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CTLESS: A scatter-window projection and deep
learning-based transmission-less attenuation

compensation method for myocardial perfusion
SPECT

Zitong Yu, Md Ashequr Rahman, Craig K. Abbey, Richard Laforest, Nancy A. Obuchowski, Barry A. Siegel,
and Abhinav K. Jha

Abstract— Attenuation compensation (AC), while being
beneficial for visual-interpretation tasks in myocardial per-
fusion imaging (MPI) by single-photon emission computed
tomography (SPECT), typically requires the availability of
a separate X-ray CT component, leading to additional ra-
diation dose, higher costs, and potentially inaccurate di-
agnosis in case of misalignment between SPECT and CT
images. To address these issues, we developed a method
for cardiac SPECT AC using deep learning and emission
scatter-window photons without a separate transmission
scan (CTLESS). In this method, an estimated attenuation
map reconstructed from scatter-energy window projections
is segmented into different regions using a multi-channel
input multi-decoder network trained on CT scans. Pre-
defined attenuation coefficients are assigned to these re-
gions, yielding the attenuation map used for AC. We ob-
jectively evaluated this method in a retrospective study
with anonymized clinical SPECT/CT stress MPI images on
the clinical task of detecting perfusion defects with an
anthropomorphic model observer. CTLESS yielded statis-
tically non-inferior performance compared to a CT-based
AC (CTAC) method and significantly outperformed a non-
AC (NAC) method on this clinical task. Similar results
were observed in stratified analyses with different sexes,
defect extents, and defect severities. The method was ob-
served to generalize across two SPECT scanners, each
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with a different camera. In addition, CTLESS yielded sim-
ilar performance as CTAC and outperformed NAC method
on the fidelity-based figures of merit, namely, root mean
squared error (RMSE) and structural similarity index mea-
sure (SSIM). Moreover, as we reduced the training dataset
size, CTLESS yielded relatively stable AUC values and
generally outperformed another DL-based AC method that
directly estimated the attenuation coefficient within each
voxel. These results demonstrate the capability of the CT-
LESS method for transmission-less AC in SPECT and moti-
vate further clinical evaluation.

Index Terms— Attenuation compensation, Deep learning,
SPECT reconstruction, Task-based evaluation

I. INTRODUCTION

ATTENUATION of photons is a major image-quality-
degrading effect in single-photon emission computed

tomography (SPECT) myocardial perfusion imaging (MPI).
Multiple studies have shown that attenuation compensation
(AC) is beneficial for clinical interpretations of MPI-SPECT
images [1], [2]. AC methods require an attenuation map,
which is obtained with a transmission source in earlier SPECT
scanners or with an additional CT transmission scan in modern
SPECT/CT cameras [3], [4]. However, this has multiple dis-
advantages, including higher costs, slightly increased radiation
dose, and potential for inaccurate diagnosis due to possible
misregistration between SPECT and CT images [5], [6].
Further, many SPECT systems do not have a CT component.
These include SPECT systems in many community hospitals
and most physician offices, mobile SPECT systems that enable
imaging in remote locations, and the emerging solid-state-
detector-based SPECT systems that otherwise provide higher
sensitivity, as well as higher energy, temporal and spatial
resolution compared to conventional SPECT systems [7], [8].
Due to all these reasons, approximately 74% of MPI-SPECT
studies are performed without AC worldwide [9]. Thus, there
is an important need to develop transmission-less AC (Tx-less
AC) methods for SPECT.

Given this need, multiple Tx-less AC methods have been
proposed. One set of methods focused on using the physics
of the SPECT emission data [10]–[15]. These methods can
be divided into two categories. The first category of methods
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estimates attenuation coefficients directly from the SPECT
emission data. These methods operate on iterative inversion
of the forward mathematical models of SPECT systems [10],
[11], or use the consistency conditions grounded in the forward
model [12]. The second category of methods use the SPECT
scatter-window data to estimate attenuation maps. This in-
cludes approaches that obtain an attenuation map by assigning
attenuation coefficients to segments of an initial estimate of
the attenuation map [14] and approaches based on inversion of
scattering models [15]. However, these physics-based methods
have limited accuracy and have met with only limited success
[6].

More recently, deep learning (DL)-based methods have been
proposed for AC in SPECT [16]–[21]. These can be divided
into direct and indirect methods [18]. The direct methods
directly estimate activity maps with AC from non-AC activity
maps [19], [20] while the indirect methods estimate attenuation
maps from the SPECT emission images [21]. These methods
have shown promise, but they seem to either rely on correlation
between the non-AC and AC SPECT activity maps for direct
methods or the relation between the SPECT emission images
and the attenuation map for indirect methods. The premise
for this correlation remains unclear so the physical foundation
of the proposed methods remains limited. In clinical MPI-
SPECT acquisition with most modern cameras, projection data
are collected in both photopeak and scatter-energy windows. In
this context, we recognize that studies have shown that scatter-
window projection data contains information to estimate the
attenuation distribution [22]. Further, since the probability of
scatter at a certain location is proportional to the attenuation
distribution at that location, it is expected that a reconstruction
of the scatter-energy window projection would exhibit con-
trast between regions with different attenuation coefficients.
Previously proposed physics-based methods have used the
idea of segmenting the scatter-window reconstruction into
different regions, to which pre-defined attenuation coefficients
are assigned to yield an estimate of the attenuation map
[10], [11], [14]. A previous study by Pan et al. has shown
that an activity map reconstructed using the photopeak-energy
window projection could assist with such segmentation task
by providing additional anatomic information. [23]. However,
these segmentations have limited accuracy. In this context,
with cardiac SPECT, large amounts of SPECT emission data
and corresponding CT scans are available, where the CT
scans can be segmented to obtain ground-truth segmentations.
Thus, we investigated the use of deep learning to segment the
initial scatter-window reconstruction with photopeak-window
reconstruction providing additional assistance. Building on the
idea of integrating the physics and DL-based methods, we
propose a method for cardiac SPECT AC using deep learn-
ing and emission scatter-window photons without a separate
transmission scan (CTLESS).

