
1

Sample-Efficient Reinforcement Learning with

Temporal Logic Objectives: Leveraging the Task

Specification to Guide Exploration
Yiannis Kantaros, Member, IEEE, Jun Wang Student Member, IEEE .

AbstractÐThis paper addresses the problem of learning op-
timal control policies for systems with uncertain dynamics and
high-level control objectives specified as Linear Temporal Logic
(LTL) formulas. Uncertainty is considered in the workspace
structure and the outcomes of control decisions giving rise to
an unknown Markov Decision Process (MDP). Existing rein-
forcement learning (RL) algorithms for LTL tasks typically rely
on exploring a product MDP state-space uniformly (using e.g.,
an ϵ-greedy policy) compromising sample-efficiency. This issue
becomes more pronounced as the rewards get sparser and the
MDP size or the task complexity increase. In this paper, we
propose an accelerated RL algorithm that can learn control poli-
cies significantly faster than competitive approaches. Its sample-
efficiency relies on a novel task-driven exploration strategy that
biases exploration towards directions that may contribute to
task satisfaction. We provide theoretical analysis and extensive
comparative experiments demonstrating the sample-efficiency of
the proposed method. The benefit of our method becomes more
evident as the task complexity or the MDP size increases.

Index TermsÐReinforcement Learning, Temporal Logic Plan-
ning, Stochastic Systems

I. INTRODUCTION

Reinforcement learning (RL) has been successfully applied

to synthesize control policies for systems with highly nonlin-

ear, stochastic or unknown dynamics and complex tasks [1].

Typically, in RL, control objectives are specified as reward

functions. However, specifying reward-based objectives can

be highly non-intuitive, especially for complex tasks, while

poorly designed rewards can significantly compromise system

performance [2]. To address this challenge, Linear Temporal

logic (LTL) has recently been employed to specify tasks that

would have been very hard to define using Markovian rewards

[3]; e.g., consider a navigation task requiring to visit regions

of interest in a specific order.

Several model-free RL methods with LTL-encoded tasks

have been proposed recently; see e.g., [4]±[15]. Common in

the majority of these works is that they explore randomly

a product state space that grows exponentially as the size

of the MDP and/or the complexity of the assigned temporal

logic task increase. This results in sample inefficiency and

slow training/learning process. This issue becomes more pro-

nounced by the fact that LTL specifications are converted into

sparse rewards in order to synthesize control policies with

probabilistic satisfaction guarantees [9], [14], [16].

Yiannis Kantaros (ioannisk@wustl.edu) and Jun Wang (junw@wustl.edu)
are with the Department of Electrical and Systems Engineering, Washington
University in St. Louis, St. Louis, MO, 63130, USA. This work was supported
by the NSF award CNS #2231257.

Sample inefficiency is a well-known limitation in RL,

whether control objectives are specified using reward functions

directly or LTL. To address this limitation, reward engineering

approaches have been proposed augmenting the reward signal

[17]±[23]. Such methods often require a user to manually

decompose the global task into sub-tasks, followed by as-

signing additional rewards to these intermediate sub-tasks.

Nevertheless, this may result in sub-optimal control policies

concerning the original task [24], while their efficiency highly

depends on the task decomposition (i.e., the density of the

rewards) [25]. Also, augmenting the reward signal for temporal

logic tasks may compromise the probabilistic correctness of

the synthesized controllers [9]. To alleviate these limitations,

intelligent exploration strategies have been proposed, such as

Boltzmann/softmax [26], [27] and upper confidence bound

(UCB) [28] that do not require knowledge or modification of

the rewards; a recent survey is available in [29]. Their sample-

efficiency relies on guiding exploration using a continuously

learned value function (e.g., Boltzmann) which, however, can

be inaccurate in early training episodes. Alternatively, they rely

on how many times a state-action pair has been visited (e.g.,

UCB), which might not always guide exploration towards

directions contributing to task satisfaction.

Another approach to enhance sample-efficiency is through

model-based methods [30], [31]. These works continuously

learn an unknown Markov Decision Process (MDP), modeling

the system, that is composed with automaton representations

of LTL tasks. This gives rise to a product MDP (PMDP). Then,

approximately optimal policies are constructed for the PMDP

in a finite number of iterations. However, saving the associated

data structures for the PMDP results in excessive memory re-

quirements. Also, the quality of the generated policy critically

depends on the accuracy of the learned PMDP. Finally, model-

based methods require the computation of accepting maximum

end components (AMECs) of PMDPs that has a quadratic time

complexity in the PMDP size. This computation is avoided in

related model-free methods; see e.g., [6].

In this paper, we propose a novel approach to enhance the

sample-efficiency of model-free RL methods. Unlike the afore-

mentioned works, the key idea to improve sample efficiency is

to leverage the (known) task specification in order to extract

promising directions for exploration that contribute to mission

progress. We consider robots modeled as unknown MDPs with

discrete state and action spaces, modeling uncertainty in the

workspace and in the outcome of control decisions, and high-

level LTL-encoded control objectives. The proposed algorithm

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

2

relies on the following three steps. First, the LTL formula is

converted into a Deterministic Rabin Automaton (DRA). Sec-

ond, similar to [6], the product between the MDP and the DRA

is constructed on-the-fly giving rise to a PMDP over which

rewards are assigned based on the DRA acceptance condition.

We note that the PMDP is not explicitly constructed/strored

in our approach. The first two steps are common in related

model-free algorithms. Third, a new RL method is applied

over the PMDP to learn policies that maximize the expected

accumulated reward capturing the satisfaction probability. The

proposed RL algorithm relies on a new stochastic policy, called

(ϵ, δ)− greedy policy, that exploits the DRA representation of

the LTL formula to bias exploration towards directions that

may contribute to task satisfaction. Particularly, according to

the proposed policy, the greedy action is selected with proba-

bility 1− ϵ (exploitation phase) while exploration is triggered

with probability ϵ, as in the ϵ-greedy policy. Unlike the ϵ-
greedy policy, when exploration is enabled, either a random

or a biased action is selected probabilistically (determined by δ
parameters), where the latter action guides the system towards

directions that will most likely result in mission progress.

For instance, consider a simple scenario where a robot with

uncertain/unknown dynamics is required to eventually safely

reach a region of interest. In this case, intuitively, exploration

in the vicinity of the shortest dynamically feasible path (that

is initially unknown but it is continuously learned) connecting

the current robot position to the desired region should be

prioritized to accelerate control design. We emphasize that

the proposed task-driven exploration strategy does not require

knowledge or modification of the reward structure. As a result,

it can be coupled with sparse rewards, as e.g., in [9], [13],

resulting in probabilistically correct control policies as well as

with augmented rewards, as e.g., in [20], [22], [25], to further

accelerate the learning phase.

Our approach is inspired by transfer learning algorithms

that leverage external teacher policies for ‘similar’ tasks to

bias exploration [32]. To design a biased exploration strategy,

in the absence of external policies, we build upon [33], [34]

that propose a biased sampling-based strategy to synthesize

temporal logic controllers for large-scale, but deterministic,

multi-robot systems. Particularly, computation of the biased

action requires (i) a distance function over the DRA state

space, similarly constructed as in [33]±[36], to measure how

far the system is from satisfying the assigned LTL task, and

(ii) a continuously learned MDP model. The latter renders

the proposed exploration strategy model-based. Thus, we

would like to emphasize the following key differences with

respect to related model-based RL methods discussed earlier.

First, unlike existing model-based algorithms, the proposed

method does not learn/store the PMDP model to compute

the optimal policy. Instead, it learns only the MDP modeling

the system, making it more memory efficient. Second, the

quality of the learned policy is not contingent on the quality

of the learned MDP model, distinguishing it from model-

based methods. This is because our approach utilizes the

MDP model solely for designing the biased action and, in

fact, as it will be discussed in Section III-C, does not even

require learning all MDP transition probabilities accurately.

This is also supported by our numerical experiments where

we empirically demonstrate sample efficiency of the proposed

method against model inaccuracies. We provide compar-

ative experiments demonstrating that the proposed learning

algorithm outperforms in terms of sample-efficiency model-

free RL methods that employ random (e.g., [6], [8], [9]),

Boltzmann, and UCB exploration. The benefit of our approach

becomes more pronounced as the size of the PMDP increases.

We also provide comparisons against model-based methods

showing that our method, as well as model-free baselines, are

more memory-efficient and, therefore, scalable to large MDPs.

A preliminary version of this work was presented in [37].

We extend [37] by (i) providing theoretical results that help

understand when the proposed approach is, probabilistically,

more sample efficient than random exploration methods; (ii)

providing more comprehensive comparative experiments that

do not exist in [37]; and (iii) demonstrating how the biased

sampling strategy can be extended to Limit Deterministic

Buchi Automata (LDBA) that have smaller state space than

DRA and, therefore, can further expedite the learning process

[8], [38], [39]. We also release software implementing our

proposed algorithm, which can be found in [40].

Contribution: First, we propose a novel RL algorithm

to quickly learn control policies for unknown MDPs with

LTL tasks. Second, we provide conditions under which the

proposed algorithm is, probabilistically, more sample-efficient

than related works that rely on random exploration. Third, we

show that the proposed exploration strategy can be employed

for various automaton representations of LTL formulas such

as DRA and LDBA. Fourth, we provide extensive compara-

tive experiments demonstrating the sample efficiency of the

proposed method compared to related works.

II. PROBLEM DEFINITION

A. Robot & Environment Model

Consider a robot that resides in a partitioned environment

with a finite number of states. To capture uncertainty in the

robot motion and the workspace, we model the interaction of

the robot with the environment as a Markov Decision Process

(MDP) of unknown structure, which is defined as follows.

Definition 2.1 (MDP): A Markov Decision Process (MDP)

is a tuple M = (X , x0,A, P,AP), where X is a finite

set of states; x0 ∈ X is an initial state; A is a finite set

of actions. With slight abuse of notation A(x) denotes the

available actions at state x ∈ X ; P : X × A × X → [0, 1]
is the transition probability function so that P (x, a, x′) is the

transition probability from state x ∈ X to state x′ ∈ X via

control action a ∈ A and
∑

x′∈X P (x, a, x′) = 1, for all

a ∈ A(x); AP is a set of atomic propositions; L : X → 2AP

is the labeling function that returns the atomic propositions

that are satisfied at a state x ∈ X .

Assumption 2.2 (Fully Observable MDP): We assume that

the MDP M is fully observable, i.e., at any time step t the

current state, denoted by xt, and the observations L(xt) ∈
2AP in state xt are known.

Assumption 2.3 (Static Environment): We assume that the

environment is static in the sense that the atomic propositions

that are satisfied at an MDP state x are fixed over time.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

3

Fig. 1. DRA corresponding to ϕ = ♢(πExit1 ∨ πExit2). There is only one
set of accepting pairs defined as G1 = {qF

D
} and B1 = {q0

D
}. A transition

is enabled if the robot generates a symbol satisfying the Boolean formula
noted on top of the transitions. All transitions are feasible as per Def. 3.1.
The function dF in (3) is defined as dF (q0

D
,F) = 1 and dF (qF

D
,F) = 0.

For instance, Assumption 2.3 implies that obstacles and re-

gions of interest in the environment are static. This assumption

can be relaxed using probabilistically labeled MDPs as in [8].

B. LTL-encoded Task Specification

The robot is responsible for accomplishing a task expressed

as an LTL formula, such as sequencing, coverage, surveillance,

data gathering or connectivity tasks [41]±[47]. LTL is a formal

language that comprises a set of atomic propositions AP , the

Boolean operators, i.e., conjunction ∧ and negation ¬, and two

temporal operators, next ⃝ and until ∪. LTL formulas over a

set AP can be constructed based on the following grammar:

ϕ ::= true | π | ϕ1∧ϕ2 | ¬ϕ | ⃝ϕ | ϕ1 ∪ ϕ2, where π ∈ AP .

The other Boolean and temporal operators, e.g., always □,

have their standard syntax and meaning [3]. An infinite word

w over the alphabet 2AP is defined as an infinite sequence

w = π0π1π2 · · · ∈ (2AP)ω , where ω denotes infinite repetition

and πt ∈ 2AP , ∀t ∈ N. The language
{

w ∈ (2AP)ω|w |= ϕ
}

is defined as the set of words that satisfy the LTL formula ϕ,

where |=⊆ (2AP)ω×ϕ is the satisfaction relation [3]. In what

follows, we consider atomic propositions of the form πi that

are true if the robot is in state xi ∈ X and false otherwise.

C. From LTL formulas to DRA

Any LTL formula can be translated into a Deterministic

Rabin Automaton (DRA) defined as follows.

