nature neuroscience

Article

https://doi.org/10.1038/s41593-024-01683-7

Medial entorhinal cortex mediates
learning of context-dependentinterval
timing behavior

Received: 24 March 2023

Accepted: 14 May 2024

Published online: 14 June 2024

W Check for updates

Erin R. Bigus'3, Hyun-Woo Lee ® %3, John C. Bowler?, Jiani Shi? &
James G. Heys ®2

Episodic memory requires encoding the temporal structure of experience
and relies on brain circuits in the medial temporal lobe, including the medial
entorhinal cortex (MEC). Recent studies have identified MEC ‘time cells’,
which fire at specific moments during interval timing tasks, collectively
tiling the entire timing period. It has been hypothesized that MEC time cells
could provide temporal information necessary for episodic memories,

yet it remains unknown whether they display learning dynamics required
for encoding different temporal contexts. To explore this, we developed a
new behavioral paradigm requiring mice to distinguish temporal contexts.
Combined with methods for cellular resolution calcium imaging, we found
that MEC time cells display context-dependent neural activity that emerges
with task learning. Through chemogenetic inactivation we found that MEC

activity is necessary for learning of context-dependent interval timing
behavior. Finally, we found evidence of acommon circuit mechanism that
could drive sequential activity of both time cells and spatially selective
neuronsin MEC. Our work suggests that the clock-like firing of MEC time
cells canbe modulated by learning, allowing the tracking of various
temporal structures that emerge through experience.

Our daily experiences unfold across space and time, meaning that
the brain must capture these dimensions to accurately form episodic
memories (that is, memories of personal experiences that occurin a
specific spatial and temporal context)". Medial temporal lobe (MTL)
structures are critical for episodic memory, raising the question of how
these regions encode space and time. A remarkable series of findings
have revealed the role of MTL structures in encoding space, beginning
with the findings that: (1) MTL regions are critical in memory-guided
spatial navigation behavior®®; (2) MTL regions contain so-called place
cellsin the hippocampus®” and grid cells in the MEC® that fire when ani-
mals visit particular locations within an environment; and (3), critically,
spatial cellsremap, reorganizing their firing fields as animals navigate
and learn features of different environments to forma unique map for

each spatial context™°. Observing such learning dynamics provided

the invaluable insight that a key role of spatially tuned cells is likely
to create a ‘cognitive map’ of an environment'"? that can be stored in
memory and used to guide future behavior.

In contrast to spatial context, it remains relatively unknown how
temporal context, or the temporal structure of experiences, isencoded
within the MTL memory system. The nervous system must track time
across many scales, ranging from milliseconds to hours, but the inter-
mediate scale of interval timing (seconds to minutes) is perhaps most
relevant for planning and executing daily behaviors, including forag-
ing, mating, prey capture and avoidance® ™. Accordingly, encoding
the temporal structure of daily experiences requires interval timing.
Although it is largely unclear how the passage of interval time and
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the duration of events are tracked and recorded within the MTL, one
intriguing possibility is that common mechanisms support encod-
ing of both space and time'. If so, as for space, we would expect MTL
regions to: (1) be necessary for interval timing behavior; (2) contain
cells selective to time; and (3) use distinct patterns of time-selective
cellsto form ‘timelines’ of unique experiences, akin to maps. Previous
work suggests that MEC fits the first two criteria: MEC is necessary for
interval timing behavior” " and contains time cells that fire regularly
atdiscrete moments as rodents report temporal durations onthe scale
of seconds®™. Asapopulation, different MEC time cells fire regularly at
different momentsinatimed interval, like the second hand of a clock,
thereby forming a sequence of neural activity, tiling the entire timing
epoch. Third, by analogy to spatial cells, MEC time cells could play a
key role in episodic memory by using unique time cell trajectories to
form distinct ‘maps’ or ‘timelines’ of temporal experiences (that is,
contexts). The third point makes clear predictions about the learn-
ing dynamics of MEC time cells: distinct patterns of time cells should
emerge as animals learn the temporal structure of an experience, and
emergence of these patterns should be necessary for timing behavior.
Evidence of suchlearning dynamics could suggest that MEC time cells
play akeyroleinthe formation of episodic memories by encoding the
temporal structure of experiences. However, these predictions have
yet to be experimentally tested.

We therefore aimed to test the hypotheses that (1) distinct
sequences of time cells willbecome active as animals learn to identify
anew temporal context, forming a unique map or ‘timeline’ of each
temporal context, and (2) such dynamics support learning of timing
behavior. To address these questions, we developed a new temporal
delayed nonmatch to sample (tDNMS) task that requires mice to dif-
ferentiate the temporal structure of trials (temporal context). By per-
forming two-photon calcium imaging as mice performed the tDNMS
task, we uncovered populations of MEC time cells that fire selectively
atspecificmomentsin the timing task, with the population of time cells
creatingasequence that spans the entire timing epoch. Remarkably, we
find that, over the course of learning, these sequences become context
dependent, whereby MEC time cells become differentially active on
particular trial types. Furthermore, multiple lines of evidence suggest
that the activity of MEC time cells plays a causal role specifically in
learning context-dependentinterval timing behavior. Finally, we find
evidence for acommon circuit mechanism that may supportboth MEC
spatial and time coding. Our results suggest that MEC time cells may
play a central role in episodic memory by forming unique ‘timelines’
that encode the temporal structure of distinct experiences.

Results
Mice learn new tDNMS task using flexible timing behavior
We designed a timing task with two objectives. First, mice must track
time and make decisions based on the temporal structure of each trial.
In addition, the task should require cognitive flexibility to maximally
engage the MTL memory system. This second point may be critical to
elicitlearning dynamics, considering that learning flexible but not rigid
navigation behavior requires the MTL?". To meet these two goals, we
adapted the delayed nonmatch to sample (DNMS) task structure, known
to engage the MTL****, to create a new tDNMS task. As mice heavily
rely onolfaction, we built a flow dilution olfactometer (Extended Data
Fig.1a)* and signaled stimuli viaa single odorant (isoamyl acetate). We
validated our system by ensuring that the concentration of the odorant
remained constant over the course of a full training session and that
odor concentration could be rapidly controlled (Extended DataFig. 1b).
In each trial of the tDNMS task, a water-restricted, head-fixed
mouse (Fig. 1a) was presented with two successive stimuli for either a
short (2 s)oralong (5 s) duration, separated by a brief 3-sinterstimulus
interval (ISI). Trials were performed in the dark and separated using
(1) a16- to 24-s intertrial interval (ITI) and (2) a light pulse (0.25s) to
signal the start of the trial (Extended Data Fig. 1c). The tDNMS task
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Fig.1|Mice learn new tDNMS task. a, Simplified experimental setup.

b, Overview of training paradigm. Mice were first pretrained to lick at the offset of
nonmatch trials to trigger reward delivery. On reaching criteria after an average
of 16 sessions (mean + s.d.), mice began 8 training sessions on the tDNMS task,
where match trials were introduced. ¢, Trial types and example behavior. The
tDNMS task consisted of three types of trials defined by stimulus durations: S-S,
S-Land LS. To perform the task correctly, mice must lick in the response window
after nonmatch trials and withhold licking in match trials. d, Percentage correct
across all trial types for each session, averaged across all mice (mean ts.e.m.,
n=26mice).e, Percentage correct by trial type for each session, averaged across
allmice (mean = s.e.m., n =26 mice).

consisted of three trial types defined by each stimulus duration:
short-long (S-L), long-short (L-S) and short-short (S-S). Using a
‘Go-NoGo’strategy, mice were trained to lick to report anonmatch of
durations (Go trials; S-L and L-S) and withhold from licking in response
to match durations (NoGo trials; S-S) (Fig. 1c).

Before starting the tDNMS task, mice underwent a shaping pro-
ceduretolearnthetrial structure. Mice were presented only with non-
matchtrialsandlearned torefrain fromlicking during the first odorand
ISI, thenlicked near the second odor offset to earn areward (Fig. 1b and
Extended DataFig.1d). After mice reached criteria (Methods), indicat-
ing learning of the ‘odor, odor, response’ trial structure, mice started
the tDNMS task, where match trials were first introduced and equally
balanced with nonmatch trials over each session (90 trials per session
over ~45 min). Notably, although mice could employ asimple strategy
of licking after the second odor offset during pretraining, theintroduc-
tionof matchtrials transformed the task into one that required timing.

To test whether mice learn the tDNMS task, we monitored
behavioral performance in 26 mice over 8 training sessions (Fig. 1d).
Although mice began at chance performance, they steadily improved
with training, averaging 72.7 + 2.5% (mean + s.e.m. for all data unless
otherwise reported) correct responses on session 8, demonstrat-
ing learning (27.1 £ 4.1% change from session 1 to sessions 7 and 8;
repeated-measures analysis of variance (ANOVA) F; ,s = 8.43,P < 0.001).
Tobetter understand the learning process, we examined performance
by trial type. We expected mice to begin the task by licking at the second
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odor offset, given their pretraining, and thus performwellinnonmatch
trials. Indeed, mice averaged 85.3 + 3.5% correct S-L trials on day 1 of
the tDNMS task, compared with 91.1+2.7% on the last half-session
of pretraining (Fig. 1e and Extended Data Fig. 1g; Student’s paired
t-test, P=0.24). Unexpectedly, performance on L-S trials dropped
from 86.3 +2.0% correct responses on the last half-session of shaping
t0 56.6 +4.1% correct on day 1 of the task (Fig. 1e and Extended Data
Fig.1g; Student’s paired t-test, P < 0.001). Mice could miss nonmatch tri-
alseitherbyincorrectly withholding licking or by licking prematurely.
Most mistakes were from premature licking, suggesting that mice
reverted to animpulsive action of licking after long odors previously
observed in shaping (Extended Data Fig. 1h-i). Match trials uniquely
require learning a new response of withholding, so we expected
learning to occur here. Indeed, mice began with poor performance,
averaging43.4 + 3.5% correct S-S trialson day 1 owing to their tendency
to lick near the second odor offset (Extended Data Fig. 1j), as if apply-
ing an ‘odor, odor, lick’ strategy learned in pretraining. However, by
day 8, mice learned to withhold licking, reaching 70 + 4% correct S-S
trials (repeated-measures ANOVA F; ,s = 4.81, P< 0.001). Together, our
data demonstrated that mice learned the tDNMS task by learning to
withhold licking selectively on S-S trials, as evidenced by (1) improve-
mentonS-Strials, (2) high performance onS-Ltrialsand (3) atendency
to miss L-S trials by licking early.

Limiting the task to three trial types allowed mice torobustly learn
the tDNMS task over seven to eight sessions. However, this task design
could inadvertently lead mice to adopt a rigid cognitive strategy. For
instance, mice could distinguish trials based on their total duration,
circumventing the need to assess the durations of individual stimuli.
We conducted two control experiments to test this possibility. First,
we performed experiments without odor to establish that olfactory
cues are essential for task engagement (Extended Data Fig. 1e). Then,
we trained a cohort of mice on a modified version of the tDNMS task
and manipulated the ISl in a subset of probe trials to make nonmatch
and match trials the same duration. Performance was unaffected, dem-
onstrating that mice respond to individual stimuli and not the overall
length of the trial (Extended Data Fig. 1f). Importantly, our results
did not confirm that mice compared durations; mice probably use a
simpler strategy (discussed later). Nevertheless, any strategy required
them to (1) monitor stimuli durations and (2) make decisions based on
the stimuli’s position within the trial structure. Therefore, the tDNMS
task met our goals of requiring mice to make flexible decisions based
onthe temporal structure of each trial.

