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Abstract—There is an important need for methods to process
myocardial perfusion imaging (MPI) single-photon emission
computed tomography (SPECT) images acquired at lower-
radiation dose and/or acquisition time such that the processed
images improve observer performance on the clinical task of
detecting perfusion defects compared to low-dose images. To
address this need, we build upon concepts from model-observer
theory and our understanding of the human visual system to
propose a detection task-specific deep-learning-based approach
for denoising MPI SPECT images (DEMIST). The approach,
while performing denoising, is designed to preserve features
that influence observer performance on detection tasks. We
objectively evaluated DEMIST on the task of detecting perfusion
defects using a retrospective study with anonymized clinical data
in patients who underwent MPI studies across two scanners
(N = 338). The evaluation was performed at low-dose levels
of 6.25%, 12.5%, and 25% and using an anthropomorphic
channelized Hotelling observer. Performance was quantified using
area under the receiver operating characteristics curve (AUC).
Images denoised with DEMIST yielded significantly higher AUC
compared to corresponding low-dose images and images denoised
with a commonly used task-agnostic deep learning-based denois-
ing method. Similar results were observed with stratified analysis
based on patient sex and defect type. Additionally, DEMIST
improved visual fidelity of the low-dose images as quantified using
root mean squared error and structural similarity index metric. A
mathematical analysis revealed that DEMIST preserved features
that assist in detection tasks while improving the noise properties,
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resulting in improved observer performance. The results provide
strong evidence for further clinical evaluation of DEMIST to
denoise low-count images in MPI SPECT.

Index Terms—Detection, image denoising, myocardial
perfusion imaging (MPI), objective task-based evaluation, single-
photon emission computed tomography (SPECT).

I. INTRODUCTION

INGLE-PHOTON  emission computed tomography

(SPECT) myocardial perfusion imaging (MPI) has an
established and well-validated role in evaluating patients
with known or suspected coronary artery disease [1]. For
diagnosis of this disease, the clinical task performed on MPI-
SPECT images is the detection of focally reduced tracer
uptake (perfusion defects) reflecting reduced blood flow
in the myocardial wall. Typically, in clinical MPI-SPECT
protocols, patients are administered a radiopharmaceutical
tracer, such as Tc-99m sestamibi or Tc-99m tetrofosmin,
under stress and rest conditions. For a protocol involving
a Tc-99m radiopharmaceutical with rest and stress imaging
performed on a single day, the administered activity can be
as high as 48 mCi [2]. Thus, developing protocols to reduce
this administered dose are well poised for a strong clinical
impact [3], [4]. Additionally, current MPI-SPECT acquisition
protocols can take up to around 12—15 min, during which time,
the patient is required to be stationary. This is a challenge,
especially for older patients, which are a large fraction of the
patient population [5]. Thus, methods to reduce acquisition
time can make MPI-SPECT more comfortable for patients, less
susceptible to patient motion, and can also lead to increased
clinical throughput and reduced cost of imaging. However,
reducing this dose and/or acquisition time results in a lower
number of detected counts in the projection data, which, when
reconstructed, yields images with deteriorated image quality in
terms of the ability to reliably detect perfusion defects. Thus,
there is an important need to develop methods to process
low-count MPI-SPECT images for improved performance on
detection tasks.

In recent years, deep learning (DL)-based methods have
shown promise in processing MPI-SPECT images [6], [7],
[81, [9], [10], [11], [12], [13], [14], [15], particularly in
image denoising for predicting normal-dose images from low-
dose images [12], [13], [14], [15]. Typically, these denoising
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approaches are trained by minimizing a loss function based
on image fidelity, such as pixel-wise mean squared error
(MSE), between the actual normal-dose image and low-dose
image predicted by the deep network. These methods have
usually been evaluated with fidelity-based metrics, such as
root MSE (RMSE) and structural similarity index metric
(SSIM), where the results have indicated that the methods
provide improved performance compared to low-dose images.
However, it is well recognized that for clinical translation, DL-
based denoising methods need to be evaluated on performance
in clinically relevant tasks [16], [17], [18], [19]. At an early
stage of translation, model observers provide a mechanism to
perform such evaluation [20]. However, of the various DL-
based denoising methods proposed for MPI SPECT, those that
have been evaluated on the clinical task of detecting perfusion
defects have not shown improved performance [19], [21].
Recent studies in other imaging modalities have also yielded
similar findings [22], [23]. While it is well recognized that
any image-processing method cannot improve the performance
of ideal observers due to data-processing inequality [18], for
suboptimal observers, such as human observers, improving
detection performance may be possible. Further, the detec-
tion task on MPI-SPECT images is clinically performed by
human observers. Thus, in this manuscript, we investigate the
development of denoising methods that explicitly demonstrate
improved performance on the task of detecting perfusion
defects in MPI-SPECT images with an anthropomorphic
model observer that has been shown to emulate human
observer performance on this task [24], [25].