Definition 2.4 (DRA [3]): A DRA over 2AP is a tuple

D = (QD, q0D,Σ, δD,F), where QD is a finite set of states;

q0D ⊆ QD is the initial state; Σ = 2AP is the input alphabet;

δD : QD × ΣD → QD is the transition function; and

F = {(G1,B1), . . . , (Gf ,Bf)} is a set of accepting pairs where

Gi,Bi ⊆ QD, ∀i ∈ {1, . . . , f}. □

An infinite run ρD = q0Dq1D . . . qtD . . . of D over an infinite

word w = σ0σ1σ2 . . . , where σt ∈ Σ, ∀t ∈ N, is an infinite

sequence of DRA states qtD, ∀t ∈ N, such that δ(qtD, σt) =
qt+1
D . An infinite run ρD is called accepting if there exists

at least one pair (Gi,Bi) such that Inf(ρD) ∩ Gi ̸= ∅ and

Inf(ρD) ∩ Bi = ∅, where Inf(ρD) represents the set of

states that appear in ρD infinitely often; see also Ex. 2.5.

Example 2.5 (DRA): Consider the LTL formula ϕ =
♢(πExit1 ∨ πExit2) that is true if a robot eventually reaches

either Exit1 or Exit2 of a building. The corresponding DRA

is illustrated in Figure 1.

D. Product MDP

Given the MDP M and the DRA D, we define the product

MDP (PMDP) P = M×D as follows.

Definition 2.6 (PMDP): Given an MDP M = (X , x0,A, P
,AP) and a DRA D = (QD, q0D,Σ,F , δD), we define the

product MDP (PMDP) P = M ×D as P = (S, s0,AP, PP

,FP), where (i) S = X × QD is the set of states, so that

s = (x, qD) ∈ S , x ∈ X , and qD ∈ QD ; (ii) s0 = (x0, q
0
D)

is the initial state; (iii) AP is the set of actions inherited from

the MDP, so that AP(s) = A(x), where s = (x, qD); (iv)

PP : S ×AP×S : [0, 1] is the transition probability function,

so that PP(s, aP , s
′) = P (x, a, x′), where s = (x, qD) ∈ S ,

s′ = (x′, q′D) ∈ S , aP ∈ A(s) and q′D = δ(q, L(x)); (v)

FP = {FP
i }fi=1 is the set of accepting states, where FP

i is a

set defined as FP
i = X × Fi and Fi = (Gi,Bi). □

Given any policy µ : S → AP for P, we define an

infinite run ρµP of P to be an infinite sequence of states of

P, i.e., ρµP = s0s1s2 . . . , where PP(st,µ(st), st+1) > 0.

By definition of the accepting condition of the DRA D,

an infinite run ρµP is accepting if there exists at least one

pair i ∈ {1, . . . , f} such that Inf(ρµP) ∩ GP
i ̸= ∅, and

Inf(ρµP) ∩ BP
i = ∅.

E. Problem Statement

Our goal is to compute a policy for the PMDP that maxi-

mizes the satisfaction probability P(µ |= ϕ | s0) of an LTL-

encoded task ϕ. A formal definition of this probability can be

found in [3], [48], [49]. To this end, we first adopt existing

reward functions R : S ×AP × S → R defined based on the

accepting condition of the PMDP as e.g., in [6]. Then, our

goal is to compute a policy µ
∗ that maximizes the expected

accumulated return, i.e., µ∗(s) = argmax
µ∈D

Uµ(s), where D

is the set of all stationary deterministic policies over S , and

Uµ(s) = E
µ[

∞
∑

t=0

γt R(st,µ(st), st+1)|s = s0]. (1)

In (1), Eµ[·] denotes the expected value given that the PMDP

follows the policy µ [50], 0 ≤ γ < 1 is the discount factor, and

s0, ..., st is the sequence of states generated by µ up to time

t, initialized at s0. Since the PMDP has a finite state/action

space and γ < 1, there exists a stationary deterministic optimal

policy µ
∗ [50]. The reward function R and the discount factor

γ should be designed so that maximization of (1) is equivalent

to maximization of the satisfaction probability. Efforts towards

this direction are presented e.g., in [6], [8] while provably

correct rewards and discount factors for PMDPs constructed

using LDBA, instead of DRA, are proposed in [9], [14], [16].

However, as discussed in Section I, due to sparsity of these

rewards, these methods are sample-inefficient. This is the main

challenge that this paper aims to address.

Problem 1: Given (i) an MDP M with unknown transition

probabilities and underlying graph structure; (ii) a task speci-

fication captured by an LTL formula ϕ; (iii) a reward function

R for the PMDP motivating satisfaction of its accepting

condition, develop a sample-efficient RL algorithm that can

learn a deterministic control policy µ
∗ that maximizes (1).

III. ACCELERATED REINFORCEMENT LEARNING FOR

TEMPORAL LOGIC CONTROL

To solve Problem 1, we propose a new reinforcement

learning (RL) algorithm that can quickly synthesize control

policies that maximize (1). The proposed algorithm is summa-

rized in Algorithm 1 and described in detail in the following

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

4

subsections. First, in Section III-A, we define a distance

function over the DRA state-space. In Sections III-B±III-C,

we describe the proposed logically-guided RL algorithm for

LTL control objectives. To accelerate the learning phase, the

distance function defined in Section III-A is utilized to guide

exploration. A discussion on how the proposed algorithm can

be applied to LDBA, that typically have a smaller state space

than DRA, is provided in Appendix A.

A. Distance Function over the DRA State Space

First, the LTL task ϕ is converted into a DRA; see Definition

2.4 [line 2, Alg. 1]. Then, we define a distance-like function

over the DRA state-space that measures how ’far’ the robot is

from accomplishing the assigned LTL tasks [line 3, Alg. 1]. In

other words, this function returns how far any given DRA state

is from the sets of accepting states Gi. To define this function,

first, we remove from the DRA all infeasible transitions that

cannot be physically enabled. To define infeasible transitions,

we first define feasible symbols as follows [33]; see Fig. 1.

Definition 3.1 (Feasible symbols σ ∈ Σ): A symbol σ ∈ Σ
is feasible if and only if σ ̸|= binf, where binf is a Boolean

formula defined as binf = ∨∀xi∈X (∨∀xe∈X\{xi}(π
xi ∧ πxe)),

where binf requires the robot to be present in more than

one MDP state simultaneously. All feasible symbols σ are

collected in a set denoted by Σfeas ⊆ Σ. □

Then, we prune the DRA by removing infeasible DRA

transitions defined as follows:

Definition 3.2 (Feasibility of DRA transitions): A DRA

transition from qD to q′D is feasible if there exists at least

one feasible symbol σ ∈ Σfeas such that δ(qD, σ) = q′D;

otherwise, it is infeasible. □

Next, we define a function d : QD × QD → N that returns

the minimum number of feasible DRA transitions required

to reach a state q′D ∈ QD starting from a state qD ∈ QD.

Particularly, we define this function as follows [33], [35]:

d(qD, q′D) =

{

|SPqD,q′D
|, if SPqD,q′D

exists,

∞, otherwise,
(2)

where SPqD,q′D
denotes the shortest path (in terms of hops)

in the pruned DRA from qD to q′D and |SPqD,q′D
| stands for

its cost (number of hops). Note that if d(q0D, qD) = ∞, for

all qD ∈ Gi and for all i ∈ {1, . . . , n}, then the LTL formula

can not be satisfied since the in the pruning process, only the

DRA transitions that are impossible to enable are removed.

Next, using (2), we define the following distance function:1

dF (qD,F) = min
qGD∈∪i∈{1,...,f}Gi

d(qD, qGD). (3)

In words, (3) measures the distance from any DRA state qD
to the set of accepting pairs, i.e., the distance to the closest

DRA state qGD that belongs to ∪i∈{1,...,f}Gi; see also Fig. 1.

B. Learning Optimal Temporal Logic Control Policies

In this section, we present the proposed accelerated RL

algorithm for LTL control synthesis [lines 4-20, Alg. 1]. The

output of the proposed algorithm is a stationary deterministic

1Observe that, unlike [36], [51], dF (qD,F) may not be equal to 0 even
if qD ∈ Gi. The latter may happen if qD does not have a feasible self-loop.

Algorithm 1 Accelerated RL for LTL Control Objectives

1: Initialize: (i) Qµ(s, a) arbitrarily, (ii) P̂ (x, a, x′) = 0, (iii)

c(x, a, x′) = 0, (iv) n(x, a) = 0, for all x, x′ ∈ X and

a ∈ A(x), and (v) nP(s, a, s′) = 0 for all s, s′ ∈ S and

a ∈ AP(s);
2: Convert ϕ to a DRA D;

3: Construct distance function dF over the DRA as per (3);

4: µ = (ϵ, δ)− greedy(Q);
5: episode-number = 0;

6: while Q has not converged do

7: episode-number = episode-number+ 1;

8: Initialize time step t = 0;

9: Initialize st = (x0, q
0
D) for a randomly selected x0;

10: while t < τ do

11: Pick action at as per (8);

12: Execute at and observe st+1 = (xt+1, qt+1), and

R(st, at, st+1);
13: n(xt, at) = n(xt, at) + 1;

14: c(xt, at, xt+1) = c(xt, at, xt+1) + 1;

15: Update P̂ (xt, at, xt+1) as per (6);

16: nP(st, at) = nP(st, at) + 1;

17: Update Qµ(st, at) as per (7);

18: st = snext;

19: t = t+ 1;

20: Update ϵ, δb, δe;

21: end while

22: end while

policy µ
∗ for P maximizing (1). To construct µ∗, we employ

episodic Q-learning (QL). Similar to standard QL, starting

from an initial PMDP state, we define learning episodes over

which the robot picks actions as per a stationary and stochastic

control policy µ : S×AP → [0, 1] that eventually converges to

µ
∗ [lines 4-5, Alg. 1]. Each episode terminates after a user-

specified number of time steps τ or if the robot reaches a

deadlock PMDP state, i.e., a state with no outgoing transitions

[lines 7-20, Alg. 1]. Notice that the hyper-parameter τ should

be selected to be large enough to ensure that the agent learns

how to repetitively visit the accepting states [8], [9], [13].

The RL algorithm terminates once an action value function

Qµ(s, a) has converged. This action value function is defined

as the expected return for taking action a when at state s and

then following policy µ [52], i.e.,

Qµ(s, a) = E
µ[

∞
∑

t=0

γt R(st,µ(st), st+1)|s0 = s, a0 = a].

(4)

We have that Uµ(s) = maxa∈AP(s) Q
µ(s, a) [52]. The

action-value function Qµ(s, a) can be initialized arbitrarily.

During any learning episode the following process is re-

peated until the episode terminates. First, given the PMDP

state st at the current time step t, initialized as st = s0 [line 9,

Alg. 1], an action at is selected as per a policy µ [line 11, Alg.

1]; the detailed definition of µ will be given later. The selected

action is executed yielding the next state st+1 = (xt+1, qt+1),
and a reward R(st, at, st+1). For instance, the reward function

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

5

R can be constructed as in [6] defined as follows:

R(s, aP, s′) =















rG , if s′ ∈ GP
i ,

rB, if s′ ∈ BP
i ,

rd, if s′ is a deadlock state,

r0, otherwise,

(5)

In (5), we have that rG > 0, for all i ∈ {1, . . . , f}, and

rd < rB < r0 ≤ 0. This reward function motivates the robot

to satisfy the PMDP accepting condition, i.e., to visit the states

GP
j as often as possible and minimize the number of times

it visits BP
i and deadlock states while following the shortest

possible path; deadlock states are visited when the LTL task

is violated, e.g., when collision with an obstacle occurs.

Given the new state st+1, the MDP model of the robot

is updated. In particular, every time an MDP transition is

enabled, the corresponding transition probability is updated.

Let P̂ (xt, at, xt+1) denote the estimated MDP transition prob-

ability from state xt ∈ X to state xt+1 ∈ X , when an action

a is taken. These estimated MDP transition probabilities are

initialized so that P̂ (x, a, x′) = 0, for all combinations of

states and actions, and they are continuously updated at every

time step t of each episode as [lines 13-15]:

P̂ (xt, at, xt+1) =
c(xt, at, xt+1)

n(xt, at)
, (6)

where (i) n : X ×A → N is a function that returns the number

of times action a has been taken at an MDP state x and (ii)

c : X ×A× X → N is a function that returns the number of

times an MDP state x′ has been visited after taking action a at

a state x. Note that as n(x, a) → ∞ the estimated transition

probabilities P̂ (x, a, x′) converge asymptotically to the true

transition probabilities P (x, a, x′), for all transitions.

