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Introduction
After working in security for a while, it sometimes seems inevitable to conclude that the more things change, the
more they stay the same. In this context, given the importance of a secure cyberspace for modern society, this
constancy is decidedly not a good thing. Memory corruption vulnerabilities continue to plague software, and the
security community continues to be unable to completely detect and remove or neutralize these vulnerabilities, to
predict new classes of vulnerabilities, or otherwise make strong guarantees with respect to memory safety for general
software.1 And today, heap vulnerabilities comprise a large fraction of memory corruption vulnerabilities. Heap
vulnerabilities are especially pernicious because detecting them requires enforcing temporal memory safety, a strictly
harder task than enforcing spatial memory safety.

It isn’t all doom and gloom. Years of research on software mitigations have yielded considerable progress in heap
vulnerability detection and hardening code against their exploitation. Modern allocators can enforce heap integrity
with cookies, enforce correctness constraints on heap metadata like free list pointers, or track pointers to freed
memory to avoid double-free exploits [5, 1]. Hardening the heap carries signi昀椀cant promise for mitigating real-world
exploitation of software written in unsafe languages.

At the same time, it is unclear how much further software-only approaches can be pushed. In practice, adopting
stronger protections has to be weighed against the performance overhead perceived by users. Software vendors, in
turn, have demonstrated a low tolerance for any security mechanism that qualitatively impacts user experience.

We argue that adopting architectural security primitives as the basis for allocator hardening research is the most
promising path forward. An architectural security primitive (ASP), as opposed to a more general hardware security
primitive, is part of the system’s architecture and thus directly interacts with and is con昀椀gured by the software
executing on the system. This is in contrast to micro-architectural or device-level features that all contribute to the
execution of software but are not directly exposed to it. ASPs hold signi昀椀cant promise for deterministic mitigation
of temporal memory safety vulnerabilities without incurring intolerable performance overhead – one can have their
cake and eat it too!

Intel MPK and MPKAlloc
As evidence of this, consider Intel Memory Protection Keys (MPK). MPK is a security extension to the Intel ISA
that allows developers to partition an address space into distinct page-granularity domains tagged with one of 16
keys. MPK designates bits 59–62 of each page table entry (PTE) as that page’s protection key.2 MPK additionally
adds a protection key rights register for user pages (PKRU) to each CPU thread. At every memory access, the

1To head o昀昀 the obvious: yes, rewriting everything in a (mostly) memory-safe language would help matters greatly! But, let us also
acknowledge that this is not economically feasible.

2Thus, MPK is a form of tagged memory, an architectural security approach that dates back to 1960s-era LISP machines and Burroughs
mainframes.
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MMU checks whether the corresponding PTE’s protection key is present in the current thread’s PKRU register –
either reading or writing can be separately permitted. If so, the access is allowed and execution continues; otherwise,
a hardware exception is raised. The PKRU can be updated using a special instruction (wrpkru), making domain
switches relatively efficient. Also, since the MMU enforces access policies, domain checks are also efficient, incurring
essentially zero overhead.

MPK has been used in numerous security applications since its introduction in the Skylake architecture in 2015.
Despite the limited number of keys available and the “sharp edge” in that wrpkru is an unprivileged instruction,
MPK is an excellent example of an ASP that can be used to mitigate temporal memory safety vulnerabilities. In
fact, we demonstrated this capability with MPKAlloc in 2022 [2].

MPKAlloc builds on MPK to isolate allocator metadata from the rest of a program, e昀昀ectively partitioning a
program into a trusted allocator and an untrusted, potentially vulnerable, program. The key invariant MPKAlloc
preserves is that any access made to allocator metadata must originate from a trusted domain, and the trusted
domain only contains allocator code. By default, all CPU threads execute within an untrusted domain. Upon any
allocator invocation – e.g., to allocate or free a heap chunk – MPKAlloc switches the thread to the privileged domain
to enable metadata access. Once the requested allocator operation is performed, the CPU thread’s rights are restored
to the unprivileged domain.
wkr: We can probably 昀椀ll out the rest of the word count with more MPKAlloc design and eval.

