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1 | Introduction

Stomata are small pores on leaves that allow carbon and water
to exchange between leaves and the atmosphere. Mathematical
representations of stomatal conductance (gc for CO2, gw for
water vapor; mol m−2 s−1) are necessary for describing photo-
synthetic net carbon assimilation (An; mol m−2 s−1) and tran-
spiration (E; mol m−2 s−1). Advancing stomatal conductance
models is essential for predicting future carbon and water fluxes
and plant performance under a changing climate. These models
have long taken on an empirical form (Jarvis 1976), typically
predicting stomatal behavior from An, the atmospheric CO2

partial pressure (ca; mol mol−1), and either the relative
humidity (RH) or the vapor pressure deficit (VPD) between the
leaf and air (DL; kPa), such as in the models of Ball, Woodrow
and Berry (1987) and Leuning (1990, 1995). The semi‐empirical
Unified Stomatal Optimization (USO) model (Equation 1) was
derived by Medlyn et al. (2011) as an approximate solution to
the classic optimization theory of Cowan and Farquhar (1977),
who theorized that stomata open and close to maximize An

given a finite water supply,
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where g0 and g1 are intercept (molm−2 s−1) and slope (kPa0.5)
parameters. The USO has since been widely fitted to leaf‐level (Lin
et al. 2015) and ecosystem‐level (Knauer et al. Werner, and
Zaehle 2015, 2018; Sloan and Feng 2023) data to examine gas ex-
change and predict stomatal sensitivity to environmental conditions
and is used to predict carbon and water fluxes in land surface
models (Bonan et al. 2014; De Kauwe et al. 2015; Franks
et al. 2017, 2018). Medlyn et al.'s (2011) derivation originally lacked
g0, but g0 was added to resemble empirical models (Ball, Woodrow,
and Berry 1987; Leuning 1990, 1995), allowing for non‐zero con-
ductance when An=0. Studies often disregard g0 (Lin et al. 2015;

Gimeno et al. 2016; Gardner et al. 2023; Stefanski et al. 2023)
because estimates of g0 and g1 are correlated, and estimated g0 are
either inflated when the model fits poorly to data or often negative
(Duursma et al. 2019).

In the absence of both g0 and boundary layer resistances, the
meaning of g1 may be defined in terms of solely the leaf internal
CO2 partial pressure (ci; mol mol−1), DL, and either ca or the
water‐use efficiency (WUE=An/E; mol mol−1), an indicator of
plant performance, (Medlyn et al. 2017) as
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Larger g1 and smaller WUE cause larger gc, An, and E. Once g1 is
independently estimated (often from gas exchange measure-
ments), gc, An, and E may be predicted by coupling Equation 1
or 2 with equations of gas diffusion and a model of biochemical
carbon fixation (e.g., Farquhar, von Caemmerer, and Berry 1980).
Combing the solution for ci, rearranged from Equation 2, with
the simplified model of biochemical carbon fixation,
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where Γ* is the CO2 photosynthetic compensation point
(mol mol−1), Rd is the respiration rate (mol m−2 s−1), and f0
(mol m−2 s−1) and γ (mol mol−1) are parameters, and standard
gas diffusion equations (assuming negligible boundary layer
and mesophyll resistances) gives the following solutions for An,
gc, E, and WUE,
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where Patm is the atmospheric pressure (kPa). For the Farquhar,
von Caemmerer and Berry (1980) photosynthesis model, f0 =
Vc,max and γ= Kc × (1 + oi/Ko) under carboxylation‐limited
conditions, where Vc,max is the maximum carboxylation rate
(mol m−2 s−1), Kc (mol mol−1) and Ko (mol mol−1) are
Michaelis–Menten constants for carboxylation and oxygenation,
and oi is the leaf intercellular O2 partial pressure (mol mol−1),
while under electron transport‐limited conditions, f0 = J/4 and
γ= 2Γ*, where J is the electron transport rate (mol m−2 s−1).

In addition to its role in empirical stomatal models (Equation 1), g1
plays a role in constraining the form of stomatal optimality models.
Optimality‐based approaches, such as the classic optimization the-
ory of Cowan and Farquhar (1977) and its approximation by
Medlyn et al. (2011), have recently been called for to improve
predictions of plant functioning and gas exchange, especially under
novel environmental conditions (Franklin et al. 2020; Harrison
et al. 2021). Indeed, stomatal optimality models are gradually re-
placing empirical relationships in large‐scale ecosystem models (De
Kauwe et al. 2015; Eller et al. 2020; Sabot et al. 2020; Wang and
Frankenberg 2022). Stomata optimality models predict the stomatal
conductance that maximizes some objective representing fitness
(often of the form An−Θ, whereΘ is some assumed hydraulic cost;
e.g., loss of soil‐plant hydraulic conductance). When stomata behave
optimally, the marginal carbon cost of water (i.e., ∂Θ/∂E when
maximizing An−Θ)—a property of the optimization problem
itself—equals the marginal carbon profit of water (∂An/∂E)—a
property of gas exchange and photosynthesis that is independent of
the optimization problem (Buckley, Sack, and Farquhar 2017;
Potkay and Feng 2023b). The marginal profit is the ratio of the
change in net carbon assimilation (∂An) to the change in transpi-
ration (∂E) that would result if stomatal conductance changed while
all else is held constant. It may be estimated from gas exchange
measurements using various mathematical expressions (Buckley,
Sack, and Farquhar 2017; Liang et al. 2023; Potkay and
Feng 2023a, 2023b). For example, under the simplifying assump-
tions of negligible mesophyll and boundary layer resistances,
Buckley, Sack and Farquhar (2017) derived a simple expression
relating the marginal profit to leaf gas exchange rates and WUE,
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where k= ∂An/∂ci is the slope of the biochemical An versus ci
curve at constant temperature. Like WUE, smaller ∂An/∂E is
linked to larger gc, An, and E. The generic biochemical carbon
fixation model used above yields k= f0× (Γ* + γ)/(ci+ γ)2.