Another limitation of existing DL-based AC methods is
that they have typically been evaluated using figures of
merit (FoMs) that measure the fidelity between the images
reconstructed using the DL-based approach with a reference
standard [24]–[26]. However, studies have shown that evalu-
ation using such FoMs may not correlate with performance

on clinical tasks in MPI [27], [28]. Thus, it is necessary to
evaluate these methods on the specific clinical task for which
the images are acquired. The need for task-based evaluation
was also recommended in the recently proposed best practices
for evaluation of AI algorithms for nuclear medicine (the
RELAINCE guidelines) [29]. Thus, in addition to conven-
tional evaluation, we also objectively evaluate CTLESS on
the clinical task of detecting myocardial perfusion defects
in a retrospective study with anonymized clinical data from
patients who underwent MPI SPECT studies.

II. METHODS

A. Theory

1) Problem formulation: Consider a SPECT system imaging
a tracer distribution within a human body, denoted by a vector
f(r), where r ∈ R3 denotes the 3-dimensional coordinates.
The SPECT system yields the projection data both in photo-
peak and scatter energy windows, denoted by M -dimensional
vectors gpp and gsc, respectively, where M is the number of
elements in the SPECT projection.

The goal in SPECT is to reconstruct the tracer distribution
given the projection data. To perform AC during reconstruc-
tion, an attenuation map is needed. The attenuation map is
denoted by an N -dimensional vector µ, where N is the
number of voxels in the SPECT reconstructed image. Denoting
the reconstructed image by an N -dimensional vector f̂ , and
the reconstruction operator that performs the AC by Rµ, we
have

f̂ = Rµ(gpp). (1)

Conventional AC methods obtain the attenuation map µ
from a separate CT scan or a transmission-source scan [3],
[4]. This has several issues, as mentioned in the introduction.
Our goal is to estimate µ only using the SPECT emission data
g.

2) Proposed CTLESS method: As mentioned earlier, we
investigated the use of SPECT emission data gsc and gpp
for estimating an attenuation map, followed by using DL
to further refine this attenuation map. We mathematically
frame the problem as segmenting the initial scatter-window
reconstruction into K attenuation regions. The CT scans
are segmented to provide a surrogate for the ground-truth
segmentation. Consider that the CT scan is segmented into
K attenuation regions, each corresponding to an organ. To
denote the support for the segmented kth attenuation region,
we define an N -dimensional vector Φk, the ith element of
which is given by

Φk
i =

{
1 if ith voxel in kth region
0 otherwise

. (2)

Both photopeak and scatter-window reconstructions are
used to perform the segmentation operation. The scatter win-
dow projection gsc is reconstructed using an ordered-subsets
expectation maximization (OSEM) technique that compensates
for collimator-detector response and Poisson noise in the
scatter-window data. The scatter-window reconstruction f̂sc is
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given by Eq. 3, where R is the reconstruction operator without
AC.

f̂sc = R(gsc). (3)

Similarly, the photopeak-window reconstruction, denoted by
f̂pp, is reconstructed using the same OSEM technique as
follows.

f̂pp = R(gpp). (4)

Consider a segmentation operator parameterized by the param-
eter vector Θ, and denoted by DΘ. Both f̂sc and f̂pp are the
input of the segmentation operator by DΘ, which is trained to
yield the estimated segmentation map, i.e.,

{Φ̂} = DΘ(f̂sc, f̂pp), (5)

where {Φ̂} = {Φ̂1, Φ̂2, ..., Φ̂K} is the set of segments
estimated by the segmentation operator DΘ.

We developed a multi-channel input and multi-decoder U-
net (McEUN) to realize this operator DΘ. The McEUN con-
sists of two components: an encoder with multi-channel input
and an assembly of decoders, where the number of decoders
equals the number of regions to be segmented. The input of the
encoder consists of two channels: one channel receives the 3-
D scatter-window reconstructed images, and the other channel
receives the 3-D photopeak-window reconstructed images. The
encoder contains five convolutional layers with 3×3×3 kernel,
decreasing the size of input images from 64 × 64 × 64 to
16 × 16 × 16. This reduction in image size was achieved by
two of these convolutional layers, each with a stride size of 2.
The numbers of filters in convolutional layers are doubled as
the size of image decreases each time. Each decoder contains
three blocks of a transposed convolution with 3×3×3 kernel
and a convolution with 3×3×3 kernel. The numbers of filters
are halved as the size of image increases each time. After each
convolutional layer in both the encoder and decoders, a leaky
rectified linear unit is applied. To stabilize the network training
and improve segmentation performance, skip connections with
attention gate are provided between the encoder and each
decoder [30]. The encoder extracts local spatial features from
initial estimates of activity and attenuation maps. The decoders
map the extracted features to the segmentation of specific
regions. In the final layer, the outputs of six decoders are
concatenated and a SoftMax function is applied, yielding the
final segmentation of the entire image. The architecture of
McEUN is shown in Fig. 1 with detailed descriptions in the
supplementary materials.

