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Medial entorhinal cortex mediates  
learning of context-dependent interval 
timing behavior

Erin R. Bigus1,3, Hyun-Woo Lee    2,3, John C. Bowler2, Jiani Shi2 & 
James G. Heys    2 

Episodic memory requires encoding the temporal structure of experience 
and relies on brain circuits in the medial temporal lobe, including the medial 
entorhinal cortex (MEC). Recent studies have identified MEC ‘time cells’, 
which fire at specific moments during interval timing tasks, collectively 
tiling the entire timing period. It has been hypothesized that MEC time cells 
could provide temporal information necessary for episodic memories, 
yet it remains unknown whether they display learning dynamics required 
for encoding different temporal contexts. To explore this, we developed a 
new behavioral paradigm requiring mice to distinguish temporal contexts. 
Combined with methods for cellular resolution calcium imaging, we found 
that MEC time cells display context-dependent neural activity that emerges 
with task learning. Through chemogenetic inactivation we found that MEC 
activity is necessary for learning of context-dependent interval timing 
behavior. Finally, we found evidence of a common circuit mechanism that 
could drive sequential activity of both time cells and spatially selective 
neurons in MEC. Our work suggests that the clock-like firing of MEC time 
cells can be modulated by learning, allowing the tracking of various 
temporal structures that emerge through experience.

Our daily experiences unfold across space and time, meaning that 
the brain must capture these dimensions to accurately form episodic 
memories (that is, memories of personal experiences that occur in a 
specific spatial and temporal context)1,2. Medial temporal lobe (MTL) 
structures are critical for episodic memory, raising the question of how 
these regions encode space and time. A remarkable series of findings 
have revealed the role of MTL structures in encoding space, beginning 
with the findings that: (1) MTL regions are critical in memory-guided 
spatial navigation behavior3–6; (2) MTL regions contain so-called place 
cells in the hippocampus5,7 and grid cells in the MEC8 that fire when ani-
mals visit particular locations within an environment; and (3), critically, 
spatial cells remap, reorganizing their firing fields as animals navigate 
and learn features of different environments to form a unique map for 

each spatial context9,10. Observing such learning dynamics provided 
the invaluable insight that a key role of spatially tuned cells is likely 
to create a ‘cognitive map’ of an environment11,12 that can be stored in 
memory and used to guide future behavior.

In contrast to spatial context, it remains relatively unknown how 
temporal context, or the temporal structure of experiences, is encoded 
within the MTL memory system. The nervous system must track time 
across many scales, ranging from milliseconds to hours, but the inter-
mediate scale of interval timing (seconds to minutes) is perhaps most 
relevant for planning and executing daily behaviors, including forag-
ing, mating, prey capture and avoidance13–15. Accordingly, encoding 
the temporal structure of daily experiences requires interval timing. 
Although it is largely unclear how the passage of interval time and 
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consisted of three trial types defined by each stimulus duration:  
short–long (S-L), long–short (L-S) and short–short (S-S). Using a  
‘Go–NoGo’ strategy, mice were trained to lick to report a nonmatch of 
durations (Go trials; S-L and L-S) and withhold from licking in response 
to match durations (NoGo trials; S-S) (Fig. 1c).

Before starting the tDNMS task, mice underwent a shaping pro-
cedure to learn the trial structure. Mice were presented only with non-
match trials and learned to refrain from licking during the first odor and 
ISI, then licked near the second odor offset to earn a reward (Fig. 1b and 
Extended Data Fig. 1d). After mice reached criteria (Methods), indicat-
ing learning of the ‘odor, odor, response’ trial structure, mice started 
the tDNMS task, where match trials were first introduced and equally 
balanced with nonmatch trials over each session (90 trials per session 
over ~45 min). Notably, although mice could employ a simple strategy 
of licking after the second odor offset during pretraining, the introduc-
tion of match trials transformed the task into one that required timing.

To test whether mice learn the tDNMS task, we monitored 
behavioral performance in 26 mice over 8 training sessions (Fig. 1d). 
Although mice began at chance performance, they steadily improved 
with training, averaging 72.7 ± 2.5% (mean ± s.e.m. for all data unless 
otherwise reported) correct responses on session 8, demonstrat-
ing learning (27.1 ± 4.1% change from session 1 to sessions 7 and 8; 
repeated-measures analysis of variance (ANOVA) F7,25 = 8.43, P < 0.001). 
To better understand the learning process, we examined performance 
by trial type. We expected mice to begin the task by licking at the second 

the duration of events are tracked and recorded within the MTL, one 
intriguing possibility is that common mechanisms support encod-
ing of both space and time16. If so, as for space, we would expect MTL 
regions to: (1) be necessary for interval timing behavior; (2) contain 
cells selective to time; and (3) use distinct patterns of time-selective 
cells to form ‘timelines’ of unique experiences, akin to maps. Previous 
work suggests that MEC fits the first two criteria: MEC is necessary for 
interval timing behavior17–19 and contains time cells that fire regularly 
at discrete moments as rodents report temporal durations on the scale 
of seconds20. As a population, different MEC time cells fire regularly at 
different moments in a timed interval, like the second hand of a clock, 
thereby forming a sequence of neural activity, tiling the entire timing 
epoch. Third, by analogy to spatial cells, MEC time cells could play a 
key role in episodic memory by using unique time cell trajectories to 
form distinct ‘maps’ or ‘timelines’ of temporal experiences (that is, 
contexts). The third point makes clear predictions about the learn-
ing dynamics of MEC time cells: distinct patterns of time cells should 
emerge as animals learn the temporal structure of an experience, and 
emergence of these patterns should be necessary for timing behavior. 
Evidence of such learning dynamics could suggest that MEC time cells 
play a key role in the formation of episodic memories by encoding the 
temporal structure of experiences. However, these predictions have 
yet to be experimentally tested.

We therefore aimed to test the hypotheses that (1) distinct 
sequences of time cells will become active as animals learn to identify 
a new temporal context, forming a unique map or ‘timeline’ of each 
temporal context, and (2) such dynamics support learning of timing 
behavior. To address these questions, we developed a new temporal 
delayed nonmatch to sample (tDNMS) task that requires mice to dif-
ferentiate the temporal structure of trials (temporal context). By per-
forming two-photon calcium imaging as mice performed the tDNMS 
task, we uncovered populations of MEC time cells that fire selectively 
at specific moments in the timing task, with the population of time cells 
creating a sequence that spans the entire timing epoch. Remarkably, we 
find that, over the course of learning, these sequences become context 
dependent, whereby MEC time cells become differentially active on 
particular trial types. Furthermore, multiple lines of evidence suggest 
that the activity of MEC time cells plays a causal role specifically in 
learning context-dependent interval timing behavior. Finally, we find 
evidence for a common circuit mechanism that may support both MEC 
spatial and time coding. Our results suggest that MEC time cells may 
play a central role in episodic memory by forming unique ‘timelines’ 
that encode the temporal structure of distinct experiences.

Results
Mice learn new tDNMS task using flexible timing behavior
We designed a timing task with two objectives. First, mice must track 
time and make decisions based on the temporal structure of each trial. 
In addition, the task should require cognitive flexibility to maximally 
engage the MTL memory system. This second point may be critical to 
elicit learning dynamics, considering that learning flexible but not rigid 
navigation behavior requires the MTL21. To meet these two goals, we 
adapted the delayed nonmatch to sample (DNMS) task structure, known 
to engage the MTL22–24, to create a new tDNMS task. As mice heavily 
rely on olfaction, we built a flow dilution olfactometer (Extended Data 
Fig. 1a)25 and signaled stimuli via a single odorant (isoamyl acetate). We 
validated our system by ensuring that the concentration of the odorant 
remained constant over the course of a full training session and that 
odor concentration could be rapidly controlled (Extended Data Fig. 1b).

In each trial of the tDNMS task, a water-restricted, head-fixed 
mouse (Fig. 1a) was presented with two successive stimuli for either a 
short (2 s) or a long (5 s) duration, separated by a brief 3-s interstimulus 
interval (ISI). Trials were performed in the dark and separated using  
(1) a 16- to 24-s intertrial interval (ITI) and (2) a light pulse (0.25 s) to 
signal the start of the trial (Extended Data Fig. 1c). The tDNMS task 
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Fig. 1 | Mice learn new tDNMS task. a, Simplified experimental setup.  
b, Overview of training paradigm. Mice were first pretrained to lick at the offset of 
nonmatch trials to trigger reward delivery. On reaching criteria after an average 
of 16 sessions (mean ± s.d.), mice began 8 training sessions on the tDNMS task, 
where match trials were introduced. c, Trial types and example behavior. The 
tDNMS task consisted of three types of trials defined by stimulus durations: S-S, 
S-L and L-S. To perform the task correctly, mice must lick in the response window 
after nonmatch trials and withhold licking in match trials. d, Percentage correct 
across all trial types for each session, averaged across all mice (mean ± s.e.m., 
n = 26 mice). e, Percentage correct by trial type for each session, averaged across 
all mice (mean ± s.e.m., n = 26 mice).
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odor offset, given their pretraining, and thus perform well in nonmatch 
trials. Indeed, mice averaged 85.3 ± 3.5% correct S-L trials on day 1 of 
the tDNMS task, compared with 91.1 ± 2.7% on the last half-session 
of pretraining (Fig. 1e and Extended Data Fig. 1g; Student’s paired 
t-test, P = 0.24). Unexpectedly, performance on L-S trials dropped 
from 86.3 ± 2.0% correct responses on the last half-session of shaping 
to 56.6 ± 4.1% correct on day 1 of the task (Fig. 1e and Extended Data 
Fig. 1g; Student’s paired t-test, P < 0.001). Mice could miss nonmatch tri-
als either by incorrectly withholding licking or by licking prematurely. 
Most mistakes were from premature licking, suggesting that mice 
reverted to an impulsive action of licking after long odors previously 
observed in shaping (Extended Data Fig. 1h–i). Match trials uniquely 
require learning a new response of withholding, so we expected 
learning to occur here. Indeed, mice began with poor performance,  
averaging 43.4 ± 3.5% correct S-S trials on day 1 owing to their tendency 
to lick near the second odor offset (Extended Data Fig. 1j), as if apply-
ing an ‘odor, odor, lick’ strategy learned in pretraining. However, by  
day 8, mice learned to withhold licking, reaching 70 ± 4% correct S-S 
trials (repeated-measures ANOVA F7,25 = 4.81, P < 0.001). Together, our 
data demonstrated that mice learned the tDNMS task by learning to 
withhold licking selectively on S-S trials, as evidenced by (1) improve-
ment on S-S trials, (2) high performance on S-L trials and (3) a tendency 
to miss L-S trials by licking early.

Limiting the task to three trial types allowed mice to robustly learn 
the tDNMS task over seven to eight sessions. However, this task design 
could inadvertently lead mice to adopt a rigid cognitive strategy. For 
instance, mice could distinguish trials based on their total duration, 
circumventing the need to assess the durations of individual stimuli. 
We conducted two control experiments to test this possibility. First, 
we performed experiments without odor to establish that olfactory 
cues are essential for task engagement (Extended Data Fig. 1e). Then, 
we trained a cohort of mice on a modified version of the tDNMS task 
and manipulated the ISI in a subset of probe trials to make nonmatch 
and match trials the same duration. Performance was unaffected, dem-
onstrating that mice respond to individual stimuli and not the overall 
length of the trial (Extended Data Fig. 1f). Importantly, our results 
did not confirm that mice compared durations; mice probably use a 
simpler strategy (discussed later). Nevertheless, any strategy required 
them to (1) monitor stimuli durations and (2) make decisions based on 
the stimuli’s position within the trial structure. Therefore, the tDNMS 
task met our goals of requiring mice to make flexible decisions based 
on the temporal structure of each trial.