To realize the potential for stomatal optimality models, it is
essential to understand how the marginal profit responds to
novel conditions under global environmental change. Few
studies have examined how the marginal profit varies (Table 1),
currently leaving the exact form of the objective of stomata
optimality models up for debate (Wang et al. 2020; Sabot
et al. 2022). Various theories assume different objectives, lead-
ing to different solutions for the marginal cost and thus also for
the optimal stomatal conductance. For example, in Cowan and
Farquhar's (1977) theory, the marginal cost is strictly constant.
Conversely, recent optimality models often predict that the
marginal cost rises as DL decreases, as CO2 concentrations
increase, as soil water or hydraulic stress increase, and as
photosynthetic photon flux density (PPFD) increases (Wang
et al. 2020). Most recent models predict that the marginal cost
changes immediately as environmental conditions change
(Wang et al. 2020), while others predict delayed changes
resulting from acclimation of structural growth and non-
structural carbohydrate storage (Buckley and Schymanski 2014;
Potkay and Feng 2023a, 2023b) or from dynamic changes in soil
water availability (Mäkelä 1996; Manzoni et al. 2013; Mrad
et al. 2019). It is essential to understand how the marginal profit
varies empirically, especially under novel conditions associated
with global environmental change, to inform the choice of
objective of stomatal optimality models and thus to improve
predictions of plant gas exchange and performance. The USO
model's g1 parameter is a promising metric for studying how the
marginal profit varies because, according to Medlyn et al.
(2011), the two terms are related as
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To infer g1, the standard practice has been to apply a simple
linear regression between gc−An/ca versus An/(caDL

0.5) or
equivalent expressions (Lamour et al. 2022; Davidson
et al. 2023a, 2023b) to estimate g1 as the slope of Equation 1.
Such regression yields a single, constant value for g1. However,
by assuming a constant g1 within a pool of observations, this
regression‐based approach confounds the difference between
∂An/∂gc (an instantaneous derivative that is a part of the true
slope) and An/gc (a constant ratio), which are not equivalent
(Buckley, Sack, and Farquhar 2002, 2017), and confounds the
difference between their respective influences on the estimated
slope (Liang et al. 2023). Resolving ∂An/∂gc requires assuming
changes in gc are the only source of variation in An, while real
data includes other sources of variations in An like changes in
environmental conditions and photosynthetic capacities (Liang
et al. 2023). This confusion between the interpretation of ∂An/
∂gc versus An/gc has been termed the “An:gc trap” and shown to
result in up to 60% error in the estimate of g1 (Liang et al. 2023).

Instead of linear regression, many studies use non‐linear solvers to
fit the constant g1 that minimizes the errors between observed and
predicted stomatal conductance (Héroult et al. 2013; Duursma 2015,
Lin et al. 2015; Medlyn et al. 2017; Gimeno et al. 2016, 2019;
Stefanski et al. 2023). Some ecosystem‐scale studies bin data by soil
moisture classes and fit a constant g1 to each bin (Lin et al. 2018;
Sloan and Feng 2023), and others fit alternative empirical formu-
lations for gw to data binned by both leaf‐to‐air or atmospheric VPD
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and soil moisture (Novick et al. 2016; Li et al. 2019). Like linear
regression, this approach assumes constant g1 within each bin or
treatment and thus cannot detect variations in g1 within a bin or
treatment. Hence, these studies perform a form of regression that is
similarly susceptible to the “An:gc trap” as simple linear regression.

Here, we explore the accuracy of an alternate approach to esti-
mating g1 through direct inversion of the stomatal conductance
model, specifically under changing environmental conditions that
affect An (and thus ∂An/∂gc). The inversion‐based approach esti-
mates g1 directly by rearranging Equation 1 and disregarding g0,

 g D
g c
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c a

n
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producing point estimates of g1 for each observation
(simultaneous An, gc, ca, and DL) that may be statistically
modeled against physiological and environmental conditions to
explain variations in g1 and thus also ∂An/∂E. Inversion‐based
studies often report that g1 and the marginal profit (∂An/∂E)

vary over short periods (hours to months) as conditions change
(Table 1). These results often conflict with small or negligible
differences in g1 between experimental treatments from
regression‐based leaf‐level studies (Table 1), in which environ-
mental and physiological effects on g1 are typically analyzed by
(1) binning gas exchange data by experimental treatment, (2)
determining a single g1 by (either simple linear or non‐linear)
regression within each bin, and (3) testing for significant dif-
ferences between the g1 of each treatment (often through
mixed‐effects models). These conflicting reports on whether
and how g1 varies need to be resolved to advance both empirical
and optimality‐based stomatal models and thus to improve
predictions of leaf‐level gas exchange and plant functioning.

