
A Modular Approach to Unclonable
Cryptography

Prabhanjan Ananth1(B) and Amit Behera2

1 University of California Santa Barbara, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 Ben-Gurion University, Be’er Sheva, Israel

behera@post.bgu.ac.il

Abstract. We explore a new pathway to designing unclonable crypto-
graphic primitives. We propose a new notion called unclonable punc-
turable obfuscation (UPO) and study its implications for unclon-
able cryptography. Using UPO, we present modular (and in some
cases, arguably, simple) constructions of many primitives in unclon-
able cryptography, including, public-key quantum money, quantum copy-
protection for many classes of functionalities, unclonable encryption, and
single-decryption encryption.

Notably, we obtain the following new results assuming the existence
of UPO:
– We show that any cryptographic functionality can be copy-protected

as long as it satisfies a notion of security, which we term puncturable
security. Prior feasibility results focused on copy-protecting specific
cryptographic functionalities.

– We show that copy-protection exists for any class of evasive func-
tions as long as the associated distribution satisfies a preimage-
sampleability condition. Prior works demonstrated copy-protection
for point functions, which follows as a special case of our result.

We put forward two constructions of UPO. The first construction sat-
isfies two notions of security based on the existence of (post-quantum)
sub-exponentially secure indistinguishability obfuscation, injective one-
way functions, the quantum hardness of learning with errors, and the
two versions of a new conjecture called the simultaneous inner product
conjecture. The security of the second construction is based on the exis-
tence of unclonable-indistinguishable bit encryption, injective one-way
functions, and quantum-state indistinguishability obfuscation.

1 Introduction

Unclonable cryptography leverages the no-cloning principle of quantum mechan-
ics [WZ82,Die82] to build many novel cryptographic notions that are other-
wise impossible to achieve classically. This has been an active area of interest
since the 1980s [Wie83]. In the past few years, researchers have investigated a
dizzying variety of unclonable primitives such as quantum money [AC12,Zha19,
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Shm22,LMZ23] and its variants [RS19,BS20,RZ21], quantum one-time pro-
grams [BGS13], copy-protection [Aar09,CLLZ21], tokenized signatures [BS16,
CLLZ21], unclonable encryption [Got02,BL20] and its variants [KN23], secure
software leasing [AL21], single-decryptor encryption [GZ20,CLLZ21], and many
more [BKL23,GMR23,JK23].

Establishing the feasibility of unclonable primitives has been quite chal-
lenging. The adversarial structure considered in the unclonability setting (i.e.,
spatially separated and entangled) is quite different from what we typically
encounter in the traditional cryptographic setting. This makes it difficult to
leverage traditional classical techniques, commonly used in cryptographic proofs,
to argue the security of unclonable primitives. As a result, there are two major
gaping holes in the area.

– Unsolved Foundational Questions: Despite the explosion of results in
the past few years, many fundamental questions in this area remain to be
solved. This includes designing public-key quantum money schemes [AC12,
Zha19] on well-studied assumptions. Another problem that is open is pre-
cisely characterizing the class of functionalities for which quantum copy-
protection [Aar09] is possible.

– Lack of Abstractions: Due to the lack of good abstractions, proofs in the
area of unclonable cryptography tend to be complex and use sophisticated
tools, making the literature less accessible to the broader research community.
This makes not only verification of proofs difficult but also makes it harder
to use the techniques to obtain new feasibility results.

Overarching Goal of Our Work. We advocate for a modular approach to design-
ing unclonable cryptography. Our goal is to identify an important unclonable
cryptographic primitive that would serve as a useful abstraction leading to the
design of other unclonable primitives. Ideally, we would like to abstract away
all the complex details in the instantiation of this primitive, and it should be
relatively easy, even to classical cryptographers, to use this primitive to study
unclonability in the context of other cryptographic primitives. We believe that
the identification and instantiation of such a primitive will speed up the progress
in the design of unclonable primitives.

Indeed, similar explorations in other contexts, such as classical cryptography,
have been fruitful. For instance, the discovery of indistinguishability obfusca-
tion [BGI+01,GGH+16] (iO) revolutionized cryptography and led to the res-
olution of many open problems (for instance: [SW14,GGHR14,BZ17,BPR15]).
Hence, there is merit to exploring the possibility of such a primitive in unclonable
cryptography, as well.

Thus, we ask the following question:

Is there an “iO-like” primitive for unclonable cryptography?

We seek the pursuit of identifying unclonable primitives that would have a similar
impact on unclonable cryptography as iO did on classical cryptography.
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1.1 Our Contributions in a Nutshell

In our search for an “iO-like” primitive for unclonable cryptography, we propose
a new notion called unclonable puncturable obfuscation (UPO) and explore its
impact on unclonable cryptography.

New Feasibility Results. Specifically, using UPO and other well-studied
cryptographic tools, we demonstrate the following new results.

– We show that any class of functionalities can be copy-protected as long as
they are puncturable (more details in Sect. 1.2).

– We show that a large class of evasive functionalities can be copy-protected.

The above two results not only subsume all the copy-protectable functionalities
studied in prior works but also capture new functionalities.

Even for functionalities that have been studied before our work, we get quali-
tatively new results. For instance, our result shows that any puncturable digital
signature can be copy-protected whereas the work of [LLQZ22] shows a weaker
result that the digital signature of [SW14] can be copy-protected. We get similar
conclusions for copy-protection for pseudorandom functions.

Implication to Unclonable Cryptography. Apart from quantum copy-
protection, UPO implies many of the foundational unclonable primitives such as
public-key quantum money, unclonable encryption, and single-decryptor encryp-
tion. The resulting constructions from UPO are conceptually different compared
to the prior works. Since building unclonable primitives is a daunting task even
when relying on exotic computational assumptions, it becomes crucial to ven-
ture into alternative approaches. Moreover, this endeavor could potentially yield
fresh perspectives on unclonable cryptography.

Simpler Constructions. We believe that some of our constructions are sim-
pler than the prior works, albeit the underlying assumptions are incompara-
ble1. The construction of copy-protection for puncturable functionalities yields
simpler constructions of copy-protection for pseudorandom functions, studied
in [CLLZ21], and copy-protection for signatures, studied in [LLQZ22].

One potential criticism of our work is that our construction of UPO is based on
a new conjecture. Specifically, we show that UPO can be based on the existence
of post-quantum secure iO, learning with errors and a new conjecture.

However, it is essential to keep in mind the following facts:

– Assumptions: If our conjectures are true, then this would mean that we
can construct UPO from indistinguishability obfuscation and other standard
assumptions. On the other hand, we currently do not know whether the other
direction is true, i.e., whether UPO implies post-quantum indistinguisha-
bility obfuscation. As a result, it is plausible that UPO could be a weaker

1 We assume UPO whereas the previous works assume post-quantum iO and other
well-studied assumptions.
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assumption than post-quantum iO! One consequence of this is the construc-
tion of public-key quantum money from generic assumptions weaker than
post-quantum iO.
If our conjectures are false, by itself, this does not refute the existence of UPO.
We would like to emphasize that there is no reason to believe these conjectures
are necessary for the existence of UPO. Instead, it merely suggests that we
need a different approach to investigate the feasibility of UPO.

– Pushing the Feasibility Landscape: Time and time again, in cryp-
tography, we have been forced to invent new assumptions. In numerous
instances, these assumptions have unveiled a previously uncharted realm of
cryptographic primitives, expanding our understanding beyond what we once
deemed feasible. While not all of the computational assumptions have sur-
vived the test of time, in some cases2, the insights gained from their crypt-
analysis have helped us to come up with more secure instantiations in the
future. In a similar vein, being aggressive with exploring new assumptions
could push the boundaries of unclonable cryptography.

We also present another construction of UPO from quantum state iO and unclon-
able encryption. We discuss this more at the end of Sect. 1.2.

1.2 Our Contributions

Definition. We discuss our results in more detail. Roughly speaking, unclonable
puncturable obfuscation (UPO) defined for a class of circuits C in P/Poly, consists
of two QPT algorithms (Obf,Eval) defined as follows:

– Obfuscation algorithm: Obf takes as input a classical circuit C ∈ C and
outputs a quantum state ρC .

– Evaluation algorithm: Eval takes as input a quantum state ρC , an input
x, and outputs a value y.

In terms of correctness, we require y = C(x). To define security, as is typi-
cally the case for unclonable primitives, we consider non-local adversaries of the
form (A,B, C). The security experiment, parameterized by a distribution DX , is
defined as follows:

– A (Alice) receives as input a quantum state ρ∗ that is generated as follows.
A sends a circuit C to the challenger, who then samples a bit b uniformly at
random and samples

(
xB, xC)

from DX . If b = 0, it sets ρ∗ to be the output
of Obf on input C, or if b = 1, it sets ρ∗ to be the output of Obf on G,
where G is a punctured circuit that has the same functionality as C on all
the points except xB and xC . It is important to note that A only receives ρ∗

and in particular, xB and xC are hidden from A.
– A then creates a bipartite state and shares one part with B (Bob) and the
other part with C (Charlie).

2 Several candidates of post-quantum indistinguishability obfuscation had to be broken
before a candidate based on well founded assumptions was proposed [JLS21].
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– B and C cannot communicate with each other. In the challenge phase, B
receives xB and C receives xC . Then, they each output bits bB and bC .

(A,B, C) win if bB = bC = b. The scheme is secure if they can only win with
probability at most 0.5 (ignoring negligible additive factors).

Keyed Circuits. Towards formalizing the notion of puncturing circuits in a way
that will be useful for applications, we consider keyed circuit classes in the above
definition. Every circuit in a keyed circuit class is of the form Ck(·) for some key
k. Any circuit class can be implemented as a keyed circuit class using universal
circuits and thus, by considering keyed circuits, we are not compromising on the
generality of the above definition.