To investigate the limited performance of DL-based denoising
methods on detection tasks in MPI SPECT, Yu et al. [21]
conducted a mathematical analysis with a commonly used
DL-based denoising method that used pixel-wise MSE as the
loss function. They analyzed the detection performance of a
numerical observer that has been observed to emulate human-
observer performance in MPI SPECT. Their analysis revealed
that the method was improving the noise characteristics of the
images, which, in isolation, would have improved observer
performance. However, the analysis also revealed that the
method was discarding features used to perform the detection
task, which eventually translated to no improvement in observer
performance. These observations indicate that a denoising
method that can preserve detection-task-specific features may
improve observer performance on detection tasks. Recently, in
the context of X-ray CT, a few DL-based denoising methods have
been proposed with the aim of preserving features that assist
in the detection task [26], [27], [28]. These methods typically
incorporate a hybrid loss consisting of image fidelity and task-
specific terms, where the latter term has been incorporated
in the form of signal-to-noise ratio (SNR) [26], binary cross-
entropy loss associated with a DL-based observer [27], and
perceptual loss obtained from features extracted by a pretrained
Visual Geometry Group network [28]. Results from these studies
support the idea that preserving task-specific features may assist
with improving performance on detection task. However, the
methods proposed have limitations to the applicability to the
SPECT denoising problem, such as assuming 2-D images,
defect-known-exactly setups, use of ground-truth phantom as

the target/label, and limited interpretability of the task-specific
loss term. Additionally, the methods have been evaluated using
stylized studies. For clinical applicability, evaluation of such
methods with clinical data and on clinically relevant tasks is
needed.

Motivated by these observations from prior studies, we
propose a DL-based task-specific denoising method for 3-D
MPI SPECT. The method builds upon concepts from the
literature on model observers and our understanding of the
human visual system to preserve detection-task-specific fea-
tures while performing denoising. We objectively evaluate the
proposed method on the task of detecting perfusion defects
using a retrospective study with anonymized clinical MPI-
SPECT data. Additionally, we evaluate the effect of population
characteristics, including patient sex and perfusion defect
types, on the detection-task performance. Preliminary results
of this work have been presented previously [29].

II. PROPOSED TASK-SPECIFIC DENOISING METHOD
A. Theory

1) Problem Formulation: We propose the method in the
context of reducing radiation dose in MPI SPECT, although
the methodology can be applied in the context of reducing
acquisition time. This is because reducing either dose or
acquisition time eventually leads to a reduction in detected
counts and the underlying objective of the proposed method
is to denoise the low-count images.

Consider a SPECT system imaging a tracer distribution
(object) within the human body, described by a vector f(r),
where r € R? denotes the 3-D coordinates, and yielding
projection data, denoted by the M-dimensional vector g.
Consider that the object and projection data lie in the Hilbert
space L(R?) and the M-dimensional Euclidean space EM,
respectively. Here, L,(R3) denotes the space of all square-
integrable functions on R3. Thus, the SPECT system operator
#H maps object in Ly(R?) to projection data in EM. The
Poisson-distributed system-measurement noise is denoted by
the M-dimensional vector n. The images are then reconstructed
using the reconstruction operator, denoted by R, yielding the
reconstructed images, denoted by the N3p-dimensional vector
f', where the hat symbol denotes that this is a reconstruction
of the object f. Thus

f=Rg=RMHf+n), (1)

where, without loss of generalization, we refer to the object
as infinite-dimensional vector f to model that the radiotracer
distribution is a continuous function. From the reconstructed
images, an observer performs the task of detecting perfusion
defects. More precisely, the task is to classify the image into
defect-absent (Hp) or defect-present (H;) case. Denote the
defect-absent object as f, and the defect signal as f,. The two
hypotheses for the defect-detection task are given by

Ho : f = Rg = R(Hf, +n). (2a)
Hy : f = Rg = R(H(f, +f,) +n). (2b)

In MPI SPECT, the perfusion-defect signal is a cold signal,
so f, is negative-valued term.
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In a low-dose protocol, the tracer uptake is lower compared
to normal-dose protocols. Thus, the projection data, and the
corresponding reconstructed images are noisier at low dose,
impacting observer performance on the defect-detection task.
Denote the reconstructed images at normal dose and low
dose by fnp and fip, respectively. Our goal is to design
a technique to denoise these low-dose images such that the
denoised images yield improved performance on the defect-
detection task.

2) Proposed DL-Based Task-Specific Denoising Method:
We consider the use of DL to design this denoising technique.
Consider a deep network parameterized by the parameter
vector ®, denote the denoising %perator by De and the

Al

predicted normal-dose image as tﬂg , where the subscript ND
refers to the target of the prediction. The denoising operation
can be mathematically expressed as follows:

% = De(fin). ©)

To preserve the features that assist in the detection task
while denoising, we propose a hybrid loss function for this
deep network that consists of two terms. The first term
penalizes the error associated with image fidelity between the
actual and predicted normal-dose images. The second term
penalizes the loss of features required to perform detection task
in the predicted normal-dose images. Denote the fidelity loss
term as Lgg(®) and the task-specific loss term as L (O).
The hybrid loss function £(®) is given by

L(O) = Lig(O) + ALk (O), (€]

where A denotes a hyperparameter that controls the weights
of these loss functions.