MEC time cells fire in context-dependent trajectories
To characterize the learning dynamics of MEC time cells, we applied 
methods that we have previously developed for large-scale, cellu-
lar resolution, two-photon calcium imaging in MEC20,26 (Fig. 2a,b). 
We recorded from populations of layer II MEC neurons expressing 
GCaMP6s (Fig. 2c-e and Extended Data Fig. 2a), across six mice (field 
of view (FOV) 430 ± 54 μm medial to lateral by 380 ± 45 μm dorsal to 
ventral; depth below the surface 105 ± 8 μm) as well-trained mice per-
formed the tDNMS task (15 ± 4 d pretraining then 13 ± 8 d of tDNMS 
training to reach day N; 82 ± 5% correct trial performance). Across 
the total population (2,056 active neurons), we found that 33.8% of 
cells exhibited regular time-locked activity at a particular moment in 
each trial (Fig. 2f and Extended Data Fig. 2b). Consistent with previous 
reports during interval timing behavior20, we found that different MEC 
‘time cells’ were selectively active at different delay times from the start 
of each trial, forming a regular temporal sequence that spanned the 
entire trial epoch (Fig. 2g and Extended Data Fig. 3a).

During the tDNMS task, mice were free to run on a cylindrical 
treadmill. As previous work has shown that MEC neurons can encode 
distance traveled27,28, we wondered whether the time-locked activity 
of MEC time cells might be better explained by distance traveled from 
trial onset. In support of the idea that MEC time cells encode elapsed 

time in the task, and not distance traveled, we found that the vast  
majority of time cells displayed a smaller coefficient of variation (CV) 
when measuring as a function of elapsed time versus distance trave-
led from trial onset (CV of elapsed time: 48.4 ± 0.8, elapsed distance: 
205.7 ± 4.4, P < 0.0001, t(1,070) = 39.9, paired Student’s t-test; Fig. 2h). In 
addition, to estimate the specific contribution of different behavioral 
variables (distance traveled (D), time elapsed (T) and licking (L)) on the 
activity of MEC neurons, we used a generalized linear model (GLM) to 
fit calcium activity (dF/F) as a Gaussian linear function of different com-
binations of the three behavioral variables29,30. Consistent with results 
using the CV, our GLM results show that the log-likelihood gained by 
time is significantly greater than the log-likelihood gained by either 
distance or licking (Extended Data Fig. 3b–d), indicating that cells are 
tuned to elapsed time in the tDNMS task.

To perform the tDNMS task, subjects must perceive and use stimuli 
durations to determine trial type (that is, nonmatch or match) and learn 
the appropriate response (that is, Go or NoGo, respectively). Impor-
tantly, as trials consist of unique sequences of cues (differing only in 
duration) that dictate the appropriate behavioral response, we refer 
to each trial type as a temporal context. The robust learning and task 
structure allowed us to ask whether differential activity of populations 
of time cells encode each trial type, or temporal context. Although 
some time cells showed stable activity across trial types (time cell 1 in 
Fig. 2f), others displayed activity specific to the temporal context. This 
context-dependent activity took various forms. By examining time field 
stability across each pair of trial types (S-S versus S-L, S-S versus L-S, 
S-L versus L-S; Extended Data Fig. 3e), we found that more than half of 
the time cells exhibited stable time fields (58.4%, n = 944 out of 1,617). 
For those that ‘remapped’ between contexts, time fields usually either 
disappeared in one trial type (time cells 3–5 in Fig. 2f; 33.2%, n = 537 of 
1,617) or modulated their firing rate (time cell 6 in Fig. 2f; 5.32%, n = 86 
of 1,617). Few time cells shifted the timing of peak activity (time cell 2 
in Fig. 2f; 3.09%, n = 50 of 1,617). Together, these results demonstrated 
that time cell activity varies dynamically across temporal contexts, 
forming a unique trajectory or ‘timeline’ for each trial type.

Context-dependent sequences support tDNMS learning
Initially, on day 1, mice do not utilize temporal context to guide  
behavior; however, over several training sessions, they learn to respond 
correctly on 70–90% of trials per session. If context-dependent MEC 
time cell activity supports task learning, our data should support  
several predictions. First, context-dependent activity should be rela-
tively absent on day 1 and emerge over the course of learning. Second, 
the coherence of individual time cell activity and/or the regular sequen-
tial neural activation across the population should be disrupted on 
‘error trials’, when mice incorrectly report match or nonmatch.

To test the first prediction, we averaged the activity of MEC time 
cells for each trial type and compared the correlations for each cell’s 
response across trial types, before and after learning (Methods). As 
mice learn at varying rates, we classify post-learning sessions with 
>70% correct trials as ‘day N’ (training session nos. 4–21). We found 
that the average correlation of time cell rate maps across match and 
nonmatch trials was significantly lower on day N compared with day 
1 (day 1: 0.57 ± 0.01; day N: 0.42 ± 0.02; P < 0.0001, z = 6.8, Wilcoxon’s 
rank-sum test; Fig. 3a-c), demonstrating that context-dependent activ-
ity develops to become more distinct over the course of learning.

The information required to distinguish contexts accumulates 
throughout each trial, with key moments providing enough informa-
tion for an ‘ideal observer’ to discern the trial context. We wondered 
whether the population dynamics of context-dependent MEC time 
cells might be informative about this time-dependent decision pro-
cess and further link neural dynamics to task learning. To test this, we 
measured the difference in dF/F for each time cell across trial types at 
successive moments in the trial epoch and averaged across time cells 
to generate population vectors. We found that the neural dynamics 
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http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | August 2024 | 1587–1598 1591

Article https://doi.org/10.1038/s41593-024-01683-7

significantly diverge from a null distribution (with randomly assigned 
trial labels) at key moments after the stimuli have become distinct 
across contexts (Fig. 3d). For instance, the long stimuli on L-S trials 
could be used to classify L-S trials earlier in the trial epoch than the 
other trial types. Accordingly, neural dynamics diverged from the null 
distribution earlier when comparing L-S with S-S versus S-L with S-S 
trials (Fig. 3d). Importantly, we found that, over learning, these differ-
ences became more pronounced (discriminant index for S-S versus S-L: 
day 1 = 0.40 ± 0.07, day N = 0.67 ± 0.08, P = 0.01, z = 2.55; S-S versus L-S: 
day 1 = 0.52 ± 0.07, day N = 1.00 ± 0.09, P < 0.001, z = 3.80, Wilcoxon’s 
rank-sum test; Extended Data Fig. 3g). Using a separate measure to 
assess learning, we also found that, from day 1 to day N, the population 
of MEC time cells shifts on each trial type to encode later times in the 
trial, which correspond to moments when there is sufficient informa-
tion to disambiguate the trial type (peak times on day 1: 3.66 ± 0.17 s,  
day N: 4.67 ± 0.18 s, P < 0.0001, z = 4.70, Wilcoxon’s rank-sum test; early 
peak proportion on day 1: 36% (n = 164 of 450), day N: 19% (n = 76 of 402), 
P < 0.0001, χ2

(1) = 30.4, χ2 test; Fig. 3e,f).
Next, we asked whether the ensemble activity of time cells on 

individual trials contains enough information to accurately decode 
the temporal context. During the late phase of trials (9–11 s), ensemble 
activity exhibited distinct separation according to trial type as shown 
by linear discriminant analysis (LDA) (Fig. 3g and Extended Data Fig. 4a). 
To quantify this separation, we applied k-means clustering to each 
animal’s LDA plot, revealing a clustering accuracy substantially higher 
than the bootstrapped chance level in five out of six animals (for mice 
1–6: P = 0, 0.04, 0.08, 0, 0 and 0.001, respectively). This result was cor-
roborated using an alternative classification method: we constructed a 
model using a support vector machine (SVM) to classify trials by type or 
as match versus nonmatch (Fig. 3h). As expected, when the model was 
trained and tested using neural activity during the early phase of trials 
(0–2 s), it failed to correctly identify trial information (trial type decod-
ing for mice 1–6: all P values >0.1; match versus nonmatch decoding for 
mice 1–6: all P values >0.1). In contrast, when utilizing activity during 
the late phase (9–11 s), the model successfully decoded trial identity in 
most animals (trial type decoding for mice 1–6: P value = 0, 0.002, 0.25, 
0, 0 and 0; match versus nonmatch decoding for mice 1–6: P value = 0, 
0, 0.05, 0, 0 and 0), aligning with findings from the k-means clustering 
analysis. Together, these results support prediction 1 showing that 
context-dependent MEC time cell activity emerges over learning, 
eventually displaying an over-representation at later moments in the 
task, with large deviations in context-dependent neural trajectories 
near key moments in the task when it is possible to distinguish trial type.

To test our second prediction, we compared the average response 
for each MEC time cell for correct and error trials. The results show 
significantly higher coherence for time cells across randomly selected 
blocks of correct trials compared with error trials on day N (correlation 
between correct trials − group A and correct trials − group B: 0.51 ± 0.01 
correct trials − group A and error trials: 0.26 ± 0.03, P < 0.0001, z = 7.5, 

Wilcoxon’s signed-rank test; Fig. 3i,j). Furthermore, when comparing 
correct versus error trials on day 1 and day N, we found that the average 
correlation on day N was significantly reduced compared with day 1 
(session type main effect: P < 0.0001, F(1, 288) = 18.5; trial-type main effect: 
P = 0.12, F(1.93, 555.15) = 2.1; interaction: P = 0.33, F(1.93, 555.15) = 1.1, two-way 
mixed ANOVA with trial type and session factors; Extended Data 
Fig. 4b–e), providing additional support that MEC time cell dynam-
ics evolve over learning. Together, our results demonstrating (1) the 
emergence of context-dependent time cell activity over learning and 
(2) altered coding during error trials support the hypothesis that MEC 
time cells form unique trajectories used to encode the structure of each 
trial type and likely used to guide context-dependent timing behavior.

Do time cells flexibly adapt to changes in task structure?
The presence of context-dependent dynamics suggests that MEC time 
cells reflect the temporal structure of a trial. To expand on this find-
ing, we asked how time cells would adjust to manipulations in trial 
structure. In a subsequent session, we ran the normal tDNMS task, 
then halfway through the session introduced a lengthened ISI of 5 s 
(Extended Data Fig. 5a). Mice responded to the change in the ISI by 
delaying approach behavior and predictive licking, indicating percep-
tion of the changed trial structure (Extended Data Fig. 5b). On average, 
population-level MEC time cell activity was delayed in response to the 
longer ISI (peak times on normal and probe trials: S-S trial types: normal 
(6.3 ± 0.4 s) versus probe (7.8 ± 0.5 s), P < 0.0001 z = 3.9; S-L trial types: 
normal (4.3 ± 0.5 s) versus probe (6.2 ± 0.6 s), P < 0.0001, z = 4.5; L-S 
trial types: normal (5.1 ± 0.6 s) versus probe (7.5 ± 0.6 s), P < 0.0001, 
z = 4.2; Wilcoxon’s signed-rank test; Extended Data Fig. 5c,d), further 
demonstrating that MEC time cells flexibly adapt to trial structure.