– Safety guarantees
– Low to no performance overhead
– Transparent to applications (minimizing developer burden)

Beyond MPKAlloc
ASPs represent a very promising path to mitigate memory safety vulnerabilities and constrain attackers. However,
this path also presents several daunting challenges. Designing, implementing, and deploying hardware mitigations is
substantially more capital intensive than analogous software mitigations. Thus, a failure of adoption or, even worse,
the discovery of fundamental design 昀氀aws, represent a massive waste of capital investment and developer resources.3
Moreover, unused hardware wastes precious power and area, and incurs support costs without any counterbalancing
bene昀椀t.

MPKAlloc, and ASPs more broadly, are also not a panacea. While approaches like MPKAlloc severely constrain
attackers by reducing an existing attack surface, history suggests that declaring victory against temporal memory
safety vulnerabilities would be premature. For instance, MPKAlloc assumes that the allocator is correct and cannot
be tricked into corrupting its own metadata. However, no such proof of these assumptions exists and thus one cannot
preclude the possibility of that line of attack.

A major limitation of MPK-based defenses is the continuing limited availability of MPK in the wild. To date, MPK
is still only present in certain models of Intel Xeon server class CPUs, which greatly limits the impact of MPKAlloc
and its ilk. However, the limited availability argument does not apply to ASPs as a whole, and in particular to a
similar ASP gaining popularity in the mobile space: Arm’s Memory Tagging Extension (MTE).

First introduced in the Arm v8.5-A ISA, MTE is another implementation of the ever-popular tagged memory
security architecture. MTE tags memory regions with “colors” similarly to how MPK tags pages with protection
keys. However, MTE is signi昀椀cantly more powerful in that regions need not be page-sized. In addition, systems like
HAKC have demonstrated that combining MTE with Arm Pointer Authentication (PAC) can greatly enlarge the
space of tags [1].

However, the most exciting aspect of Arm MTE by far is twofold: (i) Google’s commitment to adopt it as a
platform security feature in Android, and (ii) the availability of both PAC and MTE in the Pixel 8, Google’s
current 昀氀agship mobile device. For the 昀椀rst time in the modern computing era, a practical and performant tagged
architecture is now available for a major consumer market. This development opens up a world of possibilities for
vulnerability mitigation, but one immediate and tantalizing prospect is to harden Android memory allocators using
a similar approach to MPKAlloc. In fact, public information suggests that Google is pursuing exactly this path for
PartitionAlloc, one of the allocators used by Chrome and also covered by MPKAlloc [3].

3The story of the ill-fated Intel Memory Protection Extensions (MPX) is instructive in this context [4].
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With a robust and efficient tagged architecture in the form of Arm MTE now available, the future looks bright
for ASP-based exploit mitigation. However, hardware vendors will only continue to invest in ASPs if they will be
used; if nothing else, unused hardware is a support burden and wastes valuable power and area. Software vendors
create a strong demand signal: adoption ultimately drives the perception of value of architectural security features,
which incentivizes other hardware platforms to adopt similar functionality so as not to be on the wrong side of an
important market di昀昀erentiator.

Researchers also have an important role to play. The value of an ASP increases with its perceived capabilities.
Thus, the more vulnerability classes researchers can mitigate with an ASP, the better incentivized hardware and
software vendors will be to engage in a virtuous cycle of investment and innovation in next-generation architectural
mitigations. Along similar lines, as we have already observed, minimizing developer burden is an important factor
for adoption. Thus, the more that researchers can automate speci昀椀cation, design, and enforcement of ASP-based
enforcement schemes, the better. Put simply, we sincerely hope that the research community in tandem with software
vendors will help ful昀椀ll this important role and bring the world closer to that elusive goal of a world free from memory
safety vulnerabilities.
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