Denote the total number of training samples as J and the jth
sample of the low-dose image and normal-dose image by N3p-

dimensional vectors f'ILD and leD, respectively. Also, denote
the normal-dose image predicted by the denoising network as

A

red, . . . .
ND ’ when the low-dose image f]LD is given as the input to
the network. Thus,

&K = Do(fin). )

A typical choice to measure the fidelity between the actual
and predicted normal-dose images, including in MPI SPECT,
is the MSE between these images [30], [31]. Thus, we chose
this distance measure as our fidelity-loss term. Consider that
we have J patient images in our training set. Denote the
number of voxels in each image slice by Npp and the number
of slices as Z, so that N3p = NopZ. Then, the fidelity-loss
term is given by

Af ~pred,j 2
fo — | - ©)

L J
L{a(O) = —— s

JNopZ “
J=1

To obtain an expression for the task-specific loss term
Liask (©) in (4), we recognize that the detection task on MPI-
SPECT images is performed by human observers. Thus, a
mathematical term that preserves features used by human
observers while performing detection tasks will intuitively
assist in improving performance on the detection task. In this

441

context, there is substantial literature on mathematical model
observers that emulate human-observer performance [32],
[33], [34], [35], [36]. Further, multiple experiments in human
vision have shown that the human visual system processes data
using frequency-selective channels [18]. By processing the
features extracted from these channels, referred to as anthro-
pomorphic channels, studies have shown that model observers
can mimic human-observer performance [32], [37], [38]. Of
most relevance to this article, this has also been validated in
studies with MPI SPECT on the task of detecting perfusion
defects [24], [25]. Thus, a denoising technique that preserves
features extracted by these channels may assist with improving
observer performance on detection tasks.

Motivated by these studies, we design the task-specific
loss term to preserve features that are derived by applying
these anthropomorphic channels to the images. Typically, these
channels are applied to the 2-D image slices. Thus, first, the
profiles of the channels are centered on the defect location
and the inner product of the channels and the to-be-processed
2-D image slices are computed to yield the feature value.
Mathematically, denote an image slice by the N>p-dimensional
vector fop, denote the number of channels by C and the Nyp-
dimensional column vector corresponding to the ¢ channel
by @.. By concatenating the C channel vectors, we obtain
an Nyp x C matrix U. Denote the shift operator that centers
the channel profiles to the signal location by S. The shift
operation on U can be represented by a multiplication of shift
matrix S with the channel matrix U. The application of the
shifted channel matrix on the centered image slice yields a
C-dimensional vector, referred to as the channel vector and
denoted by v

y = (SU) Tap. (7

The task-specific loss term Lys(®) penalizes the MSE
between the channel vectors of the actual and predicted
normal-dose image. To obtain the channel vector for the jth
patient sample, we first perform acyclic 2-D shifting for each
channel so that the center of the channel profile and centroid of
the defect coincide. Since different patients will have defects
at different locations, denote the shift matrix for the jth patient
as §'. Also, denote the sth slice of the normal-dose image f’ND
and the predicted normal-dose image fﬂ,‘;d’f by EJND,ZD,S and

~pred,j . . .
ND’ZJD’ ,» respectively. The task-specific loss term L (©) is

then given by
1
JC(so —s1+ 1)

J 5 ) )
x Z Z H (SjU)T<iJND,2D,s - Nr]f;?’ZJD,x)

j:l =51

Ltask(e) =

2
;s ®

where s; and s> denote the index of the start and end slices
where the channels are applied, respectively.

B. Implementation

We developed an encoder—decoder architecture to minimize
the loss function given by (4). The encoder—decoder archi-
tecture with multiple resolution levels was chosen motivated
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Fig. 1. Schematic with details of the encoder—decoder denoising network
architecture (BN = batch normalization and ReLU = Rectified Linear Unit).

by the architectures previously proposed for denoising low-
dose MPI-SPECT images [21], [30]. The schematic of the
architecture is shown in Fig. 1. The details of the network
architecture are provided in the Supplementary material and
in Rahman et al. [39]. The input and output to the network
are the low-dose short-axis volume, f{p and the denoised
(predicted normal-dose) short-axis volume, f'i;]e)d, respectively.
The encoder extracts local spatial features from the low-
dose image and generates a set of lower-dimensional latent
features, which are used to reconstruct the denoised low-
dose volume. Skip connections were used to add features
learned in the encoder to the features generated by the decoder.
Dropout was used to prevent overfitting. We trained the
network by minimizing the hybrid loss in (4) using the ADAM
algorithm [40].

1II. EVALUATION

We objectively evaluated the proposed method in an
Institutional Review Board (IRB)-approved retrospective study
conducted on clinical MPI-SPECT studies. We followed best
practices for the evaluation of AI algorithms in nuclear
medicine (RELIANCE guidelines) [41].

A. Data Collection and Curation

We collected data from MPI studies (N = 4118) conducted
at clinical normal-dose level at Washington University School
of Medicine between January 2016 and January 2021. The
clinical protocol was a one-day stress/rest protocol and the
mean injected activity for the stress images was 10 mCi in
patients weighing under 250 pounds and 12 mCi for those
weighing over 250 pounds at normal-dose level. 1295 MPI
studies contained the binned SPECT projection data and CT
images along with patient sex and anonymized clinical reports.
The access to projection data allowed us to simulate the
low-dose acquisition using binomial sampling, following a
similar approach as in [42], which preserved the Poisson
distribution in the low-dose projections [18]. More specifically,
to obtain the low-dose count in a projection bin, we conducted
independent Bernoulli trials for accepting each of the n
normal-dose counts in that projection bin with probability
p, where p denotes the fraction corresponding to the low-
dose level. Essentially, this is equivalent to sampling from
a Binomial distribution B(n, p). For Binomial sampling, we
used MATLAB’s default Mersenne Twister algorithm for

pseudo-random number generation. We considered low-dose
levels of 25%, 12.5%, and 6.25%. In generating the low-
dose levels, we assumed that the fractional myocardial tracer
uptake is linearly related to the injected dose. Thus, the
count levels in myocardial wall were 25%, 12.5%, and 6.25%
of normal-dose count level. At these low-dose levels, the
performance on detection task is significantly different than
normal-dose images [21], and task performance is dominated
by system noise compared to anatomic variability in patient
populations [43]. Thus, choosing these dose levels provided
a regime to study the efficacy of the proposed method in
improving task performance over low-dose images.