To evaluate their performance for estimating stomata slope
parameters, we ask three questions related to the precision and
accuracy of the regression‐ and inversion‐based approaches under
varying g1. Specifically, (1) can a hypothetical “observer” tell that g1
actually varies based on the quality of the fit of a regression (e.g., R2

between gc−An/ca and An/(caDL
0.5))? (2) When g1 actually varies,

how well can An be predicted from a constant g1 estimated by

TABLE 1 | Examples of leaf‐scale regression‐based and inversion‐based studies that test for effects of environmental or physiological drivers on
g1 or the marginal carbon profit of water (∂An/∂E).

Environmental or
physiological driver

Inversion‐based studies finding a
significant effect of the driver on g1 or

∂An/∂E

Regression‐based studies finding a
weak or absent effect of the driver

on g1

Leaf‐to‐air vapor pressure deficit Hall and Schulze (1980; ∂An/∂E) —
Fites and Teskey (1988; ∂An/∂E)

Grieu, Guehl and Aussenac (1988; ∂An/∂E)
Thomas, Eamus and Bell (1999; ∂An/∂E)

Bloomfield et al. (2019; g1)a

Dong et al. (2020; g1)
a

Photosynthetic photon flux
density (PPFD)

Thomas, Eamus and Bell (1999; ∂An/∂E) —

Atmospheric CO2 concentration Katul et al. (2010; ∂An/∂E) Duursma et al. (2013)

Manzoni et al. (2011; ∂An/∂E) Gimeno et al. (2016)

Gardner et al. (2023)

Soil moisture Hall and Schulze (1980; ∂An/∂E) —
Midday leaf water potential Manzoni et al. (2011; ∂An/∂E) —
Predawn leaf water potential Grieu, Guehl and Aussenac (1988; ∂An/∂E) Gimeno et al. (2016)

Thomas, Eamus and Bell (1999; ∂An/∂E) Davidson et al. (2023a)

Zhou et al. (2013, 2014, 2016; g1)

Drake et al. (2017; g1)

Temperatureb,c Wang et al. (2017; g1)
a Duursma et al. (2013)

Bloomfield et al. (2019; g1)
a Gimeno et al. (2016)

Dong et al. (2020; g1) Stefanski et al. (2023)
aWang et al. (2017), Bloomfield et al. (2019), and Dong et al. (2020) report the effects of VPD and temperature on g1 from multiple linear regression of point estimates of
the ratio of the leaf internal to atmospheric CO2 partial pressure (ci/ca; Equation 2) derived from bulk leaf carbon isotopes.
bEven though ∂An/∂E remains constant with leaf temperature (Hall and Schulze 1980; Thomas, Eamus, and Bell 1999), g1 is expected to vary with leaf temperature
according to Medlyn et al. (2011), since g1 is a function of the temperature‐dependent CO2 compensation point (Γ*; Equation 6) (Bernacchi et al. 2001). The alternative
stomatal optimization hypothesis of Prentice et al. (2014) proposes that g1 varies with leaf temperature, being proportional to the square‐root of the effective Michaelis–
Menten coefficient for carboxylation‐limited photosynthetic net carbon assimilation [i.e., Kc · (1+oi/Ko)] and to the square‐root of the viscosity of water, both of which are
temperature‐dependent.
cSome regression‐based studies have indeed found an effect of temperature on g1 at extreme temperatures (Marchin et al. 2016, 2023; Urban et al. 2017; Aparecido
et al. 2020).
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regression? (3) Does the inversion method (Equation 7 & statistical
modeling of g1) improve predictions of An? We present a hypo-
thetical thought experiment to answer our questions. We hypoth-
esize that regressed g1 will perform worse when the actual g1 is
more sensitive to varying conditions. Based on our thought ex-
periment, we recommend that point estimates of g1 be determined
by inversion in future studies, from which the environmental sen-
sitivity of g1 can be directly analyzed through statistical approaches.

2 | Materials and Methods

2.1 | Model Setup

We simulate the gas exchange for 20 species from Zhou et al.
(2013) Table S1 using a gas exchange model from our previous
work (Potkay and Feng 2023a, 2023b) modified to use the USO
(Equations 1 and 4) and assume carboxylation‐limited photo-
synthesis (Farquhar, von Caemmerer, and Berry 1980). To answer
Question 1 whether an “observer” could tell that g1 varies from the
regression approach, g1 must vary with environmental conditions
(soil moisture, temperature, light, CO2). However, only one source
of variation is necessary to answer Question 1. For simplicity, we
consider predawn water potential (ψpd) as the single source of g1
variation using the parameters provided by Zhou et al. (2013)
Table S1 because the mathematical relationships between point‐
estimate‐derived g1 (or ∂An/∂E) and hydraulic variables are well
established (Manzoni et al. 2011; Zhou, Medlyn, and
Prentice 2013, 2014, 2016; Drake et al. 2017; Equation 8 below).
Conversely, far less is known about the relationships between g1
and other environmental variables. Accordingly, we assume con-
stant DL (1 kPa), ca (410 μmolmol−1), and leaf temperature and
thus do not consider the temperature dependencies of photo-
synthetic parameters (Bernacchi et al. 2001). We also assume
negligible boundary layer and mesophyll resistances and that
g0 = 0molm−2 s−1. We set Γ*=42.75 μmolmol−1, Patm=101.325
kPa, the leaf internal O2 partial pressure (oi) to 207mmolmol−1,
the Michaelis‐Menten coefficients for carbon fixation and oxygen
inhibition (Kc & Ko) to 404.9 μmolmol−1 and 278.4mmolmol−1,
respectively, and the leaf dark respiration (Rd; molm−2 s−1) to
0.01·Vc,max,0 (De Pury and Farquhar 1997).