Next, the action value function is updated as follows [52]

[line 17, Alg. 1] :

Qµ(st, at) = Qµ(st, at) + (1/nP(st, at))

[R(st, at)−Qµ(st, at) + γmax
a′

Qµ(st+1, a
′))], (7)

where nP : S × AP → N counts the number of times that

action a has been taken at the PMDP state s. Once the action

value function is updated, the current PMDP state is updated

as st = st+1, the time step t is increased by one, and the

policy µ gets updated [lines 18-20, Alg. 1].

As a policy µ, we propose an extension of the ϵ-greedy

policy, called (ϵ, δ)-greedy policy, that selects an action a at

an PMDP state s by using the learned action-value function

Qµ(s, a) and the continuously learned transition probabilities

P̂ (x, a, x′). Formally, the (ϵ, δ)-greedy policy µ is defined as

µ(s, a) =























1− ϵ+ δe
|AP(s)| if a = a∗ and a ̸= ab,

1− ϵ+ δe
|AP(s)| + δb if a = a∗ and a = ab,

δe/|AP(s)| if a ∈ AP(s) \ {a∗, ab},

δb + δe/|AP(s)| if a = ab and a ̸= a∗,
(8)

where δb, δe ∈ [0, 1] and ϵ = δb + δe ∈ [0, 1]. In words,

according to this policy, (i) with probability 1− ϵ, the greedy

action a∗ = argmaxa∈AP
Q(s, a) is taken (as in the standard

ϵ-greedy policy); and (ii) an exploratory action is selected with

Fig. 2. Graphical depiction of the sets Xgoal(qt). The disks represent MDP
states and the arrows between states mean that there exists at least one
action such that the transition probability from one state to another one is
non-zero. The length of the shortest path from xt to Xgoal is 3 hops, i.e.,

Jxt,Xgoal
= 3; see (12). Also, the paths ptj , j ∈ J = {1, 2} are highlighted

with thick green lines. The numbers on top of the green edges represent
maxa P (ptj(e), a, p

t
j(e + 1)); see (14). Observe that p∗ is the green path

highlighted with gray color.

probability ϵ = δb + δe. The exploration strategy is defined as

follows: (ii.1) with probability δe a random action a is selected

(random exploration); and (ii.2) with probability δb the action,

denoted by ab, that is most likely to drive the robot towards

an accepting product state in GP
i is taken (biased exploration).

The action ab will be defined formally in Section III-C. As

in standard QL, ϵ should asymptotically converge to 0 while

ensuring that eventually all actions have been applied infinitely

often at all states. This ensures that µ asymptotically converges

to the optimal greedy policy

µ
∗ = argmax

a∈AP

Q∗(s, a) (9)

where Q∗ is the optimal action value function; see Sec. IV-A.

We note that Qµ
∗

(s,µ∗(s)) = Uµ
∗

(s) = V ∗(s), where V ∗(s)
is the optimal value function that could have been computed

if the MDP was fully known [52], [53]. Given ϵ, selection of

the parameters δe and δb is discussed in Sec. IV.

C. Specification-guided Exploration for Accelerated Learning

Next, we describe the design of the biased action ab in

(8). First, we need to introduce the following definitions; see

Fig. 2. Let st = (xt, qt) denote the current PMDP state at

the current learning episode and time step t of Algorithm 1.

Let Qgoal(qt) ⊂ Q be a set that collects all DRA states that

are one-hop reachable from qt in the pruned DRA and they

are closer to the accepting DRA states than qt is, as per (3).

Formally, Qgoal(qt) is defined as follows:

Qgoal(qt) = {q′ ∈ Q | (∃σ ∈ Σfeas such that (10)

δD(qt, σ) = q′) ∧ (dF (q
′,F) = dF (qt,F)− 1)}.

Also, let Xgoal(qt) ⊆ X be a set of MDP states, denoted

by xgoal, that if the robot eventually reaches, then transition

from st to a product state sgoal = [xgoal, qgoal] will occur,

where qgoal ∈ Qgoal(qt); see also Ex. 3.6. Formally, Xgoal(qt)
is defined as follows:

Xgoal(qt) = {x ∈ X | δD(qt, L(x)) ∈ Qgoal(qt)}. (11)

Next, we view the continuously learned MDP as a weighted

directed graph G = (V, E , w) where the set V is the set of

MDP states, E is the set of edges, and w : E → R+ is function

assigning weights to each edge. Specifically, an edge from the

node (MDP state) x to x′ exists if there exists at least one

action a ∈ A(x) such that P̂ (x, a, x′) > 0. Hereafter, we

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

6

assign a weight equal to 1 to each edge; see also Remarks 3.4-

3.5. We denote the cost of the shortest path from x to x′ by

Jx,x′ . Next, we define the cost of the shortest path connecting

a state x to the set Xgoal as follows:

Jx,Xgoal
= min

x′∈Xgoal

Jx,x′ . (12)

Let J be the total number of paths from x to Xgoal, where

their length (i.e., number of hops) is Jx,Xgoal
. We denote such

a path by ptj , j ∈ J := {1, . . . , J}, and the e-th MDP state in

this path by ptj(e). Then, among all the paths ptj , we compute

the one with the minimum uncertainty-based cost C(ptj); see

Fig. 2. We define this cost as

C(ptj) =

Jx,Xgoal
∏

e=1

[

max
a

P̂ (ptj(e), a, p
t
j(e+ 1))

]

, (13)

where the maximization is over all actions a ∈ A(ptj(e)). We

denote by p∗ the path with the minimum cost C(ptj), i.e.,

p∗ = ptj∗ , where j∗ = argmaxj C(ptj). Thus, we have that:

C(p∗) ≥ C(ptj), ∀j ∈ J . (14)

Once p∗ is constructed, the action ab is defined as follows:

ab = argmax
a∈A(xt)

P̂ (xt, a, xb), (15)

where xb = p∗(2); see Fig. 2. In words, ab is the action

with the highest probability of allowing the system to reach

the state p∗(2), i.e., to move along the best path p∗. Observe

that computation of the biased action does not depend on the

employed reward structure nor on perfectly learning all MDP

transition probabilities.

Remark 3.3 (Initialization): Selection of the biased action

ab requires knowledge of (i) the MDP states x in (11) that need

to be visited to enable transitions to DRA states in Qgoal; and

(ii) the underlying MDP graph structure, determined by the

(unknown) transition probabilities, to compute (12). However,

neither of them may be available in early episodes. In this

case, we randomly initialize Xgoal for (i). Similarly, for (ii),

the estimated transition probabilities are randomly initialized

(or, simply, set equal to 0 [line 1, Alg. 1]) initializing this

way the MDP graph structure. If no paths can be computed to

determine Jxt,Xgoal
in (12), we select a random biased action.

Remark 3.4 (Computing Shortest Path): It is possible that

the shortest path from xt to xgoal ∈ Xgoal(qt) goes through

states/nodes x that if visited, a transition to a new state

q ̸= qt that does not belong to Qgoal(qt) may be enabled.

Therefore, when we compute the shortest paths, we treat all

such nodes x as ‘obstacles’ that should not be crossed. These

states are collected in the set Xavoid defined as Xavoid = {x ∈
X | δ(qt, L(x)) = qD /∈ Qgoal}.

Remark 3.5 (Weights & Shortest Paths): To design the bi-

ased action ab, the MDP is viewed as a weighted graph where

a weight w = 1 is assigned to all edges. In Section IV, this

definition of weights allows us to show how the probability

of making progress towards satisfying the assigned task (i.e.,

reaching the DRA states Qgoal) within the minimum number

of time steps (i.e., Jxt,Xgoal
time steps) is positively affected by

introducing bias in the exploration phase. Alternative weight

Fig. 3. MDP-based representation of the interaction of a ground robot with
corridor-like environment. The square cells represent MDP states, i.e., X =
{Exit1,Exit2,A,B,C,D,E}. An action enabling transition between adjacent
cells with non-zero probability exists for all MDP states.

assignments can be used that may further improve sample-

efficiency in practice; see also Ex. 3.6. For instance, the as-

signed weights can be equal to the reciprocal of the estimated

transition probabilities. In this case, the shortest path between

two MDP states models the path with the least uncertainty that

connects these two states. However, in this case the theoretical

results shown in Section IV do not hold.

Example 3.6 (Biased Exploration): Consider a robot oper-

ating in a corridor of a building as in Figure 3. The robot

is tasked with exiting the building i.e., eventually reaching

one of the two exits. This can be captured by the fol-

lowing LTL formula: ϕ = ♢(πExit1 ∨ πExit2). The DRA

of this specification is illustrated in Figure 1. Assume that

qt = q0D. Then, Xgoal = {Exit1,Exit2}. The robot can

take two actions at each state (besides the ‘exit’ states):

a1 = ‘left’ and a2 = ‘right’. (i) Assume that xt = C.

Observe that Jxt,Xgoal
= 3 and that J = 2. Specifically, the

following two paths ptj can be defined: pt1 = C,D,E,Exit1

and pt2 = C,B,A,Exit2. Consider also transition probabilities

that satisfy maxa P (C, a,D) = 0.51, maxa P (D, a,E) =
0.9, maxa P (E, a,Exit2) = 1, maxa P (C, a,B) = 0.9,

maxa P (B, a,A) = 0.6, maxa P (A, a,Exit1) = 0.6. In

this case, we have that C(pt1) = 0.459 and C(pt2) =
0.324. According to (14), we have that j∗ = 1 and, there-

fore, xb = pt1(2) = D. The biased action ab at xt is

ab = a2 as per (15). (ii) Assume that xt = D. Then,

we have that Jxt,Xgoal
= 2. Notice that there is only path

to reach Xgoal within Jxt,Xgoal
= 2 hops/time steps defined

as pt1 = D,E,Exit1. Consider also transition probabilities

that satisfy maxa P (D, a,E) = 0.7, maxa P (E, a,Exit2) =
0.7, maxa P (D, a,C) = 1, maxa P (C, a,B) = 1,

maxa P (B, a,A) = 1, maxa P (A, a,Exit1) = 1. In this

case, we have that C(pt1) = 0.49. The biased action ab at

xt is selected as follows. Assume P (D, a1, E) = 0.3 and

P (D, a2, E) = 0.7. Given that xb = pt1(2) = E, we have

that ab = a2 as per (15). Observe that although there is a

‘deterministic’ path from xt to Exit1 of length 4 that can be

followed with probability 1, the biased action aims to drive

the robot towards Exit2. This happens because the proposed

algorithm is biased towards the shortest paths (of length 2
here), in terms of number of MDP transitions/hops, that will

lead to DRA states that are closer to the accepting states by

definition of the weights w. We note that the paths stemming

from the biased action are not necessarily the paths with the

least uncertainty; see also Rem. 3.5. Also, we highlight that

we do not claim any optimality of ab with respect to the task

satisfaction probability; intuitively, in (ii), the biased action is

‘sub-optimal’ with respect to the task satisfaction probability.

IV. ALGORITHM ANALYSIS

In this section, we show that any (ϵ, δ)−greedy policy

achieves policy improvement; see Proposition 4.1. Also, we

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

7

provide conditions that δb and δe should satisfy under which

the proposed biased exploration strategy results in learning

control policies faster, in a probabilistic sense, than policies

that rely on uniform-based exploration. We emphasize that

these results should be interpreted primarily in an existential

way as they rely on the unknown MDP transition probabili-

ties. First, we provide ‘myopic’ sample-efficiency guarantees.

Specifically, we show that starting from st = (xt, qt), the

probability of reaching PMDP states st+1 = (xt+1, qt+1)),
where xt+1 is closer to Xgoal (see (11)) than xt, is higher

when bias is introduced in the exploration phase; see Section

IV-B. Then, we provide non-myopic guarantees that ensure

that starting from st the probability of reaching PMDP states

st′ = (xt′ , qt′), where t′ > t and qt′ ∈ Qgoal (see (10)), in the

minimum number of time steps (as determined by Jxt,Xgoal
) is

higher when bias is introduced in the exploration phase; see

Section IV-C.