Challenge Distributions. We could consider different settings of DX . In this
work, we mainly focus on two settings. In the first setting (referred to as indepen-
dent challenge distribution), sampling (xB, xC) from DX is the same as sampling
xB and xC uniformly at random (from the input space of C). In the second set-
ting (referred to as identical challenge distribution), sampling (xB, xC) from DX
is the same as sampling x uniformly at random and setting x = xB = xC .

Generalized UPO. In the above security experiment, we did not quite specify
the behavior of the punctured circuit on the points xB and xC . There are two
ways to formalize and this results in two different definitions; we consider both of
them in Sect. 2. In the first (basic) version, the output of the punctured circuit
G on the punctured points is set to be ⊥. This version would be the regular
UPO definition. In the second (generalized) version, we allow A to control the
output of the punctured circuit on inputs xB and xC . For instance, A can choose
and send the circuits µB and µC to the challenger. On input xB (resp., xC), the
challenger programs the punctured circuit G to output µB(xB) (resp., µC(xC)).
We refer to this version as generalized UPO.

Applications. We demonstrate several applications of UPO to unclonable cryp-
tography.

We summarise the applications3 in Fig. 1. For a broader context of these
results, we refer the reader to related works section in the full version.

Copy-Protection for Puncturable Cryptographic Schemes (see
the relevant sections in the full-version). We consider cryptographic
schemes satisfying a property called puncturable security. Informally speaking,
puncturable security says the following: given a secret key sk, generated using
the scheme, it is possible to puncture the key at a couple of points xB and xC

such that it is computationally infeasible to use the punctured secret key on xB

and xC . We formally define this in the full version. We show the following:

3 We refer the reader unfamiliar with copy-protection, single-decryptor encryption,
or unclonable encryption to the introduction section of [AKL23] for an informal
explanation of these primitives.
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Unclonable Puncturable Obfuscation

Copy-Protection for Spunc

Copy-Protection for Signatures

Quantum Money

Copy-Protection for Fpunc

Copy-Protection for PRFs

Copy-Protection for Fevasive

Copy-Protection for Point Functions

Single-Decryptor Encryption

Unclonable Encryption

Fig. 1. Applications of Unclonable Puncturable Obfuscation. Spunc denotes crypto-
graphic schemes satisfying puncturable property. Fpunc denotes cryptographic func-
tionalities satisfying functionalities satisfying puncturable property. Fevasive denotes
functionalities that are evasive with respect to a distribution D satisfying preimage-
sampleability property. The dashed lines denote corollaries of our main results. The
blue-filled boxes represent primitives whose feasibility was unknown prior to our work.
The red-filled boxes represent primitives for which we get qualitatively different results
or from incomparable assumptions when compared to previous works. (Color figure
online)

Theorem 1. Assuming UPO for P/poly, there exists copy-protection for any
puncturable cryptographic scheme.

Prior works [CLLZ21,LLQZ22] aimed at copy-protecting specific cryptographic
functionalities whereas we, for the first time, characterize a broad class of cryp-
tographic functionalities that can be copy-protected.

As a corollary, we obtain the following results assuming UPO.

– We show that any class of puncturable pseudorandom functions that can be
punctured at two points [BW13,BGI14] can be copy-protected. The feasi-
bility result of copy-protecting pseudorandom functions was first established
in [CLLZ21]. A point to note here is that in [CLLZ21], given a class of punc-
turable pseudorandom functions, they transform this into a different class of
pseudorandom functions4 that is still puncturable and then copy-protect the
resulting class. On the other hand, we show that any class of puncturable
pseudorandom functions, which allows for the puncturing of two points, can
be copy-protected. Hence, our result is qualitatively different than [CLLZ21].

4 Specifically, they add a transformation to generically make the pseudorandom func-
tion extractable.
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– We show that any digital signature scheme, where the signing key can be
punctured at two points, can be copy-protected. Roughly speaking, a digital
signature scheme is puncturable at two points if the signing key can be punc-
tured on two messages mB and mC such that given the punctured signing key,
it is computationally infeasible to produce a signature on one of the punctured
messages. Our result rederives and generalizes a recent result by [LLQZ22]
who showed how to copy-protect the digital signature scheme of [SW14].

In the technical sections, we first present a simpler result where we copy-protect
puncturable functionalities (for more details, see the full-version) and we then
extend this result to achieve copy-protection for puncturable cryptographic
schemes (for more details, see the full-version).

Copy-Protection for Evasive Functions. We consider a class of evasive
functions associated with a distribution D satisfying a property referred to as
preimage-sampleability which is informally defined as follows: there exists a dis-
tribution D′ such that sampling an evasive function from D along with an accept-
ing point (i.e., the output of the function on this point is 1) is computationally
indistinguishable from sampling a function from D′ and then modifying this
function by injecting a uniformly random point as the accepting point. We show
the following.

Theorem 2. Assuming generalized UPO for P/poly, there exists copy-
protection for any class of functions that is evasive with respect to a distribution
D satisfying preimage-sampleability property.

Unlike Theorem1, we assume generalized UPO in the above theorem.
As a special case, we obtain copy-protection for point functions. A recent

work [CHV23] presented construction of copy-protection for point functions from
post-quantum iO and other standard assumptions. Qualitatively, our results are
different in the following ways:

– The challenge distribution considered in the security definition of [CHV23]
is arguably not a natural one: with probability 1

3 , B and C get as input the
actual point, with probability 1

3 , B gets the actual point while C gets a random
value and finally, with probability 1

3 , B gets a random value while C gets the
actual point. On the other hand, we consider identical challenge distribution;
that is, B and C both receive the actual point with probability 1

2 or they both
receive a value picked uniformly at random.

– While the result of [CHV23] is restricted to point functions, we show how
to copy-protect functions where the number of accepting points is a fixed
polynomial.

We clarify that none of the above results on copy-protection contradicts the
impossibility result by [AL21] who present a conditional result ruling out the
possibility of copy-protecting contrived functionalities.
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Unclonable Encryption. Finally, we show, for the first time, an approach
to construct unclonable encryption in the plain model. We give a direct and
simple construction of unclonable encryption for bits, see the full version for
more details.

Theorem 3. Assuming generalized UPO for P/poly, there exists a one-time
unclonable bit-encryption scheme in the plain model.

We also obtain a construction of unclonable encryption for arbitrary fixed
length messages by first constructing public-key single-decryptor encryption
(SDE) with an identical challenge distribution.

Theorem 4. Assuming generalized UPO for P/poly, post-quantum indistin-
guishability obfuscation (iO), and post-quantum injective one-way functions,
there exists a public-key single-decryptor encryption scheme with security against
identical challenge distribution, see the full version for more details.

[GZ20] showed that SDE with such a challenge distribution implies unclonable
encryption. Prior work by [CLLZ21] demonstrated the construction of public-key
single-decryptor encryption with security against independent challenge distri-
bution, which is not known to imply unclonable encryption. We, thus, obtain
the following corollary.

Corollary 1. Assuming generalized UPO, post-quantum iO, and post-quantum
injective one-way functions5, there exists a one-time unclonable encryption
scheme in the plain model.

Note that using the compiler of [AK21], we can generically transform a one-
time unclonable encryption into a public-key unclonable encryption in the plain
model under the same assumptions as above.

We note that this is the first construction of unclonable encryption in the
plain model. All the previous works [BL20,AKL+22,AKL23] construct unclon-
able encryption in the quantum random oracle model. The disadvantage of our
construction is that they leverage computational assumptions whereas the pre-
vious works [BL20,AKL+22,AKL23] are information-theoretically secure.

Apart from unclonable encryption, single-decryptor encryption also implies
public-key quantum money, thereby giving the following corollary.

Corollary 2. Assuming generalized UPO, post-quantum iO, and post-quantum
one-way functions, there exists a public-key quantum money scheme.

5 Unlike Theorem4, we do not need injective one-way functions here because
the [GZ20] construction of unclonable encryption from single-decryptor encryp-
tion only requires selectively secure single-decryptor encryption with the above-
mentioned challenge distribution, which we construct in our work using any post-
quantum one-way functions along with the other assumptions; see the full version
for more details.
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The construction of quantum money from UPO offers a conceptually different
approach to constructing public-key quantum money in comparison with other
quantum money schemes such as [Zha19,LMZ23,Zha23].

As an aside, we also present a lifting theorem that lifts a selectively secure
single-decryptor encryption into an adaptively secure construction, assuming the
existence of post-quantum iO. Such a lifting theorem was not known prior to
our work.

Construction. Finally we demonstrate a construction of generalized UPO for
all classes of efficiently computable keyed circuits. We show that the same con-
struction is secure with respect to both identical and independent challenge
distributions. Specifically, we show the following:

Theorem 5 (Informal). Suppose C consists of polynomial-sized keyed circuits.
Assuming the following:

– Post-quantum sub-exponentially secure indistinguishability obfuscation for
P/poly,

– Post-quantum sub-exponentially secure injective one-way functions,
– Compute-and-compare obfuscation secure against QPT adversaries and,
– Simultaneous inner product conjecture.

there exists a generalized UPO with respect to identical DX for C.

