitates a robust understanding of
the underlying biological relationships.

Using linear regression on log-transformed data helps to ac-
count for variability and provides a more robust understanding
of these relationships. It simplifies the modeling process and
makes it easier to analyze the data. Furthermore, Bayesian
linear regression offers a probabilistic framework that effec-
tively handles uncertainties in the data, providing more robust
and reliable predictions under varying conditions. This method
allows us to incorporate prior knowledge and quantify the
uncertainty in our estimates, enhancing the interpretability and
predictive power of our models.

Thus, the combination of these two approaches allows for
a comprehensive analysis, balancing simplicity and statistical
rigor with probabilistic insights.

VI. EVALUATION

This chapter evaluates our research, mainly from the per-
spectives of cost, accuracy, and practicality of the prototype.

A. Cost Evaluation
The total cost, as detailed in TABLE IV, amounts to a

modest $202.35. This affordability of the prototype will allow
research without a significant financial burden. A crucial
decision in the design was the choice of the TF-Luna sensor
over a traditional ultrasonic sensor. While the TF-Luna carries
a higher price point at $25.98, its inclusion is justified by the
superior accuracy, which is explained in Section IV. Therefore,
while keeping the overall cost low, the system does not skimp
on the reliability and precision of its components, illustrating
a balanced approach to budgeting without sacrificing perfor-
mance. Note that the cost of wood and screws used in the
construction of the prototype is not included in the total, as
these materials were provided by Arizona State University.



Equipment Cost per unit (USD) References
GardenCube 42.56 [28]
Raspberry Pi 4 8GB 74.68 [24]
ESP32 DEVBOARD-J 8.99 [21]
TF-Luna (LIDAR sensor) 25.98 [27]
AS7341 (Light sensor) 15.95 [23]
DHT11 2.23 [22]
Raspberry Pi Camera V2 14.99 [25]
Jumper wires 6.98
USB-C cable 9.99
Total 202.35

TABLE IV: Cost evaluation of the hardware equipment used
for constructing our CPS prototype.

Dataset type Mean squared
error (MSE)

R-squared value

Validation 171.37 0.91
Test 156.12 0.93

TABLE V: Linear regression model metrics.

B. Comparative Analysis of Modeling Approaches

To effectively evaluate the prediction model, we utilized
datasets comprising environmental factors, leaf area mea-
surements, and plant weights. The environmental data was
collected using DHT11 and AS7341 sensors, capturing tem-
perature, humidity, and spectral data every hour. The dataset
includes over 1,100 rows of hourly data points. Leaf area
measurements and plant weights were recorded once a day.

The leaf area dataset includes measurements for five dif-
ferent basil plants (B1-B5), capturing the distance using our
prototype explained in Section III and the calculated leaf area
in square centimeters. The plant weight dataset includes both
the measured and actual weights of the plants, with the actual
weight of the plant derived by subtracting the known weight
of the sponge and basket from the measured weight. Data for
plants B1 to B3 was collected from March 25, 2024, to April
3, 2024, and for plants B4 to B5 from April 24, 2024, to June
4, 2024. For model training and evaluation, the datasets were
preprocessed and split into training (60%), validation (20%),
and test (20%) sets.

To evaluate the effectiveness of different modeling ap-
proaches, we compared the performance of linear regression
and Bayesian linear regression models. The results are sum-
marized in TABLE V and TABLE VI.

TABLE V presents the metrics for the linear regression
model. The validation mean squared error (MSE) is 171.37,
and the test MSE is 156.12. The R-squared values are 0.91 for
the validation set and 0.93 for the test set, indicating 91% of
the variance in the validation data and about 93% in the test
data.

TABLE VI summarizes the metrics for the Bayesian linear

Dataset type Mean squared
error (MSE)

R-squared value

Validation 185.61 0.90
Test 169.90 0.92

TABLE VI: Bayes Linear Regression Model Metrics.

Fig. 8: Plot of actual weight vs. predicted weight using linear
regression.

Fig. 9: Plot of actual weight vs. predicted weight using Bayes
linear regression.

regression model. The validation MSE is 185.61, and the Test
MSE is 169.90. The corresponding R-squared values are 0.90
for the validation set and 0.92 for the test set. Although these
values are slightly lower than those for the linear regression
model, they still explaining over 90% of the variance in the
validation data and about 92% in the test data.

Both models’ predicted versus actual weights are visually
represented in Fig. 8 and Fig. 9. In both graphs, the actual
weights (x-axis) are plotted against the predicted weights (y-
axis) for the test set. The “Ideal Prediction” line represents a
perfect prediction scenario where the predicted weights would
exactly match the actual weights. The “Test Predictions” data
points show the actual results from the models. These graphs
illustrate that both models closely follow the ideal prediction
line, indicating their high effectiveness in prediction.

The comparison between the linear and Bayesian linear
regression models shows similar performance metrics in R-
squared values, with linear regression performing slightly
better in terms of MSE. This suggests that while the Bayesian
model provides a robust framework for handling uncertainty
and model complexity, the additional complexity might not
translate into significant performance gains in this application.

In summary, both models are highly effective in predicting
plant weight, with linear regression showing a slight edge



in performance. The high R-squared values across different
datasets confirm the models’ capability to generalize well
across different environmental conditions, making them suit-
able for practical applications in agricultural settings. Further
tests and refinements could focus on enhancing model sen-
sitivity to specific environmental changes and exploring the
potential benefits of Bayesian approaches in scenarios with
more pronounced data variability and uncertainty.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this study highlights the value of rapid
prototyping in developing advanced CPS for agriculture, pro-
moting sustainable farming practices, and addressing global
food demand. Future research should refine CPS technologies
and integrate robust data analytics to further boost agricultural
productivity and sustainability. The prototype’s adaptability
and scalability make it suitable for various agricultural con-
texts, enhancing sustainable and efficient farming practices. Its
real-time environmental data capabilities and precise control
over factors like temperature and humidity are crucial. Ad-
ditionally, a predictive model using ML algorithms enhances
the prototype’s ability to forecast plant growth accurately. This
blend of rapid prototyping and advanced analytics offers a
promising solution for modern agriculture.

For future work, we plan to incorporate more advanced
equipment like low-cost depth cameras to replace the LIDAR
sensor and camera combination, which could enhance data
quality. Simplifying the system’s design with a depth camera,
which consolidates depth measurement and visual capture,
is another potential improvement. Additionally, exploring the
effects of different lighting conditions, soil types, hydroponic
systems, and nutrient regimes could provide insights into
optimal growing conditions. One major limitation of our ML-
based predictive modeling is that the model will be highly
dependent on the specific training data. To overcome this
limitation, we plan to incorporate biological models such as
what we used [18]. Developing a fully automated system to
adjust environmental parameters in real time could further
advance smart farming solutions, creating ideal conditions
for plant growth and promoting sustainability in precision
agriculture.
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