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Probabilistically Correct Language-Based
Multi-Robot Planning Using Conformal Prediction

Jun Wang , Guocheng He, and Yiannis Kantaros , Member, IEEE

Abstract—This paper addresses task planning problems for
language-instructed robot teams. Tasks are expressed in natural
language (NL), requiring the robots to apply their skills at var-
ious locations and semantic objects. Several recent works have
addressed similar planning problems by leveraging pre-trained
Large Language Models (LLMs) to design effective multi-robot
plans. However, these approaches lack performance guarantees. To
address this challenge, we introduce a new distributed LLM-based
planner, called S-ATLAS for Safe plAnning for Teams of Language-
instructed AgentS, that can achieve user-defined mission success
rates. This is accomplished by leveraging conformal prediction
(CP), a distribution-free uncertainty quantification tool. CP allows
the proposed multi-robot planner to reason about its inherent
uncertainty, due to imperfections of LLMs, in a distributed fashion,
enabling robots to make local decisions when they are sufficiently
confident and seek help otherwise. We show, both theoretically and
empirically, that the proposed planner can achieve user-specified
task success rates, assuming successful plan execution, while mini-
mizing the average number of help requests. We provide compara-
tive experiments against related works showing that our method is
significantly more computational efficient and achieves lower help
rates.

Index Terms—Multi-robot systems, task and motion planning,
AI-enabled robotics, planning under uncertainty.

I. INTRODUCTION

D ESIGNING robots with advanced task planning abilities
has been a fundamental goal in robotics [1]. To this end,

several task and motion planners have been proposed recently,
which, however, often require significant user expertise for
mission specification, using formal languages [2] or reward
functions [3]. Natural Language (NL) has emerged as a more
user-friendly alternative to specify robot missions. Motivated by
the remarkable generalization abilities of pre-trained Large Lan-
guage Models (LLMs) across diverse domains, there has been
increasing attention on utilizing LLMs for NL-based planning.
Early efforts primarily focused on single-robot task planning
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problems [4], [5], [6], [7], [8], [9], [10] while recent extensions
to multi-robot systems are presented in [11], [12], [13], [14],
[15], [16], [17] and the references therein. A detailed survey can
be found in [18]. A major challenge with current LLM-based
planners is that they confidently generate incorrect and possibly
unsafe outputs.

This paper focuses on enhancing the reliability of LLM-based
multi-robot planners. We consider teams of robots possessing
various skills (e.g., mobility and manipulation) tasked with mis-
sions expressed in NL. Mission completion requires the robots to
apply their skills to various known semantic objects that exist in
the environment. Our overarching goal is to design LLM-based
planners capable of computing multi-robot plans (i.e., sequences
of robot actions) with a user-specified probability of correctness;
this ensures desired mission success rates assuming successful
plan execution. This requires developing LLM-based planners
that can reason about uncertainties of the employed LLMs,
enabling robots to make decisions when sufficiently confident
and seek help otherwise.

To address this problem, we propose a new distributed LLM-
based planner, called S-ATLAS for Safe plAnning for Teams
of Language-instructed AgentS; see Fig. 1. In our framework,
at each time step, the robots select actions sequentially while
considering actions chosen by other robots as e.g., in [11]. Each
robot is delegated to a pre-trained LLM agent that is responsible
for decision-making. This coordinate-descent approach enables
the distributed construction of robot plans. To choose an action
for a robot, we present the action selection problem to the corre-
sponding LLM agent as a multiple-choice question-answering
(MCQA) scenario [7]. The ‘question’ corresponds to the textual
task description and the history of past decisions, while the
set of available ‘choices’ represents the skills that the selected
robot can apply. The MCQA setup ensures that, unlike other
multi-robot planners, the LLM only chooses from valid choices,
partially mitigating the risk of hallucination, where nonsensical
actions might be generated. Instead of selecting the action with
the highest logit score, inspired by [19], we employ conformal
prediction (CP) to quantify the uncertainty of the employed
LLM [20]; this is crucial as LLMs often confidently produce
incorrect outputs. CP enables the design of individual prediction
sets for each robot that contain the correct action with high
confidence. This allows each LLM-driven robot to determine
when it is uncertain about its decisions, which is a key step
toward achieving desired mission success rates. In cases of
high uncertainty, indicated by non-singleton prediction sets, the
respective robots seek assistance from other robots and/or users;
otherwise, they execute the action in their singleton sets.