On the Simultaneous Inner Product Conjecture: There are two different
versions of the simultaneous inner product conjecture (Conjecture 1 and Con-
jecture 2) we rely upon to prove the security of our construction with respect to
identical and independent challenge distributions. At a high level, the simul-
taneous inner product conjecture states that two (possibly entangled) QPT
adversaries (i.e., non-local adversaries) should be unsuccessful in distinguish-
ing (r, 〈r,x〉 +m) versus (r, 〈r,x〉), where r $←− Zn

Q,x
$←− Zn

Q,m
$←− ZQ for every

prime Q ≥ 1. Moreover, the adversaries receive as input a bipartite state ρ that
could depend on x with the guarantee that it should be infeasible to recover x.
As mentioned above, we consider two different versions of the conjecture. In the
first version (identical), both the adversaries get the same sample (r, 〈r,x〉) or
they both get (r, 〈r,x〉+m). In the second version (independent), the main dif-
ference is that r and x are sampled independently for both adversaries. Weaker
versions of this conjecture have been investigated and proven to be uncondition-
ally true [AKL23,KT22]. We refer the reader to Sect. 3 for a detailed discussion
on the conjectures.

Composition: Another contribution of ours is a composition theorem (see the
full version for more details), where we show how to securely compose unclon-
able puncturable obfuscation with a functionality-preserving compiler. In more
detail, we show the following. Suppose UPO is a secure unclonable puncturable
obfuscation scheme and let Compiler be a functionality-preserving circuit com-
piler. We define another scheme UPO′ such that the obfuscation algorithm of
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UPO′, on input a circuit C, first runs the circuit compiler on C to obtain C̃ and
then it runs the obfuscation of UPO on C̃ and outputs the result. The evalua-
tion process can be similarly defined. We show that the resulting scheme UPO′

is secure as long as UPO is secure. Our composition result allows us to compose
UPO with other primitives such as different forms of program obfuscation with-
out compromising on security. We use our composition theorem in some of the
applications discussed earlier.

1.3 Technical Overview

We give an overview of the techniques behind our construction of UPO and the
applications of UPO. We start with applications.

Applications

Copy-Protecting Puncturable Cryptographic Schemes. We begin by exploring
methods to copy-protect puncturable pseudorandom functions. Subsequently,
we generalize this approach to achieve copy-protection for a broader class of
puncturable cryptographic schemes.

Case Study: Puncturable Pseudorandom Functions. Let F = {fk(·) :
{0, 1}n → {0, 1}m : k ∈ Kλ} be a puncturable pseudorandom function (PRF)
with λ being the security parameter and Kλ being the key space. To copy-protect
fk(·), we simply obfuscate fk(·) using an unclonable puncturable obfuscation
scheme UPO. To evaluate the copy-protected circuit on an input x, run the
evaluation procedure of UPO.

To argue security, let us look at two experiments:

– The first experiment corresponds to the regular copy-protection security
experiment. That is, A receives as input a copy-protected state ρfk , which is
copy-protection of fk where k is sampled uniformly at random from the key
space. It then creates a bipartite state which is split between B and C, who
are two non-communicating adversaries who can share some entanglement.
Then, B and C independently receive as input x, which is picked uniformly
at random. (B, C) win if they simultaneously guess fk(x).

– The second experiment is similar to the first experiment except A receives
as input copy-protection of fk punctured at the point x, where x is the same
input given to both B and C.

Thanks to the puncturing security of F , the probability that (B, C) succeeds
in the second experiment is negligible in λ. We would like to argue that (B, C)
succeed in the first experiment also with probability negligible in λ. Suppose
not, we show that the security of UPO is violated.

Reduction to UPO: The reduction RA samples a uniformly random fk and for-
wards it to the challenger of the UPO game. The challenger of the UPO game
then generates either an obfuscation of fk or the punctured circuit fk punctured
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at x. The obfuscated state is then sent to RA, who in turn forwards this to A
who prepares the bipartite state. The reduction RB (resp., RC) then receives
as input x which it duly forwards to B (resp., C). Then, B and C each output
yB and yC . Then, RB outputs the bit 0 if fk(x) = yB, otherwise it outputs 1.
Similarly, RC outputs bit 0 if fk(x) = yC , otherwise it outputs 1. The reason
behind boldifying “bit 0” part will be discussed below.

Let us see how well (RA,RB,RC) fares in the UPO game.

– Case 1. Challenge bit is b = 0. In this case, RA receives as input obfuscation
of fk with respect to UPO. Denote p0 to be the probability that (RB,RC)
output (0, 0).

– Case 2. Challenge bit is b = 1. Here, RA receives as input obfuscation of
the circuit fk punctured at x. Similarly, denote p1 to be the probability that
(RB,RC) output (1, 1).

From the security of UPO, we have the following: p0+p1
2 ≤ 1

2 + µ(λ), for some
negligible function µ(·). From the puncturing security of F , p1 ≥ 1 − ν(λ), for
some negligible function ν. From this, we can conclude, p0 is negligible which
proves the security of the copy-protection scheme.

Perhaps surprisingly (at least to the authors), we do not know how to make the
above reduction work if RB (resp., RC) instead output bit 1 in the case when
fk(x) = yB (resp., fk(x) = yC). This is because we only get an upper bound for
p1 which cannot be directly used to determine an upper bound for p0.

Generalizing to Puncturable Cryptographic Schemes. We present two
generalizations of the above approach. We first generalize the above approach to
handle puncturable circuit classes see the full version for more details. A circuit
class C, equipped with an efficient puncturing algorithm Puncture, is said to be
puncturable6 if given a circuit C ∈ C, we can puncture C on a point x to obtain a
punctured circuit G such that given a punctured circuit G, it is computationally
infeasible to predict C(x). As we can see, puncturable pseudorandom functions
are a special case of puncturable circuit classes. The template to copy-protect
an arbitrary puncturable circuit class, say C, is essentially the same as the above
template to copy-protect puncturable pseudorandom functions. To copy-protect
C, obfuscate C using the scheme UPO. The evaluation process and the proof of
security proceed along the same lines as above.

We then generalize this further to handle puncturable7 cryptographic
schemes. We consider an abstraction of a cryptographic scheme consisting of
efficient algorithms (Gen,Eval,Puncture,Verify) with the following correctness
guarantee: the verification algorithm on input (pk, x, y) outputs 1, where Gen(1λ)
produces the secret key-public key pair (sk, pk) and the value y is the output of

6 We need a slightly more general version than this. Formally, we puncture the circuit
at two points (and not one), and then we require the adversary to predict the output
of the circuit on one of the points, see the full version for more details.

7 We again consider a general version where the circuit is punctured at two points.
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Eval on input (sk, x). The algorithm Puncture on input (sk, x) outputs a punc-
tured circuit that has the same functionality as Eval(sk, ·) on all the points except
x. The security property roughly states that predicting the output Eval(sk, x)
given the punctured circuit should be computationally infeasible. The above
template of copy-protecting PRFs can similarly be adopted for copy-protecting
puncturable cryptographic schemes.

Copy-Protecting Evasive Functions. Using UPO to construct copy-protection for
evasive functions turns out to be more challenging. To understand the difficulty,
let us compare both the notions below:

– In a UPO scheme, A gets as input an obfuscation of a circuit C (if the
challenge bit is b = 0) or a circuit C punctured at two points xB and xC (if
b = 1). In the challenge phase, B gets xB and C gets xC .

– In a copy-protection scheme for evasive functions, A gets as input copy-
protection of C, where C is a circuit implements an evasive function. In
the challenge phase, B gets xB and C gets xC , where (xB, xC) is sampled from
an input distribution that depends on the challenge bit b. As example, we
can sample (xB, xC) = (x, x) as follows: x is sampled uniformly at random (if
challenge bit is b = 0), otherwise x is sampled uniformly at random from the
set of points on which C outputs 1 (if the challenge bit is b = 1).

In other words, the distribution from which A gets its input from depends on
the bit b in UPO but the challenges given to B and C are sampled from a distri-
bution that does not depend on b. The setting in the case of copy-protection is
the opposite: the distribution from which A gets its input does not depend on b
while the challenge distribution depends on b.

Preimage Sampleable Property: To handle this discrepancy, we consider
a class of evasive functions called preimage sampleable evasive functions. The
first condition we require is that there is a distribution D from which we can
efficiently sample a circuit C (representing an evasive function) together with
an input x such that C(x) = 1. The second condition states that there exists
another distribution D′ from which we can sample (C ′, x′), where x′ is sampled
uniformly at random and then a punctured circuit C ′ is sampled conditioned
on C ′(x′) = 1, satisfying the following property: the distributions D and D′ are
computationally indistinguishable. The second condition is devised precisely to
ensure that we can reduce the security of copy-protection to UPO.

Construction and Proof Idea: But first, let us discuss the construction of
copy-protection: to copy-protect a circuit C, compute two layers of obfuscation
of C. First, obfuscate C using a post-quantum iO scheme and then obfuscate
the resulting circuit using UPO. To argue security, we view the obfuscated state
given to A as follows: first sample C from D and then do the following: (a) give
ρC to A if b = 0 and, (b) ρC to A if b = 1, where ρC is the copy-protected
state and b is the challenge bit that is used in the challenge phase. So far, we
have not changed the distribution. Now, we will modify (b). We will leverage
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the above conditions to modify (b) as follows: we will instead jointly sample the
circuit and the challenge input from D′. Since D and D′ are computationally
indistinguishable, the adversary will not notice the change. Now, let us examine
the modified experiment: if b = 0, the adversary receives ρC (defined above),
where (C, x) is sampled from D and if b = 1, the adversary receives ρC′ , where
(C ′, x′) is sampled from D′. We can show that this precisely corresponds to the
UPO experiment and thus, we can successfully carry out the reduction.

Single-Decryptor Encryption. A natural attempt to construct single-decryptor
encryption would be to leverage UPO for puncturable cryptographic schemes.
After all, it would seem that identifying a public-key encryption scheme where
the decryption key can be punctured at the challenge ciphertexts would be help-
ful to achieve our desired result. A UPO obfuscation of the decryption algorithm
would be the quantum decryption key of the single-decryptor encryption scheme.