MEC is required to learn context-dependent timing behavior
The emergence of context-dependent MEC time cells provides a 
potential neural dynamical mechanism that could underlie tDNMS 
learning, where the formation of context-dependent ‘timelines’ 
(that is, time cell trajectories) could allow animals to differentiate 
trial types. To causally test whether MEC activity is necessary to learn 
the tDNMS task, we used a chemogenetic approach to inhibit MEC 
(Fig. 4a and Extended Data Fig. 6a,b). First, we bilaterally injected 
adeno-associated virus (AAV) expressing the inhibitory designer recep-
tors exclusively activated by designer drug (DREADD) hM4D across 
the dorsal–ventral extent of MEC (Fig. 4b and Extended Data Fig. 8). 
Mice then underwent water restriction and shaping before starting 
the tDNMS task. We monitored learning across eight sessions of the 
tDNMS task, administering the DREADD agonist deschloroclozapine 
(DCZ) intraperitoneally (i.p.) 5 min before each session to inhibit MEC 
for the duration of training. As expected, control mice learned the task 
within 8 d, averaging 72.8 ± 2.6% correct responses across sessions 
7 and 8 (Fig. 4c) (repeated-measures ANOVA F7,15 = 5.09, P < 0.001). 
In contrast, DREADD mice showed no improvement from session 1 

Fig. 3 | Context-dependent MEC time cell population dynamics support 
learning of flexible interval timing behavior. a, Top, the population of MEC 
time cells significantly tuned to S-S trials and sorted by response times during S-S 
trials, depicted for S-S (left), S-L (middle) and L-S (right) trials on day 1. Bottom, 
same as top, but for day N sessions. b, Top two principal components (PCs) 
displayed for population of MEC time cells across trial types. c, Mean Pearson’s 
correlation coefficients of MEC time cells across different trial types for day 1 
(black) and day N (green) (day 1, n = 449, day N, n = 452, z = 6.8, p = 1.3 × 10−11,  
two-sided Wilcoxon’s rank-sum test). d, Left, population vector for the difference 
in dF/F computed for each MEC time cell across S-S and S-L trial types as a 
function of trial time. Solid lines are the actual data and shades indicate 0.1th and 
99.9th percentiles of shuffle data. Right, the same for S-S versus L-S trials.  
e, Sorted sequence of MEC time cells in L-S trials on day 1 (left) and day N (right).  
f, Histogram of the timing of peak responses for all MEC time cells on day 1 (black) 
and day N (green), for all three trial types (day 1, n = 450, day N, n = 402, z = 4.70, 

P = 2.7 × 10−6, two-sided Wilcoxon’s rank-sum test). g, A representative LDA plot 
for individual trials. h, Decoding accuracy of SVM models for trial types (left) 
or match versus nonmatch (right). The models are built on neural activity from 
either early phase or late phase trials. Color circles depict the accuracy from 
actual data, with oval shades representing 2.5th and 97.5th percentiles of shuffle 
data. Each color corresponds to an individual animal (n = 6; trial type decoding 
in early: z = 0.03, P = 0.97; in late: z = 4.16, P = 3.1 × 10−5; match versus nonmatch 
decoding in early: z = 0.66, P = 0.51; in late: z = 4.20, P = 2.6 × 10−5, two-sided 
Wilcoxon’s rank-sum test). i, MEC time cells during S-S correct trials A (left; sorted 
by A), correct trials B (middle; sorted by A) and S-S error trials (right; sorted by A) 
on day N of training in the tDNMS task. j, Cumulative distribution for Pearson’s 
correlation coefficients calculated for MEC time cells comparing correct trials A 
with B (blue), and correct trials A with error trials (red) (Methods) (day 1, n = 120, 
day N, n = 170, z = 7.5, P = 8.5 × 10−14, two-sided Wilcoxon’s signed-rank test).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | August 2024 | 1587–1598 1592

Article https://doi.org/10.1038/s41593-024-01683-7

(57.2 ± 2.6% correct responses) to sessions 7 and 8 (59.1 ± 3.3% correct 
responses) (repeated-measures ANOVA F7,14 = 1.18, P = 0.32). Inactiva-
tion of MEC prevented mice from learning the tDNMS task.

To investigate the specific deficit caused by MEC inhibition, 
we analyzed data by trial type. Both control and DREADD mice per-
formed well on S-L trials, starting immediately on session 1 (Fig. 4e), 
as a result of learning that took place during the shaping phase of the 

task (before DCZ injections) (Extended Data Fig. 6d). In contrast, on 
day 1 both control and DREADD mice exhibited poor performance 
on L-S nonmatch trials, seemingly as a result of impulsive tendencies 
causing them to lick after the long odor presentation, a behavior 
noted during the shaping phase (Extended Data Fig. 6e-f). As match 
trials uniquely demand the learning of a new withholding response, 
we anticipated that improvement in these trials would drive overall 
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learning. Indeed, control mice demonstrated a significant increase in 
S-S trial accuracy across eight sessions (from 44.2 ± 4.3% correct on 
session 1 to 69.3 ± 5% correct on session 8; repeated-measures ANOVA 
F7,15 = 5.93, P < 0.001, as shown in Fig. 4e). Interestingly, DREADD 
mice showed an initial improvement in S-S trials over sessions 1–3 
(40.4 ± 4% correct match trials on session 1 versus 56.3 ± 4.2% cor-
rect match trials on session 3; repeated-measures ANOVA F2,14 = 8.01, 
P < 0.01), reflected in their overall learning curve. However, match trial 
performance did not significantly improve across the eight sessions 
(repeated-measures ANOVA F7,14 = 0.78, P = 0. 61), leveling near 50% 
(50.7 ± 3.6% correct match trials over sessions 6–8), indicating that 
mice guessed whether or not to lick. Although control mice learned 
to use stimulus durations to determine when to withhold licking, 
DREADD mice perseverated with the rigid strategy of licking at trial 
offset (Kolmogorov–Smirnov (KS) test on control and DREADD S-S 
learning curves, P < 0.01) (Fig. 4d).

Notably, DREADD mice were not impaired in all aspects of timing 
behavior. Both control and DREADD mice performed above chance 
in nonmatch trials, suggesting that MEC is not required to recall 
well-learned temporal contexts such as ‘S-L reward’ (Fig. 4e). Mice 
even engaged in predictive licking in anticipation of a reward (Fig. 4d), 
further indicating that MEC is not required to perceive or estimate 
learned durations. The key behavioral difference between control and 
DREADD mice was that DREADD mice were unable to form a memory 
of a new temporal structure (‘S-S no reward’), leading to an inability to 
adopt a flexible context-based strategy.

An alternative explanation for our results is that MEC inhibition 
may not affect the learning of temporal context, but, rather, other 
aspects of behavior necessary for tDNMS performance. We first con-
sidered whether MEC inactivation impaired odor perception. However, 
the robust performance of DREADD mice on nonmatch trials indicates 
intact odor perception (Fig. 4d,e). We then examined whether MEC 
inhibition increased impulsivity, because task learning requires mice 
to inhibit licking. We compared the average time from trial onset to first 
lick for both control and DREADD mice across session 1. If MEC inhibi-
tion increased impulsivity, DREADD mice should lick earlier. This was 
not the case (Extended Data Fig. 6c), confirming that MEC inhibition 
causes a specific deficit in learning context-based timing behavior.

MEC is not necessary for ongoing tDNMS performance
The emergence of context-dependent time cells led us to test, and 
confirm, the hypothesis that MEC is necessary to learn the tDNMS task. 
We next wondered whether the role of MEC is confined to learning or 
whether MEC is also required for ongoing task performance. To distin-
guish these possibilities, we silenced MEC after task learning. We did 
this as a continuation of our first MEC inactivation experiment: after 
eight consecutive sessions of MEC inactivation (Fig. 4), we took mice off 
DCZ and instead administered saline over sessions 9–14 (Extended Data 
Fig. 7a), hypothesizing that, without MEC inhibition, mice would learn 
the task. Indeed, DREADD mice learned the task (repeated-measures 
ANOVA F5,8 = 3.72, P < 0.01), reaching 77.7 ± 3.9% correct responses 
over sessions 13 and 14 (Extended Data Fig. 7b). We then administered 
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DCZ to inhibit MEC over sessions 15 and 16 (Extended Data Fig. 7a,b). 
Mice did well on sessions 15 and 16 despite MEC inhibition; there was 
no difference in performance from sessions 13 and 14 to sessions 15 
and 16 (2.19 ± 7.3% change in correct response from sessions 13 and 
14 to sessions 15 and 16 for DREADD mice; n = 7), showing that MEC 
is not required to perform the tDNMS task after learning (Extended 
Data Fig. 7b). These results suggest that MEC is specifically necessary 
to form representations of temporal context; other brain regions can 
guide post-learning performance.

MEC is not required to learn rigid timing behavior
A key requirement in developing our timing task was cognitive  
flexibility, given the findings that MTL structures are involved in flex-
ible, not rigid, navigation behavior4,6,31. The critical role of MEC in 
learning the tDNMS task therefore led us to question whether MEC is 
necessary to learn any temporal relationship or whether MEC is spe-
cifically required for flexible tasks requiring distinguishing between 
temporal contexts. To disentangle these possibilities, we trained 
DREADD and control mice on a simple, rigid, fixed interval (FI) task, in 

which a drop of water was delivered to the head-fixed mouse every 10 s  
(ref. 32). Predictive licking, which increases before the reward, signals 
an understanding of the task’s temporal structure (Extended Data 
Fig. 7c). To test whether MEC is needed to learn this simple timing task, 
we administered DCZ before each of five training sessions to inactivate 
MEC. To assess learning, we calculated the percentage of trials in which 
mice engaged in predictive licking. Over five sessions, the percent-
age of trials with predictive licking increased for both control mice 
(16.1 ± 5.3% on day 1 versus 57.8 ± 7.3% on day 5; repeated-measures 
ANOVA F4,10 = 7.05, P < 0.001) and DREADD mice (14.7 ± 2.4% on day 
1 versus 70.9 ± 4.4 on day 5; repeated-measures ANOVA F4,9 = 36.84; 
P < 0.001), indicating that mice learned to anticipate the forthcom-
ing reward (Extended Data Fig. 7d,e). In addition, as the sessions pro-
gressed, the peak of licking activity for both groups shifted closer to the 
reward time (Extended Data Fig. 7f), suggesting an improved precision 
in timing (control: −2.05 ± 0.12 s on day 1 to −0.96 ± 0.16 s on day 5; 
repeated-measures ANOVA F4,10 = 9.20; P < 0.001; DREADD: −1.73 ± 0.14 s 
on day 1 to −0.97 ± 0.11 s on day 5; repeated-measures ANOVA F4,9 = 7.75, 
P < 0.001). There was no significant effect of experimental condition 
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on learning as measured through either the percentage of trials with 
predictive licking (repeated-measures ANOVA group × time F = 1.98, 
P = 0.11; KS test on learning curves, P = 0.7) or time of peak licking 
(repeated-measures ANOVA group × time F = 1.05, P = 0.39; unpaired 
Student’s t-test on day 5 peak lick times, P = 0.99), indicating that MEC 
inhibition did not affect learning. Therefore, MEC is not needed to 
learn rigid temporal relationships, indicating a specificity in learning 
context-dependent timing behavior.

The use of cognitive strategies to solve the tDNMS task
The tDNMS task can be solved through multiple strategies, each  
requiring a varying degree of cognitive flexibility. We sought to (1) 
identify possible strategies and (2) determine the involvement of MEC 
in relation to the degree of cognitive flexibility, to provide additional 
evidence for MEC’s role in learning flexible timing behavior. We deline-
ated four cognitive strategies that mice could use to solve the tDNMS 
task (Methods): (1) identify the long stimulus as a ‘go’ cue and respond 
after second odor offset; (2) time the entire trial duration and respond 
on longer trials; (3) use the long stimulus as a go cue but time both 
stimuli; and (4) time both stimuli then compare durations. Importantly, 
these strategies require recognition of the odor, odor, response trial 
structure. In contrast, mice could employ a simple ‘cue-based’ approach 
by learning to lick in response to specific events within a trial without 
fully grasping its structure, for instance, altering the likelihood of lick-
ing after any odor offset. Hallmarks for the use of each approach are 
present in the licking behavior. Therefore, to evaluate which approach 
each mouse used, we modeled lick counts as a nonhomogeneous Pois-
son process based on weighted combinations of cue-based features 
and each of the strategy-based features (Fig. 5a,b and Extended Data 
Fig. 9a,b,e). Most mice exhibit behavior that fits better to models with 
a strategy-based feature (Fig. 5c and Extended Data Fig. 9c), with strat-
egy 2 or 3 yielding the largest increase in model fit (Fig. 5d). To distin-
guish between these two strategies, we investigated probe trials with 
manipulated ISIs (Extended Data Figs. 1f and 5). By training our model 
on the standard ISI trials and testing on the subset with modified ISIs, 
we found that animals most probably employ strategy 3 (Fig. 5e), which 
involves using the long stimulus as a go cue but timing both stimuli.