The segmentation network was optimized to minimize the
weighted cross-entropy between the predicted segmentations
and CT-derived segmentations. The loss function for each
image, denoted by L(Θ), is given by

L(Θ) =

N∑
i=1

K∑
k=1

wk

[
−Φk

i log Φ̂
k
i −

(
1− Φk

i

)
log

(
1− Φ̂k

i

)]
,

(6)
where wk is the weight parameter for the kth region. By opti-
mizing this loss, the McEUN was trained to yield the estimated
segments {Φ̂}. We assume that the attenuation coefficient in
each region is constant, denoted by a scalar value µk, where k
is the region index, and assigned to corresponding estimated

Fig. 1: The architecture of the multi-channel input and
multi-encoder U-net.

region segments. Thus, the final estimated attenuation map,
denoted by an N -dimensional vector µ̂, is given by

µ̂ =

K∑
k=1

µkΦ̂
k. (7)

The final estimated attenuation map is then used for AC in
the reconstruction as in Eq. (1). The overall framework of this
approach, which we refer to as CTLESS, is shown in Fig. 2.

B. Evaluation
We quantitatively evaluated the performance of CTLESS

on the cardiac defect-detection task in an IRB-approved ret-
rospective clinical study (IRB ID 201905164). To maintain
high rigor in our evaluation, we followed the RELAINCE
guidelines [29]. Our reference standard for this evaluation
study was activity maps reconstructed using a CT-based AC
(CTAC) method. The CTLESS method was also compared to
a method where no AC was performed, referred to as no-
AC (NAC) approach. Stratified analyses were conducted for
different sexes, defect extents, and defect severities. Further,
the generalizability of CTLESS to two different scanners was
evaluated. We also quantitatively assessed the visual similarity
of the images yielded using CTLESS with the reference
standard. Finally, we assessed the performance of CTLESS
with different sizes of the training dataset, where we compared
the method with another DL-based AC approach that directly
estimates the attenuation coefficients of the different voxels in
the attenuation map, similar to previously proposed approaches
[20], [21].

The evaluation study consisted of four parts, including (1)
data collection, curation, and power analysis, (2) network
training and evaluation with test data, (3) process to extract
task-specific information, and (4) figures of merit and statisti-
cal analyses.

1) Data collection, curation, and power analysis: A flowchart
of the data collection and curation process in our study is
shown in Fig. 3.

Data Collection: A database of N = 3719 anonymized
patients who had undergone rest and stress MPI studies was
considered. The clinical protocol was a one-day stress/rest
protocol and the mean injected activity for the stress images
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Fig. 2: The overall framework of the CTLESS method.

Fig. 3: Flow chart of the data collection and curation process
in our retrospective evaluation study.

was 10 mCi in patients weighing under 250 pounds and 12
mCi for those over 250 pounds. 1002 MPI studies contained
SPECT projection data in photopeak and scatter windows and
CT images. We obtained N = 900 stress MPI studies along
with patient sex information and clinical reports. Based on
clinical reports, we categorized studies with normal myocar-
dial perfusion images as normal (N = 690), while studies with
perfusion defects in the left ventricular wall were categorized
as abnormal (N = 210). MPI scans were acquired on two
SPECT/CT scanners: GE Discovery NM/CT 670 Pro Sodium-
Iodide (NaI) (NaI-camera) (N = 456) and GE Discovery

NM/CT 670 Pro CZT (CZT-camera) (N = 418). N = 26
studies were excluded as we will mention later.

Description of Image Acquisition and Processing Parame-
ters: On both scanners, SPECT emission data were collected
in photopeak and scatter windows after the injection of 99mTc-
tetrofosmin. Detailed SPECT image acquisition and recon-
struction parameters are listed in Table I. CT images were
acquired at 120 kVp source energy at 10 mA tube current,
revolution time of 0.8 seconds, and a spiral pitch factor of
0.9375, with the GE Optima CT 540 system component of
the scanner. The CT dose index-volume (CTDIvolume) was 9.1
mGy/100mAs. The CT images were collected at low dose and
only used for AC.

The CT and SPECT images were registered using MIM
Maestro (MIM Software Inc, Cleveland, OH). More specifi-
cally, the MIM Maestro software first reconstructed the SPECT
data without AC and provided an initial registration. Then,
we manually adjusted the registration through 3D translation,
guided by feedback from our clinical collaborators. CT-defined
attenuation maps were calculated from the CT scans using
a bi-linear model [31]. The CTAC method reconstructed the
photopeak-window projections using an OSEM-based method
with 8 iterations and 6 subsets and CT-based attenuation maps
for AC on both the NaI-camera and CZT-camera [32]. The
OSEM-based reconstruction method compensated for the ma-
jor image-degrading artifacts in SPECT, including attenuation
and collimator-detector response. The reconstructed images
had a size of 64 × 64 × 64 with a voxel size of 0.68 cm.
As per clinical protocol, these images were then filtered using
a Butterworth filter with an order of 5 and cutoff frequency
of 0.44 cycles per cm and reoriented into short-axis slices.