Like Zhou, Medlyn, and Prentice (2013, 2014, 2016) and Drake
et al. (2017), we model g1 as an exponential function of ψpd,

g a bψ= exp( ),pd1 (8)

where a is the value of g1 when ψpd= 0 (kPa0.5), and b is the
sensitivity of g1 to ψpd (MPa−1). The maximum carboxylation
rate (Vc,max; mol m−2 s−1) is modeled as a sigmoidal function of
ψpd, following Tuzet et al. (2003),

V V
S ψ

S ψ ψ
=

1 + exp( )

1 + exp[ ( − )]
,c max c,max

f f

f f pd
, ,0 (9)

where Vc,max,0 is the value of Vc,max when ψpd= 0 (mol m−2 s−1),
and Sf (MPa−1) and ψf (MPa) are shape parameters controlling
the decline in Vc,max as ψpd becomes more negative. For each
species, we simulate gas exchange (e.g., gc, An) starting at

ψpd= 0MPa using Equations 8 and 9 for g1 and Vc,max and
progressively decreasing ψpd by 0.002MPa increments until
gc= 0mol m−2 s−1, meaning that species experienced different
ψpd ranges. Although entirely simulated, we consider these
values of g1 (Equation 8) and An (from our gas exchange model
with Equations 8 and 9) (Figure 1) as “observations.” Subse-
quent predictions based on regression and inversion of these
values as merely “estimates”, which we denote by ĝ1 and Ân for
regression and g̃1 and Ãn for inversion.

2.2 | Estimated R2, Slope Parameters, Gas
Exchange, and Error

Once An and gc were calculated across a suite of ψpd values, we
plotted gc−An/ca against An/(caDL

0.5) (Figure 1). From these curves,
we calculated three regression‐based estimates of g1 (i.e., ĝ1) and
their associated coefficient of determination (R2). We estimated ĝ1
as the slope of the gc−An/ca versus An/(caDL

0.5) curves, forcing the
intercept to zero (g0 = 0molm−2 s−1). The first set of R2 and
regression‐based ĝ1 were estimated from all simulated datapoints.
Unless performed in a highly controlled experiment to encompass a
broad range of predawn water potentials, the hypothetical observer
is unlikely to observe the entire range of ψpd, and hence two other
sets of R2 and regression‐based ĝ1 were estimated from a subset of
six randomly chosen datapoints, repeating the process 1000 times.
Six was chosen as the subset size, since some studies estimate g1 by
regression with an average of six datapoints (Stefanski et al. 2023).
Six datapoints were randomly sampled by two approaches. First,
datapoints were sampled uniformly, and datapoints had equal
probabilities of being chosen. Second, datapoints were sampled
based on the theoretical probability distribution of ψpd for stochastic
rainfall events with a realistic mean frequency (λ; s−1) of 0.2 day−1

and mean rainfall depth (α; m) of 1 cm (Rodriguez‐Iturbe
et al. 1990) called the ecohydrological distribution (Notes S1 in
Supporting Information). This ecohydrological distribution repre-
sents a more realistic probability distribution for ψpd than the
uniform distribution. For simplicity, when calculating the ecohy-
drological distributions, all species were assumed to share the same
soil properties, leaf area indices, and rooting depths using trait
values that are representative of many species and soil parameters
that are representative of loamy soil (Rodriguez‐Iturbe and
Porporato 2004).

Additionally, we estimated g1 by inversion (i.e., g̃1; Equation 7).
These point estimates of g1 are identical to the “true” values
from Equation 8. Hence, we consider only the case for observ-
ing a limited subset of six datapoints, since inversion would lead
to zero error if an entire gc−An/ca versus An/(caDL

0.5) curve
(Figure 1) were observed. For inversion, error arises from how
variations in g̃1 are interpolated or extrapolated for unobserved
conditions. We randomly sampled six estimates of inversion‐
based g̃1 according to either the uniform or ecohydrological
distribution. These estimates were statistically modeled as an
exponential (Equation 8) or a second‐order polynomial function
of ψpd to recapture the original dependence of g1 on ψpd. This
procedure was repeated 1000 times. When modeling g̃1 as an
exponential function, errors should be small, since the form for
the statistical model matches the functional form of the “true”
g1 (Equation 8). We considered the second‐order polynomial
function, because it has a different form than that of the “true”
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g1. Since it is prone to errors upon extrapolation, if statistical
modeling of inversion‐based ĝ1 as a polynomial of ψpd were to
perform better than regression, it would show that even using
wrong functional forms outperform regression. We note that
regression is applied during the inversion approach a posteriori
only to explain the variations in g̃1 with respect to ψpd. This
application is fundamentally different from the regression‐
based approach that infers ĝ1 by regression.