MEC time cells fire in context-dependent trajectories

To characterize the learning dynamics of MEC time cells, we applied
methods that we have previously developed for large-scale, cellu-
lar resolution, two-photon calcium imaging in MEC***° (Fig. 2a,b).
We recorded from populations of layer Il MEC neurons expressing
GCaMPés (Fig. 2c-e and Extended Data Fig. 2a), across six mice (field
of view (FOV) 430 + 54 um medial to lateral by 380 + 45 um dorsal to
ventral; depth below the surface 105 + 8 um) as well-trained mice per-
formed the tDNMS task (15 + 4 d pretraining then 13 + 8 d of tDNMS
training to reach day N; 82 + 5% correct trial performance). Across
the total population (2,056 active neurons), we found that 33.8% of
cells exhibited regular time-locked activity at a particular moment in
eachtrial (Fig. 2fand Extended Data Fig. 2b). Consistent with previous
reports duringinterval timing behavior?’, we found that different MEC
‘time cells’ were selectively active at different delay times from the start
of each trial, forming a regular temporal sequence that spanned the
entire trial epoch (Fig. 2g and Extended Data Fig. 3a).

During the tDNMS task, mice were free to run on a cylindrical
treadmill. As previous work has shown that MEC neurons can encode
distance traveled”**, we wondered whether the time-locked activity
of MEC time cells might be better explained by distance traveled from
trial onset. In support of the idea that MEC time cells encode elapsed

time in the task, and not distance traveled, we found that the vast
majority of time cells displayed a smaller coefficient of variation (CV)
when measuring as a function of elapsed time versus distance trave-
led from trial onset (CV of elapsed time: 48.4 + 0.8, elapsed distance:
205.7 £4.4,P<0.0001, t,570) = 39.9, paired Student’s ¢-test; Fig. 2h). In
addition, to estimate the specific contribution of different behavioral
variables (distance traveled (D), time elapsed (T) and licking (L)) on the
activity of MEC neurons, we used a generalized linear model (GLM) to
fit calcium activity (dF/F) as a Gaussian linear function of different com-
binations of the three behavioral variables**°. Consistent with results
using the CV, our GLM results show that the log-likelihood gained by
time is significantly greater than the log-likelihood gained by either
distanceor licking (Extended Data Fig. 3b-d), indicating that cells are
tuned to elapsed time in the tDNMS task.

To perform the tDNMS task, subjects must perceive and use stimuli
durations to determine trial type (thatis, nonmatch or match) andlearn
the appropriate response (that is, Go or NoGo, respectively). Impor-
tantly, as trials consist of unique sequences of cues (differing only in
duration) that dictate the appropriate behavioral response, we refer
to each trial type as a temporal context. The robust learning and task
structure allowed us to ask whether differential activity of populations
of time cells encode each trial type, or temporal context. Although
some time cells showed stable activity across trial types (time cell 1in
Fig. 2f), others displayed activity specific to the temporal context. This
context-dependentactivity took various forms. By examining time field
stability across each pair of trial types (S-S versus S-L, S-S versus L-S,
S-Lversus L-S; Extended Data Fig. 3e), we found that more than half of
the time cells exhibited stable time fields (58.4%, n = 944 out of 1,617).
Forthose that ‘remapped’ between contexts, time fields usually either
disappearedinonetrial type (time cells 3-5in Fig. 2f; 33.2%, n = 537 of
1,617) or modulated their firing rate (time cell 6 in Fig. 2f; 5.32%,n = 86
of'1,617). Few time cells shifted the timing of peak activity (time cell 2
inFig.2f;3.09%, n =50 0f1,617). Together, these results demonstrated
that time cell activity varies dynamically across temporal contexts,
forming a unique trajectory or ‘timeline’ for each trial type.

Context-dependent sequences support tDNMS learning
Initially, on day 1, mice do not utilize temporal context to guide
behavior; however, over several training sessions, they learn torespond
correctly on 70-90% of trials per session. If context-dependent MEC
time cell activity supports task learning, our data should support
several predictions. First, context-dependent activity should be rela-
tively absenton day 1and emerge over the course of learning. Second,
the coherence of individual time cell activity and/or the regular sequen-
tial neural activation across the population should be disrupted on
‘error trials’, when mice incorrectly report match or nonmatch.

To test the first prediction, we averaged the activity of MEC time
cells for each trial type and compared the correlations for each cell’s
response across trial types, before and after learning (Methods). As
mice learn at varying rates, we classify post-learning sessions with
>70% correct trials as ‘day NV’ (training session nos. 4-21). We found
that the average correlation of time cell rate maps across match and
nonmatch trials was significantly lower on day N compared with day
1(day1: 0.57 £ 0.01; day N: 0.42 + 0.02; P < 0.0001, z = 6.8, Wilcoxon’s
rank-sumtest; Fig. 3a-c), demonstrating that context-dependent activ-
ity develops to become more distinct over the course of learning.

The information required to distinguish contexts accumulates
throughout each trial, with key moments providing enough informa-
tion for an ‘ideal observer’ to discern the trial context. We wondered
whether the population dynamics of context-dependent MEC time
cells might be informative about this time-dependent decision pro-
cess and further link neural dynamics to task learning. To test this, we
measured the difference in dF/F for each time cell across trial types at
successive moments in the trial epoch and averaged across time cells
to generate population vectors. We found that the neural dynamics
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significantly diverge from a null distribution (with randomly assigned
trial labels) at key moments after the stimuli have become distinct
across contexts (Fig. 3d). For instance, the long stimuli on L-S trials
could be used to classify L-S trials earlier in the trial epoch than the
other trial types. Accordingly, neural dynamics diverged from the null
distribution earlier when comparing L-S with S-S versus S-L with S-S
trials (Fig. 3d). Importantly, we found that, over learning, these differ-
encesbecame more pronounced (discriminantindex for S-S versus S-L:
day1=0.40+0.07,dayN=0.67 £ 0.08,P=0.01,z=2.55;S-Sversus L-S:
day1=0.52+0.07,day N=1.00 £ 0.09, P< 0.001, z=3.80, Wilcoxon’s
rank-sum test; Extended Data Fig. 3g). Using a separate measure to
assess learning, we also found that, fromday1to day N, the population
of MEC time cells shifts on each trial type to encode later times in the
trial, which correspond to moments when there is sufficient informa-
tion to disambiguate the trial type (peak times onday 1: 3.66 + 0.17 s,
dayN:4.67 +0.185,P < 0.0001, z=4.70, Wilcoxon’s rank-sum test; early
peak proportiononday1:36% (n =164 of 450), day N:19% (n =76 of 402),
P<0.0001, x%;,=30.4, x* test; Fig. 3¢,f).

Next, we asked whether the ensemble activity of time cells on
individual trials contains enough information to accurately decode
the temporal context. During the late phase of trials (9-11's), ensemble
activity exhibited distinct separation accordingto trial type as shown
by linear discriminant analysis (LDA) (Fig. 3g and Extended Data Fig. 4a).
To quantify this separation, we applied k-means clustering to each
animal’s LDA plot, revealing a clustering accuracy substantially higher
thanthebootstrapped chancelevelinfive out of six animals (for mice
1-6:P=0,0.04,0.08,0,0and 0.001, respectively). This result was cor-
roborated using an alternative classification method: we constructed a
model using asupport vector machine (SVM) to classify trials by type or
asmatch versus nonmatch (Fig.3h). As expected, when the model was
trained and tested using neural activity during the early phase of trials
(0-25s),itfailed to correctly identify trialinformation (trial type decod-
ing for mice1-6:all Pvalues>0.1; match versus nonmatch decoding for
mice 1-6: all Pvalues >0.1). In contrast, when utilizing activity during
thelate phase (9-11s), the model successfully decoded trialidentity in
mostanimals (trial type decoding for mice 1-6: Pvalue = 0,0.002,0.25,
0,0and 0; match versus nonmatch decoding for mice1-6: Pvalue =0,
0,0.05,0,0and 0), aligning with findings from the k-means clustering
analysis. Together, these results support prediction 1 showing that
context-dependent MEC time cell activity emerges over learning,
eventually displaying an over-representation at later moments in the
task, with large deviations in context-dependent neural trajectories
near key momentsinthe task whenitis possible to distinguish trial type.

Totest our second prediction, we compared the average response
for each MEC time cell for correct and error trials. The results show
significantly higher coherence for time cells across randomly selected
blocks of correct trials compared with error trials on day N (correlation
between correct trials — group Aand correct trials — group B: 0.51+ 0.01
correcttrials — group Aanderror trials: 0.26 + 0.03,P< 0.0001,z=7.5,

Wilcoxon’s signed-rank test; Fig. 3i,j). Furthermore, when comparing
correctversuserror trialson dayland day N, we found that the average
correlation on day N was significantly reduced compared with day 1
(session type main effect: P < 0.000L, F; 535 = 18.5; trial-type main effect:
P=0.12, F; 93 55515 = 2.1; interaction: P=0.33, F; 3 55515 = 1.1, two-way
mixed ANOVA with trial type and session factors; Extended Data
Fig. 4b-e), providing additional support that MEC time cell dynam-
ics evolve over learning. Together, our results demonstrating (1) the
emergence of context-dependent time cell activity over learning and
(2) altered coding during error trials support the hypothesis that MEC
time cells form unique trajectories used to encode the structure of each
trial type and likely used to guide context-dependent timing behavior.

Do time cells flexibly adapt to changes in task structure?

The presence of context-dependent dynamics suggests that MEC time
cells reflect the temporal structure of a trial. To expand on this find-
ing, we asked how time cells would adjust to manipulations in trial
structure. In a subsequent session, we ran the normal tDNMS task,
then halfway through the session introduced a lengthened ISl of 5 s
(Extended Data Fig. 5a). Mice responded to the change in the ISI by
delaying approach behavior and predictive licking, indicating percep-
tionofthe changed trial structure (Extended Data Fig. 5b). On average,
population-level MEC time cell activity was delayed inresponse to the
longer ISI (peak times on normal and probe trials: S-S trial types: normal
(6.3 £ 0.4 s)versus probe (7.8 £ 0.5s), P<0.0001z = 3.9; S-L trial types:
normal (4.3 £ 0.5 s) versus probe (6.2 + 0.6 s), P<0.0001,z=4.5; L-S
trial types: normal (5.1+ 0.6 s) versus probe (7.5+ 0.6 s), P<0.0001,
z=4.2; Wilcoxon’s signed-rank test; Extended Data Fig. 5¢,d), further
demonstrating that MEC time cells flexibly adapt to trial structure.

MECis required tolearn context-dependent timing behavior

The emergence of context-dependent MEC time cells provides a
potential neural dynamical mechanism that could underlie tDNMS
learning, where the formation of context-dependent ‘timelines’
(thatis, time cell trajectories) could allow animals to differentiate
trial types. To causally test whether MEC activity is necessary tolearn
the tDNMS task, we used a chemogenetic approach to inhibit MEC
(Fig. 4a and Extended Data Fig. 6a,b). First, we bilaterally injected
adeno-associated virus (AAV) expressing theinhibitory designer recep-
tors exclusively activated by designer drug (DREADD) hM4D across
the dorsal-ventral extent of MEC (Fig. 4b and Extended Data Fig. 8).
Mice then underwent water restriction and shaping before starting
the tDNMS task. We monitored learning across eight sessions of the
tDNMS task, administering the DREADD agonist deschloroclozapine
(DCZ) intraperitoneally (i.p.) 5 min before each session to inhibit MEC
for the duration of training. As expected, control mice learned the task
within 8 d, averaging 72.8 £ 2.6% correct responses across sessions
7 and 8 (Fig. 4c) (repeated-measures ANOVA F, ;5= 5.09, P < 0.001).
In contrast, DREADD mice showed no improvement from session 1

Fig.3| Context-dependent MEC time cell population dynamics support
learning of flexible interval timing behavior. a, Top, the population of MEC
time cells significantly tuned to S-S trials and sorted by response times during S-S
trials, depicted for S-S (left), S-L (middle) and L-S (right) trials on day 1. Bottom,
same as top, but for day N'sessions. b, Top two principal components (PCs)
displayed for population of MEC time cells across trial types. ¢, Mean Pearson’s
correlation coefficients of MEC time cells across different trial types for day 1
(black) and day N (green) (day1,n=449,dayN,n=452,z=6.8,p=13x10"",
two-sided Wilcoxon'’s rank-sum test). d, Left, population vector for the difference
indF/F computed for each MEC time cell across S-S and S-L trial types as a
function of trial time. Solid lines are the actual data and shades indicate 0.1th and
99.9th percentiles of shuffle data. Right, the same for S-S versus L-S trials.

e, Sorted sequence of MEC time cells in L-S trials on day 1 (left) and day N (right).
f, Histogram of the timing of peak responses for all MEC time cells on day 1 (black)
and day N (green), for all three trial types (day 1,n =450, day N, n=402,2=4.70,

P=2.7x10"%, two-sided Wilcoxon’s rank-sum test). g, A representative LDA plot
for individual trials. h, Decoding accuracy of SVM models for trial types (left)

or match versus nonmatch (right). The models are built on neural activity from
either early phase or late phase trials. Color circles depict the accuracy from
actual data, with oval shades representing 2.5th and 97.5th percentiles of shuffle
data. Each color corresponds to anindividual animal (n = 6; trial type decoding
inearly:z=0.03,P=0.97;inlate: z=4.16, P= 3.1 x 10~%; match versus nonmatch
decodinginearly:z=0.66, P=0.51;inlate:z=4.20, P=2.6 X107, two-sided
Wilcoxon’s rank-sum test). i, MEC time cells during S-S correct trials A (left; sorted
by A), correct trials B (middle; sorted by A) and S-S error trials (right; sorted by A)
onday Nof training in the tDNMS task. j, Cumulative distribution for Pearson’s
correlation coefficients calculated for MEC time cells comparing correct trials A
with B (blue), and correct trials A with error trials (red) (Methods) (day 1, n =120,
dayN,n=170,z=7.5,P=8.5x10", two-sided Wilcoxon’s signed-rank test).
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(57.2 £2.6% correct responses) to sessions 7and 8 (59.1 + 3.3% correct
responses) (repeated-measures ANOVA F,, =1.18, P= 0.32). Inactiva-
tion of MEC prevented mice from learning the tDNMS task.