Related Works: As discussed earlier, several planners for
language-driven robot teams have been proposed recently
which, unlike the proposed method, lack performance guar-
antees. The closest works to ours are [19], [21], [22], which
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Fig. 1. The proposed distributed planner can determine when and which LLM-
driven robot is uncertain about correctness of its next action. In cases of high
uncertainty, the respective robots seek assistance. This enables the planner to
achieve desired mission success rates.

apply CP for aligning LLM uncertainty. In [21], CP is applied
to single-step MCQA tasks while [19], [22] build upon that
approach to address more general NL tasks, modeled as multi-
step MCQA problems, with desired success rates. Notably, the
inspiring work in [19] is the first to demonstrate how CP can
determine when a robot needs help from a user to efficiently
resolve task ambiguities. These works, however, focus on single-
robot planning problems. We note that [19] can be extended to
multi-robot settings by treating the multi-robot system as a single
robot performing multiple actions simultaneously. However, we
show that these centralized implementations do not scale well
with increasing team size due to increasing computational costs
and/or the diminishing ability of a single LLM to effectively
manage large robot teams. Moreover, centralized implementa-
tions of [19] generate multi-robot/global prediction sets, making
it harder to determine which specific robot requires assistance.
Our method addresses these challenges through its distributed
nature, constructing local prediction sets, for each robot, allow-
ing users to easily identify which robot needs help and when,
while also ensuring desired team-wide mission success rates.
Comparisons against these centralized approaches demonstrate
that our method is significantly more computationally efficient
and requires fewer user interventions, particularly as team size
and mission complexity grow. Finally, we note that CP has been
applied to various autonomy tasks [23], [24], [25], [26]. To the
best of our knowledge, this paper presents the first CP application
in NL-based multi-robot planning, particularly in distributed
settings.

Contribution: The contribution of the paper can be summa-
rized as follows. (i) We propose the first distributed planner for
language-instructed multi-robot systems that can achieve user-
specified task success rates (assuming successful execution of

robot skills). (ii) We show how CP can be applied in a distributed
fashion to construct local prediction sets for each individual
robot. (iii) We provide comparative experiments showing that
our planner outperforms related language-based planners in
terms of efficiency and help rates.

II. PROBLEM FORMULATION

Robot Team: Consider a team of N ≥ 1 robots. Each robot
is governed by known dynamics: pj(t+ 1) = fj(pj(t),uj(t)),
j ∈ {1, 2, . . . , N}, where pj(t) and uj(t) stand for the state the
control input of robot j at discrete time t, respectively. Each
robot possesses A > 0 skills collected in a set A ∈ {1, . . . , A}.
These skills a ∈ A are represented textually (e.g., ‘take a pic-
ture’, ‘grab’, or ‘go to’). The application of skill a by robot
j to an object/region at location x at time t is represented as
sj(a,x, t). For simplicity, we assume homogeneity among the
robots, meaning they all share the same skill setA and can apply
skill a at any given location x associated with an object/region.
When it is clear from the context, we denote sj(a,x, t) by sj(t)
for brevity. We also define the multi-robot decision at time t as
s(t) = [s1(t), . . . , sN (t)]. The time step t is increased by one,
once s is completed/executed. Also, we assume that every robot
has access to low-level error-free controllers to execute the skills
in A [19].

Environment: The robot team resides in a known environment
Ω that containsM > 0 semantic objects. Each object e is defined
by its location xe and a semantic label oe. Using the action space
A and the available semantic objects, we can construct a set S
that collects all possible decisions sj that a robot j can make.
Notice that since we consider homogeneous robots, the set S is
the same for all robots j.

Mission Specification: The team is assigned a coordinated
task φ, expressed in NL, that is defined over objects/regions
of interest in Ω. This task may comprise multiple sub-tasks
that are not necessarily pre-assigned to specific robots. Thus,
achieving φ involves determining which actions each robot
should apply, when, where, and in what order. Our goal is
to design multi-robot plans that accomplish φ, defined as
τ = s(1), s(2), . . . , s(H), for some horizon H . We formal-
ize this by considering a distribution D over scenarios ξi =
{Ni,Ai, φi, Hi,Ωi}, with corresponding ground truth plans τi.1

Recall that Ni,Ai, φi, Hi, andΩi refer to the number of robots,
the robot skills, the NL-based task, the mission horizon, and
the semantic environment, respectively, associated with ξi. The
horizon Hi determines an upper bound on the number of steps t
required to accomplish φi. The subscript i is used to emphasize
that these parameters can vary across scenarios. We assume that
all scenarios ξi drawn from D are feasible. When it is clear
from the context, we drop the dependence on i. Note that D is
unknown but we assume that we can sample i.i.d. scenarios from
it. Our goal is to design probabilistically correct language-based
planners, i.e., planners that can generate correct/feasible plans
τi satisfying ξi, in at least (1− α) · 100% of scenarios ξi drawn
from D, for a user-specified α ∈ (0, 1).2

1Accounting for heterogeneous robots requires defining more complex distri-
butions that can generate individual action sets. The proposed planner remains
applicable. We abstain from this presentation for simplicity.

2We note that probabilistic task satisfaction arises solely due to imperfections
of LLMs employed to process NL. Our future work will consider imperfections
of robot skills as well.
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Fig. 2. Given a task scenario ξ, the robots select decisions at each time t
sequentially as perI. Each robot j = I(i) (gray disk) is delegated to an LLM that
generates a decision sj(t) given textual context �I(i−1)(t) containing the task
description and past robot decisions provided by the previous robot I(i− 1). If
the LLM for robot j is not certain enough about what the correct decision sj(t)
is, the robots seek assistance (not shown).