To assess the abilities of the regression‐ versus inversion‐based
g1 estimates to predict An (Questions 2 and 3), we used our gas
exchange model to calculate Ân and Ãn across the full range of
ψpd using the constant regression‐based ĝ1 and the g̃1 predicted
by the statistical models fitted from inversion‐based point esti-
mates. We quantify the total difference between the “true” An

and “estimated” Ân and Ãn across a range of expected ψpd

through the relative root mean square error (RRMSE),

∞

∞

 A ψ A ψ p ψ dψ

A ψ p ψ dψ
RRMSE =

( ( ) − ̆ ( )) ( )

( ) ( )
,

n pd n pd pd pd

n pd pd pd

−

0
2

−

0
2

(10)

where p(ψpd) is the probability distribution of predawn water po-
tentials, being either uniform or ecohydrological, and Ăn is the
“estimated” net carbon assimilation rate (either Ân or Ãn). Even
though regression‐based ĝ1 are constant and thus independent of
ψpd, Ân still depends on ψpd through the sensitivity of Vc,max to ψpd

(Equation 9). For ĝ1 estimated by regressing an entire curve in
Figure 1, we report two values of RRMSE, one for each of the

distributions for ψpd. For ĝ1 and g̃1 estimated from small data sub-
sets, we made 1000 predictions of how Ân and Ãn vary with ψpd,
since the random subsampling was repeated 1000 times. To avoid
1000 RRMSE values, we calculated RRMSE based on the mean
responses of Ân and Ãn to ψpd.

2.3 | Scenario Exploration

To answer Question 1 whether a hypothetical “observer” could tell
that g1 varied from the quality of fit of linear regression, we ana-
lyze the R2 between gc−An/ca and An/(caDL

0.5) using their “true”
values. R2 quantifies the linearity of the relationship (i.e., variance
explained by the linear model), thus high R2 values would suggest
that g1 is constant, and low R2 values would suggest that g1 varies
with ψpd. While R2 is not the best metric of linearity, few leaf‐level
studies report performing other tests of linearity like checking
residuals for normality and heteroscedasticity (Lamour
et al. 2022), and R2 is the most common metric of fit quality in
leaf‐level studies. For simplicity, our analysis considers only the
variation of ψpd, since the necessary parameters were available (a,
b, Vc,max,0, Sf, ψf; Table S1), but our conclusions for Question 1
extend to cases in which other environmental conditions vary
since Question 1 asks whether the regression approach can detect
variations in g1 regardless of the exact source of variation. To
answer Question 2 whether a constant ĝ1 estimated by regression
can accurately predict An when the “true” g1 varies and Question 3
whether the inversion method improves predictions of An, we
compared the “true” An to the Ân estimates predicted by the re-
gressed ĝ1 and to Ãn from the statistically modeled inversion‐based
g̃1 and analyzed their corresponding RRMSEs.

FIGURE 1 | On the left, values of 1.6·An/(caDL
0.5) on the x‐axis against gw− 1.6·An/ca on the y‐axis simulated by varying predawn water potential (ψpd) for

20 species using parameters reported by Zhou et al. (2013). The upper right and lower left portions of the plot reflect wetter conditions (less negative ψpd) and
drier conditions (more negative ψpd), respectively. Species are ordered in the legend according to the sensitivity of g1 to ψpd (b in Equation 8) with the least and
most sensitive species listed at the top and bottom of the legend, respectively. The slope of each line is the corresponding specie's value of g1. On the right,
comparisons between the true ψpd‐dependent g1 and the constant g1 estimated by regression for species with small and large b in the top and bottom,
respectively. The regressed g1 compares well to the true g1 when b is small. However, regression underestimates and overestimates g1 under wet and dry
conditions, respectively, when b is large. [Color figure can be viewed at wileyonlinelibrary.com]
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3 | Results and Discussion

3.1 | Regression Obscures Effects of
Environmental Variation on Stomatal Response

Figure 1 shows the values of gc –An/ca plotted against An/
(caDL

0.5) simulated by varying ψpd for 20 species (Zhou
et al. 2013; Table S1), from which ĝ1 is traditionally estimated by
regression as the slope. Wetter conditions (less negative ψpd)
and drier conditions (more negative ψpd) are represented by the
upper right and lower left portions of Figure 1. For species with
g1 more sensitive to ψpd (larger absolute value of b, |b|), the
curves are more nonlinear (Figure 1). The nonlinearity is fur-
ther demonstrated by a general decline in R2 as |b| increases
(Figure 2 & S1). When considering the full range of ψpd, R

2 is
near 1 for species with 0≤ b≤ ~0.5MPa−1 and declines to ~0.7
for the largest considered value of b (~2MPa−1). When choosing
limited subsets of six datapoints from the uniform and ecohy-
drological distributions, median R2 similarly declines as |b|
increases and is always higher than the R2 estimated for the
complete dataset (Figure 2), consistent with reports that R2 is
biased upward for small sample sizes (Cramer 1987). The
minimum value of R2 of 0.67 is not small enough to guarantee
that a hypothetical “observer” would correctly discount the
gc−An/ca versus An/(caDL

0.5) relationship as linear, because an
R2 of 0.7 or higher suggests a high level of correlation for eco-
logical studies. The “observer” is likely to wrongly assume that
the R2 is not higher because of randomness and noise in the
data rather than correctly ascribing it to variation in g1. Unless
performing a highly controlled experiment to encompass a

broad range of ψpd, the “observer” is likely to observe an
incomplete sample, and they would observe an R2 larger than
0.7 (blue and red violin plots in Figure 2), leading to over-
confidence in their model's performance and in the linearity of
the gc−An/ca versus An/(caDL

0.5) relationship. While R2 indeed
declines as |b| increases, the answer to Question 1 is that the
“observer” would likely conclude that fitting each of the curves
in Figure 1 with a constant slope is justified and proceed with
regression, ignoring potential variation in g1, regardless of how
sensitive g1 is to ψpd (b).