To investigate the specific deficit caused by MEC inhibition,
we analyzed data by trial type. Both control and DREADD mice per-
formed well on S-L trials, starting immediately on session 1 (Fig. 4e),
asaresult of learning that took place during the shaping phase of the
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task (before DCZ injections) (Extended Data Fig. 6d). In contrast, on
day 1 both control and DREADD mice exhibited poor performance
onL-Snonmatchtrials, seemingly as aresult ofimpulsive tendencies
causing them to lick after the long odor presentation, a behavior
noted during the shaping phase (Extended Data Fig. 6e-f). As match
trials uniquely demand the learning of a new withholding response,
we anticipated that improvement in these trials would drive overall
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Fig.4 | MEC is necessary to learn the tDNMS task. a, Experimental paradigm.
Mice received bilateral injections of either aninhibitory DREADD (n = 15) or
control virus (n =16). Mice began pretraining with only nonmatch trials and
learned to lick at the offset of the second odor stimuli. After pretraining, mice
began the tDNMS task. DREADD agonist DCZ (1 mg kg™) was administered i.p.

5 min before each of the eight tDNMS sessions. Pretraining sessions are reported
asmean +s.d. b, Sagittal section depicting hM4D(Gi)-mCherry expression in
MEC with blue Nissl staining; representative image from one mouse. ¢, Left,
performance on the tDNMS task for control (n =16) and DREADD (n = 15) mice.

Values are averaged across mice (mean * s.e.m.). Right, percentage change in
correct responses from day 1to average of days 7 and 8 (P=0.0038, unpaired,
two-tailed Student’s ¢-test). The bars represent mean + s.e.m. d, Top, licking
behavior during tDNMS task for all control mice on session1(left) and session 8
(right) for all three trial types. Bottom, licking behavior during tDNMS task for
all DREADD mice on session 1 (left) and session 8 (right) for all three trial types.
Consummatory licking after reward delivery is not shown. e, Performance for
control mice (top, n=16) and DREADD mice (bottom, n =15) on each of the three
trial types, averaged across mice (mean + s.e.m.).

learning. Indeed, control mice demonstrated asignificantincrease in
S-S trial accuracy across eight sessions (from 44.2 + 4.3% correct on
session1t069.3 + 5% correct on session 8; repeated-measures ANOVA
F;15=5.93, P<0.001, as shown in Fig. 4e). Interestingly, DREADD
mice showed an initial improvement in S-S trials over sessions 1-3
(40.4 + 4% correct match trials on session 1 versus 56.3 + 4.2% cor-
rect match trials on session 3; repeated-measures ANOVA F, ,, = 8.01,
P<0.01), reflected intheir overall learning curve. However, match trial
performance did not significantlyimprove across the eight sessions
(repeated-measures ANOVA F,, = 0.78, P=0. 61), leveling near 50%
(50.7 £ 3.6% correct match trials over sessions 6-8), indicating that
mice guessed whether or not to lick. Although control mice learned
to use stimulus durations to determine when to withhold licking,
DREADD mice perseverated with the rigid strategy of licking at trial
offset (Kolmogorov-Smirnov (KS) test on control and DREADD S-S
learning curves, P < 0.01) (Fig. 4d).

Notably, DREADD mice were notimpairedin all aspects of timing
behavior. Both control and DREADD mice performed above chance
in nonmatch trials, suggesting that MEC is not required to recall
well-learned temporal contexts such as ‘S-L reward’ (Fig. 4e). Mice
evenengaged inpredictive licking in anticipation of areward (Fig. 4d),
further indicating that MEC is not required to perceive or estimate
learned durations. The key behavioral difference between controland
DREADD mice was that DREADD mice were unable to form a memory
ofanewtemporalstructure (‘S-Snoreward’), leading to aninability to
adopt aflexible context-based strategy.

An alternative explanation for our results is that MEC inhibition
may not affect the learning of temporal context, but, rather, other
aspects of behavior necessary for tDNMS performance. We first con-
sidered whether MECinactivationimpaired odor perception. However,
therobust performance of DREADD mice on nonmatch trialsindicates
intact odor perception (Fig. 4d,e). We then examined whether MEC
inhibition increased impulsivity, because task learning requires mice
toinhibitlicking. We compared the average time from trial onset to first
lick for both control and DREADD mice across session 1. If MEC inhibi-
tionincreased impulsivity, DREADD mice should lick earlier. This was
not the case (Extended Data Fig. 6¢), confirming that MEC inhibition
causes a specific deficit in learning context-based timing behavior.

MEC s not necessary for ongoing tDNMS performance

The emergence of context-dependent time cells led us to test, and
confirm, the hypothesis that MEC is necessary to learn the tDNMS task.
We next wondered whether the role of MEC is confined to learning or
whether MECis also required for ongoing task performance. To distin-
guish these possibilities, we silenced MEC after task learning. We did
this as a continuation of our first MEC inactivation experiment: after
eight consecutive sessions of MEC inactivation (Fig. 4), we took mice off
DCZ and instead administered saline over sessions 9-14 (Extended Data
Fig.7a), hypothesizing that, without MEC inhibition, mice would learn
the task. Indeed, DREADD mice learned the task (repeated-measures
ANOVA F;5=3.72, P< 0.01), reaching 77.7 + 3.9% correct responses
over sessions 13 and 14 (Extended Data Fig. 7b). We then administered
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Fig.5|Model of behavior demonstrates potential cognitive strategy at use
in tDNMS task. a, Model of the animals’ behavior as anonhomogeneous Poisson
process. Expected lick counts are based on both event-based cues (odor offset,
long odor offset and second cue offset) and a cognitive strategy, which could
improve task performance but requires timing longer or multiple durations.
For x(t), lags are not shown. b, Comparison of cue-based and several potential
strategy-based models for one mouse. Mean lick rate for each trial type is shown
inblack and model predictions are overlaid in color. ¢, Adding strategy-based
features improves model fit to behavior, on average, over only cue-based
features. Points from the highest performing strategy-based model are shown.
Inset, mean deviance explained (d?) is higher for strategy-based models (n =30
mice, p=3.54 x107, two-sided, paired Student’s ¢-test). d, Comparison of the

LLHi over a cue-based model for the four different potential strategies (n = 30
mice, one-way ANOVA: F=16.57, P=4.99 x 107%; Tukey’s post-hoc test for multiple
comparison of means: P<0.05, "P<0.01, "P<0.001, NS, not significant).

e, Testing the model on probe trials with manipulated ISI times shows that
strategy 3 is more likely than strategy 2 (n = 11 mice, P= 0.03, two-sided, paired
Student’s t-test). f, Tendency to use more abstract methods during the tDNMS
task correlated with neural dynamics in MEC, based on a best-fit strategy and
trial-type decoding results (p = 0.83, P= 0.04, two-sided Spearman’s rank test for
correlation and ¢-statistic). Colors in c-findicate imaged mice and gray indicates
notimaged. Center line on box plots depicts the median, the first and third
quartiles are indicated by the extent of the box and whiskers indicate the outlier
cutoff (1.5x the interquartile range).

DCZ to inhibit MEC over sessions 15 and 16 (Extended Data Fig. 7a,b).
Mice did well on sessions 15 and 16 despite MEC inhibition; there was
no difference in performance from sessions 13 and 14 to sessions 15
and 16 (2.19 + 7.3% change in correct response from sessions 13 and
14 to sessions 15 and 16 for DREADD mice; n=7), showing that MEC
is not required to perform the tDNMS task after learning (Extended
DataFig. 7b). These results suggest that MEC is specifically necessary
to form representations of temporal context; other brain regions can
guide post-learning performance.

MEC s not required to learnrigid timing behavior

A key requirement in developing our timing task was cognitive
flexibility, given the findings that MTL structures are involved in flex-
ible, not rigid, navigation behavior*®*'. The critical role of MEC in
learning the tDNMS task therefore led us to question whether MEC is
necessary to learn any temporal relationship or whether MEC is spe-
cifically required for flexible tasks requiring distinguishing between
temporal contexts. To disentangle these possibilities, we trained
DREADD and control mice onasimple, rigid, fixed interval (FI) task, in

whichadrop of water was delivered to the head-fixed mouseevery10 s
(ref.32). Predictivelicking, whichincreases before the reward, signals
an understanding of the task’s temporal structure (Extended Data
Fig.7c). Totest whether MECis needed to learn this simple timing task,
we administered DCZ before each of five training sessions to inactivate
MEC. To assess learning, we calculated the percentage of trialsin which
mice engaged in predictive licking. Over five sessions, the percent-
age of trials with predictive licking increased for both control mice
(16.1+5.3% on day 1 versus 57.8 + 7.3% on day 5; repeated-measures
ANOVAF, ,, =7.05, P < 0.001) and DREADD mice (14.7 + 2.4% on day
1versus 70.9 + 4.4 on day 5; repeated-measures ANOVA F, , = 36.84;
P<0.001), indicating that mice learned to anticipate the forthcom-
ing reward (Extended Data Fig. 7d,e). In addition, as the sessions pro-
gressed, the peak of licking activity for both groups shifted closer tothe
reward time (Extended Data Fig. 7f), suggesting animproved precision
in timing (control: -2.05+ 0.12sonday1to -0.96 + 0.16 son day 5;
repeated-measures ANOVAF, ,,=9.20; P<0.001;DREADD:-1.73 £ 0.14 s
onday1to-0.97 + 0.11 sonday 5; repeated-measures ANOVA F, , = 7.75,
P <0.001). There was no significant effect of experimental condition
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and during the ITI. Odor stimuli are shown below. b, Left, pairwise correlation
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except shown for day Nrecording sessions (day 1: n =11,594, z = 64.57, P= 0; day
N:n=15,727,z=64.57, P=0, two-sided x* test). ¢, Pairwise correlation of MEC time
cells during the ITIas a function of their relative peak timing field activity during
the tDNMS task (n = 27,321, Pearson’s correlation coefficientr=-0.12, P= 0,

two sided (mean +s.e.m.)).

on learning as measured through either the percentage of trials with
predictive licking (repeated-measures ANOVA group x time F=1.98,
P=0.11; KS test on learning curves, P=0.7) or time of peak licking
(repeated-measures ANOVA group x time F=1.05, P=0.39; unpaired
Student’st-test onday 5 peaklick times, P= 0.99), indicating that MEC
inhibition did not affect learning. Therefore, MEC is not needed to
learn rigid temporal relationships, indicating a specificity in learning
context-dependent timing behavior.