For training and evaluation of the proposed method, both
the knowledge of presence of defect and the defect centroid
were needed. Although presence of defect could be read
from the clinical reports, findings in these reports often
suffer from reader variability. Moreover, the defect centroid
is typically unavailable. To address this issue, we only used
the normal (defect-absent) MPI studies (N = 795) and
inserted synthetic defects using a defect-insertion approach
described later (Section III-Al) to create the defect-present
images. For defect insertion, segmentation of the left ventricle
(LV) wall was needed, but this wall could not be segmented
reliably for some cases. Also, in some other cases, the images
contained artifactual (apparent) defects. In clinical practice,
these artifactual defects are typically ruled out using other
patient data, such as the rest scans, polar maps, and projection
scans. However, in our observer study, only the stress images
are used for the detection task. Thus, we excluded these two
sets of cases (N = 457) and only used the remaining normal
cases (N = 338). The datasets were from two scanners,
namely, the GE Discovery 670 Pro Nal and the GE Discovery
670 CZT. These two systems have different detectors, namely,
Nal and CZT, each of which have different energy and
position resolutions (as listed in the supplementary material
and in [39]). The data-collection process is illustrated in Fig. 2.

1) Defect Insertion Approach: To insert the defect, we
first segmented the LV wall using the reoriented short-axis
normal-dose image using SEGMENT software [44], [45].
From the centroid of the LV wall, a 2-D cone region with a
specific extent was located. For anterior-wall defect, the cone
region was between 80° and (80 — 6)° where 6 denotes the
defect extent and was assigned values of 30° and 60°. For
determining the angles, the x-axis was assumed to be along the
rows of the reoriented image and the origin was the centroid
of the LV wall. For inferior-wall defect, the cone region was
between —80° and (—80 + 6)°. In the slice containing the
LV centroid, the LV wall that lies inside this cone region was
considered as the defect mask. The same cone region was
used in adjacent slices to create the 3-D defect. A 42-mm
defect in the long-axis direction (apex-to-base direction) was
considered. We used the mean LV uptake as reference to
define defects with specific severities. The defect signal, with
specific severity and extent, was then subtracted from the
reconstructed image of the defect-absent case to create an
initial defect-present image. Next, to create the hybrid dataset
with inserted defects, we employed a strategy similar to that
proposed by Narayanan et al. [46]. Briefly, we used SIMIND,



RAHMAN et al.: DEMIST

N = 4118 cases with MPI studies in the patient repository

¥

N = 1295 cases with photopeak and scatter window projections, and CT images

v
l N = 500 cases excluded
87 no clinical records
372 diseased cases
41 normal cases access failed

N = 795 normal cases

N = 338 cases used for training,

N = 457 cases post-processing

validation and evaluation (data failed
acquired across two scanners)
L4 ) i T —

N = 184 normal MP| studies N = 40 normal MPI studies N = 114 normal MPI studies
used to generate training data used to generate validation used to generate test data

(133 males, 49 females, data {61 males, 52 females, 1

2 unknown) (30 males, 10 females) unknown)
] ] ! ! : :

N =184 x N=184x4 N=20x12 | N=20x12 N=53x18 | N=61x18
12 samples samples samples with samples samples with samples
with inserted without inserted without inserted without

defects defects defects defects defects defects

Fig. 2. Patient data collection from MPI studies and their distribution in

various stages of data curation. Sample refers to multiple cases derived from
each MPI study.

a well-validated Monte-Carlo simulation software [47], [48]
to generate the intermediate projection data corresponding to
the defect-absent image and the initial defect-present image.
These intermediate projection data were then used to calculate
a scale factor. The clinical projection data from defect-absent
cases were scaled using this scale factor to create the final
defect-present projection data. The scale factor was in general
unity apart from the regions near the heart, and even there, for
low-severity signals, the scale factor were close to one.

2) Reconstruction and Post-Processing: We used a clinical
reconstruction protocol based on the ordered subset expec-
tation maximization (OSEM) algorithm implemented with
CASTOR [49] to reconstruct the normal-dose and low-dose
images. The reconstruction compensated for attenuation and
collimator-detector response. Scatter compensation was not
performed. The number of subsets and the iterations in the
OSEM algorithm was selected based on the protocol used in
the clinic. 3-D Butterworth filtering with filter order of 5 and
cutoff frequency of 0.44 cycles/cm was applied to the low-
dose and normal-dose images, which were then reoriented to
the short axis using linear interpolation. From this reoriented
image, we extracted a 48 x 48 x 48 volume where the center
of the volume coincided with the center of LV. For better-
dynamic range, we set the range of the pixel values to [0, xpy]
where xpy is the maximum value inside the LV wall.

B. Network Training

The training set consisted of 2944 cases. These were
obtained from 184 normal MPI studies. A total of 12 synthetic
defect types were generated for each normal study, where the
defect types were defined in terms of their extent, severity,
and position in the LV wall. The defects were inserted
in the anterior and inferior walls, had extents of 30° and
60°, and severities of 10%, 17.5%, and 25%. We inserted
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these 12 defect types in each of the 184 normal studies
to generate the defect-present population (N = 2208). The
defect-absent population was obtained by replicating the 184
normal studies a total of four times, corresponding to the four
different defect extents and locations. Thus, the defect-absent
population consisted of N = 184 x 4 = 736 samples. These
two populations, totaling N = 2944 cases, were used to train
the network.