Defining Defects: To evaluate the performance of the CT-
LESS method on the defect-detection task, the knowledge of
the existence and location of the defects in the defect-present
test images was needed. To ensure precise and unbiased
assessment, we used only normal studies in the test set and
inserted synthetic cardiac defects in images in half of these
normal studies to create the defect-present population. The
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TABLE I: The acquisition and reconstruction parameters used
on NaI-camera and CZT-camera

SPECT scanner NaI-camera CZT-camera

Collimator type Low energy
high resolution

Wide energy
high resolution

Collimator grid Parallel hole

Energy resolution
(@140 keV) 9.8% 6.3%

System resolution
(FWHM@100 mm) 7.4 mm 7.6 mm

System sensitivity
(@100 mm per detector) 72 cps/MBq 85 cps/MBq

Number of views 30

Orbit 180° ranging from 45° right anterior
oblique to 45° left posterior oblique

Acquisition mode Step and shoot

Imaging time Around 40 seconds per projection view

Scatter-energy window 114-126 keV

Photopeak-energy window 126-154 keV

Reconstruction method OSEM with 8 iterations and 6 subsets

remaining half of the normal studies were referred to as defect-
absent population. Following a similar procedure as Narayanan
et al. [33], we inserted 27 types of realistic defects into the
photopeak window projection with three radial extents (30, 60,
and 90 degrees around the left ventricular (LV) wall), three
severities (10%, 25%, and 50% less activity than the normal
myocardium), and at three locations (anterior, inferior, and
lateral walls of the LV). The synthetic defects were similar
to the characteristics of the defects considered in the previous
studies [34], [35]. We did not insert these synthetic defects
into the scatter window projections. Therefore, the scatter
window projections were kept the same. N = 26 studies were
excluded due to LV wall segmentation failure, since LV wall
segmentation was needed for the insertion of synthetic defects.
Details of the defect insertion procedure were provided in the
supplementary materials. Sample images of defect types are
shown in Fig. 4.

Power Analysis: The primary objective of our study was
to assess the non-inferiority of the CTLESS method to the
CTAC method on cardiac defect-detection task, as measured
by the area under the receiver operating characteristics curve
(AUC). The non-inferiority margin was defined as 5% of the
AUC obtained by the CTAC method, assuming a moderate
observer variability [36]. To determine the size of test dataset,
we conducted a power analysis using a strategy proposed by
Obuchowski [37]. We first needed an estimate of the variance
of the difference in AUCs between CTAC and CTLESS
methods. To obtain these estimates, we conducted a pilot
study with data from N = 100 normal patients. In half of
these patients, 27 types of defects were introduced for a total

Fig. 4: Sample images of defect types from the short-axis
view of the myocardium for different extents (along the

rows) and at different locations (along the columns). The
defect severity is set as 50% in these images for ease of

visualization. Red arrows indicate defect locations.

of 27 × 50 = 1350 cases with defects. We also generated
N = 1350 (50 × 27) defect-absent samples from the other
half of the patients for a prevalence rate of 50%. Following a
similar strategy as outlined in Sec. II-B.3 and Sec. II-B.4, we
observed that in this pilot study, we obtained an estimate of the
variance of the difference in AUC values between CTAC and
CTLESS methods. Our power analysis revealed that for the
considered non-inferiority margin, to show the non-inferiority
of CTLESS to CTAC with a significance level of 0.05 and a
power of 0.8, N = 129 defect-absent and N = 129 defect-
present studies were needed. Based on this, we considered
N = 266 independent MPI studies in the test dataset, of which
131 were defect-present and 135 were defect-absent.

Generation of Test Dataset: For the test dataset, we gen-
erated 27 × 131 = 3537 defect-present samples. For the
remaining 135 MPI studies, we generated 27 × 135 = 3645
defect-absent samples, although samples from the same patient
were identical. On both the NaI-camera and CZT-camera,
the scatter-window projections were reconstructed using an
OSEM-based method with the same parameters as in the
CTAC method but without AC, yielding the initial esti-
mate of attenuation maps. The photopeak-window projections
were also reconstructed using the same strategy. Examples
of photopeak-window and scatter-window reconstructions, as
well as activity reconstruction obtained by CTAC method from
both cameras are shown in Fig. 5. The CT-based attenuation
maps used for training were segmented into skin and subcuta-
neous adipose, muscles and organs, lungs, bones, patient table,
and background, using a Markov random field-based method
[38]. The average attenuation coefficient of each region was
calculated and served as the predefined attenuation coefficient
values, as listed in Table II.

2) Network training and evaluation with test data: A total
of 508 samples were used for network training. The initial
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Fig. 5: Examples of photopeak-window reconstruction,
scatter-window reconstructions, and activity reconstruction

obtained by CTAC method on both the NaI-camera and
CZT-camera.

TABLE II: Statistical parameters of attenuation coefficients
across the patient population and predefined attenuation

coefficients used in CTLESS.