The use of cognitive strategies to solve the tDNMS task
The tDNMS task can be solved through multiple strategies, each
requiring a varying degree of cognitive flexibility. We sought to (1)
identify possible strategies and (2) determine the involvement of MEC
inrelation to the degree of cognitive flexibility, to provide additional
evidence for MEC’s role in learning flexible timing behavior. We deline-
ated four cognitive strategies that mice could use to solve the tDNMS
task (Methods): (1) identify the long stimulus as a‘go’ cue and respond
after second odor offset; (2) time the entire trial duration and respond
on longer trials; (3) use the long stimulus as a go cue but time both
stimuli; and (4) time both stimuli then compare durations. Importantly,
these strategies require recognition of the odor, odor, response trial
structure. In contrast, mice could employ asimple ‘cue-based’ approach
by learningto lick in response to specific events within a trial without
fully graspingits structure, for instance, altering the likelihood of lick-
ing after any odor offset. Hallmarks for the use of each approach are
presentinthelicking behavior. Therefore, to evaluate which approach
eachmouse used, we modeled lick counts as anonhomogeneous Pois-
son process based on weighted combinations of cue-based features
and each of the strategy-based features (Fig. 5a,b and Extended Data
Fig.9a,b,e). Most mice exhibit behavior that fits better to models with
astrategy-based feature (Fig. 5c and Extended Data Fig. 9c), with strat-
egy 2 or3yielding the largest increase in model fit (Fig. 5d). To distin-
guish between these two strategies, we investigated probe trials with
manipulated ISIs (Extended Data Figs. 1f and 5). By training our model
onthe standard ISl trials and testing on the subset with modified ISls,
we found that animals most probably employ strategy 3 (Fig. 5e), which
involves using the long stimulus as a go cue but timing both stimuli.
Ourmodelingalso allowed for probing the neural dynamics in MEC
time cells to predict the strategy used by each animal. Notably, trial
type-decoding performance correlates with the use of astrategy-based

approach (Spearman’s rank correlation coefficient, p = 0.829, P= 0.042;
Fig. 5f).In contrast, nosignificant relationship exists between decoding
accuracy and model fit when also considering the cue-based model
(p=0.600, P=0.208; Extended Data Fig. 9h). These results indicate
that strategies requiring an understanding of trial structure are likely
to engage MEC more intensively.

MEC time cells display coherent phasic activity

The present study was inspired from drawing parallels between mecha-
nisms of spatial and temporal coding within MTL structures. There has
beenagrowingbody of evidence that acontinuous attractor network
(CAN), mediated by local recurrent synaptic connectivity in MEC, drives
the neural dynamics of spatially selective grid cells**>°. We therefore
wondered whether MEC time cells might also be driven through the
same CAN mechanism. In this model, structured recurrent synaptic con-
nectivity drives an ‘activity bump’inalocal subpopulation of neurons.
This activity bumpis then translated across the network as a function
of feedforward input, which results in regular phasic activity among
neurons in the CAN. A strong prediction of this model is that the rela-
tive phasic activity of cells in the network should be coherent during
task- and nontask-relevant epochs. To test this prediction of the CAN
model, we first measured the pairwise correlations of MEC time cell
activity during the tDNMS trial epoch and compared these with the
pairwise correlations when mice were not actively timing during the
ITI (Fig. 6a). On both day 1 and day N, we found that the coherence of
pairwise activity betweenthe trial period and ITlis strongly positively
correlated and much higher than the chance level (day 1: Pearson’s
r=0.8linactual, r=0.29 in shuffle, P< 0.0001, z = 62.65; day N: Pear-
son’sr=0.76inactual,r=0.27 inshuffle, P< 0.0001, z = 64.57; Fig. 6b).
Next, we sorted MEC time cells according to their relative phases during
the tDNMS task and computed the pairwise correlation between MEC
time cellsduring theITlasafunction of the time difference in the peaks
of their firing fields in the tDNMS task. Our findings reveal that pairs
of MEC time cells active at similar times during the tDNMS task also
exhibit a high likelihood of concurrent firing during nontask periods
(Pearson’sr=-0.12,P<0.0001; Fig. 6¢). We further repeated the same
analysis for correct versus error trials (Extended Data Fig.10a) and for
different trial types (Extended Data Fig. 10b). In all comparisons, we
found that time cells exhibited coherent activity across conditions (all
Pvalues <0.0001). These results are consistent with key predictions of
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alocal recurrent CAN model that may support the regular, sequential
activity of MECtime cells during timing behavior, suggesting that both
MEC time and spatial coding neurons could be driven through acom-
mon local circuit mechanism.

Discussion

A system capable of episodic memory must track the duration of and
betweeneventstoformanaccurate memory of how experiences unfold
over time. However, it remains unclear how MTL structuresinvolvedin
episodic memory represent temporal relationships of events occurring
ontheorder of interval time (seconds to minutes). Drawing inspiration
fromspatial literature, we hypothesized that MEC time cells might fire
in distinct trajectories to encode the temporal structure of distinct
experiences (temporal context). We tested whether previously identi-
fied MEC time cells form such trajectories by examining their learning
dynamics, testing the predictions that (1) distinct patterns of time
cell activity should emerge as animals learn to distinguish temporal
contexts and (2) formation of such trajectories should be critical for
learning temporal relationships.

Addressing our hypothesis required a multifaceted approach. We
first developed anew tDNMS paradigm that requires mice to differen-
tiate the temporal structure of trials. By applying the tDNMS task in
tandemwithinvivo neurophysiological recordings, we confirmed our
ability to record MEC time cells. We confirmed that cells are tuned to
elapsed timerather than other features of behavior. We then leveraged
the tDNMS task design to ask whether different trial types, or temporal
contexts, are represented by differential activity of time cells. OQur
results showed that time cells were differentially active on distinct trial
types, demonstrating that MEC time cells form unique ‘timelines’ of
each context. Crucially, multiple lines of evidence linked the observed
timelines to aroleinlearning of timing behavior. First, we found that
populations of time cells exhibit distinct context-dependent neu-
ral dynamic trajectories, which diverge from a common trajectory,
at key moments in the task when there is sufficient information to
disambiguate the trial structure. Second, we found that these trajec-
tories became more distinct over learning across sessions. Third, we
showed that, over learning, the population of MEC time cells shifts to
over-represent later timesin the trial, when the animal can disambigu-
atetrial type and thereby solve the instrumental task. Fourth, on error
trials, when the animal mistakenly classifies the trial context, we found
that the regular sequence of MEC time cells is disrupted. Finally, we
found that MEC inactivation prevents tDNMS learning, specifically
by preventing the learning of a new temporal context. Combined,
ourresultsindicate that MEC time cells form distinct representations
of temporal context, enabling animals to flexibly learn the temporal
structure of experiences.

Interestingly, our findings indicate that MEC is not always
required for learning and memory of interval timing behavior. MEC
is not necessary to learn simple durations, reproduce previously
learned durations or recall learned contexts. Rather, MEC is selectively
required to learnflexible, context-dependent temporal relationships.
Thisfinding fits our physiology data, implying that the role of MEC is to
formunique representations of temporal context needed to support
such flexible behavior. In further support of this idea, our computa-
tional modeling work demonstrates that mice employing a cognitive
strategy show increased decoding accuracy of the trial context from
the activity of MEC time cells. This specificity of MEC in flexible timing
behavior is reminiscent of the finding that MTL structures play a key
role in flexible, but not rigid, forms of spatial navigation behavior?.
Just as multiple memory systems guide navigation®, we suspect that
multiple memory systems guide timing behavior. Previous work has
implicated basal ganglia, striatum and frontal and parietal regionsin
timing®>*"**, providing evidence of other neural ‘clocks’ that could
drive other aspects of timed behavior. Determination of the con-
straints under which distinct clocks drive behavior, and interactions

between clocks, will be an important step in understanding how the
brain performsinterval timing.

Previous studies investigatingthe role of MEC in interval timing
have reached slightly differing conclusions about the contribution
of MEC. Our observation that MEC is not needed to learn or time
fixed intervals appears to contrast with previous work describing
roles of MEC in (1) learning to remain immobile for a fixed duration”,
(2) precisely timing a learned duration” and (3) delay-dependent
timing'®. To reconcile these differences, we argue that each task
involves an element of flexibility, such as (1) updating behavior from
adifferent duration used during pretraining, that is, learning a new
temporal context, (2) updating a reference memory after failed tri-
als, thatis, updating amemory of temporal context, and (3) making
delay-dependent associations, which requires learning temporal
context. We expect that the flexibility of learning or updating a
memory of temporal context requires MEC, bridging the results of
each study. Although our study focused on MEC, other MTL struc-
tures, including the hippocampus and lateral entorhinal cortex, also
encode time. Previous work has examined temporal coding in vari-
ous ways, including through explicit timing behavior***, sequence
coding*®*, the delay period of tasks*®**’ and timescales spanning
minutes to hours to days*°~*%. Many of these processes occur in paral-
lel, making it difficult to pinpoint precise neural dynamicsinvolvedin
each aspect of temporal coding. Our study focused on one aspect of
temporal coding: interval timing. Given the clear role of MEC in our
tDNMS task, aclear future direction willinvolve testing the necessity
of other MTL regions in this task.

Our rationale for examining the role of MEC in interval timing,
rather than other MTL structures, stemmed from drawing parallels
between spatial and temporal coding. Since the discovery of spatially
selective MEC grid cells, there has been a strong focus on the role of
MEC in navigation and spatial memory, leading to aresearch program
that has given substantial insight into the circuit mechanisms that
underliegrid cell firing. Namely, thereis strong support for a CAN that
ismediated through structured local recurrent synaptic connectivity
of MEC neurons®~°, A key feature of this model is that the network
integrates synaptic input coding for animal heading direction and
velocity, thereby driving sequential activity of a population of grid
cells, each coding for different spatial phase(s) withinan environment.
This process is mathematically equivalent to path integration®?,
giving rise to ameasure of distance traveled from a start location. We
find this computation conspicuously similar to that of a clock, which,
rather than a measure of distance, can integrate a constant input to
give rise to a measure of duration from a start time. A strong predic-
tion of the CAN model is that neurons encoding similar phases while
engaged in a relevant behavioral task, such as firing at similar loca-
tionsinspace during navigation or similar delay times duringinterval
timing, will display coherent phasic activity during nontask-relevant
epochs. Consistent with this prediction, we found that the correlational
structure of MEC time cells, as defined during the tDNMS task, remains
coherent during the ITI when there is no timing demand. We suspect
that, during timing, the sequential activity of MEC time cells is driven
through similar CAN dynamics, which may have evolved for similar
and often overlapping navigation processes across time and space.
Accordingly, our findings suggest that MEC neurons may serve as a
general integration circuit, calculating either distance or time based
onrelative behavioral demands.
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Methods

Surgery and behavior

All experiments were approved and conducted in accordance with
the University of Utah Animal Care and Use Committee. Animals were
housed onareversed12 h:12 hlight cycle, witharoom temperature of
approximately 21.1°C and humidity between 25% and 45%.