A. Policy Improvement

Proposition 4.1 (Policy Improvement): For any (ϵ, δ)-
greedy policy µ, the updated (ϵ, δ)-greedy policy µ

′ obtained

after updating the state-action value function Qµ(s, a)
satisfies Uµ

′

(s) ≥ Uµ(s), for all s ∈ S . □

Proof: To show this result, we follow the same

steps as in the policy improvement result for the ϵ-
greedy policy [52]. For simplicity of notation, hereafter

we use A = |AP(s)|. Thus, we have that: Uµ
′

(s) =
∑

a∈AP(s) µ
′(s, a)Qµ(s, a) = δe

A

∑

Qµ(s, a) + (1 −

ϵ)maxa∈AP(s) Q
µ(s, a) + δbQ

µ(s, ab) ≥ δe
A

∑

Qµ(s, a) +

(1 − ϵ)
∑

a∈AP(s)

(

µ(s,a)− δe
A −Ia=ab

δb

1−ϵ

)

Qµ(s, a) +

δbQ
µ(s, ab) =

∑

a∈AP(s) µ(s, a)Q
µ(s, a) = Uµ(s) where

the inequality holds because the summation is a weighted

average with non-negative weights summing to 1, and as such

it must be less than the largest number averaged.

In Proposition 4.1, the equality Uµ
′

(s) = Uµ(s), ∀s ∈ S ,

holds if µ = µ
′ = µ

∗, where µ
∗ is the optimal policy [52].

B. Myopic Effect of Biased Exploration

In this section, we demonstrate the myopic benefit of the

biased exploration; the proofs can be found in Appendix

B. To formally describe it we introduce first the following

definitions. Let st = (xt, qt) be the PMDP state at the current

time step t of an RL episode of Algorithm 1. Also, let

R(xt) ⊆ X denote a set collecting all MDP states that can be

reached within one hop from xt, i.e.,

R(xt) = {x ∈ X | ∃a ∈ A(x) such that P̂ (xt, a, x) > 0}.2

(16)

Then, we can define the set Xcloser that collects all MDP states

that are one hop reachable from xt and they are closer to

Xgoal(xt) than xt is, i.e.,

Xcloser(xt) = {x ∈ R(xt) | Jx,Xgoal
= Jxt,Xgoal

− 1)}. (17)

The following result shows that the probability of xt+1 ∈
Xcloser(xt) is higher when biased exploration is employed.

2The reachable set in (16) is a subset of the actual set of one-hop neighbors
of xt since (16) uses the estimated transition probabilities (6).

Proposition 4.2: Let st = (xt, qt) be the PMDP state at

the current time step t of an RL episode of Algorithm 1. Let

also xb ∈ Xcloser(xt) denote the MDP state towards which the

action ab is biased. If δb > 0 and (18) holds,

P (xt, ab, x) ≥ max
x̄∈Xcloser(xt)

∑

a

P (xt, a, x̄)

|A(xt)|
, ∀x ∈ Xcloser(xt),

(18)

where the summation is over a ∈ A(xt), then we have that

Pb(xt+1 ∈ Xcloser(xt)) ≥ Pg(xt+1 ∈ Xcloser(xt)). (19)

In (19), Pg(xt+1 ∈ Xcloser(xt)) and Pb(xt+1 ∈ Xcloser(xt))
denote the probability of reaching any state xt+1 ∈ Xcloser(xt)
starting from xt without and with bias introduced in the

exploration phase, respectively. □

Next, we provide a ‘weaker’ result which, however, does

not require the strong requirement of (18). The following result

shows that the probability that the next state xt+1 will be equal

to xb ∈ Xcloser (as opposed to any state in Xcloser in Prop. 4.2)

is greater when bias is introduced in the exploration phase.

Proposition 4.3: Let st = (xt, qt) be the PMDP state at

the current time step t of an RL episode of Algorithm 1. Let

also xb ∈ Xcloser(xt) denote the MDP state towards which the

action ab is biased. If δb > 0, then

Pb(xt+1 = xb) ≥ Pg(xt+1 = xb), (20)

where Pg(xt+1 = xb) and Pb(xt+1 = xb) denote the

probability of reaching at t + 1 the state xb starting from xt

without and with bias introduced in the exploration phase,

respectively.

C. Non-Myopic Effect of Biased Exploration

In this section, we demonstrate the non-myopic effect of

the biased exploration; the proofs can be found in Appendix

C. To present our main results, we need to introduce the

following definitions. Let st = (xt, qt) be the current PMDP

state. Also, let t∗ = Jxt,Xgoal
denote the length (i.e., the number

of hops/MDP transitions) of the paths ptj . Recall that all paths

ptj , j ∈ J , share the same length, in terms of number of hops,

by construction. Second, we define a function β : J → [0, 1]
that maps every path ptj , j ∈ J , into [0, 1] as follows:

β(ptj) =

t∗−1
∏

m=0

{P (xt+m, ab, xt+m+1)δb+

P (xt+m, a∗, xt+m+1)(1− ϵ) +
δe

|A(xt+m)|
}. (21)

In (21), we have that xt+m = ptj(m + 1), for all m ∈
{0, . . . , t∗ − 1} and ab is the biased action computed at state

st+m = (xt+m, qt) as discussed in Section III-C, i.e., using

the path pt+m
j∗ .

Proposition 4.4 (Most Likely Path): At time step t of the

current RL episode, let (i) st = (xt, qt) be the current PMDP

state; and (ii) ptj∗ be the path used to design the biased action

at the time step t. Let Rj be a (Bernouli) random variable that

is true if after t∗ time steps (i.e., at the time step t + t∗), a

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

8

path ptj has been generated, for some j ∈ J . If there exists

δb and δe satisfying the following condition

β(ptj∗) ≥ max
j∈J

β(ptj), (22)

then, we have that Pb(Rj∗ = 1) ≥ maxj∈J Pb(Rj = 1),
where Pb(Rj∗ = 1) and Pb(Rj = 1) stand for the probability

that Rj∗ = 1 and Rj = 1, respectively, if the MDP evolves

as per the proposed (ϵ, δ)-greedy policy. □

Remark 4.5 (Prop. 4.4): Prop. 4.4 implies that there

exists δb and δe such that among all paths ptj , j ∈ J ,

designed at time t, the most likely path that the MDP will

generate over the next t∗ time steps is ptj∗ . For instance,

if δb = 1, and, therefore, ϵ = δe = 0, then we get

that (22) is equivalent to
∏t∗−1

m=0 P (xt+m, ab, xt+m+1) ≥

maxj∈J

∏t∗−1
m=0 P (x̄t+m, āb, x̄t+m+1), due to (14)-(15),

where xt+m = ptj∗(m + 1), x̄t+m = ptj(m + 1) for all

m ∈ {0, . . . , t∗ − 1}, and ab and āb denote the biased action

at states xt+m and x̄t+m using the path pt+m
j∗ .

In what follows, we show that there exists δb and δe that

ensure that the probability of generating the path ptj∗ under the

(ϵ, δ)-greedy policy (captured by Pb(Rj∗ = 1)) is larger than

the probability of generating any path ptj , j ∈ J , under the ϵ-
greedy policy. To make this comparative analysis meaningful,

hereafter, we assume that probability of exploration ϵ = δb+δe
is the same for both policies; thus, the probability of selecting

the greedy action is the same for both policies, as well. Recall

again that the ϵ-greedy policy can be recovered by removing

bias from the (ϵ, δ)-greedy policy, i.e., by setting δb = 0. To

present this result, we need to define a function η : J → [0, 1]
mapping every path ptj , j ∈ J , into [0, 1] as follows:

η(ptj) =
t∗−1
∏

m=0

{P (xt+m, a∗, xt+m+1)(1− ϵ) +
ϵ

|A(xt+m)|
}.

(23)

In (23), we have that xt+m = ptj(m + 1), for all m ∈
{0, . . . , t∗ − 1} and a∗ is the greedy action computed at state

st+m = (xt+m, qt).
Proposition 4.6 (Random vs Biased Exploration): At time

step t of the current RL episode, let (i) st = (xt, qt) be the

current product state; and (ii) ptj∗ be the path used to design the

current biased action. Let Rj be a (Bernouli) random variable

that is true if after t∗ time steps (i.e., at the time step t+ t∗),
a path ptj has been generated for some j ∈ J under a policy

µ. If there exists δb and δe satisfying the following condition

β(ptj∗) ≥ max
j∈J

η(ptj) (24)

then, we have that Pb(Rj∗ = 1) ≥ maxj∈J Pg(Rj = 1),
where Pb(Rj∗ = 1) and Pg(Rj = 1) stand for the probability

that Rj∗ = 1 and Rj = 1, if the MDP evolves as per the

proposed (ϵ, δ)-greedy and ϵ-greedy policy, respectively. □

Remark 4.7 (Prop. 4.6): Prop. 4.6 states that among all

paths ptj of length t∗, j ∈ J , there exists values for δb and

δe under which there exists an MDP path (the one with index

j∗) that is more likely to be generated over the next t∗ time

steps under the (ϵ, δ)-greedy than any path ptj , j ∈ J that

can be generated under the ϵ-greedy policy. For instance, if

δb = 1 and δe = 0, (i.e., ϵ = 1) then (24) is equivalent

to
∏t∗−1

m=0 P (xt+m, ab, xt+m+1) ≥ maxj∈J

∏t∗−1
m=0

1
|A(x̄t+m)| ,

where xt+m = ptj∗(m + 1), and x̄t+m = ptj(m + 1)
for all m ∈ {0, . . . , t∗ − 1}. Let Amin = minx∈X |A(x)|.
Then, for δb = 1, the result in Proposition 4.6 holds if
∏t∗−1

m=0 P (xt+m, ab, xt+m+1) ≥ (1
Amin

)t
∗

. The latter is true if

e.g., P (xt+m, ab, xt+m+1) ≥
1

Amin
for all m ∈ {0, . . . , t∗−1}.

We note that a similar result is presented in [33] which

employs a similar biased exploration to address deterministic

temporal logic planning problems (see Remark 4.5 in [33]).

Proposition 4.6 compares the sample-efficiency of (ϵ, δ)-
greedy and ϵ-greedy policies with respect to a specific path

ptj∗ . In the following result, building upon Proposition 4.6, we

provide a more general result. Specifically, we show that the

probability that after t∗+1 time steps a PMDP state s = (x, q),
where q ∈ Qgoal (see (10)), will be reached is higher when bias

is introduced in the exploration phase. We emphasize again

that given the current PMDP state st = (xt, qt) in an RL

episode, the earliest that a PMDP state s = (x, q), where

q ∈ Qgoal can be reached is after t∗ + 1 where t∗ = Jxt,Xgoal

iterations. The reason is that the length of the shortest path

from xt to states Xgoal that can enable the transition from qt
to Qgoal is t∗ = Jxt,Xgoal

.

Proposition 4.8 (Sample Efficiency): Let st = (xt, qt) be

the product state reached at the t-th time step of the current

RL episode. A state sgoal = (x, qgoal), where qgoal ∈ Qgoal can

be reached after at least t∗+1 time steps, where t∗ = Jxt,Xgoal
.

If there exist δb and δe satisfying the following condition:
∑

j∈J

β(ptj) ≥
∑

j∈J

η(ptj), (25)

where j∗ stands for the index to the path selected as per (14),

then Pb(qt+t∗+1 ∈ Qgoal) ≥ Pg(qt+t∗+1 ∈ Qgoal), where

Pb(qt+t∗+1 ∈ Qgoal) and Pg(qt+t∗+1 ∈ Qgoal) stand for the

probability that a PMDP state with a DRA state in Qgoal will

be reached after exactly t∗ + 1 time steps using the (ϵ, δ)-
greedy and ϵ-greedy policy, respectively. □

Remark 4.9 (Selecting parameters δb and δe): (i) The re-

sult in Proposition 4.8 shows that there exist δb and δe to poten-

tially improve sample efficiency compared to uniform/random

exploration. However, selection of δb and δe as per Proposition

4.8 requires knowledge of the actual MDP transition proba-

bilities along all paths ptj , j ∈ J which are not available. To

address this, the estimated transition probabilities, computed

in (6), can be used instead. To mitigate the fact that the initial

estimated probabilities may be rather inaccurate, δe can be

selected so that δe > δb for the first few episodes. Intuitively,

this allows to initially perform random exploration to learn

an accurate enough MDP transition probabilities across all

directions. Once this happens and given ϵ, values for δb
and δe that satisfy the requirement (25) (using the estimated

probabilities) can be computed by applying a simple line

search algorithm over all possible values for δb ∈ {0, ϵ},

since δe + δb = ϵ. (ii) A more efficient approach would

be to pick δb based on Proposition 4.6 instead of 4.8. The

reason is that searching for δb that satisfies (24) requires less

computations than (25); see also Remark 4.7. (iii) An even

more computationally efficient, but heuristic, approach to pick

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

9

δb and δe is the following. We select δb and δe so that δe > δb
for the first few episodes to learn an accurate enough MDP

model and then allow δe < δb to prioritize exploration towards

directions that may contribute to mission progress while letting

both δb and δb to asymptotically converge to 0. Nevertheless,

the values for δb and δe selected in this way may not satisfy

the requirements mentioned in Propositions 4.4, 4.6, and 4.8.