Our modeling also allowed for probing the neural dynamics in MEC 
time cells to predict the strategy used by each animal. Notably, trial 
type-decoding performance correlates with the use of a strategy-based 

approach (Spearman’s rank correlation coefficient, ρ = 0.829, P = 0.042; 
Fig. 5f). In contrast, no significant relationship exists between decoding 
accuracy and model fit when also considering the cue-based model 
(ρ = 0.600, P = 0.208; Extended Data Fig. 9h). These results indicate 
that strategies requiring an understanding of trial structure are likely 
to engage MEC more intensively.

MEC time cells display coherent phasic activity
The present study was inspired from drawing parallels between mecha-
nisms of spatial and temporal coding within MTL structures. There has 
been a growing body of evidence that a continuous attractor network 
(CAN), mediated by local recurrent synaptic connectivity in MEC, drives 
the neural dynamics of spatially selective grid cells33–36. We therefore 
wondered whether MEC time cells might also be driven through the 
same CAN mechanism. In this model, structured recurrent synaptic con-
nectivity drives an ‘activity bump’ in a local subpopulation of neurons. 
This activity bump is then translated across the network as a function 
of feedforward input, which results in regular phasic activity among 
neurons in the CAN. A strong prediction of this model is that the rela-
tive phasic activity of cells in the network should be coherent during 
task- and nontask-relevant epochs. To test this prediction of the CAN 
model, we first measured the pairwise correlations of MEC time cell 
activity during the tDNMS trial epoch and compared these with the 
pairwise correlations when mice were not actively timing during the 
ITI (Fig. 6a). On both day 1 and day N, we found that the coherence of 
pairwise activity between the trial period and ITI is strongly positively 
correlated and much higher than the chance level (day 1: Pearson’s 
r = 0.81 in actual, r = 0.29 in shuffle, P < 0.0001, z = 62.65; day N: Pear-
son’s r = 0.76 in actual, r = 0.27 in shuffle, P < 0.0001, z = 64.57; Fig. 6b). 
Next, we sorted MEC time cells according to their relative phases during 
the tDNMS task and computed the pairwise correlation between MEC 
time cells during the ITI as a function of the time difference in the peaks 
of their firing fields in the tDNMS task. Our findings reveal that pairs 
of MEC time cells active at similar times during the tDNMS task also 
exhibit a high likelihood of concurrent firing during nontask periods 
(Pearson’s r = −0.12, P < 0.0001; Fig. 6c). We further repeated the same 
analysis for correct versus error trials (Extended Data Fig. 10a) and for 
different trial types (Extended Data Fig. 10b). In all comparisons, we 
found that time cells exhibited coherent activity across conditions (all 
P values <0.0001). These results are consistent with key predictions of 
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a local recurrent CAN model that may support the regular, sequential 
activity of MEC time cells during timing behavior, suggesting that both 
MEC time and spatial coding neurons could be driven through a com-
mon local circuit mechanism.

Discussion
A system capable of episodic memory must track the duration of and 
between events to form an accurate memory of how experiences unfold 
over time. However, it remains unclear how MTL structures involved in 
episodic memory represent temporal relationships of events occurring 
on the order of interval time (seconds to minutes). Drawing inspiration 
from spatial literature, we hypothesized that MEC time cells might fire 
in distinct trajectories to encode the temporal structure of distinct 
experiences (temporal context). We tested whether previously identi-
fied MEC time cells form such trajectories by examining their learning 
dynamics, testing the predictions that (1) distinct patterns of time 
cell activity should emerge as animals learn to distinguish temporal 
contexts and (2) formation of such trajectories should be critical for 
learning temporal relationships.

Addressing our hypothesis required a multifaceted approach. We 
first developed a new tDNMS paradigm that requires mice to differen-
tiate the temporal structure of trials. By applying the tDNMS task in 
tandem with in vivo neurophysiological recordings, we confirmed our 
ability to record MEC time cells. We confirmed that cells are tuned to 
elapsed time rather than other features of behavior. We then leveraged 
the tDNMS task design to ask whether different trial types, or temporal 
contexts, are represented by differential activity of time cells. Our 
results showed that time cells were differentially active on distinct trial 
types, demonstrating that MEC time cells form unique ‘timelines’ of 
each context. Crucially, multiple lines of evidence linked the observed 
timelines to a role in learning of timing behavior. First, we found that 
populations of time cells exhibit distinct context-dependent neu-
ral dynamic trajectories, which diverge from a common trajectory, 
at key moments in the task when there is sufficient information to 
disambiguate the trial structure. Second, we found that these trajec-
tories became more distinct over learning across sessions. Third, we 
showed that, over learning, the population of MEC time cells shifts to 
over-represent later times in the trial, when the animal can disambigu-
ate trial type and thereby solve the instrumental task. Fourth, on error 
trials, when the animal mistakenly classifies the trial context, we found 
that the regular sequence of MEC time cells is disrupted. Finally, we 
found that MEC inactivation prevents tDNMS learning, specifically 
by preventing the learning of a new temporal context. Combined, 
our results indicate that MEC time cells form distinct representations 
of temporal context, enabling animals to flexibly learn the temporal 
structure of experiences.

Interestingly, our findings indicate that MEC is not always 
required for learning and memory of interval timing behavior. MEC 
is not necessary to learn simple durations, reproduce previously 
learned durations or recall learned contexts. Rather, MEC is selectively 
required to learn flexible, context-dependent temporal relationships. 
This finding fits our physiology data, implying that the role of MEC is to 
form unique representations of temporal context needed to support 
such flexible behavior. In further support of this idea, our computa-
tional modeling work demonstrates that mice employing a cognitive 
strategy show increased decoding accuracy of the trial context from 
the activity of MEC time cells. This specificity of MEC in flexible timing 
behavior is reminiscent of the finding that MTL structures play a key 
role in flexible, but not rigid, forms of spatial navigation behavior21. 
Just as multiple memory systems guide navigation31, we suspect that 
multiple memory systems guide timing behavior. Previous work has 
implicated basal ganglia, striatum and frontal and parietal regions in 
timing32,37–43, providing evidence of other neural ‘clocks’ that could 
drive other aspects of timed behavior. Determination of the con-
straints under which distinct clocks drive behavior, and interactions 

between clocks, will be an important step in understanding how the 
brain performs interval timing.

Previous studies investigating the role of MEC in interval timing 
have reached slightly differing conclusions about the contribution 
of MEC. Our observation that MEC is not needed to learn or time 
fixed intervals appears to contrast with previous work describing 
roles of MEC in (1) learning to remain immobile for a fixed duration17, 
(2) precisely timing a learned duration19 and (3) delay-dependent 
timing18. To reconcile these differences, we argue that each task 
involves an element of flexibility, such as (1) updating behavior from 
a different duration used during pretraining, that is, learning a new 
temporal context, (2) updating a reference memory after failed tri-
als, that is, updating a memory of temporal context, and (3) making 
delay-dependent associations, which requires learning temporal 
context. We expect that the flexibility of learning or updating a 
memory of temporal context requires MEC, bridging the results of 
each study. Although our study focused on MEC, other MTL struc-
tures, including the hippocampus and lateral entorhinal cortex, also 
encode time. Previous work has examined temporal coding in vari-
ous ways, including through explicit timing behavior44,45, sequence 
coding46,47, the delay period of tasks48,49 and timescales spanning 
minutes to hours to days50–52. Many of these processes occur in paral-
lel, making it difficult to pinpoint precise neural dynamics involved in 
each aspect of temporal coding. Our study focused on one aspect of 
temporal coding: interval timing. Given the clear role of MEC in our 
tDNMS task, a clear future direction will involve testing the necessity 
of other MTL regions in this task.

Our rationale for examining the role of MEC in interval timing, 
rather than other MTL structures, stemmed from drawing parallels 
between spatial and temporal coding. Since the discovery of spatially 
selective MEC grid cells, there has been a strong focus on the role of 
MEC in navigation and spatial memory, leading to a research program 
that has given substantial insight into the circuit mechanisms that 
underlie grid cell firing. Namely, there is strong support for a CAN that 
is mediated through structured local recurrent synaptic connectivity 
of MEC neurons33–36. A key feature of this model is that the network 
integrates synaptic input coding for animal heading direction and 
velocity, thereby driving sequential activity of a population of grid 
cells, each coding for different spatial phase(s) within an environment. 
This process is mathematically equivalent to path integration33,53, 
giving rise to a measure of distance traveled from a start location. We 
find this computation conspicuously similar to that of a clock, which, 
rather than a measure of distance, can integrate a constant input to 
give rise to a measure of duration from a start time. A strong predic-
tion of the CAN model is that neurons encoding similar phases while 
engaged in a relevant behavioral task, such as firing at similar loca-
tions in space during navigation or similar delay times during interval 
timing, will display coherent phasic activity during nontask-relevant 
epochs. Consistent with this prediction, we found that the correlational 
structure of MEC time cells, as defined during the tDNMS task, remains 
coherent during the ITI when there is no timing demand. We suspect 
that, during timing, the sequential activity of MEC time cells is driven 
through similar CAN dynamics, which may have evolved for similar 
and often overlapping navigation processes across time and space. 
Accordingly, our findings suggest that MEC neurons may serve as a 
general integration circuit, calculating either distance or time based 
on relative behavioral demands.
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Methods
Surgery and behavior
All experiments were approved and conducted in accordance with 
the University of Utah Animal Care and Use Committee. Animals were 
housed on a reversed 12 h:12 h light cycle, with a room temperature of 
approximately 21.1 °C and humidity between 25% and 45%.

MEC microprism implant. Methods for MEC microprism implant 
have been described previously20,26. Camk2a-tTA;tetO-GCaMP6s 
double transgenic heterozygotes—created by crossing B6;DBA- 
Tg(tetO-GCaMP6s)2Niell/J and B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ 
( Jackson Laboratory)—were used for calcium-imaging experiments.  
DREADD validation experiments were performed in two mice (one male, 
one female, aged 4–5 months). To examine neural activity in the tDNMS 
task, six mice (five males and one female, one aged 17 weeks and five 
6–8 weeks on the date of surgery) were used. Briefly, mice were anesthe-
tized using 1–2% isoflurane. An approximately rectangular craniotomy 
was made over the dorsal surface of the cortex (above the MEC) and cer-
ebellum with corners positioned as follows: (1) ~2.1 mm lateral to bregma, 
~4.5 mm caudal to bregma (~300–500 µm rostral to the transverse sinus); 
(2) ~4.5 mm lateral to bregma, ~4.5 mm caudal to bregma (~300–500 µm 
rostral to the transverse sinus); (3) ~2.1 mm lateral to bregma, ~7.75–8 mm 
caudal to bregma (~3.25–3.5 mm caudal to the transverse sinus); and  
(4) ~4.5 mm lateral to bregma, ~7.75–8 mm caudal to bregma (~3.25–3.5 mm  
caudal to the transverse sinus). After the skull was removed, a portion 
of the cerebellum was aspirated to expose the caudal surface of the cor-
tex. The tentorium separating the cerebellum and cortex was carefully 
removed, leaving the dura of the cortex completely intact. A microprism 
(right-angle prism with 1.5-mm side length and reflective enhanced 
aluminum coating on the hypotenuse; Tower Optical) was mounted 
on a customized stainless-steel mount (using ultraviolet light-curable 
adhesive; Norland). This assembly was then positioned by aligning the 
front face of the microprism parallel with the caudal surface of the MEC 
and the top surface of the microprism perpendicular to the (eventual) 
axis of excitation light propagation. A thin layer of Kwik-Sil was applied 
to the caudal MEC surface before microprism implantation to fill the 
void between the brain and the front surface of the microprism. The 
microprism and mount were rigidly held in place and the craniotomy 
sealed by application of a thin layer of Metabond to all exposed sides 
of the microprism (except the top surface of the prism) and mount and 
on any exposed skull or brain. A titanium headplate (9.5 × 38 mm2) was 
then attached to the dorsal surface of the skull, centered on and aligned 
parallel to the top face of the microprism. A titanium ring (27-mm outer 
diameter and 12.5-mm inner diameter, with a 3-mm high edge) was 
then attached to the top surface of the headplate, centered around the 
microprism, and the area between the craniotomy and the inner edge 
of the metal ring was covered with opaque dental cement (Metabond, 
Parkell; made opaque by adding 0.5 g of carbon powder, Sigma-Aldrich).