MEC microprism implant. Methods for MEC microprism implant
have been described previously**?¢. Camk2a-tTA;tetO-GCaMP6s
double transgenic heterozygotes—created by crossing B6;DBA-
Tg(tetO-GCaMP6s)2Niell/J and B6.Cg-Tg(Camk2a-tTA)IMmay/Dbo]
(Jackson Laboratory)—were used for calcium-imaging experiments.
DREADD validationexperiments were performed in two mice (onemale,
onefemale, aged 4-5 months). To examine neural activity in the tDNMS
task, six mice (five males and one female, one aged 17 weeks and five
6-8 weeks onthe date of surgery) were used. Briefly, mice were anesthe-
tized using 1-2% isoflurane. An approximately rectangular craniotomy
was made over the dorsal surface of the cortex (above the MEC) and cer-
ebellumwith corners positioned as follows: (1) ~2.1 mmlateral to bregma,
~4.5 mmcaudal tobregma (-300-500 pmrostral to the transverse sinus);
(2)-4.5mm lateral to bregma, -4.5 mm caudal to bregma (-300-500 pm
rostraltothe transversesinus); (3) ~2.1 mmlateraltobregma, ~7.75-8 mm
caudal to bregma (-3.25-3.5 mm caudal to the transverse sinus); and
(4)-4.5 mmlateraltobregma,-7.75-8 mmcaudaltobregma(-3.25-3.5mm
caudal to the transverse sinus). After the skull was removed, a portion
ofthe cerebellum was aspirated to expose the caudal surface of the cor-
tex. The tentorium separating the cerebellum and cortex was carefully
removed, leaving the duraofthe cortex completely intact. Amicroprism
(right-angle prism with 1.5-mm side length and reflective enhanced
aluminum coating on the hypotenuse; Tower Optical) was mounted
on a customized stainless-steel mount (using ultraviolet light-curable
adhesive; Norland). This assembly was then positioned by aligning the
front face of the microprism parallel with the caudal surface of the MEC
and the top surface of the microprism perpendicular to the (eventual)
axis of excitation light propagation. A thin layer of Kwik-Sil was applied
to the caudal MEC surface before microprism implantation to fill the
void between the brain and the front surface of the microprism. The
microprism and mount were rigidly held in place and the craniotomy
sealed by application of a thin layer of Metabond to all exposed sides
ofthe microprism (except the top surface of the prism) and mount and
on any exposed skull or brain. A titanium headplate (9.5 x 38 mm?) was
thenattachedtothe dorsalsurface of the skull, centered onand aligned
parallel to the top face of the microprism. A titaniumring (27-mmouter
diameter and 12.5-mm inner diameter, with a 3-mm high edge) was
then attached to the top surface of the headplate, centered around the
microprism, and the area between the craniotomy and the inner edge
of the metal ring was covered with opaque dental cement (Metabond,
Parkell; made opaque by adding 0.5 g of carbon powder, Sigma-Aldrich).

AAV injections. To inhibit MEC, C57BL/6 mice obtained from Charles
River (n =40 mice: 20 males and 20 females; postnatal 2-3 months)
were injected bilaterally with pAAV-CaMKIla-hM4D(Gi)-mCherry
(Addgene: AAVS; 2.40 x 10 genome copies (GC) ml™; diluted 1:1
in phosphate-buffered saline (PBS)) or pAAV-CaMKIla-mCherry
(Addgene: AAVI; 1.40E x 10" GC mI™; diluted 1:1in PBS). A Nanoject
Il Injector (Drummond) was used to inject 80 nl of virus (divided into
4x20-nlinjections, injected atarate of 10 nl s™) at 6 sites in each hemi-
sphere. Injections were targeted at: 2.9 mm lateral from bregma and
0.15 mmrostral to the transverse sinus; 3.3 mm lateral from bregmaand
0.15 mmrostral to the transverse sinus; and 3 depths (1.2 mm, 1.6 mm
and 2 mm) from the dorsal surface of the brain.

Experimental setup for tDNMS task establishment and DREADD
inactivation experiments. Mice were head-fixed over a cylindrical
treadmill (60-cm circumference and 10-cm width), which was enclosed

in abox (60 cm length x 60 cm width x 63.5 cm height). After being
head-fixed, an odor nozzle and lick spout were placed near the mouse.
Odorized air was delivered using a flow dilution olfactometer®.
The olfactometer consisted of two streams of air: a carrier stream
(0.9 min™) and an odorized stream (50 ml min™) which carried isoamyl
acetate (2% isoamyl acetate in mineral oil; odorant from Cole-Parmer,
99+%). The two streams combined and a solenoid valve was used to
direct the odorized airflow either to the mouse (via the odor nozzle) or
toavacuum (1.8 I min™). Odor delivery was validated using a photoioni-
zationdetector. Licking was monitored throughout each training ses-
sionand was detected using a capacitance sensor (SparkFun Capacitive
Touch, catalog no. AT42QT1010) with an electrode positioned on the
lick spout. A solenoid valve was used to deliver water (-6 pl per drop)
viathelick spout whenappropriate. All experimental paradigms were
automated and controlled using an Arduino Uno and data collection
was performed using a Picoscope Oscilloscope (Pico Technology,
v.6.13.2, catalog no. PIC0O4824) sampling at1 kHz. Mice were free to run
on the treadmill during all training sessions. Behavioral training was
performedinthe dark, during the dark phase of the animals’light cycle.

Behavioral training. After recovering from surgery, mice began water
restriction (-1 ml of water per day). Once mice reached ~-85% of their
initial weight, they began pretraining for the tDNMS task. Mice were
firstacclimated to the experimental setup though a habituation phase.
During habituation, series of 50 drops of water (3 s apart) were deliv-
ered to the mouse (3-6 series of 50 drops per session). Habituation
ended after the mice licked to consume >80% of water dropsinaseries
of 50 drops. After habituation, mice began three phases of shaping:
shaping 1, shaping 2 and shaping 3. Shaping followed the same trial
structure of the tDNMS task; however, only nonmatch trials were used.
Each trial consisted of a flash of green light (lasting 0.25 s in duration
and preceding odor onset by 3 s) to alert mice that the trial was about
tostart, thefirst odor, anISI, the second odor and aresponse window.
Trials were separated by arandom ITI (ranging from 16 s to 24 s). In
shaping 1, a drop of water was automatically delivered 0.25 s after
the second odor offset in each trial. Once the mice licked to consume
dropsin>80% of'trials, they progressed to shaping 2. Probe trials were
introduced in shaping 2. During probe trials, the mouse had to lick
within a3-s response window after the second odor offset to trigger a
reward. Ifthe mouse successfully triggered areward, the next trial was
another probe trial. If the mouse failed to trigger a reward in a probe
trial, the next trial was automatically rewarded, after which the mouse
was given another probe trial. Training on this phase continued until
micelicked toearnarewardin >20 consecutive trials. Mice then began
shaping 3, which had the same probe trial format as shaping 2. However,
inadditiontolickingin the response window, mice were also required
towithhold licking during the first odor and ISIto trigger reward deliv-
ery. Training on this phase continued until mice reached 2 consecutive
sessions of >20 consecutive rewarded trials, after which they began
the tDNMS task. Some mice failed to reach this benchmark yet
routinely performed above chance on probe trials. These mice instead
began the tDNMS task after reaching >80% correct performance on
probe trials. After shaping, mice began the tDNMS task, where match
trials were introduced. Match and nonmatch trials were included in a
pseudo-random manner and balanced so that halfthe trials were match
and half were nonmatch. Nonmatch trials were evenly split between
S-L and L-S trials. Mice were rewarded in nonmatch trials only if they
withheld licking during the first odor and ISl and if they licked within
the 3-sresponse window after the second odor offset. Mice received no
reward in match trials and were punished with anincreased ITI (+12 s)
for licking in the response window. Mice were trained for one session
per day, with each session consisting of 100 trials for shaping or 90
trials for the tDNMS task. Mice were trained at least 5d aweek during
pretrainingand 7 d aweek during the tDNMS task. The tDNMS learning
was assessed by examining performance over the first eight sessions,
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by which point performance begins to plateau (Extended Data Fig. 7b;
no significant improvement from extended training across sessions
8-14:repeated-measures ANOVA F,, = 0.45, P= 0.84).

Several cohorts of mice (C57BL/6 mice obtained from Charles
River, balanced male and female, postnatal 2-3 months) were used
to establish the tDNMS task (Fig. 1), with minor variations between
cohorts. For the first cohort, the light cue indicating trial start was
0.25 s before first odor onset and each upcoming trial was assigned
based on probability (25% chance of S-L, 25% chance of L-S, 50% chance
of S-S). Subsequent mice were trained on the standard version of the
task. In the standard task, the light cue indicating trial start appeared
3 s before the first odor onset. In addition, trials were presented in a
block structure: each block of four trials consisted of two S-S trials, one
S-Ltrialand one L-S trial, presented in arandom order.

MEC inactivation experiments (Fig. 4) were performed in two
cohorts of mice. Each cohort contained abalanced number of control
and DREADD mice, with the experimenter blind to experimental condi-
tions. After tDNMS training, the first cohort of mice was trained for an
additional session of 30 trials with no odor (mineral oil only) to ensure
that mice use odor to solve the task. The second cohort of mice was
trained for 16 sessions to test the role of MEC after task learning, and
then was subsequently trained on an Fl task® to determine whether
MEC is necessary to learn more rigid timing behavior. Mice that did
not meet the criteria to advance beyond shaping, and thus were not
trained on the tDNMS task, were also trained on the Fl task. The same
experimental apparatus was used for the Fltask with the exception of
odor delivery. Ineach session of the Fltask, a (-6 pl) drop of water was
delivered to the head-fixed mouse every 10 s (150 drops per session).
Mice were trained for one session per day for 5 d on the Fl task.

Imaging datawere collected from separate cohorts of mice. Imag-
ing was performed using transgenic mice expressing GCaMP6s under
the CaMKIla promoter. Two mice were used to validate the efficacy
of DREADD-mediated inhibition in MEC and were not trained on the
tDNMS paradigm. Six mice wereimplanted and then underwent tDNMS
training. To determine how time cells adapted to changes in trial struc-
ture, mice were tested ona probe session after tDNMS learning inwhich
thelSIwaslengthened from2sto5 s duringthelast half of the session.

A final, separate cohort of mice (C57BL/6 mice obtained from
CharlesRiver, equally balanced male and female, postnatal 2-3 months)
was trained on a version of the tDNMS task with modified durations.
As aresult of the three trial-type design, mice could solve the tDNMS
task by learning to lick if the total trial duration was long and to with-
hold if the total trial duration was short. Standard experiments were
performed with a 2-s short odor, 3-s ISl and 5-s long odor, making
nonmatch trials 10 s and match 7 s. To test whether mice used a rigid
strategy, we decided to introduce probe trials that cause match and
nonmatch trials to be the same overall duration. With our standard
durations, this would mean lengthening the ISl on match probe trials
by 3 s. However, this change would increase task difficulty (increasing
the time the mouse must resist impulsivity and increasing working
memory demand), making it difficult to determine whether a potential
drop in performance is caused by increased task difficulty or use of a
rigid strategy. To avoid this problem, we instead trained a separate
cohortof mice ona version of the task with 3-s short odors, 5-s ISl and
6-s long odors so that we could reduce the ISI in nonmatch probe tri-
als (randomly chosen half of nonmatch trials) to equal the total trial
duration of match trials.

Two-photonimaging of MEC neurons. After mice were pretrained on
the tDNMS task (14.5 + 3.9 d of pretraining), we began two-photon laser
resonance scanning of populations of neurons expressing GCaMP6s
through the microprismusing a Neurolabware microscope. Data were
acquired with an 8-kHz resonant scanner, images were collected at a
framerate of 30 Hz with bidirectional scanning and Scanbox software
was used for microscope control and data acquisition. A Ti:Sapphire

laser (Discovery with TPC, Coherent) at 920 nm was used as the exci-
tation source, with average power measured at the sample (after the
objective; x20/0.45 numerical aperture (NA) airimmersion objective
(LUCPanFL, Olympus) with correction collar set at 1.25) of 50-120 mW.
Imaging was also tracked using a PicoScope Oscilloscope sampled at
1kHz to synchronize data with behavior.

Histology. After the behavioral experiments, mice were perfused
using 4% paraformaldehyde (PFA) in 0.1 MPBS. The brain was removed
and fixed in 4% PFA in 0.1 M PBS for ~24 h. Brains were rinsed 3x with
0.1 M PBS, then stored in PBS for 1+ d before the tissue was sectioned
into 50- to 100-um sagittal slices using a vibrating microtome. Free
floating slices were thenincubated in 0.1 M PBS with 0.1% Triton-X for
15 min, washed with 0.1 M PBS and incubated for 3 hin a25:1solution
of 0.1 M PBS with 435/455 blue or 530/615 red fluorescent NeuroTrace
Nisslstain (Invitrogen). Brain sections wereimaged and stitched using
a'VS200 Virtual Slide fluorescence microscope (Olympus) with a x10
OFN26.5,NA 0.40 objective.