3.2 | Potential for Large Errors in Gas Exchange
Predictions Using Regressed Slope Parameters

Predictions of Ân from the regressed ĝ1 compared well to the
“true” An for species with small b; however, Ân diverged from
An for species with large |b| (Figure 3; Figures S2 and S3). The
RRMSE for Ân predicted for ĝ1 regressed from the entire gc−
An/ca versus An/(caDL

0.5) curve (Figure 3) was on average
slightly higher than the RRMSE for Ân predicted for ĝ1 re-
gressed from a limited subset of six datapoints (Figure S2), since
RRMSE is biased towards better performance for smaller sam-
ple sizes due their biases in standard deviation (Holtzman 1950)
like R2. The ecohydrological distribution was generally prone to
more error than the uniform distribution, regardless of whether
ĝ1 was regressed from the entire curve (Figure 3) or a limited
data subset (Figure S2). For Helianthus annuus, the species with
the largest b of 2.07 (Table S1), RRMSE for Ân predicted for ĝ1
regressed from the entire curve was 27% and 65% for the

FIGURE 2 | R2 between the gw− 1.6 ×An/ca and 1.6×An/(caDL
0.5) values showed in Figure 1. Species are ordered from left to right according to

the sensitivity of g1 to ψpd (b in Equation 8). Black circles show the R2 determined for the entirety of each line in Figure 1. Blue and red violin plots
show the distribution of R2 determined from randomly choosing six datapoints, repeated 1000 times, chosen by a uniform and ecohydrological
distribution of ψpd, respectively. Violin plots are replaced with thick lines when R2 is singularly distributed. [Color figure can be viewed at
wileyonlinelibrary.com]
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uniform and ecohydrological distributions, respectively
(Figure 3). For Ân predicted for ĝ1 regressed from a limited
subset, RRMSE was 24% and 41% for the uniform and ecohy-
drological distributions, respectively (Figure S2). The largest
errors occurred for Olea europaea var. Chemlali, a species with a
moderate b of 1.28 but with the lowest sensitivity of Vc,max to
ψpd (Sf in Equation 9) of the considered species (Table S1). For
ĝ1 regressed from the entire curve, the RRMSE for Olea euro-
paea var. Chemlali was 80% and 106% for the uniform and
ecohydrological distributions, respectively (Figure 3), while for
ĝ1 regressed from a limited data subset, the RRMSE was 63%
and 77% for the uniform and ecohydrological distributions,
respectively (Figure S2), suggesting that the problems of
regression are exacerbated for species with moderate to large b
and small Sf. Conversely, greater sensitivity of Vc,max to ψpd

(large Sf) effectively conceals some of the error of assuming a
constant g1 for species with larger b, because as ψpd become
more negative and as stomata close for species with large Sf,
declines in Vc,max become responsible for more decline in An

(independently of g1 variations), and less change in g1 is
required to capture stomatal closure (i.e., constant ĝ1 becomes
more acceptable). The answer to Question 2 is that estimating ĝ1
by regression can cause large errors for predicting Ân as high
as 106%.

3.3 | Inversion Improves Gas Exchange
Predictions

Inverting a limited number of point estimates of g1 (i.e., g̃1)
and statistically modeling them as a function of ψpd resulted in
less error than estimating ĝ1 by regression when predicting An

(Figure 3; Figures S2, S4, S5). When statistically modeling the
g̃1 point estimates as an exponential function of ψpd

(Equation 8), errors for Ãn were virtually absent, never ex-
ceeding 1% (Figures S4 and S6). This result was expected
because both the relationship between the “true” g1 and ψpd

and the relationship between the statistically modeled g̃1 point
estimates and ψpd share the same exponential form. More er-
rors would have been introduced if the statistical model dif-
fered in functional form from the “true” relationship. Hence,
we also fitted second‐order polynomial functions to the subsets
of g̃1 point estimates. These second‐order polynomial functions
represent an extreme case because they can resemble the
“true” exponential function over small intervals, but they can
also predict unrealistic responses for g̃1 when extrapolating to
unobserved conditions (e.g., nonmonotonic g̃1‐ψpd fits).
Nonetheless, despite its limitations, modeling the g̃1 point es-
timates as a second‐order polynomial function resulted in less
error than regression‐based predictions (Figures S5 and S7),
because the second‐order polynomial statistical models can
capture some of the variations of g̃1 with respect to ψpd,
whereas the regressed ĝ1 is constant and cannot capture var-
iations. These results emphasize the improvements in gas ex-
change predictions that can be made by capturing even just
some of the variations in g1.