Region
Attenuation coefficient

value* (in cm-1)
Pre-defined attenuation

coefficient (in cm-1)

Skin and
subcutaneous adipose

0.1339
(0.0029, 0.1337) 0.13

Muscles and
organs

0.1604
(0.0022, 0.1608) 0.16

Lungs 0.0344
(0.0035, 0.0338) 0.03

Bones 0.2156
(0.0048, 0.2159) 0.22

Patient
table

0.0884
(0.0045, 0.0878) 0.09

Background 0.004
(0.005, 0) 0

*Mean (standard deviation, median) of attenuation coefficients.

estimates of attenuation maps and the photopeak-energy win-
dow reconstruction without AC were input to the McEUN.
The network was trained to minimize the loss function as
given by Eq. 6. To improve segmentation performance [21],
the initial estimates of attenuation maps and the photopeak-
window reconstruction without AC were normalized from [0,
maximum pixel value in the image] to [0, 1] before being
input to the network. The kernel weights of the McEUN
were initialized using the Glorot normal initializer [39]. Biases
were initialized to a constant of 0.03. Dropout with a rate
of 0.1 was applied to prevent overfitting [40]. The McEUN
was trained using Adam optimizer [41]. We optimized the
weight parameters in Eq. (6) via five-fold cross validation. The
optimized weight parameters are shown in the supplementary
materials. The training and validation were performed using

Keras 2.2.4 on two TITAN RTX GPUs, each with 24 GB of
memory. The final training took around 2.5 hours. The number
of epochs was chosen where the minimum averaged five-fold
cross-validation loss was reached. The training and validation
loss curves are shown in the supplementary materials. The
segmentation network was designed to yield an output of
128×128×64 voxels. These dimensions were chosen since in
our dataset, the CT images had the same dimensions, enabling
comparison of the visual fidelity of the CTLESS-predicted and
CT-derived attenuation maps using the metrics of root mean
squared error (RMSE) and structural similarity index measure
(SSIM).

The CTLESS method (Fig. 2) was used to generate the
reconstructed activity image for the test dataset, using the same
OSEM-based approach and post-processing procedures used in
the CTAC method but with CTLESS-derived attenuation maps.
NAC-based images were obtained using the same OSEM-
based reconstruction approach and post-processing procedures
but without AC.

3) Process to extract task-specific information: We objec-
tively evaluated CTLESS on the task of detecting myocardial
perfusion defects in a model-observer study. While ideally,
such evaluation should be performed with human observers,
this is time-consuming, tedious, and requires the availability
of trained observers. At an early stage of translation, model
observers provide a practical in silico approach to perform
such evaluation and identify promising methods for subsequent
evaluation with human observers [42].

In this study, the defect location was known, defect extents
and severities were varying, and the background was varying.
In previous MPI SPECT studies, for this defect-detection task
with similar kinds of defects, it has been observed that the
channelized Hotelling observer (CHO) with rotationally sym-
metric frequency (RSF) channels can emulate human observer
performance [34], [35]. We thus used this model observer in
this study. We used four RSF channels whose start frequency
and width of the first channel were both 0.046 cycles per cm,
as used in previous studies [34], [35], giving it a one-octave
bandwidth. Subsequent channels were adjacent to the previous
one with double the start-frequency and double the channel
width, thereby maintaining octave bandwidth.

To apply this CHO, we extracted a 32 × 32 region
(21.76 cm × 21.76 cm) from the middle 2-dimensional slice
of the short-axis images such that the defect centroid was at
the center of the extracted image, consistent with previous
studies [34], [43]. For a better dynamic range in the cardiac
region, we set the range of pixel values to [0, xLV ], where
xLV is the maximum pixel value within the LV wall. Then,
the pixel values were mapped to the range of [0, 255]. Denote
the extracted images by f̂SA, and the RSF channels by U . We
applied the RSF channels on the extracted images, yielding the
feature vectors, denoted by v, as follows:

v = UT f̂SA. (8)

Denote the mean feature vectors obtained from defect-present
and defect-absent samples by v̄s and v̄n, respectively. We
computed the mean difference in defect-present and defect-
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absent feature vectors, denoted by ∆v̄, and given by

∆v̄ = v̄s − v̄n. (9)

Following this, the covariance matrix of the feature vectors,
denoted by Kv , was computed. These quantities were used
to compute the template for the observer, denoted by w, and
given by

w = K−1
v ∆v̄. (10)

The template of CHO was learned from the feature vectors
of defect-present and defect-absent populations using a leave-
one-out strategy. Applying this template to the feature vector
for each sample in the testing dataset yielded a test statistic,
denoted by t, given by

t = wTv. (11)

The test statistic was then compared to a threshold to classify
each test sample into defect-present or defect-absent classes.
By varying the threshold, we calculated the true-positive
rate and false-positive rate and plotted a receiver operating
characteristics (ROC) curve using LABROC4 program [44],
[45].

4) Figures of merit and statistical analyses: We calculated
AUCs with 95% confidence intervals (CIs) for CTLESS,
CTAC, and NAC methods and differences in AUCs with 95%
CIs among these methods, using a nonparametric strategy that
accounted for the correlated nature of the data [37], [46],
where the correlation between data samples was obtained
from Hanley and McNeil [47]. Using these data, we first
conducted a non-inferiority test to investigate whether the
CTLESS method was at least as good as the CTAC method on
the defect-detection task [48]. Next, we investigated whether
CTLESS and CTAC were superior to NAC on the defect-
detection task. To account for multiple hypothesis testing (CT-
LESS vs. NAC, and CTAC vs. NAC), Bonferroni correction
was applied.

We also conducted stratified analyses for male and female
populations, as well as for different defect extents and severity
levels. In addition, we evaluated the generalizability of the
CTLESS method across the two different scanners. We trained
the CTLESS method using data acquired from the NaI-camera
and tested on the data acquired from the CZT-camera, and vice
versa.