AAV injections. To inhibit MEC, C57BL/6 mice obtained from Charles 
River (n = 40 mice: 20 males and 20 females; postnatal 2–3 months) 
were injected bilaterally with pAAV-CaMKIIa-hM4D(Gi)-mCherry 
(Addgene: AAV8; 2.40 × 1013 genome copies (GC) ml−1; diluted 1:1 
in phosphate-buffered saline (PBS)) or pAAV-CaMKIIa-mCherry 
(Addgene: AAV1; 1.40E × 1013 GC ml−1; diluted 1:1 in PBS). A Nanoject 
III Injector (Drummond) was used to inject 80 nl of virus (divided into 
4× 20-nl injections, injected at a rate of 10 nl s−1) at 6 sites in each hemi-
sphere. Injections were targeted at: 2.9 mm lateral from bregma and 
0.15 mm rostral to the transverse sinus; 3.3 mm lateral from bregma and 
0.15 mm rostral to the transverse sinus; and 3 depths (1.2 mm, 1.6 mm 
and 2 mm) from the dorsal surface of the brain.

Experimental setup for tDNMS task establishment and DREADD 
inactivation experiments. Mice were head-fixed over a cylindrical 
treadmill (60-cm circumference and 10-cm width), which was enclosed 

in a box (60 cm length × 60 cm width × 63.5 cm height). After being 
head-fixed, an odor nozzle and lick spout were placed near the mouse. 
Odorized air was delivered using a flow dilution olfactometer25. 
The olfactometer consisted of two streams of air: a carrier stream 
(0.9 l min−1) and an odorized stream (50 ml min−1) which carried isoamyl 
acetate (2% isoamyl acetate in mineral oil; odorant from Cole-Parmer, 
99+%). The two streams combined and a solenoid valve was used to 
direct the odorized airflow either to the mouse (via the odor nozzle) or 
to a vacuum (1.8 l min−1). Odor delivery was validated using a photoioni-
zation detector. Licking was monitored throughout each training ses-
sion and was detected using a capacitance sensor (SparkFun Capacitive 
Touch, catalog no. AT42QT1010) with an electrode positioned on the 
lick spout. A solenoid valve was used to deliver water (~6 μl per drop) 
via the lick spout when appropriate. All experimental paradigms were 
automated and controlled using an Arduino Uno and data collection 
was performed using a Picoscope Oscilloscope (Pico Technology, 
v.6.13.2, catalog no. PICO4824) sampling at 1 kHz. Mice were free to run 
on the treadmill during all training sessions. Behavioral training was 
performed in the dark, during the dark phase of the animals’ light cycle.

Behavioral training. After recovering from surgery, mice began water 
restriction (~1 ml of water per day). Once mice reached ~85% of their 
initial weight, they began pretraining for the tDNMS task. Mice were 
first acclimated to the experimental setup though a habituation phase. 
During habituation, series of 50 drops of water (3 s apart) were deliv-
ered to the mouse (3–6 series of 50 drops per session). Habituation 
ended after the mice licked to consume ≥80% of water drops in a series 
of 50 drops. After habituation, mice began three phases of shaping: 
shaping 1, shaping 2 and shaping 3. Shaping followed the same trial 
structure of the tDNMS task; however, only nonmatch trials were used. 
Each trial consisted of a flash of green light (lasting 0.25 s in duration 
and preceding odor onset by 3 s) to alert mice that the trial was about 
to start, the first odor, an ISI, the second odor and a response window. 
Trials were separated by a random ITI (ranging from 16 s to 24 s). In 
shaping 1, a drop of water was automatically delivered 0.25 s after 
the second odor offset in each trial. Once the mice licked to consume 
drops in ≥80% of trials, they progressed to shaping 2. Probe trials were 
introduced in shaping 2. During probe trials, the mouse had to lick 
within a 3-s response window after the second odor offset to trigger a 
reward. If the mouse successfully triggered a reward, the next trial was 
another probe trial. If the mouse failed to trigger a reward in a probe 
trial, the next trial was automatically rewarded, after which the mouse 
was given another probe trial. Training on this phase continued until 
mice licked to earn a reward in ≥20 consecutive trials. Mice then began 
shaping 3, which had the same probe trial format as shaping 2. However, 
in addition to licking in the response window, mice were also required 
to withhold licking during the first odor and ISI to trigger reward deliv-
ery. Training on this phase continued until mice reached 2 consecutive  
sessions of ≥20 consecutive rewarded trials, after which they began 
the tDNMS task. Some mice failed to reach this benchmark yet  
routinely performed above chance on probe trials. These mice instead 
began the tDNMS task after reaching ≥80% correct performance on 
probe trials. After shaping, mice began the tDNMS task, where match 
trials were introduced. Match and nonmatch trials were included in a 
pseudo-random manner and balanced so that half the trials were match 
and half were nonmatch. Nonmatch trials were evenly split between 
S-L and L-S trials. Mice were rewarded in nonmatch trials only if they 
withheld licking during the first odor and ISI and if they licked within 
the 3-s response window after the second odor offset. Mice received no 
reward in match trials and were punished with an increased ITI (+12 s) 
for licking in the response window. Mice were trained for one session 
per day, with each session consisting of 100 trials for shaping or 90 
trials for the tDNMS task. Mice were trained at least 5 d a week during 
pretraining and 7 d a week during the tDNMS task. The tDNMS learning 
was assessed by examining performance over the first eight sessions, 
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by which point performance begins to plateau (Extended Data Fig. 7b; 
no significant improvement from extended training across sessions 
8–14: repeated-measures ANOVA F6,10 = 0.45, P = 0.84).

Several cohorts of mice (C57BL/6 mice obtained from Charles 
River, balanced male and female, postnatal 2–3 months) were used 
to establish the tDNMS task (Fig. 1), with minor variations between 
cohorts. For the first cohort, the light cue indicating trial start was 
0.25 s before first odor onset and each upcoming trial was assigned 
based on probability (25% chance of S-L, 25% chance of L-S, 50% chance 
of S-S). Subsequent mice were trained on the standard version of the 
task. In the standard task, the light cue indicating trial start appeared 
3 s before the first odor onset. In addition, trials were presented in a 
block structure: each block of four trials consisted of two S-S trials, one 
S-L trial and one L-S trial, presented in a random order.

MEC inactivation experiments (Fig. 4) were performed in two 
cohorts of mice. Each cohort contained a balanced number of control 
and DREADD mice, with the experimenter blind to experimental condi-
tions. After tDNMS training, the first cohort of mice was trained for an 
additional session of 30 trials with no odor (mineral oil only) to ensure 
that mice use odor to solve the task. The second cohort of mice was 
trained for 16 sessions to test the role of MEC after task learning, and 
then was subsequently trained on an FI task32 to determine whether 
MEC is necessary to learn more rigid timing behavior. Mice that did 
not meet the criteria to advance beyond shaping, and thus were not 
trained on the tDNMS task, were also trained on the FI task. The same 
experimental apparatus was used for the FI task with the exception of 
odor delivery. In each session of the FI task, a (~6 μl) drop of water was 
delivered to the head-fixed mouse every 10 s (150 drops per session). 
Mice were trained for one session per day for 5 d on the FI task.

Imaging data were collected from separate cohorts of mice. Imag-
ing was performed using transgenic mice expressing GCaMP6s under 
the CaMKIIa promoter. Two mice were used to validate the efficacy 
of DREADD-mediated inhibition in MEC and were not trained on the 
tDNMS paradigm. Six mice were implanted and then underwent tDNMS 
training. To determine how time cells adapted to changes in trial struc-
ture, mice were tested on a probe session after tDNMS learning in which 
the ISI was lengthened from 2 s to 5 s during the last half of the session.

A final, separate cohort of mice (C57BL/6 mice obtained from 
Charles River, equally balanced male and female, postnatal 2–3 months) 
was trained on a version of the tDNMS task with modified durations. 
As a result of the three trial-type design, mice could solve the tDNMS 
task by learning to lick if the total trial duration was long and to with-
hold if the total trial duration was short. Standard experiments were 
performed with a 2-s short odor, 3-s ISI and 5-s long odor, making 
nonmatch trials 10 s and match 7 s. To test whether mice used a rigid 
strategy, we decided to introduce probe trials that cause match and 
nonmatch trials to be the same overall duration. With our standard 
durations, this would mean lengthening the ISI on match probe trials 
by 3 s. However, this change would increase task difficulty (increasing 
the time the mouse must resist impulsivity and increasing working 
memory demand), making it difficult to determine whether a potential 
drop in performance is caused by increased task difficulty or use of a 
rigid strategy. To avoid this problem, we instead trained a separate 
cohort of mice on a version of the task with 3-s short odors, 5-s ISI and 
6-s long odors so that we could reduce the ISI in nonmatch probe tri-
als (randomly chosen half of nonmatch trials) to equal the total trial 
duration of match trials.

Two-photon imaging of MEC neurons. After mice were pretrained on 
the tDNMS task (14.5 ± 3.9 d of pretraining), we began two-photon laser 
resonance scanning of populations of neurons expressing GCaMP6s 
through the microprism using a Neurolabware microscope. Data were 
acquired with an 8-kHz resonant scanner, images were collected at a 
frame rate of 30 Hz with bidirectional scanning and Scanbox software 
was used for microscope control and data acquisition. A Ti:Sapphire 

laser (Discovery with TPC, Coherent) at 920 nm was used as the exci-
tation source, with average power measured at the sample (after the 
objective; ×20/0.45 numerical aperture (NA) air immersion objective 
(LUCPanFL, Olympus) with correction collar set at 1.25) of 50–120 mW. 
Imaging was also tracked using a PicoScope Oscilloscope sampled at 
1 kHz to synchronize data with behavior.

Histology. After the behavioral experiments, mice were perfused 
using 4% paraformaldehyde (PFA) in 0.1 M PBS. The brain was removed 
and fixed in 4% PFA in 0.1 M PBS for ∼24 h. Brains were rinsed 3× with 
0.1 M PBS, then stored in PBS for 1+ d before the tissue was sectioned 
into 50- to 100-μm sagittal slices using a vibrating microtome. Free 
floating slices were then incubated in 0.1 M PBS with 0.1% Triton-X for 
15 min, washed with 0.1 M PBS and incubated for 3 h in a 25:1 solution 
of 0.1 M PBS with 435/455 blue or 530/615 red fluorescent NeuroTrace 
Nissl stain (Invitrogen). Brain sections were imaged and stitched using 
a VS200 Virtual Slide fluorescence microscope (Olympus) with a ×10 
OFN26.5, NA 0.40 objective.

Data analysis
Data acquisition and analysis. Behavioral data were collected using 
a PicoScope Oscilloscope, then subsequently analyzed in MATLAB 
(2018b). Imaging data were acquired using Scanbox v.4.1 and analyzed 
on a IBuyPower Intel Core with Windows10 and customized software 
written in MATLAB (2018b). Licking behavior was modeled using  
customized code in Python v.3.11.4.

Behavioral performance. Performance on the tDNMS task was ana-
lyzed by determining the percentage of trials in which mice behaved 
correctly. Correct nonmatch trials were defined as those in which 
mice withheld licking during the first odor and ISI and licked in the 
3-s response window after the second odor offset to trigger reward. 
Correct match trials were defined as those in which mice withheld lick-
ing for the duration of the trial. Mice that met the criteria to advance 
beyond shaping and begin the tDNMS task were included in the analysis. 
However, a subset of mice was removed from analysis owing to: a failure 
to retain the task structure learned in shaping (performance >3 s.d. 
below the mean on tDNMS session 1, n = 1 mouse), headplate falling off 
(n = 1 mouse) or lack of virus expression (n = 2 mice). Although most 
behavior was analyzed as the percentage correct trials, licking behav-
ior was further examined in some instances. Licking was analyzed by 
identifying lick events, defined as samples (sampling rate of 1 kHz) in 
which the capacitance sensor detected a signal. For tDNMS behavior, 
any licking after reward delivery was removed to focus on predictive 
and not consummatory licking. Lick events were then binned in 0.25-s 
bins, normalized to the maximum within the session. Lick events were 
also used to examine performance in the FI task. Performance on the FI 
task was measured as the percentage of trials in which mice engaged 
in predictive licking, where predictive licking is defined as an increase 
in lick events (determined by a significantly positive slope) in the 5 s 
preceding reward delivery. Precision in the FI task was estimated by 
determining time of peak licking activity of each mouse on each ses-
sion. Licking data were binned in 0.25-s bins, and the bin number with 
the maximum number of lick events was recorded for each of the 150 
trials. These values were then averaged and converted to time to give 
an estimate of peak lick time across the session.