Unfortunately, this does not quite work: the reason lies in the challenge dis-
tribution of UPO. In this work, we only consider challenge distributions whose
marginals correspond to the uniform distribution. On the other hand, the public-
key encryption scheme we start with might not have pseudorandom ciphertexts
which would in turn make it incompatible with combining it with the UPO
scheme as suggested above. Of course, we could have considered more general
challenge distributions but the techniques we have developed is limited to achiev-
ing challenge distributions with uniform marginals. This suggests that we need
to start with a public-key encryption scheme with pseudorandom ciphertexts.

We start with the public-key encryption scheme due to Sahai and
Waters [SW14]. The advantage of this scheme is that the ciphertexts are pseu-
dorandom. First, we show that this public-key encryption scheme can be made
puncturable. Once we show this, using UPO for puncturable cryptographic
schemes (and standard iO tricks), we construct single-decryptor encryption
schemes of two flavors:

– First, we consider search security. In this security definition, B and C receive
ciphertexts of random messages and they win if they are able to predict the
messages.

– Next, we consider selective security. In this security definition, B and C receive
encryptions of one of two messages adversarially chosen and they are supposed
to predict which of the two messages was used in the encryption. Moreover,
the adversarially chosen messages need to be declared before the security
experiment begins and hence, the term selective security. Once we achieve
this, we propose a generic lifting theorem to lift SDE security satisfying selec-
tive security to full adaptive security, where the challenge messages can be
chosen later in the experiment.

Construction of UPO We move on to the construction of UPO.

Starting Point: Decoupling Unclonability and Computation. We con-
sider the following template to design UPO. To obfuscate a circuit C, we build
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two components. The first component is an unclonable quantum state that serves
the purpose of authentication. The second component is going to aid in the com-
putation of C once the authentication passes. Specifically, given an input x, we
first use the unclonable quantum state to authenticate x and then execute the
second component on the authenticated tag along with x to get the output C(x).

The purpose of designing the obfuscation scheme this way is two-fold. Firstly,
the fact that the first component is an unclonable quantum state means that
an adversary cannot create multiple copies of this. And by design, without this
state, it is not possible to execute the second component. Secondly, decoupling
the unclonability and the computation part allows us to put less burden on
the unclonable state, and in particular, only require the first component for
authentication. This is in turn allows us to leverage existing classical tools to
instantiate the second component.

To implement the above approach, we use a copy-protection scheme for pseu-
dorandom functions [CLLZ21], denoted by CP, and a post-quantum indistin-
guishability obfuscation scheme, denoted by iO. In the UPO scheme, to obfuscate
C, we do the following:

1. Copy-protect a pseudorandom function fk(·) and,
2. Obfuscate a circuit, with the PRF key k hardcoded in it, that takes as input

(x, y) and outputs C(x) if and only if fk(x) = y.

First Issue. While syntactically the above template makes sense, when proving
security we run into an issue. To invoke the security of CP, we need to argue that
the obfuscated circuit does not reveal any information about the PRF key k. This
suggests that we need a much stronger object like virtual black box obfuscation
instead of iO which is in general known to be impossible [BGI+01]. Taking a
closer look, we realize that this issue arose because we wanted to completely
decouple the CP part and the iO part.

Second Issue. Another issue that arises when attempting to work out the
proof. At a high level, in the security proof, we reach a hybrid where we need
to hardwire the outputs of the PRF on the challenge inputs xB and xC in the
obfuscated circuit (i.e., in bullet 2 above). This creates an obstacle when we
need to invoke the security of copy-protection: the outputs of the PRF are only
available in the challenge phase (i.e., after A splits) whereas we need to know
these outputs in order to generate the input to A.

Addressing the Above Issues. We first address the second issue. We intro-
duce a new security notion of copy-protection for PRFs, referred to as copy-
protection with preponed security. Roughly speaking, in the preponed security
experiment, A receives the outputs of the PRF on the challenge inputs instead of
being delayed until the challenge phase. By design, this stronger security notion
solves the second issue.

In order to resolve the first issue, we pull back and only partially decouple the
two components. In particular, we tie both the CP and iO parts together by mak-
ing non-black-box use of the underlying copy-protection scheme. Specifically, we
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rely upon the scheme by Colandangelo et al. [CLLZ21]. Moreover, we show that
Colandangelo et al. [CLLZ21] scheme satisfies preponed security by reducing
their security to the security of their single-decryptor encryption construction;
our proof follows along the same lines as theirs. Unfortunately, we do not know
how to go further. While they did show that their single-decryptor encryption
construction can be based on well studied cryptographic assumptions, the type
of single-decryptor encryption schemes we need have a different flavor. In more
detail, in [CLLZ21], they consider independent challenge distribution (i.e., both
B and C receive ciphertexts where the challenge bit is picked independently),
whereas we consider identical challenge distribution (i.e., the challenge bit for
both B and C is identical). We show how to modify their construction to sat-
isfy security with respect to different challenge distributions based on the two
different versions of the simultaneous inner product conjecture.

Summary. To summarise, we design UPO for keyed circuit classes in P/poly as
follows:

– We show that if the copy-protection scheme of [CLLZ21] satisfies preponed
security, UPO for P/poly exists. This step makes heavy use of iO techniques.

– We reduce the task of proving preponed security for the copy-protection
scheme of [CLLZ21] to the task of proving that the single-decryptor encryp-
tion construction of [CLLZ21] is secure in the identical challenge setting.

2 Unclonable Puncturable Obfuscation: Definition

Next, we present the definition of an unclonable puncturable obfuscation scheme.

Keyed Circuit Class. A class of classical circuits of the form C = {Cλ}λ∈N is
said to be a keyed circuit class if the following holds: Cλ = {Ck : k ∈ Kλ},
where Ck is a (classical) circuit with input length n(λ), output length m(λ)
and K = {Kλ}λ∈N is the key space. We refer to Ck as a keyed circuit. We note
that any circuit class can be represented as a keyed circuit class using universal
circuits. We will be interested in the setting when Ck is a polynomial-sized
circuit; henceforth, unless specified otherwise, all keyed circuit classes considered
in this work will consist only of polynomial-sized circuits. We will also make a
simplifying assumption that Ck and Ck′ have the same size, where k, k′ ∈ Kλ.

Syntax. An unclonable puncturable obfuscation (UPO) scheme (Obf,Eval) for a
keyed circuit class C = {Cλ}λ∈N, consists of the following QPT algorithms:

– Obf(1λ, C): on input a security parameter λ and a keyed circuit C ∈ Cλ with
input length n(λ), it outputs a quantum state ρC .

– Eval(ρC , x): on input a quantum state ρC and an input x ∈ {0, 1}n(λ), it
outputs (ρ′

C , y).
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Correctness. An unclonable puncturable obfuscation scheme (Obf,Eval) for a
keyed circuit class C = {Cλ}λ∈N is δ-correct, if for every C ∈ Cλ with input
length n(λ), and for every x ∈ {0, 1}n(λ),

Pr
[
C(x) = y | ρC←Obf(1λ,C)

(ρ′
C ,y)←Eval(ρC ,x)

]
≥ δ

If δ is negligibly close to 1 then we say that the scheme is correct (i.e., we omit
mentioning δ).

Remark 1. If (1−δ) is a negligible function in λ, by invoking the almost as good
as new lemma [Aar16], we can evaluate ρ′

C on another input x′ to get C(x′)
with probability negligibly close to 1. We can repeat this process polynomially
many times and each time, due to the quantum union bound [Gao15], we get
the guarantee that the output is correct with probability negligibly close to 1.

2.1 Security

Puncturable Keyed Circuit Class. Consider a keyed circuit class C = {Cλ}λ∈N,
where Cλ consists of circuits of the form Ck(·), where k ∈ Kλ, the input length
of Ck(·) is n(λ) and the output length is m(λ). We say that Cλ is said to be
puncturable if there exists a deterministic polynomial-time puncturing algo-
rithm Puncture such that the following holds: on input k ∈ {0, 1}λ, strings
xB ∈ {0, 1}n(λ), xC ∈ {0, 1}n(λ), it outputs a circuit Gk∗ . Moreover, the following
holds: for every x ∈ {0, 1}n(λ),

Gk∗(x) =





Ck(x), x *= xB, x *= xC ,

⊥, x ∈ {xB, xC}.

Without loss of generality, we can assume that the size of Gk∗ is the same
as the size of Ck. Note that for every keyed circuit class, there exists a trivial
Puncture algorithm. The trivial Puncture algorithm on any input k, x1, x2, µ1, µ2,
constructs the circuit Ck and then outputs the circuitG that on input x, if x = x0

or x1 outputs ⊥, else if x *∈ {x1, x2} outputs Ck(x)8.

Definition 1 (UPO Security). We say that a pair of QPT algorithms
(Obf,Eval) for a puncturable keyed circuit class C, associated with puncturing
procedure Puncture, satisfies UPO security with respect to a distribution DX
on {0, 1}n(λ) × {0, 1}n(λ) if for every QPT (A,B, C) in UPO.Expt (see Fig. 2),
there exists a negligible function negl(λ) such that

Pr
[
1 ← UPO.Expt(A,B,C),DX ,C (

1λ, b
)

: b
$←− {0, 1}

]
≤ 1

2
+ negl(λ).

8 The output circuit Gk∗ is not of the same size as Ck, but this issue can be resolved
by sufficient padding of the circuit class.
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UPO.Expt(A,B,C),DX ,C 1λ, b
)
:

– A sends k, where k ∈ Kλ, to the challenger Ch.
– Ch samples (xB, xC) ← DX (1λ) and generates Gk∗ ← Puncture(k, xB, xC).
– Ch generates ρb as follows:

• ρ0 ← Obf(1λ, Ck(·)),
• ρ1 ← Obf(1λ, Gk∗(·))

It sends ρb to A.
– Apply (B(xB, ·) ⊗ C(xC , ·))(σB,C) to obtain (bB, bC).
– Output 1 if b = bB = bC.