Further, to assess the visual similarity of CTLESS with
images yielded using the CTAC method, we computed the
RMSE and SSIM between the images yielded with CTLESS
and those from CTAC. We assessed statistical significance
using a Bootstrap-based approach [49].

Finally, we assessed the performance of CTLESS with dif-
ferent sizes of the training dataset. The CTLESS method was
compared with another DL-based AC approach that directly
estimates attenuation coefficients within voxels (EST-AC),
similar to previously proposed methods [20], [21]. Details of
the EST-AC method are provided in the supplemental material.
The size of the training dataset was varied from 26 to 508
patients. Both CTLESS and EST-AC were evaluated on the
same test set with N = 266 patients. The performance was

quantitatively compared on both the defect-detection task as
well as the metrics of RMSE and SSIM.

For all statistical tests in this study, a p-value < 0.05 was
used to infer statistical significance.

III. RESULTS

A. Evaluation on the cardiac defect-detection task
Fig. 6a shows ROC curves obtained by CTLESS, CTAC,

and NAC methods. We found that the ROC curve obtained by
the CTLESS method almost overlapped that obtained by the
CTAC method and outperformed that of the NAC method.
Fig. 6b shows the AUC values with CIs obtained by the
three methods. We observed that the CTLESS method yielded
a significantly higher AUC than that obtained by the NAC
method. In the non-inferiority test, the lower limit of CIs
of the AUC difference between the CTLESS and the CTAC
method was within a margin of 5% of CTAC-based AUC
(Fig. 7). Thus, the performance of CTLESS was deemed to
be statistically non-inferior to the CTAC method within the
predefined margin [48].

Fig. 8 shows the AUC values obtained with female and male
subjects. For both sexes, the AUCs of the CTLESS method
were significantly higher than those of the NAC method and
similar to those of the CTAC method. Fig. 9 shows the AUC
values as a function of defect extent and severity. The AUCs of
the CTLESS method were close to those of the CTAC method
for all considered defect extents and severity.

Fig. 10 shows results on the generalizability of the CTLESS
method across two scanners. We observed that when trained
on data acquired from the NaI-camera and evaluated on
data from the CZT-camera, the CTLESS method had similar
performance as the CTAC method on the defect-detection task.
Similar results were observed when the CTLESS method was
trained on data acquired from the CZT-camera and evaluated
on data from the NaI-camera. When the CTLESS method was
trained and evaluated on the same single scanner data, we
observed that the performance was not significantly better than
when it was trained on the dataset from both scanners. Further,
in all training and evaluation settings, the CTLESS method
significantly outperformed the NAC method.

B. Evaluation based on fidelity-based figures of merit
and representative examples

The evaluation study using the metrics of RMSE and SSIM
showed that the CTLESS method significantly outperformed
the NAC method (Fig. 11). Fig. 12 shows two representative
examples of SPECT images and corresponding attenuation
maps obtained using the CTAC, CTLESS, and NAC methods.
We observe that the activity map obtained using CTLESS
looked visually similar to those obtained using CTAC. Similar
observations were found between the attenuation map obtained
using CTLESS and CT-derived attenuation maps. Further,
Fig. 12b shows a representative example of a defect-present
case, where the defect was similarly observed in both the
CTAC and CTLESS-obtained images. In contrast, activity
images obtained using the NAC method were observed to have
false-positive defects in the inferior LV wall in both examples.
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Fig. 6: (a) Fitted (solid lines) and empirical (dashed lines) ROC curves, and (b) AUC values obtained by the CTAC, CTLESS,
and NAC methods on the perfusion defect-detection task from MPI-SPECT images. Stars indicate p-values less than 0.05.

Fig. 7: Assessment of whether CTLESS is non-inferior to
CTAC. NAC was treated as a placebo. The margin, denoted
by ∆, was set to be 5% of CTAC-obtained AUC. Horizontal

solid black lines indicate 95% confidence intervals of
difference in AUC. Stars indicate p-values less than 0.05.

C. Evaluation with different sizes of training dataset
Fig. 13a shows the AUC values with 95% CIs obtained

using the CTLESS method and the EST-AC method. We
observe that, even as the size of the training dataset reduced,
the performance of CTLESS remained stable. Further, the
AUC values yielded by CTLESS were higher than those
yielded by the EST-AC method in the mean sense. Fig. 13b
and Fig. 13c show RMSE and SSIM between the CTAC-
derived activity maps and those obtained by the CTLESS
method and the EST-AC method. For all sizes of the training
dataset, we observed that the CTLESS method statistically
outperformed the EST-AC method in terms of RMSE and
SSIM (p-values < 0.05).

IV. DISCUSSION

In this study, we developed and objectively evaluated a
method for AC in SPECT without requiring a transmission
scan, namely, the CTLESS method. Evaluation results using
retrospective studies with anonymized clinical data and a
model observer showed that CTLESS was statistically non-
inferior to the CTAC method within a margin of 5% AUC
obtained by the CTAC method and significantly outperformed

Fig. 8: AUC obtained by CTAC, CTLESS, and NAC
methods on defect-detection task from MPI-SPECT images
with different sexes. Stars indicate p-values less than 0.05.

the NAC method on the cardiac perfusion defect-detection
task. Qualitatively identical results are found when the per-
formance data are analyzed as precision-recall curves (not
shown). In addition, the CTLESS method yielded visually
similar attenuation maps as derived from the CT scans and
similar reconstructed activity maps to those obtained by CTAC
in both defect-present samples and defect-absent samples.