In the training phase, to extract the channel vectors from
defect-present images, as per (8), we shifted each channel
profile in U to be centered to the defect centroid. The chan-
nel vectors for the corresponding defect-absent images were
obtained by shifting the channel profiles in U to the centroid
of the location where the synthetic defect was inserted. With
these shifted channel profiles, we extracted the corresponding
channel vectors from both predicted and normal-dose images
and used these vectors to calculate the task-specific loss
term in (8). We performed a four-fold cross-validation to
optimize the network. The training was performed on an
NVIDIA TESLA V100 GPU with 32 GB of RAM. We trained
separate networks for each dose level and a range of A values.
To select the optimized A value for each dose level, we used a
separate validation set obtained from 40 normal cases. Using
the same strategy as for the training set, 20 of these cases
were used to create the defect-present population of 20 x
12 = 240 samples. For a specific low-dose level, we denoised
the images in the validation set using pretrained networks
corresponding to different A values. Using observer studies,
as will be described in Section III-C, for each dose level, the
value of A that maximized performance on the detection task
in a validation dataset was selected as the optimal A.

C. Testing Procedure

The test set consisted of N = 2052 cases. These were
generated using N = 114 normal MPI studies. Of these, 61
normal studies were used as the defect-absent population. To
create the defect-present population, synthetic defects were
inserted in the 53 normal studies. In addition to the 12
defect types, we also introduced six new defects with 45°
extent to create out-of-distribution defect types in the test set.
These new defects had severities and locations as the usual
defects. Therefore, the test set consisted of 18 types of defects.
Thus, for the observer study, the test defect-absent population
consisted of 61 x 18 = 1098 samples and the test defect-
present population consisted of 53 x 18 = 954 samples.

We evaluated the performance of the proposed method
on the clinical task of detecting perfusion defects and using
task-agnostic fidelity-based figures of merit. Performance was
compared to low-dose images that were not denoised. We
refer to this as the low-dose protocol. To assess the impact of
using our task-specific denoising strategy, we also compared
performance to images that were denoised using a commonly
used DL-based denoising method [30] that was trained with
a loss function that used only the fidelity term (setting A =
0 in (4)). We refer to this method as the task-agnostic DL-
based denoising (TADL) method. Comparing DEMIST with
TADL method allowed assessing the impact of incorporating
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Fig. 3. Schematic with the detailed process to generate test statistic using
CHO with anthropomorphic frequency selective channels.

the task-specific term into the loss function on observer
performance.

To objectively evaluate the proposed method on the task of
detecting perfusion defects, we considered an anthropomorphic
channelized Hotelling observer (CHO) [37] as a surrogate
for the human observer. For clinical application, ideally the
performance of the proposed method on the defect-detection
task should be evaluated using human-observer studies by
trained radiologists. However, such studies are time-consuming,
expensive, and tedious. To address this challenge, model
observers, such as the CHO [37], have been developed.
Most importantly, CHOs with rotationally symmetric frequency
channels have been validated to emulate human-observer
performance on the task of detecting location-known perfusion
defects in MPI SPECT [24], [25]. Thus, we used the CHO with
these channels as our observer. We follow the same procedure as
in [25] to define the rotationally symmetric frequency channels.
Briefly, the start frequency and bandwidth of first channel was
0.1838 cycles/cm. The subsequent channels were adjacent to the
previous one and had double the start frequency and bandwidth
as the previous one.

We selected the 2-D short-axis slice and two adjacent
slices from each MPI-SPECT image that contained the
defect centroid for conducting the observer studies. From the
centroid-containing slice, consistent with previous studies [38],
we extracted a 32 x 32 region such that the defect centroid
was at the center of the extracted region. This same 2-D
region was also extracted from the two adjacent slices. Pixels
values of each extracted region were mapped to the range [0,
255]. We then applied anthropomorphic rotationally symmetric
frequency channels to each slice to compute the channel
vectors. The channel vectors of defect-present and defect-
absent populations were used to learn the template of the CHO
using a leave-one-out approach. Following that, the test statis-
tics were computed and used to perform the ROC analysis.
Stratified analyses based on sex, defect severity, defect extent
and scanner type were also performed. A schematic describing
the process to obtain the CHO test statistic is shown in
Fig. 3.
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Fig. 4. AUC values obtained for the normal-dose and low-dose images, and
the images denoised using the DEMIST and TADL approaches at various
dose levels with CHO. Error bars denote 95% confidence intervals.

D. Figures of Merit

ROC analysis was performed on the test statistics derived
with the CHO using the pROC package in R [50]. The area
under the empirical ROC curve (AUC) was used as the figure
of merit. Confidence intervals were calculated using Delong’s
method [51], which accounts for variability across cases. The
AUC values were computed for the normal-dose and low-dose
images and those denoised with DEMIST and TADL. To test
the statistical significance of difference in AUC values between
two methods, we used Delong’s test as implemented within
the pROC package [50]. To account for multiple hypothesis
testing (DEMIST versus low-dose, DEMIST versus TADL and
TADL versus low-dose), we used Bonferroni correction [52].
A corrected p value < 0.05 was used to infer a statistically
significant difference. For quantitative evaluation based on
image fidelity, we considered two widely used fidelity-based
figures of merit: 1) RMSE and 2) SSIM.