Fig. 2. Security Experiment

Generalized Security. For most applications, the security definition discussed
in Sect. 2.1 suffices, but for a couple of applications, we need a generalized def-
inition as follows. We allow the adversary to choose the outputs of the circuit
generated by Puncture on the punctured points. Previously, the circuit generated
by the puncturing algorithm was such that on the punctured points, it output ⊥.
Instead, we allow the adversary to decide the values that need to be output on the
points that are punctured. We emphasize that the adversary still would not know
the punctured points itself until the challenge phase. Formally, the (generalized)
puncturing algorithm GenPuncture now takes as input k ∈ Kλ, polynomial-
sized circuits µB : {0, 1}n(λ) → {0, 1}m(λ), µC : {0, 1}n(λ) → {0, 1}m(λ), strings
xB ∈ {0, 1}n(λ), xC ∈ {0, 1}n(λ), if xB *= xC , it outputs a circuit Gk∗ such that
for every x ∈ {0, 1}n(λ),

Gk∗(x) =






Ck(x), x *= xB, x *= xC

µB(xB), x = xB

µC(xC), x = xC ,

else it outputs a circuit Gk∗ such that for every x ∈ {0, 1}n(λ),

Gk∗(x) =





Ck(x), x *= xB

µB(xB), x = xB.

As before, we assume that without loss of generality, the size of Gk∗ is the
same as the size of Ck. A keyed circuit class C associated with a generalized
puncturing algorithm GenPuncture is referred to as a generalized puncturable
keyed circuit class. Note that for every keyed circuit class C = {Ck}k, there exists
a trivial GenPuncture algorithm, which on any input k, x1, x2, µ1, µ2, constructs
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the circuit Ck and then outputs the circuit Gk∗9 that on input x, if x = xi for
any i ∈ {0, 1}, outputs µi(xi), else if x *∈ {x1, x2} outputs Ck(x).

Definition 2 (Generalized UPO security). We say that a pair of QPT algo-
rithms (Obf,Eval) for a generalized keyed circuit class C = {Cλ}λ∈N equipped with
a puncturing algorithm GenPuncture, satisfies generalized UPO security with
respect to a distribution DX on {0, 1}n(λ) × {0, 1}n(λ) if the following holds for
every QPT (A,B, C) in GenUPO.Expt defined in Fig. 3:

Pr
[
1 ← GenUPO.Expt(A,B,C),DX ,C (

1λ, b
)

: b
$←− {0, 1}

]
≤ 1

2
+ negl(λ).

GenUPO.Expt(A,B,C),DX ,C 1λ, b
)
:

– A sends (k, µB, µC), where k ∈ Kλ, µB : {0, 1}n(λ) → {0, 1}m(λ), µC :
{0, 1}n(λ) → {0, 1}m(λ), to the challenger Ch.

– Ch samples (xB, xC) ← DX (1λ) and generates Gk∗ ←
Puncture(k, xB, xC , µB, µC).

– Ch generates ρb as follows:
• ρ0 ← Obf(1λ, Ck),
• ρ1 ← Obf(1λ, Gk∗)

It sends ρb to A.
– Apply (B(xB, ·) ⊗ C(xC , ·))(σB,C) to obtain (bB, bC).
– Output 1 if b = bB = bC.

Fig. 3. Generalized Security Experiment

Instantiations of DX . In the applications, we will be considering the following
two distributions:

1. U{0,1}2n : the uniform distribution on {0, 1}2n. When the context is clear, we
simply refer to this distribution as U .

2. IdU{0, 1}n: identical distribution on {0, 1}n ×{0, 1}n with uniform marginals.
That is, the sampler for IdU{0, 1}n is defined as follows: sample x from U{0,1}n

and output (x, x). When the context is clear, we simply refer to this distri-
bution as IdU .

9 As before, the output circuit Gk∗ may not have the same size as Ck, but this can be
resolved by sufficient padding of the complexity class.
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3 Conjectures

To show that our construction satisfies the UPO security notions, we rely upon
some novel conjectures. Towards understanding our conjectures, consider the
following problem: suppose say an adversary B is given a state ρx that is gen-
erated using a secret vector x ∈ Zn

Q, where Q,n ∈ N and Q is prime. We are
given the guarantee that just given ρx, it should be infeasible to compute x
with inverse polynomial probability over the randomness of sampling x. Now,
the goal of B is to predict (u, 〈u,x〉) versus (u, 〈u,x〉 +m), where u $←− Zn

Q and

m
$←− ZQ. The quantum Goldreich-Levin theorem [AC02,CLLZ21] states that,

for the case when Q = 2, the probability that B succeeds is negligibly close to 1
2 .

The quantum Goldreich-Levin theorem has been generalized [APV23,STHY23]
to the case when Q is large.

We study a generalized version of this problem where there are two non-
communicating but entangled parties B and C and both are simultaneously par-
ticipating in the above distinguishing experiment. Depending on the entangled
state shared by B and C and the distributions from which the samples are gen-
erated, we obtain many generalizations. We conjecture that in some of these
generalized versions, the prediction probability is close to 1

2 . But first, we will
capture all the generalizations by defining the following problem.

(DX ,DCh,Dbit)-Simultaneous Inner Product Problem ( (DX ,DCh,Dbit)-simultIP).
Let DX be a distribution on Zn

Q×Zn
Q, DCh be a distribution on Zn+1

Q ×Zn+1
Q and

finally, let Dbit be a distribution on {0, 1} × {0, 1}, for prime Q ∈ N. Let B′ and
C′ be QPT algorithms. Let ρ = {ρxB,xC}xB,xC∈Zn

Q
be a set of bipartite states. If

xB = xC = x then we denote ρxB,xC by ρx.
Consider the following game.

– Sample (xB,xC) ← DX ,
– Sample

((
uB,mB)

,
(
uC ,mC))

← DCh,
– Set zB0 = 〈uB,xB〉, zC0 = 〈uC ,xC〉, zB1 = mB + 〈uB,xB〉, zC1 = mC + 〈uC ,xC〉,
– Sample (bB, bC) ← Dbit,
– (̂bB, b̂C) ← (B′(uB, zBbB , ·) ⊗ C′(uC , zCbC , ·))(ρxB,xC ).

We say that (B′, C′) succeeds if b̂B = bB and b̂C = bC .

Our goal is to upper bound the optimal success probability in the above problem.
We are primarily interested in the following setting: Dbit is a distribution on
{0, 1} × {0, 1}, where (b, b) is sampled with probability 1

2 , for b ∈ {0, 1}. In this
case, we simply refer to the above problem as (DX ,DCh)-simultIP problem.

Conjectures. We state the following conjectures. In the conjectures, we assume
that the order of the field is Q ≥ 2λ. We are interested in the following distri-
butions:
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– We define Dind
Ch as follows: it samples

((
uB,mB)

,
(
uC ,mC))

, where uB $←−
Zn
Q,u

C $←− Zn
Q,m

B $←− ZQ,mC $←− ZQ. We define Did
Ch as follows: it samples

((u,m) , (u,m)), where u $←− Zn
Q,m

$←− ZQ.

– Similarly, we define Dind
X as follows: it samples

(
xB,xC)

, where xB $←−
Zn
Q,x

C $←− Zn
Q. We define Did

X as follows: it samples (x,x), where x $←− Zn
Q.

Conjecture 1 (
(
Did

X ,Did
Ch

)
-simultIP Conjecture). Consider a set of bipartite states

ρ = {ρx}x∈Zn
Q

satisfying the following property: for any two QPT adversaries
B, C,

Pr
[
(x,x) ← (B ⊗ C) (ρx) : (x,x) ← Did

X
]

≤ ν(n)

for some negligible function ν(λ).
Any QPT non-local solver for the

(
Did

X ,Did
Ch

)
-simultIP problem succeeds with

probability at most 1
2 + ε(n), where ε is a negligible function.

Conjecture 2 ((Dind
X ,Dind

Ch )-simultIP Conjecture). Consider a set of bipartite
states ρ = {ρxB,xC}xB,xC∈Zn

Q
satisfying the following property: for any two QPT

adversaries B, C,

Pr
[(
xB,xC)

← (B ⊗ C)
(
ρxB,xC

)
:

(
xB,xC)

← Dind
X

]
≤ ν(n)

for some negligible function ν(λ).
Any QPT non-local solver for the Did

Ch-simultIP problem succeeds with prob-
ability at most 1

2 + ε(n), where ε is a negligible function.

3.1 Discussion

Special Cases. Variants of the above conjectures, obtained by modifying the
input and challenge distributions, have been proven to be true by considering
different flavors of the simultaneous Goldreich-Levin theorem. We mention three
such special cases below.

Field Input Challenge sample Challenge bit

Size distribution distibution distribution

[AKL23] Q = 2 DX = Did
X DCh = D̃ind

Ch Dbit = Dind
bit

[KT22] Q ∈ {2, 3} DX = Dind
X DCh = D̃ind

Ch Dbit = Dind
bit

[AKY24] Q = 2 DX = Did
X DCh = D̃ind

Ch Dbit = Did
bit

We define D̃ind
Ch , for the case when Q = 2, to be the distribution that samples

((uB, 1), (uC , 1)), where uB $←− Zn
Q and uC $←− Zn

Q. Note that this is similar to
Dind

Ch except that mB and mC is always set to 1.
Although not explicitly stated, the generic framework of upgrading classical

reductions to non-local reductions, introduced in [AKL23], can be leveraged to
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extend the above result to large values of Q. Finally, the work of [CG23] considers
a similar simultaneous Goldreich-Levin theorem as [AKL23] except that Bob’s
and Charlie’s challenge messages consists of multiple Goldreich-Levin samples.