Remark 4.10 (Limitations): Alternative definitions of dF
may affect the construction of the set Qgoal in (10). Currently,

dF captures the shortest path, in terms of number of hops,

between a DRA state and the set of accepting states. However,

this definition neglects the underlying MDP structure which

may compromise sample-efficiency. Specifically, the shortest

DRA-based path may be harder for the MDP to realize than

a longer DRA-based path, depending on the MDP transition

probabilities. The result presented in Proposition 4.8 shows

that given a distance function dF and, consequently, Qgoal,

there exist conditions that the parameters δb and δe should

satisfy, so that the probability of reaching Qgoal within the min-

imum possible number of time steps (i.e., Jx,Xgoal
time steps)

is larger when the (ϵ, δ)-greedy policy is used. This does not

necessarily imply that the probability of eventually reaching

accepting states is also larger as this depends on the definition

of dF and, consequently, Qgoal. Designing dF that optimizes

sample-efficiency is a future research direction. However, our

comparative experiments in Section V demonstrate sample-

efficiency of the proposed method under various settings.

V. NUMERICAL EXPERIMENTS

To demonstrate the sample-efficiency of our method, we

provide extensive comparisons against existing model-free and

model-based RL algorithms. All methods have been imple-

mented on Python 3.8 and evaluated on a computer with

an Nvidia RTX 3080 GPU, 12th Gen Intel(R) Core(TM) i7-

12700K CPU, and 8GB RAM.

A. Setting up Experiments & Baselines

MDP: We consider environments represented as 10 × 10,

20× 20, and 50× 50 discrete grid worlds, resulting in MDPs

with |X | = 100, 400, and 2, 500 states denoted by M1, M2,

and M3, respectively. The robot has nine actions:‘left’, ‘right’,

‘up’, ‘down’, ‘idle’ as well as the corresponding four diagonal

actions. At any MDP state x, excluding the boundary ones,

the set of actions A(x) that the robot can apply includes

eight of these nine actions that are randomly selected while

ensuring that the idle action is available at any state. The set of

actions at boundary MDP states exclude those ones that drive

the robot outside the environment. The transition probabilities

are designed so that given any action, besides ‘idle’, the

probability of reaching the intended state is randomly selected

from the interval [0.7, 0.8] while the probability of reaching

neighboring MDP states is randomly selected as long as the

summation of transition probabilities over the next states x′ is

equal to 1, for a fixed action a and starting state x. The action

‘idle’ is applied deterministically.

Baselines: In the following case studies we demonstrate

the performance of Algorithm 1 when it is equipped with

the proposed (ϵ, δ)-greedy policy (8), the ϵ-greedy policy, the

Fig. 4. Decay rates of the parameters δe, δb, and ϵ considered in Section
V for M1 and M2. The rate at which 1 − ϵ (red) increases is the same in
all figures. As the number of episodes goes to infinity, 1− ϵ converges to 1
and both δb and δe converge to 0. Notice that, in the bottom right figure, δb
is always equal to 0 resulting in random exploration (ϵ-greedy policy).

Boltzman policy, and the UCB1 policy. Notice that Alg. 1 is

model-free when it is equipped with these baselines as it does

not require learning the MDP. We also compare it against a

standard model-based approach that explicitly computes and

stores the product MDP (PMDP) [3]. Computing the PMDP

requires learning the underlying MDP model which can be

achieved e.g., by simply letting the agent randomly explore the

environment and then estimating the transition probabilities as

in (6).3 In our implementation, we directly use the ground-truth

MDP transition probabilities giving an ‘unfair’ advantage to

the model-based approach over the proposed one. Given the

resulting PMDP, we apply dynamic programming to compute

the optimal policy and its satisfaction probability [3].

To examine sensitivity of the proposed algorithm with

respect to the parameters δe and δb, we have considered three

different decay rates for δe and δb, as per (iii) in Remark 4.9.

Hereafter, we refer to the corresponding exploration strategies

as ‘Biased 1’, ‘Biased 2’, and ‘Biased 3’, and ‘Random’,

where the latter corresponds to the ϵ-greedy policy. The rate

at which δb decreases over time gets smaller as we proceed

from ‘Biased 1’, ‘Biased 2’, ‘Biased 3’, to ‘Random’. In other

words, ‘Biased 1’ incurs the most ’aggressive’ bias in the

exploration phase. The evolution of these parameters for the

MDPs M1 and M2 is illustrated in Fig. 4. Similar biased

strategies were selected for M3. The only difference is that

δb is designed so that it converges to 0 slower due to the

larger size of the state space. The corresponding mathematical

formulas are provided in Appendix D. To make the comparison

between the (ϵ, δ)- and the ϵ-greedy policy fair, we select the

same ϵ for both. The Boltzmann control policy is defined as

follows: µB(s) = eQ
µB (s,a)/T

∑
a′∈AP

eQ
µB (s,a′)/T

, where T ≥ 0 is the

temperature parameter. The UCB1 control policy is defined

as: µU (s) = argmaxa∈AP

[

QµU (s, a) + C ×
√

2 log(N(s))
n(s,a)

]

,

where (i) N(s) and n(s, a) denote the number of times state

3This would result in learning transition probabilities of M1 and M2 in
1.1 and 90 minutes, respectively, with maximum error equal to 0.05.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

10

Fig. 5. A Simple Coverage Task (Section V-B): Comparison of average satisfaction probability P̄ when Algorithm 1 is applied with the proposed (ϵ, δ)-greedy
policy, ϵ-greedy policy, Boltzmann policy, and UCB1 policy over the MDPs M1, M2, and M3. Biased 1 − 30 and Biased 1 − 100 refer to the cases where
the Biased 1 exploration method is applied under the constraint that the MDP transition probabilities are updated only during the first 30 and 100 episodes,
respectively. The legend also includes the total runtime per method. The black stars on top of each reward curve denote the training episode where the
corresponding policy is when the fastest policy has finished training over the total number of episodes.

s has been visited and the number of times action a has been

selected at state s and (ii) C is an exploration parameter. This

control policy is biased towards the least explored directions.

In each case study, we pick values for C and T from a fixed

set that yield the best performance. In all case studies, we

adopt the reward function in (5) with γ = 0.99 and rG = 10,

rB = −0.1, rd = −100, and ro = 0. To convert the LTL

formulas into DRA, we have used the ltl2dstar toolbox [54].

Performance Metrics: We utilize the satisfaction probabil-

ities of the policies learned at various stages during training

to assess performance of our algorithm and the baselines.

Specifically, given a learned/fixed policy µ and an initial

PMDP state s = (x, q0D), we compute the probability P(µ |=
ϕ|s = (x, q0D)) using dynamic programming. We compute

this probability for all x ∈ X and then we compute the

average satisfaction probability P̄ = [
∑

∀x∈X P(µ |= ϕ|s =
(x, q0D))]/|X |. We report the average P̄ over five runs; see

Figs. 5-8. The satisfaction probabilities are computed using

the unknown-to-the-agent MDP transition probabilities. Since

runtimes for a training episode may differ across methods,

we also report runtime metrics; see Figs. 5-8. Specifically, we

document the runtimes required for all methods to complete a

a predetermined maximum number of episodes, as well as the

training episode each method reaches when the fastest one

completes the training process. This allows us to compare

satisfaction probabilities over the policies more fairly based on

fixed runtimes rather than a fixed number of training episodes.

Summary of Comparisons: Our experiments show that

the proposed (ϵ, δ)-greedy policy outperforms the model-free

baselines, learning policies with higher satisfaction probabil-

ities over the same timeframe. This performance gap widens

significantly as the size of the PMDP increases. Specifically,

our method begins learning policies with non-zero satisfaction

probabilities within the first few hundred training episodes.

The baselines can catch up relatively quickly, narrowing the

performance gap, typically after a few thousand episodes,

but only in small PMDPs (fewer than 10, 000 states). In

larger PMDPs (more than 10, 000 states), our method sig-

nificantly outperforms the model-free baselines. Additionally,

the proposed (ϵ, δ)-greedy policy and the ϵ-greedy policy

have similar runtimes, while they tend to be faster than

UCB and, especially, Boltzmann. The model-based approach,

on the other hand, demonstrates faster computation of the

optimal policy compared to model-free baselines, including

ours, when applied to small PMDPs (e.g., with fewer than

5, 000 states). However, this approach is memory inefficient,

requiring storage of the PMDP and the action value function

Qµ. As a result, it failed to handle case studies with large

PMDPs (more than 15, 000 states). In contrast, our method

was able to handle PMDPs with hundreds of thousands of

states; see e.g., Section V-E.

Remark 5.1 (Limitations & Implementation Improvements):

A limitation of our method compared to model-free baselines

is that it requires learning an MDP model, which can become

memory-inefficient over large-scale MDPs. However, we

believe that this limitation can be mitigated by more efficient

implementations of our approach. For instance, in our current

implementation [40], we store all learned MDP transition

probabilities used to compute the biased action. However,

the selection of the biased action does not require learning

all transition probabilities; see (15). Instead, it only requires

learning which action is most likely to drive the system from

a state x to a neighboring state x′. Once this property is

learned for a pair of states x and x′, the estimated transition

probabilities P̂ (x, a, x′) in (6) can be discarded.

B. Case Study I: A Simple Coverage Task

First, we consider a coverage/sequencing mission requiring

the agent to eventually reach the states 99, and 46 or 90
while avoiding 99 until 33 is reached, and always avoiding the

obstacle states 73, 24, 15, and 88. This task is captured by the

following LTL formula ϕ = (♢π99)∧♢(π46∨π90)∧(♢π33)∧
(¬π99Uπ33)∧□¬πobs, where πobs is satisfied when the robot

visits one of the obstacle states. This formula corresponds to

a DRA with 7 states and 1 accepting pair. Thus, the PMDP

constructed using M1, M2, and M3 has 700, 2, 800, and

17, 500 states, respectively.

The comparative results are shown in Fig. 5. Our algorithm

achieves the best performance when applied to M1, regardless

of the biased strategy. As for M2, the best performance is

achieved by our (ϵ, δ)-greedy policy coupled with ’Biased

3’, followed closely by the ϵ-greedy policy, ’Biased 2’, and

’Biased 1’. Notice that ϵ-greedy can catch up quickly when

applied to M1 and M2 due to the relatively small size of the

resulting PMDPs. This figure also shows the performance of

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

11

Case study I

Fig. 6. A More Complex Coverage Task (Section V-C): Comparison of average accumulated reward (top row) and satisfaction probability P̄ (bottom row)
when Algorithm 1 is applied with the proposed (ϵ, δ)-greedy policy, ϵ-greedy policy, Boltzmann policy, and UCB1 policy over the MDPs M1, M2, and M3.
The legend also includes the total runtime per method. The black stars on top of each reward curve denote the training episode where the corresponding
policy is when the fastest policy has finished training over the total number of episodes.

’Biased 1’ when the MDP transition probabilities are updated

only for the first 30 and 100 episodes for M1 and M2. The

performance of our approach is not significantly affected by

this choice, demonstrating robustness against model inaccu-

racies. This occurs because our algorithm does not require

learning the ground truth values of the transition probabilities

to compute the biased action; see (15).

The benefit of our method becomes more pronounced when

M3 is considered, resulting in a larger PMDP. In this case,

the average satisfaction probability P̄ of the policies learned

by all baselines is close to 0 after 100, 000 training episodes

(approximately 15 minutes). In contrast, the proposed (ϵ, δ)-
greedy policy, coupled with ‘Biased 2’ and ‘Biased 3’, learned

policies with P̄ = 0.58 and P̄ = 0.71, respectively, within the

same timeframe. Also, notice that ‘Biased 1’ failed to yield a

satisfactory policy for M3 within the same timeframe; recall

that ‘Biased 1’ for M3 is more aggressive than ‘Biased 1 for

M1 and M2. We attribute this to the aggressive nature of

this exploration strategy towards a desired high-reward path,

which possibly does not allow the agent to sufficiently explore

a significant portion of the PMDP state space, resulting in a

low average satisfaction probability. This shows that increasing

the amount of bias does not necessarily yield policies with

higher satisfaction probabilities.

The model-based approach was able to compute the optimal

policy for the MDPs M1 and M2, but failed for M3 due

to excessive memory requirements. Specifically, the optimal

policy for M1 was computed in 0.5 minutes, and for M2,

it took 5.98 minutes (without including the time to learn the

MDP model). The corresponding optimal average satisfaction

probabilities P̄ were 0.916 for M1 and 0.911 for M2. We

noticed that the model-based approach tends to be faster than

the model-free baselines, particularly for smaller PMDPs.