IV. RESULTS
A. Evaluation on the Task of Perfusion Defect Detection

Fig. 4 shows the AUC values obtained with the low-dose
protocol, DEMIST, and TADL methods at all the considered
low-dose levels, and with the normal-dose protocol. At all
dose levels, DEMIST significantly outperformed low-dose
protocol as well as the TADL method. The p-values of all
the statistical tests presented in these results are included in
the Supplementary material and in Rahman et al. [39]. We
do note that the proposed method yields inferior performance
on detection task compared to normal-dose protocol, an
observation that we will discuss in the Discussions section.

Fig. 5 qualitatively shows the impact of the DEMIST and
TADL methods on four representative cases. We observe in
these cases that with the TADL method, even though the
background looks less noisy compared to low-dose protocol,
the defect tends to wash out. This observation is consistent
with the findings reported in previous studies [21], [26]. In
contrast, with DEMIST, the defect is visibly clearer even as the
background looks less noisy compared to low-dose protocol.
These representative cases provide an intuitive explanation for
the improved performance of the DEMIST method.

Fig. 6(a) and (b) show the AUC values obtained with
male and female populations, respectively. We observed that,
for both sexes, the proposed method yielded a significant
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(b)

Four representative tests cases derived from four different patients, qualitatively showing the performance of TADL method and proposed DEMIST

method. The short-axis slice containing the defect centroid is shown in all four cases. For all cases, the low-dose level was set to 12.5%. In (a) and (b), defects
were in anterior and inferior wall, respectively. For all four cases, the defects had an extent of 30° and severity of 25%. First, we note that the background
appears less noisy compared to low-dose images with both TADL and DEMIST. The defect tends to become less detectable with the TADL (no task-specific
loss term). Further, the defect was visually clearer with the proposed DEMIST method.
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Fig. 6. AUC values obtained for the different approaches and at various dose
levels with (a) male and (b) female patients using CHO. Error bars denote
95% confidence intervals.

improvement in performance on the detection task at all
dose levels compared to low-dose protocol. Moreover, in
5 out of 6 settings (3 dose levels x 2 sexes), DEMIST
yielded significant improvement in detection-task performance
compared to TADL method. Further, again, the TADL method
generally did not improve (and in some cases degraded)
performance compared to the low-dose protocol.

Figs. 7 and 8 show the AUC values as a function of
defect extent and severity at different dose levels, respectively.
We observe that, at all dose levels, the DEMIST method
significantly improved observer performance for all considered
defect extents and severity compared to low-dose proto-
col. Moreover, the DEMIST method significantly improved

TABLE 1
RMSE AND SSIM METRIC FOR DIFFERENT METHOD
AT DIFFERENT DOSE LEVELS

Dose 1 \fetric | Low dose | TADL | DEMIST
level

RMSE 6.87 5.00 558
6.25% —ssI™ 0.77 0.85 0.84
RMSE 481 Z.10 401
12.5% —ssIM 036 0.89 0.89
75 | _RMSE 3.16 2.04 2.04
° [TSSIM 093 0.93 0.94

observer performance compared to TADL method in 15 out of
18 settings (3 dose levels x 6 defect types). Again, the TADL
method was generally observed to not improve performance
compared to low-dose protocol.

Fig. 9 shows the AUC values obtained for stratified analysis
based on scanner models. In our study, data were collected
across two scanners, namely, “GE Discovery NM/CT 670 Pro
Nal” and “GE Discovery NM/CT 670 Pro CZT.” For concise-
ness, we refer to these two scanners as Nal and CZT scanner,
respectively. We observe from Fig. 9 that the DEMIST method
significantly outperformed low-dose protocol in 4 out of
6 settings (3 dose levels x 2 scanners) and the TADL method
in 4 out of 6 settings. We also observed that the performance
of the TADL method deteriorated by comparison with the low-
dose protocol in some settings. These findings demonstrate
the advantage of the proposed method across different scanner

types.

B. Quantitative Evaluation Based on Fidelity-Based
Figures of Merit

The SSIM and RMSE metrics based on the entire image
volume are presented in Table I for the proposed DEMIST
method, TADL method and low-dose protocol. We observed
that DEMIST vyielded improved performance compared to
low-dose protocol. Moreover, in general, both the proposed
DEMIST method and the TADL method yielded very similar
RMSE and SSIM values.
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Fig. 7. AUC values obtained using CHO for the various approaches as a function of different defect extents with (a) 6.25%, (b) 12.5%, and (c) 25% dose

levels. Error bars denote 95% confidence intervals.
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Fig. 8. AUC values obtained using CHO for the various approaches as a function of different defect severities with (a) 6.25%, (b) 12.5%, and (c) 25% dose

levels. Error bars denote 95% confidence intervals.
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Fig. 9. AUC values obtained for the considered approaches and at different dose levels with data from the (a) Nal and (b) CZT scanners using CHO. Error

bars denote 95% confidence intervals.

TABLE II
MEAN RMSE INSIDE LV WALL AT VARIOUS
DOSE LEVELS FOR DIFFERENT APPROACHES

Dose level | Low dose | TADL | DEMIST
6.25% 13.23 7.10 7.93
12.5% 9.49 6.02 5.96
25% 6.23 478 5.00

We also computed the RMSE inside the LV wall for
low-dose images and images denoised with DEMIST and
TADL for defect-absent cases. The normal-dose images were
considered as reference for calculating this RMSE inside LV
wall. The results, as shown in Table II, show the improvement

in RMSE in the LV wall as obtained by DEMIST compared
to the low-dose protocol.