Data analysis

Data acquisition and analysis. Behavioral data were collected using
a PicoScope Oscilloscope, then subsequently analyzed in MATLAB
(2018b).Imaging datawere acquired using Scanbox v.4.1and analyzed
on a IBuyPower Intel Core with Windows10 and customized software
written in MATLAB (2018b). Licking behavior was modeled using
customized codeinPythonv.3.11.4.

Behavioral performance. Performance on the tDNMS task was ana-
lyzed by determining the percentage of trials in which mice behaved
correctly. Correct nonmatch trials were defined as those in which
mice withheld licking during the first odor and ISI and licked in the
3-s response window after the second odor offset to trigger reward.
Correct match trials were defined as those in which mice withheld lick-
ing for the duration of the trial. Mice that met the criteria to advance
beyond shaping and begin the tDNMS task were included in the analysis.
However, a subset of mice was removed from analysis owing to: afailure
to retain the task structure learned in shaping (performance >3 s.d.
below the mean ontDNMSsession 1, n =1mouse), headplate falling off
(n=1mouse) or lack of virus expression (n =2 mice). Although most
behavior was analyzed as the percentage correct trials, licking behav-
ior was further examined in some instances. Licking was analyzed by
identifying lick events, defined as samples (sampling rate of 1kHz) in
which the capacitance sensor detected a signal. For tDNMS behavior,
any licking after reward delivery was removed to focus on predictive
and not consummatory licking. Lick events were thenbinned in 0.25-s
bins, normalized to the maximum within the session. Lick events were
also used to examine performance inthe Fltask. Performance onthe FI
task was measured as the percentage of trials in which mice engaged
in predictivelicking, where predictive licking is defined asanincrease
in lick events (determined by a significantly positive slope) in the 5s
preceding reward delivery. Precision in the Fl task was estimated by
determining time of peak licking activity of each mouse on each ses-
sion. Licking datawere binned in 0.25-s bins, and the bin number with
the maximum number of lick events was recorded for each of the 150
trials. These values were then averaged and converted to time to give
an estimate of peak lick time across the session.

Image processing, ROl selection and transient analysis. In vivo
two-photon data sets were acquired during the tDNMS task
(120,000 frames per session). Videos were first motion corrected
using whole-frame crosscorrelation, as described previously®® and
the motion-corrected time series was used for all subsequent anal-
ysis. Regions of interest (ROIs) were defined using Suite2P v.0.10.1
(ref. 54). Significant Ca*" dF/F transients were identified using previ-
ously described methods?®>*>,
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Defining time cells in the tDNMS task. Cells exhibiting significant
tuning at specific time points during trials were defined based on
mutual information®*”’. Before computing mutual information, Ca*'
signals were normalized in each trial by dividing their peak dF/Fvalue
to prevent one or two large transients determining a cell’s activity
pattern. Subsequently, dF/Fvalues were averaged across correct trials
and mutual information for the averaged dF/F was calculated using
the following equation for each trial type (for example, S-S, S-L, L-S):

. . A;
Mutual information = Zi:p,-/l,-logzi’

where i denotes bin, p;is the occupancy rate in the ith bin, A;is dF/F at
the ith bin and 1 is the mean dF/F. To determine whether the mutual
information significantly exceeded that expected by random activity,
thedF/Fvaluesforeachtrialwerecircularly shifted by arandomamount
and mutual information was then computed using the shuffled data.
Shuffling wasrepeated 1,000x. The Pvalue was defined as the propor-
tion of shuffled mutual information greater than or equal to real mutual
information. Cells were classified as active cellsif the mean dF/F > 0.03
and the active cells were classified as time cellsif the Pvalue of mutual
information <0.01.

Comparing correlation between match and nonmatch trial types
across day 1to day N. Time cells in either S-S or S-L trial types were
selected and Pearson’s correlation coefficient between these two trial
typeswas calculated for each cell. The same procedure was performed
using time cells in either S-S and L-S trial types. All correlation coef-
ficients were pooled and compared between day 1and day N using
Wilcoxon’s rank-sum test.

Population vector differences between match and nonmatch trial
types across trial epoch. Time cells in either S-S or S-L trial types
were selected. Population vectors were constructed from dF/F of all
selected cellsateach time bin. The difference in dF/Fbetween S-S and
S-Ltrial types was then computed for each time bin. A corresponding
shuffle distribution was generated by randomly assigning trial types
and obtaining the dF/F difference 10,000x. The time bin where the
actual data exceeded the top 0.1% of the shuffled distribution was
considered the significant discrimination timepoint for the trial type.
The discriminant index was determined from the summation of the
difference between the actual and averaged shuffle values from 8 sto
11 s. This index represents the extent to which the actual dF/F distin-
guishes between trial types compared with the chancelevel. The same
procedure was repeated for time cells in either S-S or L-S trial types.

Decoding trial type using k-means clustering. The k-means cluster-
ing was employed to assess the segregation of neural ensemble activity
across different trial types. For each trial, population vectors were
created by averaging dF/F during the late phase of trials (9-115s). To
prevent overfitting, we reduced the dimensionality of the population
vectors to 30 using principal component analysis. The first two linear
discriminant components were then determined, forming the axis for
the two-dimensional LDA plot (Fig. 3g). Next, the k-means clustering
method was applied to this two-dimensional plot to classify trialsinto
three clusters (Extended Data Fig. 4a). Decoding accuracy was assessed
by calculating the proportion of correctly classified trials. To establisha
baseline, the same procedure was repeated 10,000x with shuffled trial
typestogenerate acorresponding chance distribution. The Pvalue was
then computed as the proportion of shuffle values equal to or greater
than the actual accuracy of decoding.

Decoding trial type using the SVM. A classifier for each day Nsession
was developed using the SVM and the MATLAB function fitecoc. Only
correcttrialswere used in this analysis. Mean dF/F of time cells during

either theearly (0-2 s) orthe late (9-11s) phase of trialswas used asan
input matrix for the fitecoc function. The response input (Yinput) for
thisfunction waseither trial type (thatis, S-S, S-L, L-S) or match versus
nonmatch of the training trials. The classifier computed from fitecoc
then fed to the predict function to obtain decoded responses (for
example, S-S type) corresponding to the testing dataset. We applied
aleave-one-out crossvalidation method, so the classification process
was repeated as the number of entire trials. In each iteration, a single
trial was selected for the testing dataset and the rest of the trials were
assigned for the training dataset. To calculate the chance level of decod-
ing accuracy shown in Fig. 3h, the response input for the classifier
(that is, trial types or match versus nonmatch) corresponding to the
training trials was shuffled when creating the classifier. This process
was repeated 1,000x to make a distribution of decoding accuracy for
shuffled data. The bootstrap Pvalue was determined as the proportion
of decoding accuracies in the shuffled distribution that were equal to
or greater than the accuracy of the actual dataset.

Measuring activity coherence in error trials. As a result of the low
number of error trials in S-L and L-S trials, this analysis was applied
onlytoS-Strialdata. Correcttrials were divided into two groups using
arandomsubset of trials (correct A and correct B). The number of trials
assigned to correct B was set to match the number of error trials. Cell
activity was sorted according to the sequence in correct A and cor-
relations for each cell’s activity were computed for correct A versus
correct B (blue in Fig. 3j) and correct A versus error (red in Fig. 3j).
Random sampling of trials was repeated 1,000x% to obtainadistribution
of correlation coefficients. Then, the mean values of these correlation
coefficients were taken as the cell’s correlation coefficient values. To
compare day 1with day N, Pearson’s correlation coefficient between
averaged dF/F on S-S error trials and correct trials of each trial type
was calculated for S-S time cells (Extended Data Fig. 4c). To ensure a
consistent number of trials for comparison, seven trials were randomly
selected and used to compute the averaged dF/F. The resulting sets
of correlation coefficients were then compared across sessions (that
is, day 1versus day N) and trial types using atwo-way mixed ANOVA.

Comparing variance across time and distance. The dF/F values for
time cells were re-charted based on the elapsed running distance from
the moment that the trial initiation light was turned on. For each trial,
we measured the peak dF/Flocation within the distance dimension. The
variability of these peak locations was assessed using the CV, which s
theratio of the s.d. to the mean and provides a standardized measure
of dispersion. This method allows for the comparison of variations
across different scales or dimensions. After this, the procedure was
applied similarly to measure the elapsed time since the initiation light
was activated. The CVsfor the time cells were then compared between
the distance and time dimensions using a paired Student’s ¢-test.

Generalized linear model. To determine the individual contributions
of different behavioral variables (D, Tand L) in predicting the activity
of MEC neurons, we employed a GLM. This model fits calcium activity
(dF/F) as a Gaussian linear function using various combinations of
these three behavioral variables®*°. For the dF/F data of each cell in
each trial type (S-S, S-L and L-S), we developed seven models. These
included three single-variable models (D, T, L), three double variable
models (7D, TL, DL) and one comprehensive model (TDL). We utilized
data from ten recording sessions to perform this modeling.

In our model, distance is represented by ten binary variables,
correspondingto ten spatial bins, with each bin equal to one whenthe
animal occupied that spatial bin and zero otherwise. Time and licking
arerepresentedinthe same way by ten and two binary variables, respec-
tively. The dF/F was then smoothed with a Gaussian kernel. Models
were fit using the MATLAB fitglm function with a fivefold crossvalida-
tion procedure. We then calculated the LLH increase (LLHi) for each
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model as follows: where N is the number of data points, dF/F is the
model predicted dF/F and dF/F the session mean dF/F. LLH is normal-
ized by recording time (per min).

1

N
LLHodel = —EanITUZ - 302

N 2
Z (dF/F; - dFTF;)

N 2
LLHmean = —gll’IZITUZ - % (dF/Fi — dF/F)
i

LLH = LLH x Sampling rate x 60/N

LLHi = LLHyoge — LLHpean-

Toselectthemodel that best described the calcium activity of each
cell, we first found the single-variable model with best performance,
then determined whether any double variable models that included
this single variable had better performance. If so, we then compared
the double variable model with the full model. Model performance
was determined by comparing the LLHi using a one-sided signed-rank
test, with asignificance value of P= 0.05. To ensure the significance of
the models, we used datafromacell onlyifits best model has LLHi > 0.

To estimate the specific contribution of each behavioral variable,
we found all cells with significant full and double variable models. We
then calculated the log-likelihood difference as follows (using time as
anexample):

If the best model of a cell is the full model:

LLH; = LLHyp;, — LLHp,.

If the best model is one of the double variable models:

LLH; = [(LLH;p — LLHp) + (LLHy; — LLH,)] /2.

Across all cells and trial types, we identified N =177 significant
models (Kruskal-Wallis test followed by Wilcoxon’s rank-sum test with
Bonferroni’s correction, P< 0.001 for all). We selected the model that
best described the dF/F for each cell and trial type as the model with
the highest LLHi, which most often corresponded to a single-variable
model of time (125 out of 177 significant models).

Poisson modeling of animals’ licking behavior. A Poisson GLM was
fittothe anticipatory licking dataindividually for each mouse to assess
animals’ internal model for solving the task. Behavioral data were
down-sampled to 10 Hz and cropped to 20 s per trial. The expected
value for anticipatory lick counts, A(t), was predicted according to a
Poisson distribution:

A) = X'

where x(t) corresponds to the column vector of predictor features
in the model at time ¢ and @ is the vector of weights assigned to each
feature’sinfluence onthe predicted lick count. Only anticipatory licks
were used and any licks after water delivery were omitted.
Ano-strategy model was first developed in which mice could learn
to modify licking probability based on individual event-based cues.
Under this ‘cue-based’ model, mice could modify licking probability
inresponse to key events: any odor offset, prolonged odor exposure
or second odor offset. This cue-based approach could resultin licking
at key times throughout the trials but could never solve the task with
100% success. The four cognitive strategies were then tested by add-
ing features that corresponded to whether the conditions givenby an
individual strategy were met. Strategy 1involves identifying the long
stimulus as a‘go’ cue and licking after second odor offset. This strategy

did not permit predictive licking before the second odor offset. Strat-
egy 2 required timing the entire trial duration, not individual odors,
and using total trial duration to solve the task. This strategy could be
further assessed using probe trials with manipulated total trial dura-
tions. Strategy 3 was similar to strategy 1, in which mice used the long
stimulus as a go cue. However, in strategy 3, mice timed both stimuli,
allowing predictive licking. Finally, strategy 4 required timing both
stimuli and comparing the durations after.