When uniformly sampled, RRMSE was largest for Olea
europaea var. Chemlali (Figure S5), like for with regressed ĝ1
(Figures 3 and S2), at 30%, less than half of any of the RRMSE
values for Olea europaea var. Chemlali with regressed ĝ1. For
the ecohydrologically distributed data, RRMSE was largest
for Cinnamomum bodinieri, the only considered species with
negative b (Table S1), at 22% (Figure S5). Because of

FIGURE 3 | Relative root mean square error (RRMSE; circles) for An against the relative sensitivity of g1 to predawn water potential (b in
Equation 8). Comparison of “true” An to Ân predicted from ĝ1 estimated by regressing the complete gc –An/ca versus An/(caDL

0.5) curve for each
species. Lines are 2nd order polynomial fits to RRMSE in terms of b, and shaded areas shows ±2 standard errors (SE) of the fit. [Color figure can be
viewed at wileyonlinelibrary.com]
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Cinnamomum bodinieri's negative b, its ecohydrological
probability distribution is heavily skewed towards ψpd near
zero, guaranteeing error for unobserved dry conditions.
Besides these exceptions, RRMSE was always less than 10%
(Figure S5). Overall, the answer to Question 3 is that the
inversion method (Equation 7 and statistical modeling of
point estimates) does indeed improve predictions of An

compared to the traditional regression approach that assumes
constant g1, even when statistically modeling g̃1 point esti-
mates with dubious functional forms like second‐order
polynomials, which can predict unrealistic g1 responses
upon extrapolation.

3.4 | A Proposed Roadmap for Identifying
Environmental Controls on Slope Parameters

While the traditional approach of estimating stomatal slope
parameters (g1) by linear regression may appear justified (i.e.,
high R2; Figure 2), regression conceals variations in g1, making
it difficult to interpret how g1 varies with environmental and
physiological conditions. This result may explain why
regression‐based studies frequently report small differences
between single g1 values regressed from different treatments,
while inversion‐based studies often find clear effects (Table 1).
Not considering the variations in g1 can lead to large errors for
An (as high as 106% for our considered species; Figure 3),
especially for species with highly variable g1 and low variation
in photosynthetic capacities.

We recommend that future studies estimate g1 by inversion
(Equation 2 or 7). Statistical models for g1 can be constructed
through structural equation (Zhai et al. 2024) and mixed‐effects
(Lin et al. 2015) modeling. Based on previously observed and
theorized responses of g1 and the marginal profit to environ-
mental and physiological conditions (Katul et al. 2010; Manzoni
et al. 2011; Zhou, Medlyn, and Prentice 2013, 2014, 2016; Nakad
et al. 2023; Table 1), explanatory variables should include ca,
leaf temperature, and a hydraulic variable (e.g., soil water
content, soil water potential, midday or predawn leaf water
potential). We propose that the fixed effects of linear mixed‐
effects models for the logarithmically transformed g1 be
structured as

( )g c T ψlog( ) ~ 1 + log( ) + log + ,a L
K

L1 (11)

with additional random effects from treatment and other
appropriate groupings and additional fixed effects as needed.
We justify the structure of Equation 11 in our SI
(Equation S2.5, Notes S2). Alternatively, similar logarithmi-
cally transformed mixed‐effects modeling may be performed
on point estimates of the marginal carbon profit of water
(∂An/∂E) calculated from leaf gas exchange measurements
through equations provided by Buckley, Sack and Farquhar
(2017; e.g., Equation 5) and Liang et al. (2023). The inde-
pendent effects of environmental conditions on stomatal
behavior can be concluded from effects (slopes) of the ex-
planatory variables on either g1 or ∂An/∂E, thereby identify-
ing what response stomatal optimality models should predict.
Alternatively, other types of statistical modeling may be used

to explain variations in g1 and ∂An/∂E, like non‐linear mixed‐
effects modeling (Lindstrom and Bates 1990) or machine
learning methods (e.g., Shapley additive explanations;
Lundberg and Lee 2017; artificial neural networks; Raghav,
Kumar, and Liu 2024). Another option is to determine g1 as
the slope of the fixed effect of An/(caDL

0.5) from linear mixed‐
effects modeling of gc − An/ca with treatment as a random
effect; however, this approach is a form of regression and is
thus prone to Liang et al.'s (2023) “An:gc trap”. Methods that
allow for variation in g1 with environmental and physiolog-
ical conditions (within and among treatments) like ours
avoid the problems of regression (within a single treatment)
and of identifying the controls of g1 from differences in
treatments’ mean g1.

3.5 | The Shared Variable Problem for Stomatal
Responses to CO2 and VPD

Caution must be taken when attempting to determine the
effects of CO2 concentrations or VPD on g1 (or ∂An/∂E) point esti-
mates because of a ‘shared variable problem’. Correlations between
g1 (or ∂An/∂E) and either ca or DL may be spurious due to ca and DL

appearing both in the calculation of g1 (Equations 2 and 7) and as
explanatory variables used to statistically model g1 (Equation 11).
The few attempts to find effects of either ca or DL on ∂An/∂E point
estimates derived from gas exchange measurements and eddy
covariance data have not considered this potential spuriousness
(Hall and Schulze 1980; Fites and Teskey 1988; Grieu, Guehl, and
Aussenac 1988; Thomas, Eamus, and Bell 1999; Katul et al. 2010; Yi
et al. 2024). Statistical models for g1 or ∂An/∂E with ca or DL as
explanatory variables should be tested for spuriousness, such as
comparing the observed Spearman's correlation coefficients
between ca or DL and g1 or ∂An/∂E to null correlations from ran-
domization tests as described by Jackson and Somers (1991; see
Wolfe et al. 2023 for example). A positive correlation between ca and
g1 could indicate spuriousness because the effect of ca on g1 is
positive in Equation 7 (∂g1/∂ca>0). Likewise, a negative correlation
between DL and g1 could indicate spuriousness (∂g1/∂DL<0
because ≈ ( )( ) ( )g D D D= − 1 − 1 = − 1L

g c
A L

g c
A L

Ec
D A1 1.6 × 1.6 ×

c a
n

w a
n

a
L n

( )D= −Ec
D A L1.6 ×
a

L n
). Likewise, care should be taken when

interpreting correlations between g1 point estimates and leaf tem-
perature. Such correlations may be spurious due to covariation
between leaf and air temperatures (Michaletz et al. 2016), both of
which determine the DL (Grossiord et al. 2020) that is used to
calculate g1.