A key goal of our evaluation study was to assess the per-
formance of the CTLESS method across a range of clinically
relevant patient populations. In this context, coronary artery
disease occurs in both male and female subjects who have
very different body habitus [50], [51]. We observed that the
CTLESS method yielded similar performance to the CTAC
method and significantly outperformed the NAC method for
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Fig. 9: AUC obtained by CTAC and CTLESS methods on
the defect-detection task from MPI-SPECT images with

different extents and severity levels of the defect.

both sexes. Similarly, myocardial perfusion defects vary in
severity, extent, and location in patients. These characteristics
of defects are associated with coronary artery disease severity
[52]. In the evaluation study, we considered 27 types of
defects similar to previous studies. Our results showed that the
CTLESS method yielded similar performance to the CTAC
method for all defect severity and extents, indicating the
robustness of the method across different defect types.

Clinical adoption of DL-based medical-imaging methods
requires that they generalize across different clinical scanners
[29]. This is very important, because otherwise the method
will have to be trained using data acquired from each scanner,
making the method impractical. In our evaluation study, we
observed that the CTLESS method generalized across two
different scanners, and more specifically, yielded equivalent
performance as the CTAC method when trained on one scanner
and tested on another. Notably, while from the same vendor,
these scanners had different detectors, one a more traditional
NaI detector and another a more advanced CZT detector.
This finding is encouraging and motivates further research to
assess whether the CTLESS method could be trained on data
from an existing clinical scanner but then be applied to data
from newer scanners, including those from different vendors.
Another notable feature of our study is that we evaluated the
generalizability of the method on the clinical task of interest,
making these findings encouraging for clinical relevance and
impact.

Another important consideration for the clinical adoption
of AI-based methods for medical imaging is the requirement
for training data. In this context, we observe that for multiple
different sizes of the training dataset, the CTLESS method

Fig. 10: AUC obtained by CTAC, CTLESS, and NAC
methods across scanners. (a) AC methods were evaluated on
data acquired from the CZT-camera. (b) AC methods were

evaluated on data acquired from the NaI-camera. Stars
indicate p-values less than 0.05.

Fig. 11: RMSE and SSIM obtained using the CTLESS and
NAC methods. Stars indicate p-values less than 0.05.

was not impacted as the training dataset size was reduced.
Further, CTLESS outperformed another approach to determine
the attenuation map that estimates the attenuation coefficient
of each voxel (Fig. 13). To explain this finding, we recognize
that since the relation between SPECT emission data and
attenuation coefficients for each voxel can be different and
complex, a DL-based approach can require large amounts
of training data to estimate attenuation coefficients for all
the voxels directly. The proposed CTLESS method alleviates
this issue by recognizing that the attenuation coefficient is
almost constant within the same organ in the torso region.
Further, the attenuation coefficients of the different organs
are approximately known. The CTLESS method uses this
prior information to posit the determination of the attenua-
tion map as a segmentation problem instead of estimating
the attenuation coefficient for each voxel. Incorporating this
prior information reduces the space of potential solutions,
helping reduce the requirement for large training data. A
tradeoff with the CTLESS method though is that assuming
known attenuation coefficients can be inaccurate in organs
such as lungs where the density varies depending on several
factors, including disease state [53], [54]. However, in our
data acquisition protocol, the SPECT images were acquired
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Fig. 12: Examples of SPECT images and attenuation maps obtained by CTLESS, CTAC, and NAC methods: (a) a
defect-absent example, (b) a defect-present example, where yellow arrows indicate the defect. Red arrows indicate false

defects introduced when the NAC method was used.

over 180° ranging from 45° right anterior oblique to 45° left
posterior oblique, so the lung attenuation was less relevant.
Nevertheless, it shows that evaluating the CTLESS method
with clinical data is crucial, forming one of the reasons for
our retrospective evaluation study.

The proposed CTLESS method could offer a direct advan-
tage to MPI studies conducted on SPECT-only scanners, as it
enables AC without CT images. As noted earlier, a substantial
fraction of SPECT systems lack CT components. The ability
to perform CT-less AC in those systems can make AC MPI
studies available to larger numbers of patients. In addition,
the CTLESS method inherently avoids misalignment between
SPECT and CT scans, thus avoiding the potential for inaccu-
rate diagnosis in MPI that may occur due to this misalignment.
A recent study observed that up to 42% of MPI studies had
moderate to severe misalignment [55]. Such misalignment can
lead to artifactual perfusion defects [56]. Even a misalignment
of one pixel can cause artifacts in the anterior, apical, and
septal segments. A misalignment of 2-3 cm can cause a 20%-
35% change in apparent myocardial activity [57]. CTLESS
is not sensitive to this misalignment since any patient motion
that occurs during the scan should equally affect the photopeak
and the scatter window data. To further assess this effect, we
considered cases in our dataset where the CT and SPECT
scans were misaligned and compared reconstructions obtained
by CTLESS and CTAC methods. Our analysis indicated that
while there were cases where false defects appeared when the
SPECT and CT were misaligned, the output obtained by the
CTLESS method had fewer such occurrences. A representative
example is shown in Fig. 14, where we observed that there was
a false-positive defect in the anterior LV wall when SPECT
and CT were misaligned. However, in this example, we did