V. DISCUSSION

In this work, we proposed a method to denoise low-dose
MPI-SPECT images while preserving features that assist in
performing detection task by incorporating a task-specific
loss term. We then evaluated our method on the clinical
task of detecting perfusion defects in MPI-SPECT using a
retrospective clinical study. The result in Fig. 4 shows that
applying this method resulted in significantly improved defect-
detection performance over just using low-dose images, as well
as low-dose images denoised using the TADL method. These
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Fig. 10. Mean difference reconstructed short-axis image between defect-absent and defect-present hypotheses for (a) normal-dose, (b) low-dose, (c) TADL,
and (d) DEMIST. The images in (a)-(d) are windowed to a region centered to the defect centroid. (e) Line profile of the mean difference reconstructed image
of (a)—(d). The red dashed lines in (a) represent the lines along which the profiles are drawn. (f) Mean difference channel vector Av between defect-absent
and defect-present hypotheses for various approaches. (g) Absolute value of coefficient «,; and (h) eigenvalue spectra of noise covariance matrix. Low-dose
level was set to 6.25% (Defect type 1: 60° extent, 25% severity and anterior wall defect. Defect type 2: 45° extent, 25% severity and inferior wall defect).

results provide evidence that incorporating this task-specific
loss term can significantly improve observer performance
beyond low-dose images and using a commonly used TADL
method consistently across a range of defect characteristics.
To the best of our knowledge, this is the first time that a DL-
based denoising method for MPI SPECT has shown improved
performance on the task of detecting perfusion defects in an
anthropomorphic model-observer study.

To mathematically interpret the improved performance of
the DEMIST method, we conducted an analysis similar to
Yu et al. [21]. More specifically, we analyzed the effect of
denoising on the first and second-order statistics of the channel
vectors of the test set for both DEMIST and TADL. The
analysis was performed for each defect type separately. Denote
the mean difference channel vector between defect-present and
defect-absent cases as Ay and the channel-vector covariance
matrix as K,. The SNR of the CHO is given by

SNR? = AVTK; ' A 9)

If the test statistics of defect-absent and defect-present cases
are normally distributed, AUC and SNR of the observer are
monotonically related [18] and thus, the analysis of observer
SNR yields insights on detection-task performance.

Consider that the reconstructed images have been reoriented
and windowed with defect centroid at the center. Denote the
mean difference reconstructed image between defect-present

and defect-absent cases by Af. Thus, Av = (SU)TAf'. As
per (9), both the mean difference of the channel vector
Av and covariance matrix K, affect observer performance.
Eigenanalysis of the covariance matrix provides a mechanism
to analyze the combined effect of these two terms [21] on the
observer SNR. Denote the mth eigenvector and eigenvalue of
K, by u,, and y,,, respectively. We can express Av in terms
of these eigenvectors as follows:

c
AV = Z(xmum, (10)
m=1

where the coefficient o, = uLAf). Further, the SNR of the
CHO is given by [21]

C
SNR> = Y
m=1

m

&

11

NS

Thus, assessing the impact of denoising on «,, and y,, provides
an interpretable approach to evaluate the effect of denoising
on observer performance. Fig. 10 shows this analysis for two
defect types with 6.25% dose level. We first plotted the

mean difference reconstructed image Af and mean difference
channel vector (Av) between defect-present and defect-absent
cases [Fig. 10(a)-(f)]. We observe that the DEMIST method
preserved the mean difference originally present in the normal-
dose image for this defect type. However, as in Yu et al. [21],
we observed that the TADL method reduced this mean differ-
ence, negatively impacting observer performance. Fig. 10(g)
and (h) show the values of «,, and y,, as a function of m,
respectively. We observed that y,, reduced for both DEMIST
and TADL method compared to low-dose images, which
would positively impact observer performance. However, with
the TADL method, the values of «,, were lower compared to
low-dose images, which leads to limited observer performance
on detection task. In contrast, with the DEMIST method, the
values of «,, do not reduce (and in some cases increase) com-
pared to low-dose images, resulting in an overall improvement
in performance on the defect-detection task. The y,, values in
Fig. 10 are listed in the supplementary material.

The DEMIST method consists of a hyperparameter A that
penalizes the loss of task-specific features while performing
denoising based on the loss function in (4). To qualitatively
demonstrate the effect of this parameter, we present a represen-
tative result in Fig. 11. To generate this result, we denoised an
MPI-SPECT image in the test set acquired at low-dose level of
6.25% with trained DEMIST networks associated with varying
A values. We observe that, for this example, assigning a higher
weight to the task-specific loss term (as achieved by increasing
A) leads to improved defect visibility in the denoised image.
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From left, normal-dose (ND) image, and low-dose (LD) image acquired at 12.5% dose level and images denoised with proposed method with

varying A as indicated on top of the image. Increasing A results in recovery of defect visibility. However, the increase in A also results in a decrease in

background smoothness.

This improvement indicates that the incorporation of task-
specific loss term preserves features used by human observers
for performing detection tasks. These results also illustrate that
the A parameter can be interpreted as a term that controls the
smoothness in the image. A lower value of A results in an
increased weight for the fidelity term, and is observed to lead
to increased blur in the image, which then translates to the
defect being washed out.