C. Case Study II: A More Complex Coverage Task

Second, we consider a more complex sequencing task

compared to the one in Section V-B, which involves visiting a

larger number of MDP states. The goal is to eventually reach

the MDP states x = 81, 95, 80, 88, and 92 in any order, while

always avoiding the states x = 5, 15, 54, 32, 24, 66, 42, 70,

and 71 representing obstacles in the environment. This task

can be formulated using the following LTL formula: ϕ =
♢π81 ∧♢π95 ∧♢π80 ∧♢π88 ∧♢π80 ∧♢π92 ∧□¬πobs, where

πobs is true if the robot visits any of the obstacle states. This

formula corresponds to a DRA with 33 states and 1 accepting

pair. Therefore, the PMDPs constructed using M1, M2, and

M3 have 3, 300, 13, 200, and 82, 500 states, respectively,

which are significantly larger than those of Section V-B.

Overall, our method, especially when coupled with ‘Biased

2’ and ‘Biased 3’, learns policies with higher satisfaction

probabilities faster than the baselines; see Fig. 6. The benefit of

our method is more pronounced as the PMDP size increases,

as shown in the cases of M2 and M3. For example, when

considering the MDP M3, our method equipped with ’Biased

2’ and ’Biased 3’ learns policies with P̄ = 0.55 and P̄ = 0.64,

respectively, while P̄ < 0.05 for all other baselines, given the

same amount of training time. Also, as in Section V-B, observe

that ‘Biased 1’ failed to learn a satisfactory policy for M3.

The model-based baseline computed the optimal policy

µ
∗ for the MDPs M1 and M2 in 1.1 and 112.15 minutes,

respectively, while it failed to compute the optimal policy

for M3 due to excessive memory requirements. The average

optimal satisfaction probability of the learned policies for M1

and M2 is 0.9854 and 0.9466, respectively.

D. Case Study III: Surveillance Task

Third, we consider a surveillance/recurrence mission cap-

tured by the following LTL formula: ϕ = □♢π90 ∧□♢π70 ∧
□♢(π80∨π63)∧□♢π88∧(¬π88Uπ90)∧□¬πobs. This formula

requires the robot to (i) visit infinitely often and in any order

the states 90, 70, 80 or 63 and 88; (ii) avoid reaching 88 until

80 is visited; and (iii) always avoid the obstacle in state 33.

The corresponding DRA has 16 states and 1 accepting pair.

Thus, the PMDP constructed using M1, M2, and M3 has

1, 600, 6, 400, and 40, 000 states, respectively.

The comparative performance results are shown in Figure

7. Observe that the (ϵ, δ)-greedy policy, especially when

paired with ’Biased 2’ and ’Biased 3’, performs better that

the model-free baselines in terms of sample-efficiency across

all considered MDPs. For instance, in the case of M1, our

proposed algorithm learns policies with average satisfaction

probabilities ranging from 0.75 to 0.9, depending on the biased

exploration strategy, within 2, 500 training episodes. In con-

trast, the average satisfaction probability for the baselines is

around 0.4 after the same number of episodes. As the number

of episodes increases, the baselines manage to catch up due to

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

12

Fig. 7. Surveillance Task (Section V-D): Comparison of average satisfaction probability P̄ when Algorithm 1 is applied with the proposed (ϵ, δ)-greedy
policy, ϵ-greedy policy, Boltzmann policy, and UCB1 policy over the MDPs M1, M2, and M3. The legend also includes the total runtime per method. The
black stars on top of each reward curve denote the training episode where the corresponding policy is when the fastest policy has finished training over the
total number of episodes.

Fig. 8. Disjoint Surveillance Task (Section V-E): Comparison of average satisfaction probability P̄ when Algorithm 1 is applied with the proposed (ϵ, δ)-
greedy policy, ϵ-greedy policy, Boltzmann policy, and UCB1 policy over the MDPs M1, M2, and M3. The legend includes the total runtime per method.
The black stars on top of each reward curve denote the training episode where the corresponding policy is when the fastest policy has finished training over
the total number of episodes.

the relatively small PMDP size. Similar trends are observed for

M2. As in the other case studies, the benefit of our method

becomes more evident when considering M3, which yields

a significantly larger PMDP. In this scenario, our proposed

algorithm, coupled with ’Biased 2’ and ’Biased 3’, learns

a control policy with satisfaction probabilities of P̄ = 0.51
and P̄ = 0.45 within 100, 000 episodes (or approximately

20 minutes), respectively. In contrast, the baselines achieve

satisfaction probabilities P̄ < 0.2 within the same timeframe.

As discussed in Section V-C, ’Biased 1’ performs poorly in

M3, possibly due to its aggressive bias.

The model-based approach can compute the optimal policy

only for the MDPs M1 and M2 while it failed in the case

of M3 due to excessive memory requirements. Regarding the

MDP M1 it computed an optimal policy corresponding to P̄ =
0.989 within 2.31 minutes. As for the MDP M2, it computed

the optimal policy with P̄ = 0.981 within 7.71 minutes.

E. Case Study IV: Disjoint Task

Finally, we consider a mission ϕ with two disjoint sub-tasks,

i.e., ϕ = ϕ1∨ϕ2 requiring the robot to accomplish either ϕ1 or

ϕ2. The sub-tasks are defined as ϕ1 = (♢π99∧♢π45∧♢π32∧
□¬π64) and ϕ2 = (♢π18 ∧♢π72 ∧♢π4). The LTL formula ϕ
corresponds to a DRA with 64 states and 2 accepting pairs.

As a result, the PMDP constructed using M1, M2, and M3

has 6, 400, 25, 600, and 160, 000 states, respectively. This task

requires the robot to eventually either visit the states 99, 45,

and 32 while always avoiding 64 or visit the states 18, 72, and

4. Notice that the optimal satisfaction probability of ϕ1 and

ϕ2 is 1 and less than 1, respectively.

The comparative results are reported in Figure 8. In M1,

our method coupled with ’Biased 1’ achieves the best per-

formance, closely followed by ’Biased 3’. Both biased explo-

ration strategies result in a control policy satisfying ϕ with

probability very close to 1 in approximately 0.5 minutes.

Additionally, all other baselines, except UCB, perform sat-

isfactorily, learning policies with P ∈ [0.8, 0.9] in the same

time frame. The performance gap between our method and the

baselines becomes more pronounced with the larger PMDPs

constructed using M2 and M3. Specifically, in M2, ‘Biased

1’ and ‘Biased 2’ achieve the best performance followed

by ‘Boltzmann’, ‘UCB’, ‘Biased 2’, and ‘ϵ-greedy’. In fact,

‘Biased 1’ and ‘Biased 2’ still manage to learn a policy with

P̄ very close to 1 in 2.40 mins while for the other baselines

it holds that P̄ < 0.8. It is worth noting that the performance

of ‘Biased 3’ has dropped significantly compared to M1. This

drop may be attributed to δb converging quite fast to 0 relative

to the large size of the PMDP. In fact, once δb is almost

equal to 0, then the (ϵ, δ)-greedy policy closely resembles the

standard ϵ-greedy policy which in this case has also learned

a policy with very low average satisfaction probability. Recall

that M2 shared exactly the same biased exploration strategies

(‘Biased 1’, ‘Biased 2’, and ‘Biased 3’) across all case studies

regardless of the PMDP size. However, the PMDP for M2 is

significantly larger than the ones considered in the other case

studies which may explain the poor performance of ‘Biased

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

13

3’ compared the other M2 case studies. Observe in M3

that our method outperforms all baselines. Specifically, within

20.55 mins, the average satisfaction probability corresponding

to ‘Biased 1’, ‘Biased 2’, ‘Biased 3’, and ‘Boltzmann’ is

0.8, 0.71, 0.78, and 0.6 respectively. The Boltzmann policy

requires in total 37.78 minutes to eventually yield a policy

with P̄ = 0.76. Finally, the model-based approach was able

to compute an optimal policy only for M1 within 6.1 minutes

with P̄ = 0.9772; interestingly, model-free methods are faster

in this case study.

VI. CONCLUSIONS

In this paper, we proposed a new accelerated reinforcement

learning (RL) for temporal logic control objectives. The pro-

posed RL method relies on new control policy, called (ϵ, δ)-
greedy, that prioritizes exploration in the vicinity of task-

related regions. This results in enhanced sample-efficiency as

supported by theoretical results and comparative experiments.

Our future work will focus on enhancing scalability by using

function approximations (e.g., neural networks).

APPENDIX A

EXTENSIONS: BIASED EXPLORATION OVER LDBA

In this appendix, we show that the proposed exploration

strategy can be extended to Limit Deterministic BÈuchi Au-

tomaton (LDBA) that typically have a smaller state space than

DRA which can further accelerate learning [38]. First, any LTL

formula can be converted in an LDBA defined as follows:

Definition A.1 (LDBA [38]): An LDBA is defined as A =
(Q, q0,Σ,F , δ) where Q is a finite set of states, q0 ∈ Q is the

initial state, Σ = 2AP is a finite alphabet, F = {F1, . . . ,Ff}
is the set of accepting conditions where Fj ⊂ Q, 1 ≤ j ≤ f ,

and δ : Q×Σ → 2Q is a transition relation. The set of states

Q can be partitioned into two disjoint sets Q = QN ∪ QD,

so that (i) δ(q, π) ⊂ QD and |δ(q, π)| = 1, for every state

q ∈ QD and π ∈ Σ; and (ii) for every Fj ∈ F , it holds that

Fj ⊂ QD and there are ε-transitions from QN to QD. □

An infinite run ρ of A over an infinite word w = σ0σ1σ2 · · · ∈
Σω , σt ∈ Σ = 2AP ∀t ∈ N, is an infinite sequence of states

qt ∈ Q, i.e., ρ = q0q1 . . . qt . . . , such that qt+1 ∈ δ(qt, σt).
The infinite run ρ is called accepting (and the respective word

w is accepted by the LDBA) if Inf(ρ) ∩ Fj ̸= ∅, ∀j ∈
{1, . . . , f}, where Inf(ρ) is the set of states that are visited

infinitely often by ρ. Also, an ε-transition allows the automaton

to change its state without reading any specific input. In

practice, the ε-transitions between QN and QD reflect the

ªguessº on reaching QD: accordingly, if after an ε-transition

the associated labels in the accepting LDBA set cannot be read,

or if the accepting states cannot be visited, then the guess is

deemed to be wrong, and the trace is disregarded and is not

accepted by the automaton. However, if the trace is accepting,

then the trace will stay in QD ever after, i.e. QD is invariant.

Given a (non-pruned) LDBA, we construct the product MDP

(PMDP), similarly to Definition 2.6. The formal definition of

this PMDP can be found in [8], [9]. To synthesize a policy

that satisfies the LDBA accepting condition, we can adopt

any reward function for the product MDP proposed in the

literature [8], [9]. Once the LDBA is constructed, it is pruned

exactly as discussed in Section III-A. The ϵ-transitions are

not pruned. Given the resulting automaton, similar to (3),

we define the distance to an accepting set of states Fj as

dF (q,Fj) = minqG∈Fj
d(q, qG) where d(q, qG) is defined

as in (2). This function is used to bias exploration so that

each set Fj is visited infinitely often. To design a biased

exploration strategy that can account for the LDBA accepting

condition, we first define the set V that collects indices j
to the set of accepting states Fj that have not been visited

during the current RL episode. Then, among all non-visited

set of accepting states Fj , we pick one randomly based

on which we define the set Qgoal(qt). Similar to (10), we

define the set Qgoal(qt) as: Qgoal(qt) = {q′ ∈ Q | (∃σ ∈
Σfeas such that q′ ∈ δ(qt, σ))∧(dF (q

′,Fj) = dF (qt,Fj)−1)},

where j ∈ V . Recall, that all ϵ- transitions in the LDBA are

feasible. Thus, by definition, Qgoal(qt) includes all states q
where the transition from qt to q is an ϵ-transition. Given

Qgoal(qt), the biased action is selected exactly as described in

Section III-C. Once the set of states Fj is visited, the set V is

updated as V = V \ {j}, and then the set Qgoal(qt) is updated

accordingly.