Image processing, ROI selection and transient analysis. In vivo  
two-photon data sets were acquired during the tDNMS task 
(120,000 frames per session). Videos were first motion corrected 
using whole-frame crosscorrelation, as described previously26 and 
the motion-corrected time series was used for all subsequent anal-
ysis. Regions of interest (ROIs) were defined using Suite2P v.0.10.1  
(ref. 54). Significant Ca2+ dF/F transients were identified using previ-
ously described methods20,26,55.
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Defining time cells in the tDNMS task. Cells exhibiting significant 
tuning at specific time points during trials were defined based on 
mutual information56,57. Before computing mutual information, Ca2+ 
signals were normalized in each trial by dividing their peak dF/F value 
to prevent one or two large transients determining a cell’s activity 
pattern. Subsequently, dF/F values were averaged across correct trials 
and mutual information for the averaged dF/F was calculated using 
the following equation for each trial type (for example, S-S, S-L, L-S):

Mutual information = ∑
i
piλilog2

λi
λ

where i denotes bin, pi is the occupancy rate in the ith bin, λi is dF/F at 
the ith bin and λ is the mean dF/F. To determine whether the mutual 
information significantly exceeded that expected by random activity, 
the dF/F values for each trial were circularly shifted by a random amount 
and mutual information was then computed using the shuffled data. 
Shuffling was repeated 1,000×. The P value was defined as the propor-
tion of shuffled mutual information greater than or equal to real mutual 
information. Cells were classified as active cells if the mean dF/F > 0.03 
and the active cells were classified as time cells if the P value of mutual 
information <0.01.

Comparing correlation between match and nonmatch trial types 
across day 1 to day N. Time cells in either S-S or S-L trial types were 
selected and Pearson’s correlation coefficient between these two trial 
types was calculated for each cell. The same procedure was performed 
using time cells in either S-S and L-S trial types. All correlation coef-
ficients were pooled and compared between day 1 and day N using 
Wilcoxon’s rank-sum test.

Population vector differences between match and nonmatch trial 
types across trial epoch. Time cells in either S-S or S-L trial types 
were selected. Population vectors were constructed from dF/F of all 
selected cells at each time bin. The difference in dF/F between S-S and 
S-L trial types was then computed for each time bin. A corresponding 
shuffle distribution was generated by randomly assigning trial types 
and obtaining the dF/F difference 10,000×. The time bin where the 
actual data exceeded the top 0.1% of the shuffled distribution was 
considered the significant discrimination timepoint for the trial type. 
The discriminant index was determined from the summation of the 
difference between the actual and averaged shuffle values from 8 s to 
11 s. This index represents the extent to which the actual dF/F distin-
guishes between trial types compared with the chance level. The same 
procedure was repeated for time cells in either S-S or L-S trial types.

Decoding trial type using k-means clustering. The k-means cluster-
ing was employed to assess the segregation of neural ensemble activity 
across different trial types. For each trial, population vectors were 
created by averaging dF/F during the late phase of trials (9–11 s). To 
prevent overfitting, we reduced the dimensionality of the population 
vectors to 30 using principal component analysis. The first two linear 
discriminant components were then determined, forming the axis for 
the two-dimensional LDA plot (Fig. 3g). Next, the k-means clustering 
method was applied to this two-dimensional plot to classify trials into 
three clusters (Extended Data Fig. 4a). Decoding accuracy was assessed 
by calculating the proportion of correctly classified trials. To establish a 
baseline, the same procedure was repeated 10,000× with shuffled trial 
types to generate a corresponding chance distribution. The P value was 
then computed as the proportion of shuffle values equal to or greater 
than the actual accuracy of decoding.

Decoding trial type using the SVM. A classifier for each day N session 
was developed using the SVM and the MATLAB function fitecoc. Only 
correct trials were used in this analysis. Mean dF/F of time cells during 

either the early (0–2 s) or the late (9–11 s) phase of trials was used as an 
input matrix for the fitecoc function. The response input (Y input) for 
this function was either trial type (that is, S-S, S-L, L-S) or match versus 
nonmatch of the training trials. The classifier computed from fitecoc 
then fed to the predict function to obtain decoded responses (for 
example, S-S type) corresponding to the testing dataset. We applied 
a leave-one-out crossvalidation method, so the classification process 
was repeated as the number of entire trials. In each iteration, a single 
trial was selected for the testing dataset and the rest of the trials were 
assigned for the training dataset. To calculate the chance level of decod-
ing accuracy shown in Fig. 3h, the response input for the classifier 
(that is, trial types or match versus nonmatch) corresponding to the 
training trials was shuffled when creating the classifier. This process 
was repeated 1,000× to make a distribution of decoding accuracy for 
shuffled data. The bootstrap P value was determined as the proportion 
of decoding accuracies in the shuffled distribution that were equal to 
or greater than the accuracy of the actual dataset.

Measuring activity coherence in error trials. As a result of the low 
number of error trials in S-L and L-S trials, this analysis was applied 
only to S-S trial data. Correct trials were divided into two groups using 
a random subset of trials (correct A and correct B). The number of trials 
assigned to correct B was set to match the number of error trials. Cell 
activity was sorted according to the sequence in correct A and cor-
relations for each cell’s activity were computed for correct A versus 
correct B (blue in Fig. 3j) and correct A versus error (red in Fig. 3j). 
Random sampling of trials was repeated 1,000× to obtain a distribution 
of correlation coefficients. Then, the mean values of these correlation 
coefficients were taken as the cell’s correlation coefficient values. To 
compare day 1 with day N, Pearson’s correlation coefficient between 
averaged dF/F on S-S error trials and correct trials of each trial type 
was calculated for S-S time cells (Extended Data Fig. 4c). To ensure a 
consistent number of trials for comparison, seven trials were randomly 
selected and used to compute the averaged dF/F. The resulting sets 
of correlation coefficients were then compared across sessions (that 
is, day 1 versus day N) and trial types using a two-way mixed ANOVA.

Comparing variance across time and distance. The dF/F values for 
time cells were re-charted based on the elapsed running distance from 
the moment that the trial initiation light was turned on. For each trial, 
we measured the peak dF/F location within the distance dimension. The 
variability of these peak locations was assessed using the CV, which is 
the ratio of the s.d. to the mean and provides a standardized measure 
of dispersion. This method allows for the comparison of variations 
across different scales or dimensions. After this, the procedure was 
applied similarly to measure the elapsed time since the initiation light 
was activated. The CVs for the time cells were then compared between 
the distance and time dimensions using a paired Student’s t-test.

Generalized linear model. To determine the individual contributions 
of different behavioral variables (D, T and L) in predicting the activity 
of MEC neurons, we employed a GLM. This model fits calcium activity 
(dF/F) as a Gaussian linear function using various combinations of 
these three behavioral variables29,30. For the dF/F data of each cell in 
each trial type (S-S, S-L and L-S), we developed seven models. These 
included three single-variable models (D, T, L), three double variable 
models (TD, TL, DL) and one comprehensive model (TDL). We utilized 
data from ten recording sessions to perform this modeling.

In our model, distance is represented by ten binary variables,  
corresponding to ten spatial bins, with each bin equal to one when the 
animal occupied that spatial bin and zero otherwise. Time and licking 
are represented in the same way by ten and two binary variables, respec-
tively. The dF/F was then smoothed with a Gaussian kernel. Models 
were fit using the MATLAB fitglm function with a fivefold crossvalida-
tion procedure. We then calculated the LLH increase (LLHi) for each 
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model as follows: where N is the number of data points, d̂F/F  is the 
model predicted dF/F and dF/F  the session mean dF/F. LLH is normal-
ized by recording time (per min).

LLHmodel = −N2 ln2πσ 2 − 1
2σ2

N
∑
i
(dF/Fi − d̂F/Fi)

2

LLHmean = −N2 ln2πσ 2 − 1
2σ2

N
∑
i
(dF/Fi − dF/F)

2

LLH = LLH × Sampling rate × 60/N

LLHi = LLHmodel − LLHmean.

To select the model that best described the calcium activity of each 
cell, we first found the single-variable model with best performance, 
then determined whether any double variable models that included 
this single variable had better performance. If so, we then compared 
the double variable model with the full model. Model performance 
was determined by comparing the LLHi using a one-sided signed-rank 
test, with a significance value of P = 0.05. To ensure the significance of 
the models, we used data from a cell only if its best model has LLHi > 0.

To estimate the specific contribution of each behavioral variable, 
we found all cells with significant full and double variable models. We 
then calculated the log-likelihood difference as follows (using time as 
an example):

If the best model of a cell is the full model:

LLHT = LLHTDL − LLHDL.

If the best model is one of the double variable models:

LLHT = [(LLHTD − LLHD) + (LLHTL − LLHL)] /2.

Across all cells and trial types, we identified N = 177 significant 
models (Kruskal–Wallis test followed by Wilcoxon’s rank-sum test with 
Bonferroni’s correction, P < 0.001 for all). We selected the model that 
best described the dF/F for each cell and trial type as the model with 
the highest LLHi, which most often corresponded to a single-variable 
model of time (125 out of 177 significant models).

Poisson modeling of animals’ licking behavior. A Poisson GLM was 
fit to the anticipatory licking data individually for each mouse to assess 
animals’ internal model for solving the task. Behavioral data were 
down-sampled to 10 Hz and cropped to 20 s per trial. The expected 
value for anticipatory lick counts, λ(t), was predicted according to a 
Poisson distribution:

λ (t) = ex(t)
Tθ

where x(t) corresponds to the column vector of predictor features 
in the model at time t and θ is the vector of weights assigned to each 
feature’s influence on the predicted lick count. Only anticipatory licks 
were used and any licks after water delivery were omitted.

A no-strategy model was first developed in which mice could learn 
to modify licking probability based on individual event-based cues. 
Under this ‘cue-based’ model, mice could modify licking probability 
in response to key events: any odor offset, prolonged odor exposure 
or second odor offset. This cue-based approach could result in licking 
at key times throughout the trials but could never solve the task with 
100% success. The four cognitive strategies were then tested by add-
ing features that corresponded to whether the conditions given by an 
individual strategy were met. Strategy 1 involves identifying the long 
stimulus as a ‘go’ cue and licking after second odor offset. This strategy 

did not permit predictive licking before the second odor offset. Strat-
egy 2 required timing the entire trial duration, not individual odors, 
and using total trial duration to solve the task. This strategy could be 
further assessed using probe trials with manipulated total trial dura-
tions. Strategy 3 was similar to strategy 1, in which mice used the long 
stimulus as a go cue. However, in strategy 3, mice timed both stimuli, 
allowing predictive licking. Finally, strategy 4 required timing both 
stimuli and comparing the durations after.

Each strategy was tested individually by adding its features to the 
cue-based model and calculating the degree of improvement in the 
model fit to observed licking. For all models, cue-based features were 
lagged every time bin from 0 s to 2 s and strategy-based features were 
given lags from 0 s to 12 s to account for any licking between the offset 
of the second odor until the end of the trial. Estimated weights (θ̂) for 
each feature were learned using Python’s scikit-learn package. We 
applied L2 regularization to avoid overfitting owing to predictor col-
linearity and we evaluated the models by k-fold crossvalidation across 
trials (k = 10). Models were scored using the deviance explained (d2) 
metric to assess goodness of fit. For models including strategy-based 
features, we calculated the LLHi over the cue-based model.