Eachstrategy was tested individually by adding its featuresto the
cue-based model and calculating the degree of improvement in the
model fit to observed licking. For all models, cue-based features were
lagged every time binfrom O sto 2 sand strategy-based features were
givenlagsfrom 0 sto12 stoaccountforany licking between the offset
of the second odor until the end of the trial. Estimated weights (8) for
each feature were learned using Python’s scikit-learn package. We
applied L2 regularization to avoid overfitting owing to predictor col-
linearity and we evaluated the models by k-fold crossvalidation across
trials (k=10). Models were scored using the deviance explained (d?)
metric to assess goodness of fit. For models including strategy-based
features, we calculated the LLHi over the cue-based model.

Comparing pairwise activity correlation between trial period and
ITI. To measure the coherence of MEC time cells across tDNMS trial and
nontrial epochs, we compared the pairwise activity of all time cell pairs
between the trial period and the ITI’®. The entire time series of dF/Fin
a session (for example 120,000 frames) was segmented into 500-ms
time bins and dF/Fvalues were summed within each time bin. Time bins
from1sbeforethefirst odor onset tothe second odor offset (11 s) were
includedinthetrial period and time bins from 5 s after the second odor
offset to 4 s before the next first odor onset were included in the ITI.
Giventhe3-to5-sgapsbetweeneachtrial period and ITI, thelikelihood
ofactivity from one epochinfluencing the other was minimal. The time
bins within these gaps were excluded from the analysis. Kendall’s cor-
relation (7 values) was calculated for the series of summed df/F values
during either the trial period or ITl across all pairs of simultaneously
recorded time cells. Then, the coherence across trial and ITl epochs
was measured by computing Pearson’s correlation coefficient between
sets of corresponding 7 values of the trial period and ITI (Fig. 6b). To
generate shuffled data, the dF/F values were circularly shifted by a
random amount before computing rvalues. The same procedure was
repeated for correct versus error trials (Extended Data Fig. 10a) and
between different trial types (Extended Data Fig.10b). InFig. 6¢, the T
values for the ITI were plotted against the difference in peak times of
each cell pair during the trial period.

Statistics and reproducibility

No statistical methods were used to predetermine sample sizes. Sample
sizes were based on and comparable to previous work?%*, Statistical
tests were used to test statistical significance when appropriate and
include ANOVA, Student’s t-test, Wilcoxon’s rank-sum test, two-sample
KStest, x* test, Wilcoxon’s signed-rank tests, Spearman’s rank correla-
tion, Pearson’s correlation and the Kruskal-Wallis test. All statisti-
cal tests were two sided unless stated otherwise. For tests assuming
normality, data distributions were assumed to be normal, but this
was not formally tested. All data in the text and figures are labeled as
mean +s.e.m., unless stated as mean + s.d.

For MEC inactivation experiments, animals were randomly
assigned to experimental condition. The experimenter was blind to
the experimental conditions for all training on the tDNMS task but
was unblinded before the Fl experiment to permit tDNMS data analy-
sis. Inactivation experiments were performed in two cohorts of mice
to verify effect reproducibility, with the second cohort successfully
replicating the first. Imaging data were also reproducible, given con-
sistent findings across six mice. Mice were excluded from analysis only
if the following occurred: failure to meet criteria to move beyond the
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shaping phase of the task, failure to retain the task structure learned
inshaping (performance >3 s.d. below the mean on tDNMS session 1),
headplate falling off during tDNMS task training or lack of on-target
virus expression.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data presented in the present study are available upon reasonable
request to the corresponding author and will be made publicly avail-
ableathttps://github.com/heyslab/Bigus_Lee_NatNeuro 2024 1.5 years
after publication.

Code availability
Code is available at https://github.com/heyslab/Bigus_Lee_Nat-
Neuro_2024 or uponreasonablerequest tothe corresponding author.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| tDNMS set-up, controls, and additional behavioral
analysis of mice in Fig. 1. a. Experimental set-up. Odorized air is directed either
to the mouse or toa vacuum. A lick spout, connected to a capacitance sensor,
delivers water and is used to monitor mouse licking. b. Odor concentration
control. Odor concentration was measured using a photoionization detector
(PID). Odor canbe delivered with high temporal specificity at a constant
concentration over 45 minutes, as shown by PID measurements (green) relative
to control signal (black). c. Trial structure. Each trial consists of two presentations
ofthe same odor, each for eithera2 or 5 s duration, separated by an interstimulus
interval (ISI). Trial start is signified by a visual cue, and trials are separated by
al6-24 sintertrial interval. d. Training protocol. Mice undergo three phases of
pretraining (see Methods). e. Odor control session. After completing tDNMS
training, mice were tested with no odorant (mineral oil only). Mice failed to solve
nonmatch trials in the absence of odor but performed well in a prior session in
which odorwas used (p =2.6 X107, two-tailed paired t-test; n = 14 mice). Bars
represent mean across mice +s.e.m.f. Trial length control session. A cohort of
mice was trained on a version of the tDNMS task with modified durations. The
ISI was then manipulated on arandom subset of nonmatch trials (“probe trials”)
so that overall trial duration was identical to match trial duration. If mice use
total trial duration to solve the task, rather than individual stimulus durations,
they should incorrectly withhold licking on probe trials. Instead, there was no
significant difference between standard nonmatch and probe trial performance
(p =0.19, two-tailed paired t-test; n = 7 mice). Bars indicate mean across mice
+s.e.m.g. Average performance by trial type during shaping (phase 3) of mice

inFig.1(n=26).Shaping consists of probe trials where mice must correctly
trigger reward and automatic trials where reward is automatically delivered.
Performance was examined on all probe trials within the first 1/2 session of
shaping phase 3, termed “early shaping”, and the last 1/2 session of shaping
phase 3, or “late shaping”, for each mouse. Dots represent performance of each
mouse, and bars show mean * s.e.m. across mice. Mice performed better on
short-long trials than long-short both early (p = 4.3 x 107, two-tailed paired
t-test) and late (p = 0.041, two-tailed paired t-test) in shaping. Additionally,
performance was higher for both short-long (p = 0.009, two-tailed paired t-test)
and long-short (p =4.7 x107'°, two-tailed paired t-test) trials in late compared

to early shaping. h. Reason for mistakes on long-short trials for mice in Fig. 1
(n=26). During shaping phase 3 and the tDNMS task, mice can miss nonmatch
trials either by withholding licking or by licking prematurely during the first
odor and/or interstimulus interval. The percent of incorrect long-short trials in
shaping phase 3 and the tDNMS task missed due to licking early is shown. Dots
indicate values for each mouse, with red lines showing the median value across
mice. i. Average time of first incorrect lick on long-short trials relative to first
odor onset for mice in Fig.1(n = 26). Black circles represent the average time of
firstlick across all incorrect long-short trials for agiven mouse, and red dots show
the median value across mice. j. Average time of firstincorrect lick on short-short
trials in the tDNMS task relative to first odor onset for mice in Fig. 1 (n = 26). Black
circles represent the average time of first lick across all incorrect short-short
trials for a given mouse, and red dots show the median value across mice.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2 | Histological verification of in vivo imaging in the MEC,
and additional examples of MEC time cells. a. Sagittal sections of post-mortem
histology from all six mice utilized in the in vivo calcium imaging experiments.
MEC neurons labelled with GCaMPé6s (green). The sections are stained with
NeuroTrace 435/455, displaying neuronal morphology in blue. The approximate
locations of the two-photon imaging fields of view (FOV) for each mouse are
labeled with red Alexa594. This labeling was achieved by inserting a pin coated
with Alexa594 at sites corresponding to prominent vascular landmarks visible

bothin thein vivo two-photonimaging and under a dissecting scope during the
ex vivo marking procedure. Confirmation of the imaging sites within the MEC
was based on the presence of the lamina dissecans, the relative position of the
post-rhinal border to the pin mark, and the characteristic circular shape of the
dentate gyrus as observed in the medial-lateral sagittal sections. n = 6 mice. b. For
each time cell, mean dF/F displayed for each trial type (top) and dF/F activity on
each trial, sorted by trial type (below).
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Extended Data Fig. 3| Additional analysis on time cell tuning. a. Top, sequence
of MEC time cells significantly tuned for S-S trials, sorted by S-S trials and
displayed for S-S, S-L and L-S trials. Middle, same as above, expect for significant
MEC time cells on S-L trials and sorted by S-L trials. Bottom, same as top, except
for significant MEC time cells on L-S trials and sorted by L-S trials. b. A generalized
linear model was used to assess whether neurons are tuned to one of three
variables- time in the trial, distance travelled from trial start, or licking - or a
combination of 2 or 3 variables (see Methods). Analysis performed on n = 695
time cells, collected from 10 behavioral sessions, lead to n =177 significant
models. Boxplot showing log-likelihood increase gained by each variable: time
(median =37.15), distance (median=14.63) and licking (median = 0.82) (two-
sided Kruskal-Wallis test, p = 2.6x10?; followed by two-sided Wilcoxon rank-sum
test with Bonferroni-correction: Time vs. Distance: p =1.7x10°%; Time vs. Licking:
p =3.7x10?%; Distance vs. Licking: p = 8.8x10™). Log-likelihood was normalized
torecording time in minutes. c. Histogram demonstrating the model that best
described the calcium activity of each cell and trial type. d. Boxplot showing
adjusted variance explained for models that best describe the calcium activity
of each cell for the single variable models: time (median=0.0512), distance
(median=0.0202) and licking (median=0.0101). Number of models n =125,396.
(One-sided Wilcoxon signed rank test (median greater than 0), p=0.0001,
p=0,p=0.0312). For box plots, the line inside of each box is the sample median.

The upper quartile corresponds to the 0.75 quantile and the lower quartile
corresponds to the 0.25 quantile. The blue dots inb and d represent outliers.
Outliers are values that are more than 1.5 x interquartile range (IQR) away from
the top or bottom of the box. The whiskers are lines that extend above and below
each box. One whisker connects the upper quartile to the nonoutlier maximum
(the maximum data value that is not an outlier), and the other connects the lower
quartile to the nonoutlier minimum. e. Proportion of MEC time cells that either
remained stable, displayed a time shift, displayed rate remapping, or displayed
on/off dynamics across trial types. f. Rank order analysis for shuffle distribution
(black) and real data (red). The similarity of the sequences of time cells across
trial types is examined by comparing their rank orders. Each time cell is assigned
three rank orders, corresponding toits sorting by peak timing for each trial type.
Subsequently, the mean difference between rank orders within a cellis compared
to ashuffle distribution, generated by shuffling rank order of cells 10,000 times.
The p-valueis computed as the proportion of shuffle values smaller than the
actual data. Notably, p-values are zero for all three comparisons. g. Discriminant
Index indicates the extent to which the difference in dF/F between trial types
deviates from chance level.S-Svs S-L: Day 1n =224, Day Nn =221,z =2.55,
p=0.01;S-SvsL-S: Day 1 n=225,Day Nn =231,z=3.80, p =1.4x10*, two-sided
Wilcoxon rank sum test. Individual data points with median.
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Extended Data Fig. 4 | See next page for caption.
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Extended DataFig. 4 | Trial type decoding analysis for each mouse, and
comparison of time cell activity on correct and error trials. a. For each panel:
Left, LDA plots for each mouse on each trial type (S-S - orange, S-L - Blue,

L-S - Magenta). K-means clustering is then applied to the LDA plots to categorize
the dots into three clusters. The background colors indicate the clustering
result. The accuracy of clustering analysis is determined by the proportion

of dots correctly classified into their respective trial type. Right, clustering
accuracy is compared between the bootstrapped shuffle distribution with
randomly assigned trial labels (grey) and the actual data (red). The p-value is
computed as the proportion of shuffle values larger than the actual data
(one-sided). For mouse 1through 6: p = 0,0.04, 0.08, 0, 0, 0.001, respectively.
No adjustment was made for multiple comparisons. b. Representative examples

of MEC time cells on day 1 (left) and day N (right), depicting activity for both
correctand error trials across all three types of trials. c. Cumulative distribution
functions of correlation coefficients calculated for each MEC time cell,
comparing activity across different trial conditions on day 1and day N. session
type main effect: p = 2.3x10°%, F ,55 = 18.5; trial type main effect: p = 0.12,