Among all the works so far, [AKY24] (which was subsequent to our work)
is the only work that can handle identical challenge bit distributions (i.e. Did

bit)
but for the case when Q = 2.

Proving our conjecture: Challenges. Unfortunately, it is unclear how to leverage
the techniques used in the aforementioned works to prove our conjectures. To
understand the difficulties, let us look at each of the two conjectures separately.

Let us start with the (Dind
X ,Dind

Ch )-simultIP conjecture (Conjecture 2). Recall
that this conjecture is defined for large fields (of size ≥ 2λ). When Q = 2, a
version of this conjecture was proven in a subsequent work by [AKY24]. Their
proof is sensitive to the case that they are dealing with binary fields and their
techniques do not seem to readily generalize to the case of large fields.

Proving
(
Did

X ,Did
Ch

)
-simultIP conjecture seems much harder although this

is incomparable to the (Dind
X ,Dind

Ch )-simultIP conjecture. Let us illustrate its
difficulty using the example of simultaneous Goldreich-Levin theorem proven
in [AKL23,KT22]. They consider the independent setting where both Bob and
Charlie receive independent Goldreich-Levin samples (i.e. DCh = D̃ind

Ch and
Dbit = Dind

bit ). To recall, the quantum Goldreich-Levin extractor (for a single
party), as proven by [AC02,CLLZ21], proceeds as follows: it creates a superpo-
sition over all the challenge messages, coherently computes the distinguisher on
it, applies a phase flip operation, uncomputes and finally, measures the answer
in the Fourier basis. In the simultaneous version, we are required to extract from
two parties, say, Bob and Charlie, simultaneously. In the independent setting,
Bob’s extractor and Charlie’s extractor can each independently run the (sin-
gle party) Goldreich-Levin extractor, and the analysis for the single party case
smoothly extends to the simultaneous case as well. However, in the identical set-
ting, this approach does not work. This is due to the fact that Bob and Charlie,
instead of applying the Fourier basis measurement independently, would have to
apply an entangled measurement jointly on their system. Since the two extrac-
tors are not allowed to communicate, it is not at all clear if such a measurement
operation can be implemented. Another, and perhaps a more serious problem, is
that the phase flip operations done by both Bob and Charlie cancel each other
out, making the rest of the extraction process useless. Even though these difficul-
ties are in the context of proving the simultaneous Goldreich-Levin theorem in
the identical challenge setting, similar issues seem to exist with other non-local
approaches to proving the identical simultaneous Goldreich-Levin theorem.

4 Direct Construction

In this section, we construct unclonable puncturable obfuscation for all efficiently
computable generalized puncturable keyed circuit classes, with respect to U and
IdU challenge distribution (see Sect. 2.1). Henceforth, we assume that any keyed
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circuit class we consider will consist of circuits that are efficiently computable.
We present the construction in three steps.

1. In the first step (Sect. 4.1), we construct a single decryptor encryption (SDE)
scheme based on the CLLZ scheme [CLLZ21] (see Fig. 4) and show that it
satisfies Dind-msg-indistinguishability from random anti-piracy (and Dind-msg-
indistinguishability from random anti-piracy respectively) (for more details
on the definition, see the full version), based on the conjectures, Conjectures
1 and 2 .

2. In the second step (Sect. 4.2), we define a variant of the security definition
considered in [CLLZ21] with respect to two different challenge distributions
and prove that the copy-protection construction for PRFs in [CLLZ21] (see
Fig. 8) satisfies this security notion, based on the indistinguishability from
random anti-piracy guarantees of the SDE scheme considered in the first step.

3. In the third step (Sect. 4.3), we show how to transform the copy-protection
scheme obtained from the first step into UPO for a keyed circuit class with
respect to the U and IdU challenge distribution.

4.1 A New Public-Key Single-Decryptor Encryption Scheme

The first step is to construct a SDE scheme of the suitable form. While SDE
schemes have been studied [GZ20,CLLZ21], we require a weaker version of secu-
rity called indistinguishability from random anti-piracy (for more details on the
definition, see the full version), which has not been considered in prior works.

Our construction is based on the SDE scheme in [CLLZ21, Section 6.3] which
we recall in Fig. 4. From here on, we will refer to it as the CLLZ SDE scheme,
given in Fig. 4. Next, we define a family of SDE schemes based on the CLLZ SDE,
called CLLZ post-processing schemes, as follows.

CLLZ Post-processing Single Decryptor Encryption Scheme: Def-
inition. We call a SDE scheme (Gen,QKeyGen,Enc,Dec) a CLLZ post-
processing if there exists polynomial time classical algorithms (EncPostProcess,
DecPostProcess), such that DecPostProcess is a deterministic algorithm. For cor-
rectness of a CLLZ post-processing SDE scheme (see Fig. 5) we require that for
every string r,m,

c′ ← EncPostProcess(m, r),m′ ← DecPostProcess(c′, r) =⇒ m = m′. (1)

It is easy to verify that assuming Eq. (1), δ-correctness of the CLLZ SDE implies
δ-correctness of a CLLZ post-processing SDE for every δ ∈ [0, 1].

Construction. We next consider the following CLLZ post-processing scheme
given in Fig. 6. As mentioned before, we will assume that the message length
is at least polynomial in the security parameter. Note that the algorithms
(EncPostProcess,DecPostProcess) in Fig. 6 satisfies Eq. (1), and hence if the CLLZ
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Tools: post-quantum indistinguishability obfuscation iO.

Gen(1λ):
1. Sample #0 uniformly random subspaces {Ai}i∈["0] of dimension λ

2 from Zλ
2

and for each i ∈ [#0], sample vectors si, s′
i

$←− Zλ
2 , where #0 = #0(λ) is a

polynomial in λ.
2. Compute {R0

i , R
1
i }i∈"0 , where for every i ∈ [#0], R0

i ← iO(Ai + si) and
R1

i ← iO(A⊥
i + s′

i) are the membership oracles.
3. Output sk = {{Aisi,s′

i
}i} and pk = {R0

i , R
1
i }i∈"0

QKeyGen(sk):
1. Interprete sk as {{Aisi,s′

i
}i}.

2. Output ρsk = {{|Aisi,s′
i
〉}i}.

Enc(pk,m):
1. Interprete pk = {R0

i , R
1
i }i∈"0 .

2. Sample r
$←− {0, 1}n.

3. Generate Q̃ ← iO(Qm,r) where Qm,r has {R0
i , R

1
i }i∈"0 hardcoded inside,

and on input v1, . . . , v"0 ∈ {0, 1}n"0 , checks if Rri
i (vi) = 1 for every i ∈ [#0]

and if the check succeeds, outputs m, otherwise output ⊥.
4. Output ct = (r, Q̃)

Dec(ρsk, ct)
1. Interprete ct = (r, Q̃).
2. For every i ∈ [#0], if ri = 1 apply H⊗n on |Aisi,s′

i
〉. Let the resulting state

be |ψx〉.
3. Run the circuit Q̃ in superposition on the state |ψx〉 and measure the output

register and output the measurement result m.

Fig. 4. The CLLZ single decryptor encryption scheme, see [CLLZ21, Construction 1].

SDE scheme (depicted in Fig. 4) satisfies δ-correctness so does the SDE scheme
in Fig. 6. It is also easy to see that DecPostProcess is a determinisitc algorithm.
Next, we prove security for the SDE scheme in Fig. 6 based on the simultaneous
inner product conjectures.

Remark 2. By the definition of the randomized embedding EmbedQ defined in
the algorithm EncPostProcess given in Fig. 6, it is easy to see that the ensemble

{EmbedQ(m)}
m

$←−{0,1}M
= {m̃Q}

m̃Q
$←−{0,1,...,LM−1}

≈s {m̃Q}
m̃Q

$←−ZQ

,
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Tools: CLLZ SDE scheme given in Figure 4.

Gen(1λ): Same as CLLZ.Gen(1λ).

QKeyGen(sk): Same as CLLZ.QKeyGen(sk).

Enc(pk,m):

1. Sample r
$←− Zλ

Q, where Q is the smallest prime greater than or equal to
M · 2λ with M being the size of the message space, i.e., M = 2|m| and |m|
is the bit-size of the message m.

2. Generate c ← EncPostProcess(m, r) and generate c′ ← CLLZ.Enc(pk, r)10.
3. Output ct = (c, c′).

Dec(ρsk, ct)

1. Interprete ct = (c, c′).
2. Generate r ← CLLZ.Dec(ρsk, c′).
3. Output m ← DecPostProcess(c, r).

Fig. 5. Definition of a CLLZ post-processing SDE scheme.

EncPostProcess(m, r):
1. Sample u $←− Zλ

Q, whereQ is the smallest prime number greater than 2|m|+λ,
and |m| is the bit-size of the binary string m.

2. Generate m̃ ← EmbedQ(m), where EmbedQ randomly embeds the binary
stringm in ZQ, i.e., m̃Q ≡ kM+mQ where k $←− {0, 1, . . . , L−1},M ≡ 2|m|,
L ≡ [Q/M ], and mQ is the canonical embedding of m in ZQ.

3. Output u, m̃Q+〈u, r〉, where the addition and inner product uses the prod-
uct over the field ZQ.

DecPostProcess(c, r):
1. Interprete c as u, z.
2. Generate m̃Q ← z + 〈u, r〉.
3. Output m where m is the binary representation of m̃Q mod M .

Fig. 6. Construction of a CLLZ post-processing SDE scheme.

because Q − L < M by definition of L, and hence, Q−L
Q < M

Q which is at most
M

M ·2λ = 1
2λ , by our choice of Q.