Comparing pairwise activity correlation between trial period and 
ITI. To measure the coherence of MEC time cells across tDNMS trial and 
nontrial epochs, we compared the pairwise activity of all time cell pairs 
between the trial period and the ITI58. The entire time series of dF/F in 
a session (for example 120,000 frames) was segmented into 500-ms 
time bins and dF/F values were summed within each time bin. Time bins 
from 1 s before the first odor onset to the second odor offset (11 s) were 
included in the trial period and time bins from 5 s after the second odor 
offset to 4 s before the next first odor onset were included in the ITI. 
Given the 3- to 5-s gaps between each trial period and ITI, the likelihood 
of activity from one epoch influencing the other was minimal. The time 
bins within these gaps were excluded from the analysis. Kendall’s cor-
relation (τ values) was calculated for the series of summed dF/F values 
during either the trial period or ITI across all pairs of simultaneously 
recorded time cells. Then, the coherence across trial and ITI epochs 
was measured by computing Pearson’s correlation coefficient between 
sets of corresponding τ values of the trial period and ITI (Fig. 6b). To 
generate shuffled data, the dF/F values were circularly shifted by a 
random amount before computing τ values. The same procedure was 
repeated for correct versus error trials (Extended Data Fig. 10a) and 
between different trial types (Extended Data Fig. 10b). In Fig. 6c, the τ 
values for the ITI were plotted against the difference in peak times of 
each cell pair during the trial period.

Statistics and reproducibility
No statistical methods were used to predetermine sample sizes. Sample 
sizes were based on and comparable to previous work17,20,32. Statistical 
tests were used to test statistical significance when appropriate and 
include ANOVA, Student’s t-test, Wilcoxon’s rank-sum test, two-sample 
KS test, χ2 test, Wilcoxon’s signed-rank tests, Spearman’s rank correla-
tion, Pearson’s correlation and the Kruskal–Wallis test. All statisti-
cal tests were two sided unless stated otherwise. For tests assuming 
normality, data distributions were assumed to be normal, but this 
was not formally tested. All data in the text and figures are labeled as 
mean ± s.e.m., unless stated as mean ± s.d.

For MEC inactivation experiments, animals were randomly 
assigned to experimental condition. The experimenter was blind to 
the experimental conditions for all training on the tDNMS task but 
was unblinded before the FI experiment to permit tDNMS data analy-
sis. Inactivation experiments were performed in two cohorts of mice 
to verify effect reproducibility, with the second cohort successfully 
replicating the first. Imaging data were also reproducible, given con-
sistent findings across six mice. Mice were excluded from analysis only 
if the following occurred: failure to meet criteria to move beyond the 
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shaping phase of the task, failure to retain the task structure learned 
in shaping (performance >3 s.d. below the mean on tDNMS session 1), 
headplate falling off during tDNMS task training or lack of on-target 
virus expression.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
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Code availability
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | tDNMS set-up, controls, and additional behavioral 
analysis of mice in Fig. 1. a. Experimental set-up. Odorized air is directed either 
to the mouse or to a vacuum. A lick spout, connected to a capacitance sensor, 
delivers water and is used to monitor mouse licking. b. Odor concentration 
control. Odor concentration was measured using a photoionization detector 
(PID). Odor can be delivered with high temporal specificity at a constant 
concentration over 45 minutes, as shown by PID measurements (green) relative 
to control signal (black). c. Trial structure. Each trial consists of two presentations 
of the same odor, each for either a 2 or 5 s duration, separated by an interstimulus 
interval (ISI). Trial start is signified by a visual cue, and trials are separated by 
a 16-24 s intertrial interval. d. Training protocol. Mice undergo three phases of 
pretraining (see Methods). e. Odor control session. After completing tDNMS 
training, mice were tested with no odorant (mineral oil only). Mice failed to solve 
nonmatch trials in the absence of odor but performed well in a prior session in 
which odor was used (p = 2.6 × 10−13, two-tailed paired t-test; n = 14 mice). Bars 
represent mean across mice ± s.e.m. f. Trial length control session. A cohort of 
mice was trained on a version of the tDNMS task with modified durations. The 
ISI was then manipulated on a random subset of nonmatch trials (“probe trials”) 
so that overall trial duration was identical to match trial duration. If mice use 
total trial duration to solve the task, rather than individual stimulus durations, 
they should incorrectly withhold licking on probe trials. Instead, there was no 
significant difference between standard nonmatch and probe trial performance 
(p = 0.19, two-tailed paired t-test; n = 7 mice). Bars indicate mean across mice 
± s.e.m. g. Average performance by trial type during shaping (phase 3) of mice 

in Fig. 1 (n = 26). Shaping consists of probe trials where mice must correctly 
trigger reward and automatic trials where reward is automatically delivered. 
Performance was examined on all probe trials within the first 1/2 session of 
shaping phase 3, termed “early shaping”, and the last 1/2 session of shaping  
phase 3, or “late shaping”, for each mouse. Dots represent performance of each 
mouse, and bars show mean ± s.e.m. across mice. Mice performed better on 
short-long trials than long-short both early (p = 4.3 × 10−7, two-tailed paired 
t-test) and late (p = 0.041, two-tailed paired t-test) in shaping. Additionally, 
performance was higher for both short-long (p = 0.009, two-tailed paired t-test) 
and long-short (p = 4.7 × 10−10, two-tailed paired t-test) trials in late compared 
to early shaping. h. Reason for mistakes on long-short trials for mice in Fig. 1 
(n = 26). During shaping phase 3 and the tDNMS task, mice can miss nonmatch 
trials either by withholding licking or by licking prematurely during the first 
odor and/or interstimulus interval. The percent of incorrect long-short trials in 
shaping phase 3 and the tDNMS task missed due to licking early is shown. Dots 
indicate values for each mouse, with red lines showing the median value across 
mice. i. Average time of first incorrect lick on long-short trials relative to first 
odor onset for mice in Fig. 1 (n = 26). Black circles represent the average time of 
first lick across all incorrect long-short trials for a given mouse, and red dots show 
the median value across mice. j. Average time of first incorrect lick on short-short 
trials in the tDNMS task relative to first odor onset for mice in Fig. 1 (n = 26). Black 
circles represent the average time of first lick across all incorrect short-short 
trials for a given mouse, and red dots show the median value across mice.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Histological verification of in vivo imaging in the MEC, 
and additional examples of MEC time cells. a. Sagittal sections of post-mortem 
histology from all six mice utilized in the in vivo calcium imaging experiments. 
MEC neurons labelled with GCaMP6s (green). The sections are stained with 
NeuroTrace 435/455, displaying neuronal morphology in blue. The approximate 
locations of the two-photon imaging fields of view (FOV) for each mouse are 
labeled with red Alexa594. This labeling was achieved by inserting a pin coated 
with Alexa594 at sites corresponding to prominent vascular landmarks visible 

both in the in vivo two-photon imaging and under a dissecting scope during the 
ex vivo marking procedure. Confirmation of the imaging sites within the MEC 
was based on the presence of the lamina dissecans, the relative position of the 
post-rhinal border to the pin mark, and the characteristic circular shape of the 
dentate gyrus as observed in the medial-lateral sagittal sections. n = 6 mice. b. For 
each time cell, mean dF/F displayed for each trial type (top) and dF/F activity on 
each trial, sorted by trial type (below).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Additional analysis on time cell tuning. a. Top, sequence 
of MEC time cells significantly tuned for S-S trials, sorted by S-S trials and 
displayed for S-S, S-L and L-S trials. Middle, same as above, expect for significant 
MEC time cells on S-L trials and sorted by S-L trials. Bottom, same as top, except 
for significant MEC time cells on L-S trials and sorted by L-S trials. b. A generalized 
linear model was used to assess whether neurons are tuned to one of three 
variables- time in the trial, distance travelled from trial start, or licking – or a 
combination of 2 or 3 variables (see Methods). Analysis performed on n = 695 
time cells, collected from 10 behavioral sessions, lead to n = 177 significant 
models. Boxplot showing log-likelihood increase gained by each variable: time 
(median = 37.15), distance (median = 14.63) and licking (median = 0.82) (two-
sided Kruskal-Wallis test, p = 2.6×10-26; followed by two-sided Wilcoxon rank-sum 
test with Bonferroni-correction: Time vs. Distance: p = 1.7×10-08; Time vs. Licking: 
p = 3.7×10-22; Distance vs. Licking: p = 8.8×10-13). Log-likelihood was normalized 
to recording time in minutes. c. Histogram demonstrating the model that best 
described the calcium activity of each cell and trial type. d. Boxplot showing 
adjusted variance explained for models that best describe the calcium activity 
of each cell for the single variable models: time (median = 0.0512), distance 
(median = 0.0202) and licking (median = 0.0101). Number of models n = 125,396. 
(One-sided Wilcoxon signed rank test (median greater than 0), p = 0.0001, 
p = 0, p = 0.0312). For box plots, the line inside of each box is the sample median. 

The upper quartile corresponds to the 0.75 quantile and the lower quartile 
corresponds to the 0.25 quantile. The blue dots in b and d represent outliers. 
Outliers are values that are more than 1.5 × interquartile range (IQR) away from 
the top or bottom of the box. The whiskers are lines that extend above and below 
each box. One whisker connects the upper quartile to the nonoutlier maximum 
(the maximum data value that is not an outlier), and the other connects the lower 
quartile to the nonoutlier minimum. e. Proportion of MEC time cells that either 
remained stable, displayed a time shift, displayed rate remapping, or displayed 
on/off dynamics across trial types. f. Rank order analysis for shuffle distribution 
(black) and real data (red). The similarity of the sequences of time cells across 
trial types is examined by comparing their rank orders. Each time cell is assigned 
three rank orders, corresponding to its sorting by peak timing for each trial type. 
Subsequently, the mean difference between rank orders within a cell is compared 
to a shuffle distribution, generated by shuffling rank order of cells 10,000 times. 
The p-value is computed as the proportion of shuffle values smaller than the 
actual data. Notably, p-values are zero for all three comparisons. g. Discriminant 
Index indicates the extent to which the difference in dF/F between trial types 
deviates from chance level. S-S vs S-L: Day 1 n = 224, Day N n = 221, z = 2.55, 
p = 0.01; S-S vs L-S: Day 1 n = 225, Day N n = 231, z = 3.80, p = 1.4×10-4, two-sided 
Wilcoxon rank sum test. Individual data points with median.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Trial type decoding analysis for each mouse, and 
comparison of time cell activity on correct and error trials. a. For each panel: 
Left, LDA plots for each mouse on each trial type (S-S – orange, S-L – Blue,  
L-S – Magenta). K-means clustering is then applied to the LDA plots to categorize 
the dots into three clusters. The background colors indicate the clustering 
result. The accuracy of clustering analysis is determined by the proportion 
of dots correctly classified into their respective trial type. Right, clustering 
accuracy is compared between the bootstrapped shuffle distribution with 
randomly assigned trial labels (grey) and the actual data (red). The p-value is 
computed as the proportion of shuffle values larger than the actual data  
(one-sided). For mouse 1 through 6: p = 0, 0.04, 0.08, 0, 0, 0.001, respectively. 
No adjustment was made for multiple comparisons. b. Representative examples 

of MEC time cells on day 1 (left) and day N (right), depicting activity for both 
correct and error trials across all three types of trials. c. Cumulative distribution 
functions of correlation coefficients calculated for each MEC time cell, 
comparing activity across different trial conditions on day 1 and day N. session 
type main effect: p = 2.3×10-5, F(1, 288) = 18.5; trial type main effect: p = 0.12,  
F(1.93, 555.15) = 2.1; interaction: p = 0.33, F(1.93, 555.15) = 1.1, two-way mixed ANOVA with 
trial type and session factors. d. Sequence of activity of MEC time cells recorded 
on day 1, arranged according to their activity during error trials on Short-Short 
(S-S) trials. This sequence is then applied to display cell activity for all three trial 
conditions during correct trials, maintaining the order from the error trials.  
e. Same as in d, but for recordings on day N.
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Extended Data Fig. 5 | MEC time cells on ISI probe trials. a. Schematic for probe 
trials. b. Comparative analysis of mean velocity and licking behaviors under three 
different conditions: Short-Short, Short-Long, and Long-Short, during standard 
(black) and probe (red) trials. c. Four example MEC time cells during control 
(black) and probe (red) trials. d. Aggregated data showing the timing of peak 

responses across the MEC time cell population under Short-Short, Short-Long, 
and Long-Short conditions, compared between standard (black) and probe (red) 
trials. Short-Short trial types: n = 120, p = 9.0×10-5, z = 3.9; Short-Long trial types: 
n = 67, p = 7.4×10-6, z = 4.5; Long-Short trial types: n = 67, p = 3.2×10-5, z = 4.2,  
two-sided Wilcoxon signed-rank.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01683-7