F 93,5555 = 2.1; interaction: p = 0.33, F; 3, 55515 = 1.1, two-way mixed ANOVA with
trial type and session factors. d. Sequence of activity of MEC time cells recorded
onday1,arranged according to their activity during error trials on Short-Short
(S-S) trials. This sequence is then applied to display cell activity for all three trial
conditions during correct trials, maintaining the order from the error trials.
e.Sameasind, butforrecordings ondayN.
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Extended Data Fig. 5| MEC time cells onISI probe trials. a. Schematic for probe  responses across the MEC time cell population under Short-Short, Short-Long,
trials. b. Comparative analysis of mean velocity and licking behaviorsunder three  and Long-Short conditions, compared between standard (black) and probe (red)
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(black) and probe (red) trials. c. Four example MEC time cells during control n=67,p=74x10°z=4.5; Long-Short trial types:n=67,p =3.2x10%,z=4.2,
(black) and probe (red) trials. d. Aggregated data showing the timing of peak two-sided Wilcoxon signed-rank.
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Extended Data Fig. 6| MEC DREADD inactivation. a. Ability to inhibit MEC

was confirmed using in-vivo 2-photon imaging combined with hM4D(Gi)
inactivation. Histology showing co-expression of GCaMP6s and hM4D(Gi)-
mCherry in MEC, one section from one mouse is shown. b. Activation of
inhibitory DREADDs by 1 mg/kg I.P. injection of DCZ reduces average number

of Ca2+ transients in MEC neurons by 80% at 30 minutes post injection

compared to before DCZ injection. Top, example neuron before and after DCZ
administration. Bottom, population response. In both the control (blue) and DCZ
(red) conditions, GCaMP activity was monitored over 5-minute periods, and the
change in activity was measured for each cell (n = 205 neurons in DCZ condition
and n =364 neurons in control condition, measured across two sessions in each
condition; p < 0.01, two-tailed Kolmogorov-Smirnov test). c. Average time of
firstlick relative to first odor onset on session1of the tDNMS task for micein

Fig. 4. Dots show average time of first lick for each mouse, with bars showing
mean +s.e.m. across mice. There is no difference in average time of first lick for
DREADD (n =15) and Control (n =16) micein any trial type (Short-Short: p = 0.56,
Short-Long: p = 0.14, Long-Short: p = 0.52, two-tailed unpaired t-tests). d. Average
performance by trial type during shaping for mice in Fig. 4 (n = 31 mice). Shaping
consists of probe trials where mice must correctly trigger reward and automatic
trials where reward is automatically given. Performance was examined on all

probe trials within the first1/2 session of shaping phase 3, termed “early shaping”,
and the last 1/2 session of shaping phase 3, or “late shaping”, for each mouse. Mice
performed better onshort-long trials than long-short both early (p =2.9 x107%,
two-tailed paired t-test) and late (8.5 %107, two-tailed paired t-test) in shaping.
Additionally, performance was higher for both short-long (p =1.3x10°%, two-
tailed paired t-test) and long-short (p = 3.1 x 107", two-tailed paired t-test) trials in
late compared to early shaping. Dots represent performance of each mouse, with
blue dots for Control mice (n =16) and red for DREADD mice (n =15). Bars show
mean +s.e.m. across all mice. e. Reason for mistakes on long-short trials for mice
inFig. 4. During shaping phase 3 and the tDNMS task, mice can miss nonmatch
trials either by withholding licking or by licking prematurely during the first odor
and/or interstimulus interval. The percent of incorrect long-short trials missed
dueto licking early is shown. Dots indicate values for each mouse, with DREADD
miceshowninred (n=15) and Controlinblue (n=16), and black lines show the
median value across all mice. f. Average time of first incorrect lick on long-short
trials relative to first odor onset for mice in Fig. 4. Blue (Control, n =16) and red
(DREADD, n =15) circles represent the average time of first lick on all incorrect
long-short trials for a given mouse, and black dots show the median value

across all mice.
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Extended Data Fig. 7| MEC is not required for all interval timing behavior.

a. Schematic for inhibiting MEC after learning in the tDNMS task. After
experiments testing the role of MEC during learning (Fig. 4), a subset of mice
(n=7DREADD, n =10 Control) underwent extended training to determine
whether MEC is necessary for ongoing task performance. b. Though MEC
inhibition impaired learning in the tDNMS task (Sessions 1-8), DREADD mice
learned the task in the absence of MEC inhibition (Sessions 9-14). Following
learning, subsequent administration of DCZ to inactivate MEC did not affect
performance in Sessions 15-16. Bars indicate mean performance + s.e.m
calculated across mice. c. Fixed interval task schematic. MEC DREADD (n =9) and
Control (n=10) mice were trained on a fixed interval (FI) task (Toda et al. 2017).
Adroplet of water (4-6ul) was delivered every 10 s to head-fixed mice. Licking
was measured; time-locked predictive licking indicates learning the timing of
water delivery. The DREADD agonist DCZ (1 mg/kg) was delivered 5 min prior to
eachsession. d. Licking behavior of DREADD (n = 9) and Control (n =10) mice

onsessions1and 5of the Fltask. Licking was normalized to the maximum lick
frequency with each session for each mouse. All trials for all mice are shown;
water delivery occurs at O s, indicated by ayellow line. Average lick response
for each sessionis shownin white. e. Fixed interval learning. Predictive licking
isdefined asanincreaseinlick rate, measured over 5 seconds preceding the
upcoming reward delivery. Both DREADD and Control mice learn the temporal
structure of the task, as demonstrated though more frequent engagement in
predictive licking from sessions 1-5. Data represent mean + s.e.m. averaged
across mice. f. Average time of peak predictive licking activity in Fl task relative
to upcoming water delivery. From session1to 5, peak predictive licking activity
moves closer to reward delivery (0 s) for both Control (p = 2.2 x 107, two-tailed
paired t-test) and DREADD mice (p = 0.0013 two-tailed paired t-test). Data points
represent average time of peaking licking on Session 1and 5 for each mouse;
barsindicate mean +s.e.m. across mice.
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Extended Data Fig. 8 | Histology showing expression of hM4D(Gi)-mCherry in MEC. Injections were performed bilaterally; sections spanning one hemisphere are
shown for each DREADD mouse from Fig. 4 (n =15, mouse identity and hemisphere noted). Five sagittal sections are shown per mouse, ranging from lateral (left) to
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Extended Data Fig. 9 | Additional details on Poisson Regression analysis of
behavior. a. Example of modeling behavior during tDMNS task. Top. Baseline
cue-based modelincluding only odor offset, long cue, and second cue features.
Bottom. Strategy-based model. Observed anticipatory licks are in black above
each model’s predicted value. b. Comparison of cue-based and strategy-based
models for anindividual animal. Mean lick rate for each trial type in black, model
predictions in color. c. Fitting a Gaussian Mixture Model with 2 components

to the best fitting LLHi over the cue-based model reveals two populations: one
cue-based where additional features do notimprove model performance (n =10
mice) and one strategy-based with improved model predictions (n =20 mice).

d. Astrategy-based model fits better on hit/correct reject trials compared to
miss/false alarm (based on Strategy 3) (n = 30 mice, two-factor ANOVA significant
effect for trial type F(2,155) = 7.64, p = 6.88x10* and result F(1,155) = 35.6,

p =1.58x10"8, but not type x result F(5,155) = 2.26, p = 0.11, post-hoc tests:

*-p<0.05,*-p<0.0L,**-p<0.001). e. Example cue and strategy-based models
for an animal where both fit similarly. f. Relationship between average mouse
performance on the task and how well models fit the data (linear regression,
r=0.369, p = 0.045). g. Nosignificant relationship between average percent
correct and evidence for animals using a strategy-based solution, based on

best fitting strategy (linear regression, r = 0.025, p = 0.895). h. No significant
relationship between ability to decode trial type from the neural data and the
ability to fita model to the behavior, based on best fitting strategy (strategy

and cue-based models, p = 0.600, p = 0.208, two-sided Spearman’s rank test

for correlation and t-statistic). Colors in panels f-h indicate imaged mice, gray
indicates notimaged. Center line on box plots depicts the median, the first and
third quartiles are indicated by extent of the box and whiskers indicate the outlier
cutoff (1.5x inter-quantile range).
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Extended Data Fig.10 | Activity correlation between time cells maintained shown for correct trials on each trial type (S-S vs S-L, right; S-S vs L-S, middle;
across conditions. a. Pairwise correlation between all time cells during correct L-SvsS-L, right).S-SvsS-L:n=15,727,z=72.4,p=0;S-Svs L-S:n=15,727,2= 66.3,
trials and error trials in the tDNMS task shown for real (blue) and shuffled data p=0;L-SvsS-L:n=15,727,z2=65.8, p = 0, two-sided Chi-squared test.

(black).n=15,727,z=69.6, p = 0, two-sided Chi-squared test. b. Same as in a, but
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Data collection  All experimental paradigms were automated and controlled using an Ardunio Uno and custom code, and data collection was performed using
a Picoscope oscilloscope (PICO4824, Pico Technology, v6.13.2). Imaging data were collected using a Neurolabware microscope and Scanbox
Scanbox v4.1 software.

Data analysis Imaging data was analyzed on a IBuyPower Intel Core with Windows10 using Suite2P v0.10.1 and custom software written in Matlab (2018b).
Licking behavior was modeled using custom code in Python 3.11.4. All other analysis was performed with custom code written in Matlab
(2018b). Code is available at https://github.com/heyslab/Bigus_Lee_NatNeuro_2024 or upon reasonable request to the corresponding
author. A subset of experimental schematics shown in figures were made using BioRender.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data presented in this study are available upon reasonable request to the corresponding author and will be made publicly available at https://github.com/heyslab/
Bigus_Lee_NatNeuro 2024 1.5 years after publication.
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Sample size

Data exclusions

Replication

Randomization

Blinding

No statistical methods were used to predetermine sample sizes. Sample sizes were based on reliably measuring experimental parameters
while remaining in compliance with ethical guidelines to minimize the number of animals used. Sample sizes were based on and comparable
to prior work (Heys et al. 2020, Heys & Dombeck 2018, Toda et al. 2017).

A subset of mice were removed from analysis for the tDNMS DREADD inactivation experiments due to: a failure to retain the task structure
learned in shaping (performance >3 SD below the mean on tDNMS session 1, n =1 mouse), headplate falling off (n = 1 mouse), or lack of virus
expression (n =2 mice).

MEC inactivation experiments were performed in two cohorts of mice, with the second cohort successfully replicating the first. Imaging data
were also reproducible, given consistent findings across 6 mice.

Mice were randomly allocated into control and experimental conditions in the DREADD inactivation experiments; however, we ensured there
were an equal number of males and females in each condition.

The experimenter was blind to experimental condition for all training on the tDNMS task but was unblinded prior to the subsequent Fixed
Interval experiment to permit tDNMS data analysis.
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Laboratory animals C57-BL6 mice between 1.5-7 months in age were used for experiments. Wildtype C57-BL6 mice were used to establish the tDNMS
task and for MEC inactivation experiments. Camk2a-tTA;tetO-GCaMP6s double transgenic heterozygotes were used for MEC imaging
experiments.Mice were housed on a reversed 12h/12h light cycle, with a room temperature of approximately 21.1 degrees Celsius
and humidity between 25-45%.

Wild animals No wild animals were used.

Reporting on sex MEC inactivation experiments were performed with equal numbers of male and female mice. No sex-dependent differences were
found in preliminary experiments; therefore, sex-based analysis is not included in this manuscript. Both male and female mice were
also used in imaging experiments.

Field-collected samples  No field-collected samples were used.

Ethics oversight All experiments were approved and conducted in accordance with the University of Utah Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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