We recommend an alternative approach to circumvent
spurious correlations with CO2 concentrations by estimating
stomatal slope parameters (g1) without ca observations
through 13C isotope discrimination that provides estimates
of the ci/ca ratio that can be plugged into Equation 2
(Medlyn et al. 2017). Similarly, 13C discrimination mea-
surements enable ∂An/∂E calculations without ca when
photosynthesis is light‐limited (Liang et al. 2023). This
approach typically uses 13C discrimination of bulk leaf
carbon (Medlyn et al. 2017; Wang et al. 2017; Bloomfield
et al. 2019), providing a representative value of g1 during the
growth period (Cernusak et al. 2013) that may be larger
(Bloomfield et al. 2019) or smaller (Medlyn et al. 2017) than
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real‐time g1 point estimates from gas exchange measure-
ments. Real‐time g1 point estimates may be calculated from
‘online’ 13C discrimination values derived from the differ-
ence in the 13C isotope composition of the air entering and
leaving a leaf gas exchange chamber by the method of Evans
et al. (1986). These g1 point estimates could be statistically
modeled in terms of ca, avoiding the shared variable prob-
lem, to answer how CO2 concentrations affect stomatal
behavior. Hence, datasets of ‘online’ 13C discrimination
under experimentally varied ca (Busch et al. 2020; Wang
et al. 2024) will be critical to determining stomatal
responses to ca.

There are currently no means of detecting effects of VPD on g1
and ∂An/∂E point estimates that entirely avoid the possibility of
spurious correlations. The likelihood of spurious correlations
would be reduced by rearranging Equation 2 and statistically

modeling
 log
1−

ci
ca
ci
ca

instead of glog( )1 like Equation 11 with an

additional fixed effect of Dlog( )L (Equation S2.6, Notes S2; Wang
et al. 2017; Bloomfield et al. 2019; Dong et al. 2020). However,
spurious correlation would still be possible when analyzing gas
exchange data in the absence of leaf 13C isotope data, because the
calculation of ci depends on DL (Long 2003). Like for CO2, datasets
of ‘online’ 13C discrimination under experimentally varied VPD
(Cernusak et al. 2019; Holloway‐Phillips et al. 2019; Wong
et al. 2022; Diao et al. 2024) could determine how g1 varies with DL.
Nonetheless, little empirical evidence suggests that g1 and ∂An/∂E
should vary with VPD since using constant g1 and ∂An/∂E correctly
predicts the response of stomatal conductance to VPD (Katul,
Palmroth, and Oren 2009). Some eddy covariance and bulk leaf 13C
discrimination studies report correlations between g1 and VPD. The
eddy covariance studies modify the USO model, replacing the
inverse‐square‐root of DL (i.e., D

1
L
in Equation 1) with an inverse‐

power law ofDL (i.e., D
1
Lm
; Lin et al. 2018) with a fitted exponent (m)

that would equal 0.5 if g1 were independent of VPD. Several eddy
covariance studies report exponents that are either larger or smaller
than 0.5 (Lin et al. 2018, 2019; Liu et al. 2022), suggesting that g1
may respectively decrease or increase with VPD. The bulk leaf 13C
discrimination studies estimate similar exponents, typically being
greater than 0.5 (Bloomfield et al. 2019; Dong et al. 2020). However,
these correlations cannot answer whether VPD directly or indirectly
affects g1 since they do not consider the effect of other covarying
factors (e.g., Equation 11). For example, high VPD could cause
more negative leaf water potentials that decrease g1. This nuance of
direct versus indirect VPD‐effects on g1 is needed to constrain the
form of stomatal models, particularly optimality‐based models
(Wang et al. 2020; Bassiouni and Vico 2021).

4 | Conclusion

We present the pitfalls of inferring g1 from the traditional
regression approach and recommend an alternate, more
flexible inversion approach. The regression method cannot
attribute variations in g1 to variations in physiological and
environmental conditions, potentially leading to large errors
in net carbon assimilation that the inversion approach
avoids. Their methodological differences may explain why
regression‐ and inversion‐based studies often report

different sensitivities of g1 to environmental or physiological
drivers (Table 1). By statistical modeling g1 point estimates
(e.g., Equation 11), the inversion approach can discern the
sensitivity of g1 to each of its drivers. Caution should be
taken when determining the effects of CO2 concentrations
or VPD on g1 point estimates due to potentially spurious
correlations, although they may be circumvented by 13C
isotope measurements, especially those from Evans et al.'s
(1986) ‘online’ method. An improved understanding of g1
and how it varies will advance stomatal conductance models
that are essential for predicting future carbon and water
fluxes and plant performance under a changing climate, in
part by constraining the form of stomatal optimality models.
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