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | MEC DREADD inactivation. a. Ability to inhibit MEC 
was confirmed using in-vivo 2-photon imaging combined with hM4D(Gi) 
inactivation. Histology showing co-expression of GCaMP6s and hM4D(Gi)-
mCherry in MEC, one section from one mouse is shown. b. Activation of 
inhibitory DREADDs by 1 mg/kg I.P. injection of DCZ reduces average number 
of Ca2+ transients in MEC neurons by 80% at 30 minutes post injection 
compared to before DCZ injection. Top, example neuron before and after DCZ 
administration. Bottom, population response. In both the control (blue) and DCZ 
(red) conditions, GCaMP activity was monitored over 5-minute periods, and the 
change in activity was measured for each cell (n = 205 neurons in DCZ condition 
and n = 364 neurons in control condition, measured across two sessions in each 
condition; p < 0.01, two-tailed Kolmogorov-Smirnov test). c. Average time of 
first lick relative to first odor onset on session 1 of the tDNMS task for mice in 
Fig. 4. Dots show average time of first lick for each mouse, with bars showing 
mean ± s.e.m. across mice. There is no difference in average time of first lick for 
DREADD (n = 15) and Control (n = 16) mice in any trial type (Short-Short: p = 0.56, 
Short-Long: p = 0.14, Long-Short: p = 0.52, two-tailed unpaired t-tests). d. Average 
performance by trial type during shaping for mice in Fig. 4 (n = 31 mice). Shaping 
consists of probe trials where mice must correctly trigger reward and automatic 
trials where reward is automatically given. Performance was examined on all 

probe trials within the first 1/2 session of shaping phase 3, termed “early shaping”, 
and the last 1/2 session of shaping phase 3, or “late shaping”, for each mouse. Mice 
performed better on short-long trials than long-short both early (p = 2.9 × 10−8, 
two-tailed paired t-test) and late (8.5 × 10−4, two-tailed paired t-test) in shaping. 
Additionally, performance was higher for both short-long (p = 1.3 × 10−8, two-
tailed paired t-test) and long-short (p = 3.1 × 10−15, two-tailed paired t-test) trials in 
late compared to early shaping. Dots represent performance of each mouse, with 
blue dots for Control mice (n = 16) and red for DREADD mice (n = 15). Bars show 
mean ± s.e.m. across all mice. e. Reason for mistakes on long-short trials for mice 
in Fig. 4. During shaping phase 3 and the tDNMS task, mice can miss nonmatch 
trials either by withholding licking or by licking prematurely during the first odor 
and/or interstimulus interval. The percent of incorrect long-short trials missed 
due to licking early is shown. Dots indicate values for each mouse, with DREADD 
mice shown in red (n = 15) and Control in blue (n = 16), and black lines show the 
median value across all mice. f. Average time of first incorrect lick on long-short 
trials relative to first odor onset for mice in Fig. 4. Blue (Control, n = 16) and red 
(DREADD, n = 15) circles represent the average time of first lick on all incorrect 
long-short trials for a given mouse, and black dots show the median value  
across all mice.
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Extended Data Fig. 7 | MEC is not required for all interval timing behavior.  
a. Schematic for inhibiting MEC after learning in the tDNMS task. After 
experiments testing the role of MEC during learning (Fig. 4), a subset of mice 
(n = 7 DREADD, n = 10 Control) underwent extended training to determine 
whether MEC is necessary for ongoing task performance. b. Though MEC 
inhibition impaired learning in the tDNMS task (Sessions 1-8), DREADD mice 
learned the task in the absence of MEC inhibition (Sessions 9-14). Following 
learning, subsequent administration of DCZ to inactivate MEC did not affect 
performance in Sessions 15-16. Bars indicate mean performance ± s.e.m 
calculated across mice. c. Fixed interval task schematic. MEC DREADD (n = 9) and 
Control (n = 10) mice were trained on a fixed interval (FI) task (Toda et al. 2017). 
A droplet of water (4-6ul) was delivered every 10 s to head-fixed mice. Licking 
was measured; time-locked predictive licking indicates learning the timing of 
water delivery. The DREADD agonist DCZ (1 mg/kg) was delivered 5 min prior to 
each session. d. Licking behavior of DREADD (n = 9) and Control (n = 10) mice 

on sessions 1 and 5 of the FI task. Licking was normalized to the maximum lick 
frequency with each session for each mouse. All trials for all mice are shown; 
water delivery occurs at 0 s, indicated by a yellow line. Average lick response 
for each session is shown in white. e. Fixed interval learning. Predictive licking 
is defined as an increase in lick rate, measured over 5 seconds preceding the 
upcoming reward delivery. Both DREADD and Control mice learn the temporal 
structure of the task, as demonstrated though more frequent engagement in 
predictive licking from sessions 1-5. Data represent mean ± s.e.m. averaged 
across mice. f. Average time of peak predictive licking activity in FI task relative 
to upcoming water delivery. From session 1 to 5, peak predictive licking activity 
moves closer to reward delivery (0 s) for both Control (p = 2.2 × 10−4, two-tailed 
paired t-test) and DREADD mice (p = 0.0013 two-tailed paired t-test). Data points 
represent average time of peaking licking on Session 1 and 5 for each mouse;  
bars indicate mean ± s.e.m. across mice.
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Extended Data Fig. 8 | Histology showing expression of hM4D(Gi)-mCherry in MEC. Injections were performed bilaterally; sections spanning one hemisphere are 
shown for each DREADD mouse from Fig. 4 (n = 15, mouse identity and hemisphere noted). Five sagittal sections are shown per mouse, ranging from lateral (left) to 
medial (right). The middle three sections include MEC.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Additional details on Poisson Regression analysis of 
behavior. a. Example of modeling behavior during tDMNS task. Top. Baseline 
cue-based model including only odor offset, long cue, and second cue features. 
Bottom. Strategy-based model. Observed anticipatory licks are in black above 
each model’s predicted value. b. Comparison of cue-based and strategy-based 
models for an individual animal. Mean lick rate for each trial type in black, model 
predictions in color. c. Fitting a Gaussian Mixture Model with 2 components 
to the best fitting LLHi over the cue-based model reveals two populations: one 
cue-based where additional features do not improve model performance (n = 10 
mice) and one strategy-based with improved model predictions (n = 20 mice).  
d. A strategy-based model fits better on hit/correct reject trials compared to 
miss/false alarm (based on Strategy 3) (n = 30 mice, two-factor ANOVA significant 
effect for trial type F(2,155) = 7.64, p = 6.88×10-4 and result F(1,155) = 35.6, 
p = 1.58×10-8, but not type x result F(5,155) = 2.26, p = 0.11, post-hoc tests:  

* - p < 0.05, ** - p < 0.01, *** - p < 0.001). e. Example cue and strategy-based models 
for an animal where both fit similarly. f. Relationship between average mouse 
performance on the task and how well models fit the data (linear regression, 
r = 0.369, p = 0.045). g. No significant relationship between average percent 
correct and evidence for animals using a strategy-based solution, based on 
best fitting strategy (linear regression, r = 0.025, p = 0.895). h. No significant 
relationship between ability to decode trial type from the neural data and the 
ability to fit a model to the behavior, based on best fitting strategy (strategy 
and cue-based models, ρ = 0.600, p = 0.208, two-sided Spearman’s rank test 
for correlation and t-statistic). Colors in panels f-h indicate imaged mice, gray 
indicates not imaged. Center line on box plots depicts the median, the first and 
third quartiles are indicated by extent of the box and whiskers indicate the outlier 
cutoff (1.5x inter-quantile range).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 10 | Activity correlation between time cells maintained 
across conditions. a. Pairwise correlation between all time cells during correct 
trials and error trials in the tDNMS task shown for real (blue) and shuffled data 
(black). n = 15,727, z = 69.6, p = 0, two-sided Chi-squared test. b. Same as in a, but 

shown for correct trials on each trial type (S-S vs S-L, right; S-S vs L-S, middle;  
L-S vs S-L, right). S-S vs S-L: n = 15,727, z = 72.4, p = 0; S-S vs L-S: n = 15,727, z = 66.3, 
p = 0; L-S vs S-L: n = 15,727, z = 65.8, p = 0, two-sided Chi-squared test.

http://www.nature.com/natureneuroscience
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection All experimental paradigms were automated and controlled using an Ardunio Uno and custom code, and data collection was performed using 

a Picoscope oscilloscope (PICO4824, Pico Technology, v6.13.2). Imaging data were collected using a Neurolabware microscope and Scanbox 

Scanbox v4.1 software. 

Data analysis Imaging data was analyzed on a IBuyPower Intel Core with Windows10 using Suite2P v0.10.1 and custom software written in Matlab (2018b). 

Licking behavior was modeled using custom code in Python 3.11.4. All other analysis was performed with custom code written in Matlab 

(2018b).  Code is available at https://github.com/heyslab/Bigus_Lee_NatNeuro_2024 or upon reasonable request to the corresponding 

author. A subset of experimental schematics shown in figures were made using BioRender. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data presented in this study are available upon reasonable request to the corresponding author and will be made publicly available at https://github.com/heyslab/

Bigus_Lee_NatNeuro_2024 1.5 years after publication. 

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 

other socially relevant 

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes. Sample sizes were based on reliably measuring experimental parameters 

while remaining in compliance with ethical guidelines to minimize the number of animals used. Sample sizes were based on and comparable 

to prior work (Heys et al. 2020, Heys & Dombeck 2018, Toda et al. 2017).

Data exclusions A subset of mice were removed from analysis for the tDNMS DREADD inactivation experiments due to: a failure to retain the task structure 

learned in shaping (performance >3 SD below the mean on tDNMS session 1, n =1 mouse), headplate falling off (n = 1 mouse), or lack of virus 

expression (n = 2 mice). 

Replication MEC inactivation experiments were performed in two cohorts of mice, with the second cohort successfully replicating the first. Imaging data 

were also reproducible, given consistent findings across 6 mice.

Randomization Mice were randomly allocated into control and experimental conditions in the DREADD inactivation experiments; however, we ensured there 

were an equal number of males and females in each condition.

Blinding The experimenter was blind to experimental condition for all training on the tDNMS task but was unblinded prior to the subsequent Fixed 

Interval experiment to permit tDNMS data analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals C57-BL6 mice between 1.5-7 months in age were used for experiments. Wildtype C57-BL6 mice were used to establish the tDNMS 

task and for MEC inactivation experiments. Camk2a-tTA;tetO-GCaMP6s double transgenic heterozygotes were used for MEC imaging 

experiments.Mice were housed on a reversed 12h/12h light cycle, with a room temperature of approximately 21.1 degrees Celsius 

and humidity between 25-45%. 

Wild animals No wild animals were used.

Reporting on sex MEC inactivation experiments were performed with equal numbers of male and female mice. No sex-dependent differences were 

found in preliminary experiments; therefore, sex-based analysis is not included in this manuscript. Both male and female mice were 

also used in imaging experiments. 

Field-collected samples No field-collected samples were used. 

Ethics oversight All experiments were approved and conducted in accordance with the University of Utah Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants
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