not observe this false-positive defect in the images obtained
using CTLESS as well as in the images when SPECT and
CT were well registered. Similar findings were observed in
another study where misalignments between SPECT and CT
scans were deliberately introduced to study this effect [58].
Indeed, CTLESS also had imperfect estimates of attenuation
maps. However, our initial observations indicated that, on the
defect-detection task, the effect of this error was relatively
smaller compared to the SPECT/CT misalignment due to
patient motion. Other advantages of CTLESS include the
lower radiation dose and acquisition costs. Abdollahi et al.
observed that acquiring low-dose CT images in MPI study for
AC purpose increased the effective dose by around 5% [59].
The as low as reasonably achievable (ALARA) principle pro-
motes making every reasonable effort to maintain exposures
to ionizing radiation as low as practical, considering multiple
considerations, including the state of technology [60]. Thus,
unless CT acquisition is clinically necessary, such as when
intended for diagnostic purposes, the ALARA principle would
favor the CTLESS method, a non-inferior imaging method that
eliminates the exposure caused by CT scans.

In this study, the input to CTLESS were images recon-
structed in scatter-window and photopeak-window sinogram
data in binned format. Studies have reported improved per-
formance of methods on clinical tasks using list-mode data,
compared with data in binned format in SPECT [61]–[65]. Of
most relevance, Rahman et al. have quantitatively shown that
list-mode data contains more information than binned data for
estimating attenuation coefficients [22]. Therefore, advancing
the CTLESS method for list-mode data may yield even better
performance. Moreover, in the CTLESS method, the initial
estimate of the attenuation map was reconstructed using an
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Fig. 13: AUC, RMSE, and SSIM obtained using the
CTLESS method and the EST-AC method with different

sizes of the training dataset.

OSEM-based approach that did not model the entire physics
of the scatter-window data. However, recently, methods have
been developed towards performing such inversion to estimate
the attenuation map [15], [66]. While these methods have
yielded limited performance so far, as they continue to ad-
vance, they could be used to compute the initial estimate of
the attenuation map. Another area of research is directly using
the scatter-window data as input for a DL method for AC [67]
and comparing the performance to the proposed approach.

In addition to the above future directions, this study has
some other limitations. First, in our evaluation studies, we
used images with synthetic defects. Ideally, CTLESS should
be evaluated using data with real perfusion defects. While the
clinical records could provide knowledge of the presence of
the defect, the accuracy of diagnosis and location of the defect
could not be determined reliably due to inter- and intra-reader
variability. One way to overcome this limitation is the use of
cardiac catheterization to obtain a surrogate ground truth for
the defect. While such a study would be time-consuming and
expensive, our results motivate such an evaluation. Second, we
used a model observer study to evaluate the defect-detection
performance of the CTLESS method. While this observer has
been shown to mimic human observer performance in MPI
SPECT studies, ideally, the study should be conducted using
experienced human observers. The results from the model
observer study motivate the evaluation of the method using
experienced human observers. A third limitation is that the
performance of CTLESS method relies on the quality of its

Fig. 14: A representative example showing the impact of
SPECT/CT misalignment on the performance of CTLESS.
The first column shows the images obtained when SPECT
and CT were misaligned. The second column shows the

images obtained using CTLESS from the same sample. The
third column shows the images obtained when SPECT and
CT were well registered. The yellow arrow indicates a false

positive defect created due to SPECT/CT misalignment.

training data, particularly the ground-truth segmentation of
CT images. In our approach, we employed a Markov random
field-based method for CT image segmentation. Alternative
techniques that are specifically designed for low-dose CT
segmentation may provide better ground-truth segmentation
masks. In our study, we have a total of N = 508 MPI studies
in the training dataset and N = 266 MPI studies in the
test dataset. To increase the robustness and generalization of
CTLESS method, possible data augmentation strategies could
be considered [68]–[70]. In addition, previous studies have
shown reduced diagnostic accuracy due to attenuation artifacts
in overweight and obese patients in MPI-SPECT studies [71]–
[73]. Thus, a stratified analysis of CTLESS for overweight
and obese patients is another important research direction.
Moreover, the study was conducted with data acquired at a
single center and with SPECT scanners from a single vendor.
However, the results of this study motivate evaluation studies
with data from other scanners and centers.
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V. CONCLUSION

The proposed scatter-window projection and deep learning-
based transmission-less attenuation compensation (AC)
method (CTLESS) for myocardial perfusion SPECT yielded
statistically non-inferior performance compared to a standard
CT-based AC method (CTAC) on the clinically relevant
task of detecting myocardial perfusion defects, as evaluated
in a retrospective clinical study in patients who underwent
myocardial perfusion imaging SPECT studies. The method
yielded a similar performance as the CTAC method for
different defect extents and severities as well as for different
patient sexes. In addition, the method was observed to
generalize across two SPECT scanners. Further, the method
outperformed a method where no AC was performed on both
the clinical task of detecting perfusion defects and using
metrics that quantify visual fidelity. As per the RELAINCE
guidelines, we derive the following claim for the proposed
CTLESS method:

A deep learning-based transmission-less AC method for
myocardial perfusion SPECT yielded statistically non-inferior
performance to a standard CT-based AC method on the task
of detecting myocardial perfusion defects within a margin of
5% of AUC with a significance level of 0.05 as evaluated in a
retrospective study with single-center multi-scanner data and
with an anthropomorphic model observer.

Software to conduct this study and
supplementary materials are available at
https://drive.google.com/drive/folders/1HYzDyWTXes5oCN-
ONxEeCnuxgkZ9y2eD?usp=drive link.
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