10 We would like to note that the obfuscated circuit may be padded more than
what is required in the CLLZ SDE scheme, for the security proofs of the
CLLZ post-processing SDE.
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Theorem 6. Assuming Conjecture 2, the existence of post-quantum sub-
exponentially secure iO and one-way functions, and the quantum hardness of
Learning-with-errors problem (LWE), the CLLZ post-processing SDE as defined
in Fig. 5 given in Fig. 6 satisfies Dind-msg-indistinguishability from random anti-
piracy (for more details on the definition, see the full version).

Theorem 7. Assuming Conjecture 1, the existence of post-quantum sub-
exponentially secure iO and one-way functions, and quantum hardness of
Learning-with-errors problem (LWE), the CLLZ post-processing SDE (as defined
in Fig. 5) given in Fig. 6 satisfies Didentical-cipher-indistinguishability from random
anti-piracy (for more details on the definition, see the full version).

The proof of Theorems 6 and 7 is given in full version.

4.2 Copy-Protection for PRFs with Preponed Security

We first introduce the definition of preponed security in Sect. 4.2 and then we
present the constructions of copy-protection in Sect. 4.2.

Definition. We introduce a new security notion for copy-protection called
preponed security.

Consider a pseudorandom function family F = {Fλ}λ∈N, where Fλ = {fk :
{0, 1}#(λ) → {0, 1}κ(λ) : k ∈ {0, 1}λ}. Moreover, fk can be implemented using
a polynomial-sized circuit, denoted by Ck.

Definition 3 (Preponed Security). A copy-protection scheme CP =
(CopyProtect,Eval) for F (see the full version for the formal definition) sat-
isfies DX -preponed security if for any QPT (A,B, C), there exists a negligible
function negl such that:

Pr[PreponedExpt(A,B,C),F,U (
1λ

)
= 1] ≤ 1

2
+ negl.

where PreponedExpt is defined in Fig. 7.
We consider two instantiations of DX :

1. U which is the product of uniformly random distribution on {0, 1}#, meaning
x1, x2 ← U(1λ) where x1, x2

$←− {0, 1}# independently.
2. IdU which is the perfectly correlated distribution on {0, 1}# with uniform

marginals, meaning x, x ← IdU (1λ) where x
$←− {0, 1}#.

Construction. The CLLZ copy-protection scheme is given in Figs. 8 and 9.
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PreponedExpt(A,B,C),CP,DX 1λ
)
:

1. Ch samples k ← KeyGen(1λ), then generates ρCk ← CopyProtect(1λ, Ck)
and sends ρfk to A.

2. Ch samples xB, xC ← DX (1λ), b $←− {0, 1}. Let yB1 = f(xB), yC1 = f(xC) ,
and yB0 = y1, yC0 = y2 where y1, y2

$←− {0, 1}κ(λ). Ch gives (yBb , y
C
b ) to Alice.

3. A(ρCk) outputs a bipartite state σB,C .
4. Apply (B(xB, ·) ⊗ C(xC , ·))(σB,C) to obtain (bB, bC).
5. Output 1 if bB = bC = b.

Fig. 7. Preponed security experiment for copy-protection of PRFs with respect to the
distribution DX .

Tools: Punctrable and extractable PRF family F1 = (KeyGen,Eval) (repre-
sented as F1(k, x) = PRF.Eval(k, ·)) and secondary PRF family F2, F3 with
some special properties as noted in [CLLZ21]

CopyProtect(K1):

1. Sample secondary keys K2,K3, and {{|Aisi,s′
i
〉}i}, and compute the coset

state {{|Aisi,s′
i
〉}i}.

2. Compute P̃ ← iO(P ) where P is as given in Figure 9.
3. Output ρ = (P̃ , {{|Aisi,s′

i
〉}i}).

Eval(ρ, x):

1. Interprete ρ = (P̃ , {{|Aisi,s′
i
〉}i}).

2. Let x = x0‖x1‖x2, where x0 = &0. For every i ∈ [&0], if x0,i = 1 apply H⊗n

on |Aisi,s′
i
〉. Let the resulting state be |ψx〉.

3. Run the circuit C̃ in superposition on the input registers (X,V ) with the
initial state (x, |ψx〉) and measure the output register to get an output y.

Fig. 8. CLLZ copy-protection for PRFs.

Construction of Copy-Protection.

Proposition 1. Assuming the existence of post-quantum iO, and one-way func-
tions, and if there exists a CLLZ post-processing SDE scheme that satisfies
Dind-msg-indistinguishability from random anti-piracy (for more details on the
definition, see the full version), then the CLLZ copy-protection construction
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P :

Hardcoded keys K1,K2,K3, R0
i , R

1
i for every i ∈ [#0] On input x = x0‖x1‖x2

and vectors v = v1, . . . v"0 .

1. If F3(K3, x1) ⊕ x2 = x0‖Q and x1 = F2(K2, x0‖Q):
Hidden trigger mode: Treat Q as a classical circuit and output Q(v).

2. Otherwise, check if the following holds: for all i ∈ #0, Rx0,i(vi) = 1 (where
x0,i is the ith coordinate of x0).
Normal mode: If so, output F1(K1, x) where F1() = PRF.Eval() is the
primary pseudorandom function family that is being copy-protected. Oth-
erwise output ⊥.

Fig. 9. Circuit P in CLLZ copy-protection of PRF.

in [CLLZ21, Section 7.3] (see Fig. 8) satisfies U-preponed security (Defini-
tion 3).

Proposition 2. Assuming the existence of post-quantum iO, and one-way func-
tions, and if there exists a CLLZ post-processing SDE scheme that satisfies
Didentical-cipher-indistinguishability from random anti-piracy, (for more details on
the definition, see the full version), then the CLLZ copy-protection construc-
tion in [CLLZ21, Section 7.3] (see Fig. 8) satisfies IdU -preponed security (Defi-
nition 3).

The proofs of Propositions 1 and 2 can be found in full version.

4.3 UPO for Keyed Circuits from Copy-Protection with Preponed
Security

Theorem 8. Assuming Conjecture 2, the existence of post-quantum sub-
exponentially secure iO and injective one-way functions, and the quantum
hardness of Learning-with-errors problem (LWE), there is a construction of
unclonable puncturable obfuscation satisfying U-generalized UPO security (see
Definition 2), for any generalized keyed puncturable circuit class C in P/poly,
see Sect. 2.1.

Proof. The proof follows by combining Lemma 1 and Theorem 10. 01

Theorem 9. Assuming Conjecture 1, the existence of post-quantum sub-
exponentially secure iO and injective one-way functions, and the quantum
hardness of Learning-with-errors problem (LWE), there is a construction of
unclonable puncturable obfuscation satisfying IdU -generalized UPO security (see
Definition 2), for any generalized keyed puncturable circuit class C in P/poly,
see Sect. 2.1.
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Proof. The proof follows by combining Lemma 1 and Theorem 11. 01

In the construction given in Fig. 10, the PRF family (KeyGen,Eval) satisfies the
requirements as in [CLLZ21] and has input length n(λ) and output length m;
PRG is a length-doubling injective pseudorandom generator with input length
m, which can be constructed based on injective one-way functions.

Tools: PRF family (KeyGen,Eval) with same properties as needed in [CLLZ21],
PRG, CLLZ copy-protection scheme (CopyProtect,Eval).

Obf(1λ,W ):

1. Sample a random key k ← PRF.KeyGen(1λ).
2. Compute iO(P ), {{|Aisi,s′

i
〉}i} ← CLLZ.CopyProtect(k).

3. Compute C̃ ← iO(C) where C = PRG · iO(P ).
4. Compute iO(D) where D takes as input x, v, y, and runs C on x, v to get y′

and outputs ⊥ if y′ *= y or y′ = ⊥, else it runs the circuit W on x to output
W (x).

5. Output ρ = ({{|Aisi,s′
i
〉}i}, C̃, iO(D)).

Eval(ρ, x)

1. Interprete ρ = ({{|Aisi,s′
i
〉}i}, C̃, iO(D)).

2. Let x = x0‖x1‖x2, where x0 = &0. For every i ∈ [&0], if x0,i = 1 apply H⊗n

on |Aisi,s′
i
〉. Let the resulting state be |ψx〉.

3. Run the circuit C̃ in superposition on the input registers (X,V ) with the
initial state (x, |ψx〉) and then measure the output register to get an output
y. Let the resulting state quantum state on register V be σ.

4. Run iO(D) on the registers X,V, Y in superposition where registers X,Y
are initialized to classical values x, y and then measure the output register
to get an output z. Output z.

Fig. 10. Construction of a UPO scheme.

Lemma 1. The construction given in Fig. 10 satisfies (1−negl)-UPO correctness
for any generalized puncturable keyed circuit class in P/poly for some negligible
function negl.

The proof is given in the full version.

Theorem 10. Assuming Conjecture 2, post-quantum sub-exponentially secure
iO and injective one-way functions, and the quantum hardness of Learning-with-
errors problem (LWE), the construction given in Fig. 10 satisfies U-generalized
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unclonable puncturable obfuscation security (see Sect. 2.1) for any generalized
puncturable keyed circuit class in P/poly.

Proof. The proof follows by combining Lemma 2 and Proposition 1, and Theo-
rem 6. 01

Theorem 11. Assuming Conjecture 1, the existence of post-quantum sub-
exponentially secure iO and injective one-way functions, and the quantum
hardness of Learning-with-errors problem (LWE), the construction given in
Fig. 10 satisfies IdU -generalized unclonable puncturable obfuscation security (see
Sect. 2.1) for any generalized puncturable keyed circuit class in P/poly.