APPENDIX B

PROOF FOR RESULTS OF SECTION IV-B

A. Proof Proposition 4.2

The probability of reaching any state st+1 = (xt+1, qt+1)
where xt+1 ∈ Xcloser(xt) under a stochastic policy µ(s, a) is:
∑

x∈Xcloser

∑

a∈A(xt)
µ(st, a)P (xt, a, x). Thus, we have that:4

Pb(xt+1 ∈ Xcloser(xt))− Pg(xt+1 ∈ Xcloser(xt)) =
∑

x∈Xcloser(xt)

∑

a∈A(xt)

P (xt, a, x)(µb(st, a)− µg(st, a)), (26)

where µg and µb refer to the ϵ-greedy (no biased exploration)

and (ϵ, δ)-greedy policy (biased exploration), respectively. In

what follows, we compute µb(st, a) − µg(st, a), for all a ∈
AP. Recall, that µb(st, a) is the probability of selecting the

action a at state st. Also, hereafter, we assume that the greedy

action a∗ is different from the biased action ab; however, the

same logic applies if ab = a∗, leading to the same result. For

simplicity of notation, we use A = |AP(s)|.
First, for the action a = a∗, we have that (a) µb(st, a

∗) −
µg(st, a

∗) = (1 − ϵ + δe
A
) − (1 − ϵ + ϵ

A
) = (1 − ϵ + δe

A
) −

(1− ϵ+ δb+δe
A

) = δb
A

. Similarly, for a = ab, we have that (b)

µb(st, ab) − µg(st, ab) = (δb +
δe
A
) − ϵ

A
= − δb(m−1)

A
. Also,

for all other actions a ̸= ab, a
∗, we have that (c) µb(st, a) −

µg(st, a) =
δe
A

− ϵ
A

= − δb
A

. Substituting the above equations

(a)-(c) into (26) yields: Pb(xt+1 ∈ Xcloser) − Pg(xt+1 ∈

Xcloser) = δb
∑

x∈Xcloser
(P (xt, ab, x) −

∑

a∈A(xt)
P (xt,a,x)

A
).

Due to (18) and that δb > 0, we conclude that Pb(st+1 ∈
Xcloser)− Pg(st+1 ∈ Xcloser) ≥ 0 completing the proof.

B. Proof Of Proposition 4.3

The probability of reaching a state st+1 where xt+1 =
xb under a policy µ(s, a) is:

∑

a∈A(xt)
µ(st, a)P (xt, a, xb).

Thus, we have Pb(xt+1 = xb) − Pg(xt+1 = xb) =
∑

a∈A(xt)
P (xt, a, xb)(µb(st, a) − µg(st, a)) Following the

4Note that qt+1 is selected deterministically, due to the DRA structure, i.e.,
qt+1 = δD(qt, L(xt)).

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

14

same steps as in the proof of Proposition 4.2, we get that

Pb(xt+1 = xb)−Pg(xt+1 = xb) ≥ 0 if δb > 0, which holds by

assumption, and P (xt, ab, xb) ≥
∑

a∈A(xt)
P (xt,a,xb)
|A(xt)|

which

holds by definition of ab in (15). Specifically, given xt and xb,

we have that P (xt, ab, xb) ≥ P (xt, a, xb) for all a ∈ A(xt)
due to (15). Thus, P (xt, ab, xb) must be greater than or equal

to the average transition probability over the actions a i.e.,
∑

a∈A(xt)
P (xt,a,xb)
|A(xt)|

completing the proof.

APPENDIX C

PROOF OF RESULTS OF SECTION IV-C

A. Proof of Proposition 4.4

By definition of Rj∗ and Rj , we can rewrite the inequality

Pb(Rj∗ = 1) ≥ maxj∈J Pb(Rj = 1) as

t∗−1
∏

m=0

∑

a∈A(xt+m)

µb(st+m, a)P (xt+m, a, xt+m+1) ≥ (27)

max
j∈J

t∗−1
∏

m=0

∑

ā∈A(x̄t+m)

µb(s̄t+m, ā)P (x̄t+m, ā, x̄t+m+1).

where st+m = (xt+m, qt), xt+m = ptj∗(m + 1), s̄t+m =
(x̄t+1, qt), x̄t+m = ptj(m + 1), for all m ∈ {0, . . . , t∗ − 1}.

Recall that by construction of the paths ptj , the DRA state will

remain equal to qt as the MDP agent moves along any of the

paths ptj , for all j ∈ J ; see Remark 3.4. We will show that

(27) holds by contradiction. Assume that there exists at least

one path pt
j̄
, j̄ ∈ J , that does not satisfy (27), i.e.,

t∗−1
∏

m=0

∑

a∈A(xt+m)

µb(st+m, a)P (xt+m, a, xt+m+1) < (28)

t∗−1
∏

m=0

∑

ā∈A(x̄t+m)

µb(s̄t+m, ā)P (x̄t+m, ā, x̄t+m+1),

where s̄t+m and x̄t+m are defined as per pt
j̄
.

Next, we assume that a∗ ̸= ab and ā∗ ̸= āb; the same logic

applies even if this is not the case leading to the same result.

Using (8), we plug the values of µb(st+m, a) and µb(s̄t+m, ā)
for all a ∈ A(xt+m) and ā ∈ A(x̄t+m) in (28) which yields:

t∗−1
∏

m=0

{P (xt+m, ab, xt+m+1)(δb +
δe

|A(xt+m)|
)+

P (xt+m, a∗, xt+m+1)(1− ϵ+
δe

|A(xt+m)|
)+

∑

a ̸=a∗,ab

P (xt+m, a, xt+m+1)(
δe

|A(xt+m)|
)} <

t∗−1
∏

m=0

{P (x̄t+m, āb, x̄t+m+1)(δb +
δe

|A(x̄t+m)|
)+

P (x̄t+m, ā∗, x̄t+m+1)(1− ϵ+
δe

|A(x̄t+m)|
)+

∑

ā ̸=ā∗,āb

P (x̄t+m, ā, x̄t+m+1)(
δe

|A(x̄t+m)|
)}. (29)

In (29), ab and āb stand for the biased action computed

when the PMDP state is st+m and s̄t+m (using the optimal

path pt+m
j∗ , as per (14), as discussed in Section III-C). The

same notation extends to all other actions. The purpose of

this notation is only to emphasize that the biased and greedy

actions at st+m and s̄t+m are not necessarily the same. By

rearranging the terms in (29), we get the following result

t∗−1
∏

m=0

{P (xt+m, ab, xt+m+1)δb+

P (xt+m, a∗, xt+m+1)(1− ϵ) +
δe

|A(xt+m)|
} <

t∗−1
∏

m=0

{P (x̄t+m, āb, x̄t+m+1)δb+

P (x̄t+m, ā∗, x̄t+m+1)(1− ϵ) +
δe

|A(x̄t+m)|
}. (30)

Due to (21), (30) can expressed as β(ptj∗) < β(pt
j̄
) which

contradicts (22) completing the proof.5

B. Proof of Proposition 4.6

This proof follows the same steps as the proof of Proposition

4.4. The inequality Pb(Rj∗ = 1) ≥ maxj∈J Pg(Rj = 1) can

re-written as

t∗−1
∏

m=0





∑

a∈A(xt+m)

µb(st+m, a)P (xt+m, a, xt+m+1)



 ≥

(31)

max
j∈J

t∗−1
∏

m=0





∑

ā∈A(x̄t+m)

µg(s̄t+m, ā)P (x̄t+m, ā, x̄t+m+1)





where st+m = (xt+m, qt), xt+m = ptj∗(m + 1), s̄t+m =
(x̄t+m, qt), and x̄t+m = ptj(m+1), for all m ∈ {1, . . . , t∗−1}.

We will show this result by contradiction. Assume that there

exists at least one path pt
j̄
, j̄ ∈ J , that does not satisfy (31),

i.e.,

t∗−1
∏

m=0





∑

a∈A(xt+m)

µb(st+m, a)P (xt+m, a, xt+m+1)



 <

(32)

t∗−1
∏

m=0





∑

ā∈A(x̄t+m)

µg(s̄t+m, ā)P (x̄t+m, a, x̄t+m+1)



 ,

where s̄t+m and x̄t+m are defined as per pt
j̄
.

In what follows, we denote by a∗ and ab the greedy and the

biased action as per µb, and ā∗ the greedy action as per µg .

We assume that a∗ ̸= ab; the same logic applies even if this

is not the case leading to the same final result. We plug the

values of µb(st+m, a) and µg(s̄t+m, ā) for all a ∈ A(xt+m)

5Notice that β(ptj) is equal to the probability that, starting from xt, the

MDP path ptj , j ∈ J , will be generated by the end of the time step t+ t∗,

under the proposed (ϵ, δ)-greedy policy.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

15

and ā ∈ A(x̄t+m) in (32) yielding:

t∗−1
∏

m=0

{P (xt+m, ab, xt+m+1)δb+

P (xt+m, a∗, xt+m+1)(1− ϵ) +
δe

|A(xt+m)|
} <

t∗−1
∏

m=0

{P (x̄t+m, ā∗, x̄t+m+1)(1− ϵ) +
ϵ

|A(x̄t+m)|
} (33)

Due to (21) and (23), the result in (33) is equivalent to

β(ptj∗) < η(pt
j̄
) which contradicts (24) completing the proof.6

C. Proof of Proposition 4.8

To show this result, it suffices to show that

Pb(xt+t∗ ∈ Xgoal) ≥ Pg(xt+t∗ ∈ Xgoal). (34)

The reason is that if at the time step t + t∗ an MDP state in

Xgoal is reached, then at the next time step t+ t∗ +1, a DRA

state in Qgoal will be reached. Notice that the MDP states in

Xgoal can be reached at the time step t+ t∗ if any of the MDP

paths ptj , j ∈ J , originating at xt, are followed. Let Rj be a

(Bernoulli) random variable that is true if after t∗ time steps

(i.e., at the time step t + t∗), a path ptj , j ∈ J , has been

generated under a policy µ. Then, (34) can be equivalently

expressed as:
∑

j∈J

Pb(Rj = 1) ≥
∑

j∈J

Pg(Rj = 1). (35)

The rest of the proof follows the same logic as the proof of

Proposition 4.6. First, we can rewrite (35) as follows:

∑

j∈J





t∗−1
∏

m=0





∑

a∈A(xt+m)

µb(st+m, a)P (xt+m, a, xt+m+1)







 ≥

(36)

∑

j∈J





t∗−1
∏

m=0





∑

ā∈A(x̄t+m)

µg(s̄t+m, ā)P (x̄t+m, ā, x̄t+m+1)







 .

Next, as in the proof of Proposition 4.6, we show that (36)

holds by contradiction. Specifically, assume that (36) does

not hold. Then, after plugging the values of µb(st+m, a) and

µg(s̄t+m, ā) for all a ∈ A(xt+m) and ā ∈ A(x̄t+m) in (36)

and after rearranging the terms, we get that
∑

j∈J β(ptj) <
∑

j∈J η(ptj). This contradicts (25) completing the proof.

APPENDIX D

DECAY RATES IN NUMERICAL SIMULATIONS

In this section, we mathematically define the decay rates

used for ϵ, δb, and δe in Section V. The parameter ϵ evolves

over episodes epi, as ϵ(epi) = 1/(epiα) where α is

selected to be equal to 0.1 for M1 and M2 and 0.05 for

M3. In ‘Biased 1’, δb and δb evolve over episodes, as

δb(epi) = (1 − 1
epiβ)ϵ(epi) and δe(epi) = ϵ(epi)

epiβ . We

select β = 0.4 for M1 and M2 and β = 0.15 for M3.

6Notice that η(ptj) is equal to the probability that, starting from xt, the

MDP path ptj , will be generated by the end of the time step t + t∗, if the

PMDP evolves as per the ϵ-greedy policy.

Observe that δb(epi)+δe(epi) = ϵ(epi). To define ‘Biased

2’ and ‘Biased 3’, we need first to define the following

function denoted by g(epi). If epi < 100, then g(epi) =
1 − 0.9 exp(−Aepi). Otherwise, we have that g(epi) =
1−0.1 exp(−Aepi) for some A. Then, we have that δb(epi)
and δe(epi) evolve as δb(epi) = (1 − g(epi))ϵ(epi) and

δe(epi) = g(epi)ϵ(epi). This choice prioritizes random

exploration during the first 100 episodes. The larger the A,

the faster δb converges to 0. Regarding M1 and M2, we select

A = 0.00015 for ‘Biased 2’, A = 0.0015 for ‘Biased 3’, and

A = ∞ for ‘Random’. As for M3, we choose A = 0.000015
for ‘Biased 2’ and A = 0.00015 for ‘Biased 3’.