Stratified analysis based on patient sex, defect extent and
defect severity showed that the proposed method continued
to show improved performance compared to low-dose and
TADL methods on the task of detecting perfusion defects
(Figs. 6-8). We note here the difference in performance for
male and female patients (Fig. 6). Since, the defect properties
were similar across male and female patients, the difference
could be attributed to the anatomical variations and myocardial
activity uptake level. Further investigations are required to
study these effects and this presents an area of future study.

We note in Figs. 4-8 that while DEMIST yielded improved
performance on detection task compared to low-dose and
TADL approaches, there is room for improvement compared to
normal-dose protocol. To further improve performance, a more
advanced network architecture [53] with the proposed task-
specific loss term could be used. Also, given the heterogeneity
in patient characteristics, increasing the amount of training
data may make the method generalize well to test data and
thus improve performance [54]. However, there is a possibility
of fundamental information loss that might not be retrievable
even if we increase the amount of training data. This topic
requires further investigation. Moreover, we considered three
low-dose levels but there may be other low-dose levels for
which the proposed method may yield performance that is
similar to normal-dose protocol.

In this article, we developed the task-specific denoising
method in the context of cardiac SPECT. However, the method
is general and could be applied to other medical imaging
modalities where the task of interest is detecting abnormal-
ities. Other applications could include reducing administered
radiation dose in oncological PET images and reducing acqui-
sition time for oncological magnetic resonance (MR) images.
Another future research direction is to advance the underlying
idea of DEMIST to tasks other than detection. DEMIST was
developed and evaluated for detection tasks and not for other
tasks, such as quantification or joint detection and quantifica-
tion. However, the method could be advanced for other tasks
where the task performance depends on mathematical features
extracted from images.

Our study has several limitations. The first limitation is
that DEMIST was validated with model observers and not
human observers. While we considered a CHO-based model
observer that has been shown to emulate human-observer
performance, conducting this study with human observers
would provide a more rigorous validation of the method.
Additionally, the signal location was known to the anthropo-
morphic observer, but in clinical settings, this location is not
known. Furthermore, given the location-known settings, we
could not assess the performance of the method on falsely
detecting defects at other locations. Localization ROC studies
with human observers will enable us to validate whether the
proposed method can improve human-observer performance
on the task of perfusion-defect detection with unknown defect
location. Reliable performance in a human-observer study
would provide confidence for the clinical translation of this
method. Here, we point out that to test the robustness
of the method to different channelized observers, we also
conducted the evaluation with another observer, namely, the
channelized multi-template observer [55]. Our findings, which
are provided in the Supplementary material and in [39],
show that even with this observer, DEMIST significantly
outperformed low-dose protocol and TADL method. This
finding shows the robustness of the method to different
observers.

A second limitation of this study is that the DEMIST
method was trained with data where the defect-present cases
contained synthetic inserted defects. This was because, dur-
ing training, the knowledge of the presence of defect and
the location of defect centroid in defect-present cases was
required. However, due to the scaling of the defect-absent
projection data during the defect insertion, the Poisson dis-
tribution may not be preserved in the final defect-present
projection data. Ideally, thus, DEMIST should be trained
using data with real perfusion defects. However, determining
the ground truth regarding the presence of defects and their
centroid is challenging. To address a similar issue of lack
of ground truth while training a network to delineate tumors
in PET images, Leung et al. [56] pretrained a network with
multiple synthetic images where the tumor boundaries were
known exactly, and then fine-tuned with a small number of
clinical images. A similar strategy of pretraining DEMIST
with multiple synthetic-defect images and then fine-tuning
this network with a small number of training images where
the defect centroid is obtained manually presents an area
of future study. Another limitation was that we considered
defects in only two regions. Increasing the number of defect
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locations, including septal and lateral walls of the LV, would
provide further insights on the robustness of the proposed
method. Furthermore, in practical scenarios, there could be
multiple defect locations in the same case. The proposed
DEMIST method can be extended by extracting channel
vectors from each of these locations. Additionally, the method
was evaluated with only single-center data. However, the
results motivate evaluation of the data across multiple centers
to assess the generalizability of this technique across cen-
ters. Finally, the method was developed for nongated MPI
SPECT images. Another area of future research is advancing
this method to gated MPI SPECT [57], [58]. One challenge
here is identifying the center of the defect. The proposed
method can be advanced to account for this issue by extract-
ing channel vectors for a neighborhood of possible defect
centers.

VI. CONCLUSION

A detection-task-specific deep-learning-based method
(DEMIST) was proposed to denoise low-dose MPI-SPECT
images with the goal of improving performance on the
clinical task of detecting perfusion defects compared to
low-dose images. For this purpose, we introduced a task-
specific loss term in our loss function that penalizes the
loss of anthropomorphic channel features. According to the
RELIANCE guidelines [41], our evaluation study yields the
following claim: a deep-learning-based detection-task-specific
denoising method for MPI-SPECT improved performance in
images acquired at 6.25%, 12.5%, and 25% dose levels on the
task of detecting inserted location-known perfusion defects
with a significance level of 5% as evaluated in a retrospective
clinical study with single-center multiscanner data and with an
anthropomorphic channelized Hotelling observer. The results
provide strong evidence to evaluate DEMIST with human
observers. Open-source code for the proposed method is
available at https://github.com/AshequrRahman/demist-tf.
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