Proof. The proof follows by combining Lemma 3 , Proposition 2, and Theorem
7. 01

Lemma 2. Assuming the existence of post-quantum iO, injective one-way func-
tions, and that CLLZ copy protection construction for PRFs given in Fig. 8, sat-
isfies U-preponed security (defined in Definition 3, the construction given in
Fig. 10 for W satisfies U-generalized UPO security guarantee (see Sect. 2.1), for
any puncturable keyed circuit class W = {{Ws}s∈Kλ}λ in P/poly.

Lemma 3. Assuming the existence of post-quantum iO, injective one-way func-
tions, and that CLLZ copy protection construction for PRFs given in Fig. 8, sat-
isfies IdU -preponed security (defined in Definition 3), the construction given in
Fig. 10 for W satisfies IdU -generalized UPO security guarantee (see Sect. 2.1),
for any puncturable keyed circuit class W = {{Ws}s∈Kλ}λ in P/poly.

The proof of the Lemmas 2 and 3 can be found in the full version.

5 Construction of UPO from Quantum State iO

Recently, Coladangelo and Gunn [CG23] proposed the definition of quantum
state indistinguishability obfuscation (qsiO) and presented a candidate construc-
tion of qsiO. In this section, we show how to construct UPO from qsiO, assuming
unclonable encryption and injective one-way functions. As an intermediate tool,
we consider a variant of private-key unclonable encryption introduced in [CG23],
called key-testable (private-key) unclonable encryption.

Key-Testable Unclonable Encryption. A key-testable unclonable encryption
scheme [CG23] is an unclonable encryption scheme (Gen,Enc,Dec) where, given
a ciphertext ρ and a key sk′, we can efficiently determine with probability 1
whether ρ was generated using the secret key sk′ or not.

Formally, a key-testable private-key unclonable encryption is associated with
an additional QPT algorithm Test that takes as input a key sk ∈ {0, 1}λ, a
quantum ciphertext ρ and outputs a bit b such that for every pair of keys sk, sk′ ∈
{0, 1}λ, sk *= sk′, a message m ∈ {0, 1}n,

Pr
[
b ← Test(sk′, ρ) :

sk←Gen(1λ),
ρ←Enc(sk,m),

b=δsk(sk
′)

]
= 1,
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where δsk is the function that is 1 at sk and 0 everywhere else, and Enc is the
encryption algorithm for the unclonable encryption scheme.

Unclonable Encryption Schemes with Uniform Key-Generation. In addition to
the key-testable property, for the purpose of our construction of UPO, we also
require that the key generation algorithm of the underlying unclonable encryp-
tion scheme samples the secret key uniformly at random from {0, 1}λ. We need
this restriction on the key-generation algorithm because, in our construction, the
output distribution of the key-generation algorithm determines the challenge dis-
tribution DX , i.e., the distribution of the point to be punctured.

We next show that given an unclonable encryption scheme, we can generically
transform it into another scheme satisfying the above-mentioned restriction.

Theorem 12. An unclonable encryption scheme UE = (Gen,Enc,Dec) can be
transformed into another unclonable encryption scheme UE′ = (Gen′,Enc′,Dec′)
such that the output distribution of Gen′ is uniform. Moreover, UE′ supports
messages of the same length as UE.

Proof. Given UE = (Gen,Enc,Dec), we define UE′ = (Gen′,Enc′,Dec′) as follows.

– Gen′(1λ): Sample k′ $←− {0, 1}λ, and output k′.
– Enc′(k′,m): Generate k ← Gen(1λ), and then generate ρ ← Enc(k,m). Output

ρ′ = (ρ, k ⊕ k′).
– Dec′(k′, ρ′): Interprete ρ′ = (ρ, c). Generate k = k′ ⊕ c, and then generate
m ← Dec(k, ρ). Output m.

Clearly, the correctness of UE′ is immediate from the correctness of UE. Further-
more, Gen′ satisfies the property mentioned in the theorem.

To argue security, let (A,B, C) be an adversary that violates unclonable indis-
tinguishability security of UE′ (see the formal definition in the full version).
Consider the following reduction (RA,RB,RC) that uses (A,B, C) to violate the
unclonable indistinguishability security of UE.

1. RA runs A on the security parameter and get backs a message pair (m0,m1),
which she sends to the challenger Ch.

2. Ch sends a ciphertext ρ.
3. RA samples r

$←− {0, 1}λ, and feeds ρ′ = (ρ, r) to A who then outputs a
bipartite state σ(B,C). RA outputs (rB,σ(B,C), rC) where rB = rC = r.

4. RB (respectively, RC) on receiving (rB,σB) (respectively, (rC ,σC)) from RA
and a key k from the challenger, runs B on (rB ⊕ k,σB) (respectively, C on
(rC ⊕ k,σC)), and outputs B’s output (respectively, C’s output).

It follows that the success probability of (RA,RB,RC) is the same as that of
(A,B, C), which completes the proof of the theorem. 01

It was shown in [CG23] that assuming qsio, the key testable property can be
generically attached to any unclonable encryption scheme that satisfies the above
restriction on the key generation algorithm.
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Theorem 13 (Adapted from [CG23, Theorem 16]). If injective one-way
functions and qsio exist, then any unclonable bit encryption scheme (with the
key generation algorithm outputting a uniformly random key from {0, 1}λ) can
be compiled into one with key testing (with the same key generation algorithm).

For the rest of the section, for any key testable unclonable encryption scheme, we
will assume that the Gen algorithm has uniform output distribution.Hence we will
use a triplet of algorithms (Enc,Dec,Test) to represent a key testable unclonable
encryption scheme and in particular, we omit Gen from the description.

UPO from qsiO. We consider the following tools:

– A key-testable unclonable bit encryption scheme UE = (Enc,Dec,Test).
– Quantum state iO scheme, denoted by qsio = (Obf,Eval).

Theorem 14. Suppose there exists a key-testable unclonable bit encryption
scheme, UE = (Enc,DecTest). Then, any qsio scheme (Obf,Eval) for P/poly
is also a UPO scheme satisfying IdU -generalized UPO security guarantee (see
Sect. 2.1), for any puncturable keyed circuit class W = {{Ws}s∈Kλ}λ in P/poly.

Proof. The correctness is immediate from the correctness of the qsio scheme.
Next, we prove security. Let (A,B, C) be a QPT adversary in the generalized

UPO security experiment given in Fig. 3 with DX = IdU .

Hybrid0 : Same as the security experiment given in Fig. 3.

1. A sends a key s ∈ Kλ and function µ11 to Ch.
2. Ch samples x∗ $←− {0, 1}n(λ), and a bit b $←− {0, 1}.
3. Ch generates ρ̃0 ← Obf(1λ,Ws), and ρ̃1 ← Obf(1λ,Ws,x∗,µ), where Ws,x∗,µ ←

GenPuncture(s, x∗, x∗, µ, µ).
4. Ch sends ρ̃b to A.
5. A(ρ̃b) outputs a bipartite state σB,C .
6. Apply (B(x∗, ·) ⊗ C(x∗, ·))(σB,C) to obtain (bB, bC).
7. Output 1 if bB = bC = b.

Hybrid1 :

1. A sends a key s ∈ Kλ and function µ to Ch.
2. Ch samples x∗ $←− {0, 1}n(λ), and a bit b $←− {0, 1}.
3. Ch generates ρ̃b ← Obf(1λ, (C, ρb)) where ρb ← UE.Enc(x∗, b) and C is the

circuit that on input (x, ρb), first checks if UE.Test(x, ρb) rejects, in which
case, C outputs Ws(x). Else, C runs d ← UE.Dec(x, ρb) and if d = 0 outputs
Ws(x) else outputs µ(x).

11 In the security experiment in Fig. 3, A sends two functions µB, µC but since in this
proof, DX = IdU , the second function µC is redundant. Hence, for the sake of the
proof, we can assume, without loss of generality, that A sends a single function µ to
Ch.
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4. Ch sends ρ̃b to A.
5. A(ρ̃b) outputs a bipartite state σB,C .
6. Apply (B(x∗, ·) ⊗ C(x∗, ·))(σB,C) to obtain (bB, bC).
7. Output 1 if bB = bC = b.

Observe that Ws and (C, ρ0) are functionally equivalent. Here, (C, ρ0) repre-
sents an implementation of a classical function that maps x to C(ρ, x). Similarly,
Ws,x∗,µ and (C, ρ1) are functionally equivalent. From the security of qsio, it fol-
lows that the hybrids Hybrid0 and Hybrid1 are computationally indistinguishable.

Next, we give a reduction (RA, RB, RC) from Hybrid1 to the unclonable indis-
tinguishability experiment for UE as follows.

– RA sends (0, 1) as the challenge message pair to the challenger.
– Challenger sends a ciphertext ρ.
– RA generates (C, ρ) (as described in Hybrid1), and then computes ρ̃ ←
Obf(1λ, (C, ρ)).

– RA feeds ρ̃ to A and outputs a bipartite state σB,C .
– RB (respectively, RC) on receiving x from the challenger, runs B (respectively,
C) on σB (respectively, σC) and x, and outputs B′s output (respectively, C’s
output).

It follows that the advantage of the QPT adversary (A,B, C) in breaking UPO
security is within a negligible additive factor of the advantage of the QPT adver-
sary in breaking the unclonable indistinguishability of UE. This completes the
proof of generalized UPO security for (Obf,Eval). 01

Combining Theorems 12 to 14, we conclude the following.

Corollary 3. Suppose there exists a post-quantum injective one-way function
and an unclonable bit encryption scheme UE. Then, any qsio scheme (Obf,Eval)
is also a UPO scheme satisfying IdU -generalized UPO security guarantee (see
Sect. 2.1), for any puncturable keyed circuit class W = {{Ws}s∈Kλ}λ in P/poly.
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