REFERENCES

[1] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. PÂerez, ªDeep reinforcement learning for autonomous
driving: A survey,º IEEE Transactions on Intelligent Transportation

Systems, vol. 23, no. 6, pp. 4909±4926, 2021.
[2] D. Dewey, ªReinforcement learning and the reward engineering princi-

ple,º in AAAI Spring Symposium Series, 2014.
[3] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,

2008.
[4] J. Wang, X. Ding, M. Lahijanian, I. C. Paschalidis, and C. A. Belta,

ªTemporal logic motion control using actor±critic methods,º The Inter-

national Journal of Robotics Research, vol. 34, no. 10, pp. 1329±1344,
2015.

[5] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and
D. Wojtczak, ªOmega-regular objectives in model-free reinforcement
learning,º International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, 2018.
[6] Q. Gao, D. Hajinezhad, Y. Zhang, Y. Kantaros, and M. M. Za-

vlanos, ªReduced variance deep reinforcement learning with temporal
logic specifications,º in ACM/IEEE International Conference on Cyber-

Physical Systems, Montreal, Canada, 2019.
[7] M. Bouton, J. Karlsson, A. Nakhaei, K. Fujimura, M. J. Kochenderfer,

and J. Tumova, ªReinforcement learning with probabilistic guarantees
for autonomous driving,º arXiv preprint arXiv:1904.07189, 2019.

[8] M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and
I. Lee, ªReinforcement learning for temporal logic control synthesis with
probabilistic satisfaction guarantees,º in 2019 IEEE 58th Conference on

Decision and Control (CDC), Nice, France, 2019, pp. 5338±5343.
[9] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, ªControl

synthesis from linear temporal logic specifications using model-free
reinforcement learning,º in 2020 IEEE International Conference on

Robotics and Automation (ICRA), 2020, pp. 10 349±10 355.
[10] M. Cai, H. Peng, Z. Li, and Z. Kan, ªLearning-based probabilistic

ltl motion planning with environment and motion uncertainties,º IEEE

Transactions on Automatic Control, vol. 66, no. 5, pp. 2386±2392, 2020.
[11] A. Lavaei, F. Somenzi, S. Soudjani, A. Trivedi, and M. Zamani,

ªFormal controller synthesis for continuous-space mdps via model-free
reinforcement learning,º in ACM/IEEE 11th International Conference

on Cyber-Physical Systems (ICCPS). IEEE, 2020, pp. 98±107.
[12] K. Jothimurugan, S. Bansal, O. Bastani, and R. Alur, ªCompositional

reinforcement learning from logical specifications,º in Thirty-Fifth Con-

ference on Neural Information Processing Systems, 2021.
[13] M. Hasanbeig, D. Kroening, and A. Abate, ªLcrl: Certified policy

synthesis via logically-constrained reinforcement learning,º in Quantita-

tive Evaluation of Systems: 19th International Conference, QEST 2022,

Warsaw, Poland, September 12±16, 2022, Proceedings. Springer, 2022,
pp. 217±231.

[14] H. Hasanbeig, D. Kroening, and A. Abate, ªCertified reinforcement
learning with logic guidance,º Artificial Intelligence, vol. 322, 2023.

[15] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, ªLearning
optimal strategies for temporal tasks in stochastic games,º IEEE Trans-

actions on Automatic Control, 2024.
[16] Z. Xuan, A. K. Bozkurt, M. Pajic, and Y. Wang, ªOn the uniqueness

of solution for the bellman equation of ltl objectives,º in Learning for

Dynamics and Control, 2024.
[17] M. Hasanbeig, N. Y. Jeppu, A. Abate, T. Melham, and D. Kroening,

ªDeepsynth: Automata synthesis for automatic task segmentation in
deep reinforcement learning,º in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 35, no. 9, 2021, pp. 7647±7656.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

16

[18] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith, ªUsing
reward machines for high-level task specification and decomposition
in reinforcement learning,º in International Conference on Machine

Learning. PMLR, 2018, pp. 2107±2116.
[19] Z. Wen, D. Precup, M. Ibrahimi, A. Barreto, B. Van Roy, and S. Singh,

ªOn efficiency in hierarchical reinforcement learning,º Advances in

Neural Information Processing Systems, vol. 33, pp. 6708±6718, 2020.
[20] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, ªRe-

ward machines:: Exploiting reward function structure in reinforcement
learning,º Journal of Artificial Intelligence Research, vol. 73, pp. 173±
208, 2022.

[21] M. Cai, M. Mann, Z. Serlin, K. Leahy, and C.-I. Vasile, ªLearning
minimally-violating continuous control for infeasible linear temporal
logic specifications,º in American Control Conference (ACC), 2023, pp.
1446±1452.

[22] A. Balakrishnan, S. JakšiÂc, E. A. Aguilar, D. NičkoviÂc, and J. V.
Deshmukh, ªModel-free reinforcement learning for spatiotemporal tasks
using symbolic automata,º in 62nd IEEE Conference on Decision and

Control (CDC), Singapore, 2023, pp. 6834±6840.
[23] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, ªCuriosity-driven

exploration by self-supervised prediction,º in International conference

on machine learning. PMLR, 2017, pp. 2778±2787.
[24] Y. Zhai, C. Baek, Z. Zhou, J. Jiao, and Y. Ma, ªComputational benefits

of intermediate rewards for goal-reaching policy learning,º Journal of

Artificial Intelligence Research, vol. 73, pp. 847±896, 2022.
[25] M. Cai, E. Aasi, C. Belta, and C.-I. Vasile, ªOvercoming exploration:

Deep reinforcement learning for continuous control in cluttered en-
vironments from temporal logic specifications,º IEEE Robotics and

Automation Letters, vol. 8, no. 4, pp. 2158±2165, 2023.
[26] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ªReinforcement

learning: A survey,º Journal of artificial intelligence research, vol. 4,
pp. 237±285, 1996.

[27] N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu, ªBoltzmann
exploration done right,º Advances in neural information processing

systems, vol. 30, 2017.
[28] R. Y. Chen, S. Sidor, P. Abbeel, and J. Schulman, ªUcb exploration via

q-ensembles,º arXiv preprint arXiv:1706.01502, 2017.
[29] S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup, ªA

survey of exploration methods in reinforcement learning,º arXiv preprint

arXiv:2109.00157, 2021.
[30] J. Fu and U. Topcu, ªProbably approximately correct MDP learn-

ing and control with temporal logic constraints,º arXiv preprint

arXiv:1404.7073, 2014.
[31] T. BrÂazdil, K. Chatterjee, M. Chmelik, V. Forejt, J. KřetÂınskỳ,

M. Kwiatkowska, D. Parker, and M. Ujma, ªVerification of markov
decision processes using learning algorithms,º in Automated Technology

for Verification and Analysis: 12th International Symposium, ATVA

2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings 12.
Springer, 2014, pp. 98±114.

[32] F. FernÂandez, J. GarcÂıa, and M. Veloso, ªProbabilistic policy reuse for
inter-task transfer learning,º Robotics and Autonomous Systems, vol. 58,
no. 7, pp. 866±871, 2010.

[33] Y. Kantaros and M. M. Zavlanos, ªStylus*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,º The

International Journal of Robotics Research, vol. 39, no. 7, pp. 812±
836, 2020.

[34] Y. Kantaros, S. Kalluraya, Q. Jin, and G. J. Pappas, ªPerception-based
temporal logic planning in uncertain semantic maps,º IEEE Transactions

on Robotics, 2022.
[35] X. Ding, M. Lazar, and C. Belta, ªLtl receding horizon control for finite

deterministic systems,º Automatica, vol. 50, no. 2, pp. 399±408, 2014.
[36] B. Lacerda, D. Parker, and N. Hawes, ªOptimal policy generation for

partially satisfiable co-safe ltl specifications.º in International Joint

Conference on Artificial Intelligenc, vol. 15. Citeseer, 2015, pp. 1587±
1593.

[37] Y. Kantaros, ªAccelerated reinforcement learning for temporal logic
control objectives,º in IEEE/RSJ International Conference on Intelligent

Robots and Systems, Kyoto, Japan, October 2022.
[38] S. Sickert, J. Esparza, S. Jaax, and J. KřetÂınskỳ, ªLimit-deterministic

BÈuchi automata for linear temporal logic,º in CAV, 2016, pp. 312±332.
[39] M. Cai, S. Xiao, Z. Li, and Z. Kan, ªOptimal probabilistic motion

planning with potential infeasible ltl constraints,º IEEE Transactions

on Automatic Control, 2021.
[40] Software:, https://github.com/kantaroslab/AccRL.
[41] M. Kloetzer and C. Belta, ªA fully automated framework for control of

linear systems from temporal logic specifications,º IEEE Transactions

on Automatic Control, vol. 53, no. 1, pp. 287±297, 2008.

[42] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, ªTemporal
logic motion planning for dynamic robots,º Automatica, vol. 45, no. 2,
pp. 343±352, 2009.

[43] K. Leahy, D. Zhou, C.-I. Vasile, K. Oikonomopoulos, M. Schwager, and
C. Belta, ªPersistent surveillance for unmanned aerial vehicles subject to
charging and temporal logic constraints,º Autonomous Robots, vol. 40,
no. 8, pp. 1363±1378, 2016.

[44] M. Guo and M. M. Zavlanos, ªDistributed data gathering with buffer
constraints and intermittent communication,º in International Confer-

ence on Robotics and Automation, May-June 2017, pp. 279±284.
[45] Y. Kantaros and M. M. Zavlanos, ªDistributed intermittent connectivity

control of mobile robot networks,º IEEE Transactions on Automatic

Control, vol. 62, no. 7, pp. 3109±3121, 2017.
[46] J. Fang, Z. Zhang, and R. V. Cowlagi, ªDecentralized route-planning

for multi-vehicle teams to satisfy a subclass of linear temporal logic
specifications,º Automatica, vol. 140, p. 110228, 2022.

[47] C. I. Vasile, X. Li, and C. Belta, ªReactive sampling-based path
planning with temporal logic specifications,º The International Journal

of Robotics Research, vol. 39, no. 8, pp. 1002±1028, 2020.
[48] X. C. D. Ding, S. L. Smith, C. Belta, and D. Rus, ªLtl control in

uncertain environments with probabilistic satisfaction guarantees,º IFAC

Proceedings Volumes, vol. 44, no. 1, pp. 3515±3520, 2011.
[49] M. Guo and M. M. Zavlanos, ªProbabilistic motion planning under

temporal tasks and soft constraints,º IEEE Transanctions on Automatic

Control, 2018.
[50] M. L. Puterman, Markov decision processes: Discrete stochastic dy-

namic programming. John Wiley & Sons, 2014.
[51] X. Ding, S. L. Smith, C. Belta, and D. Rus, ªOptimal control of Markov

decision processes with linear temporal logic constraints,º IEEE Trans.

on Automatic Control, vol. 59, no. 5, pp. 1244±1257, 2014.
[52] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press, 2018.
[53] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, ªProbabilistic reacha-

bility and safety for controlled discrete time stochastic hybrid systems,º
Automatica, vol. 44, no. 11, pp. 2724±2734, 2008.

[54] ltl2dstar, https://www.ltl2dstar.de/.

PLACE
PHOTO
HERE

Yiannis Kantaros (S’14-M’18) is an Assistant Pro-
fessor in the Department of Electrical and Systems
Engineering, Washington University in St. Louis
(WashU), St. Louis, MO, USA. He received the
Diploma in Electrical and Computer Engineering in
2012 from the University of Patras, Patras, Greece.
He also received the M.Sc. and the Ph.D. degrees
in mechanical engineering from Duke University,
Durham, NC, in 2017 and 2018, respectively. Prior
to joining WashU, he was a postdoctoral associate
in the Department of Computer and Information

Science, University of Pennsylvania, Philadelphia, PA. His current research
interests include machine learning, distributed control and optimization, and
formal methods with applications in robotics. He received the Best Student
Paper Award at the IEEE Global Conference on Signal and Information
Processing (GlobalSIP) in 2014, a Best Multi-Robot Systems Paper Award,
Finalist, at the IEEE International Conference in Robotics and Automation
(ICRA) in 2024, the 2017-18 Outstanding Dissertation Research Award from
the Department of Mechanical Engineering and Materials Science, Duke
University, and a 2024 NSF CAREER Award.

PLACE
PHOTO
HERE

Jun Wang (S’22) is a PhD candidate in the De-
partment of Electrical and Systems Engineering at
Washington University in St. Louis. He received his
B.Eng. degree in Software Engineering from Sun
Yat-Sen University in 2019 and his MSE degree
in Robotics from the University of Pennsylvania
in 2021. His research interests include robotics,
machine learning, and control theory.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3484290

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on February 28,2025 at 00:22:21 UTC from IEEE Xplore. Restrictions apply.