Algorithm 1: S-ATLAS.
1: Input: Scenario ξ; Coverage level α; Upper bound W
2: Initialize an ordered set I;
3: Initialize prompt �I(1)(1) with empty history of actions
4: for t = 1 toH do
5: Initialize help counter w = 0
6: s(t) = [∅, . . . ,∅]
7: for i ∈ I do
8: Next robot j = I(i)
9: Compute �j(t) using �j−1(t)

10: Compute the local prediction set C(�j(t)) as in (8)
11: if |C(�j(t))| > 1 then
12: w = w + 1
13: if w > W then
14: Obtain sj(t) from human operator
15: else
16: Get new I′, set I = I′, and go to line 6
17: else
18: Pick the (unique) decision sj(t) ∈ C(�j(t))
19: Update �j(t) = �j(t) + sj(t)
20: Send �j(t) to robot I(i+ 1)
21: Construct s(t) = [s1(t), . . . , sN (t)]
22: Append s(t) to the multi-robot plan τ

Problem 1: Design a planner that generates multi-robot plans
τ , which complete missions ξ, drawn from an unknown distribu-
tion D, with probability greater than a user-specified threshold
1− α ∈ (0, 1), assuming successful execution of τ .

III. PROBABILISTICALLY CORRECT LANGUAGE-BASED

MULTI-ROBOT PLANNING

In this section, we propose a new task planner that har-
nesses pre-trained LLMs to address Problem 1. In Section III-A,
we present a centralized planner, as a potential solution to

Problem 1, building upon [7], [19], which, however, cannot ef-
fectively scale to multi-robot settings. To address this challenge,
in Sections III-B-III-D, we present S-ATLAS, our proposed
distributed planner; see Algorithm 1 and Fig. 2.

A. A Centralized Planning Framework Using LLMs

In this section, we present a centralized planner building
on the single-robot planners from [7], [19]. In [7], the task
planning problem is modeled as a sequence of MCQA scenarios
over time steps t ∈ {1, . . . , H}, where the question represents
the task φ and mission progress, and the choices represent
decisions sj(t) ∈ S that (the single) robot j can make. This
approach can be extended to multi-robot systems by treating
the team as a single robot executing N actions simultaneously,
leading to SN choices in the MCQA framework. Based on [7],
the action with the highest LLM confidence score is selected;
assuming perfect robot skills (i.e., affordance functions that
always return 1). However, these scores are uncertainty-agnostic
and uncalibrated. Therefore, this approach cannot effectively
solve Problem 1 [19]. Instead, we apply the conformal prediction
(CP) approach from [19] allowing the team to make decisions
when sufficiently certain and seek help from users otherwise.
As shown in [19], this centralized approach can achieve desired
mission success rates. However, application of CP in this setting
becomes computationally intractable as N increases due to the
exponential growth of the number SN of options that need to be
considered; see Section V-B.

Remark 3.1 (Enhancing Computational Efficiency): A more
efficient centralized approach would be to consider only X �
SN options (i.e., multi-robot decisions) in every MCQA sce-
nario, that are generated on-the-fly by an LLM as proposed
in [19]. As in [19], these options should be augmented with an
additional choice ‘other option, not listed’ to account for cases
where all LLM options are nonsensical. A challenge in this case
is that as N increases, LLMs struggle to provide valid options,
often leading to ‘incomplete’ plans ending with ’other option,
not listed’; see Section V-B.

B. Distributed Multi-Robot Planning Using LLMs

In this section, we propose S-ATLAS, a distributed planning
framework to address Problem 1 and overcome the limitations of
the centralized approaches discussed in Section III-A, making it
more effective for larger-scale planning problems. The key idea
is that, given a scenario ξ drawn fromD, the robots pick decisions
at time t successively (as opposed to jointly in Section III-A).
Each robot j is delegated to an LLM that picks a decision sj(t),
using an MCQA setup, while incorporating decisions of past
robot decisions. If the LLM for robot j is not certain enough
about what the correct sj(t) is, it seeks assistance from other
robots and/or human operators. This process gives rise to the
multi-robot decision s(t) at time t. The above is repeated to
construct s(t+ 1), . . . , s(H). Next, we describe our proposed
distributed planner in more detail.

Consider a scenario ξ drawn from D and an ordered set I,
initialized by a user, collecting robot indices j ∈ {1, . . . , N} so
that each robot index appears exactly once; e.g.,I = {1, . . . , N}
[line 2, Alg. 1]. We denote the i−th element in I by I(i). At each
t ∈ {1 . . . H}, the robots pick actions sequentially as perI [lines
3-22, Alg. 1]; see also Fig. 2. Specifically, robot j = I(i) selects
sj(t) while considering, the NL task description as well as all
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Fig. 3. Example of the constructed prompt in Section V for GPT 3.5. This
prompt refers to t = 1 when the action history is empty.

decisions that have been made until t− 1 and all decisions made
by the robots I(1), . . . , I(i− 1) at time t. This information,
denoted by �j(t), is described textually. Given the context �j(t),
the LLM assigned to robot j generates sj(t). Hereafter, for
simplicity of notation, we assume that I = {1, . . . , N} so that
I(j) = j. We also assume that all agents share the same LLM
model; this assumption is made only for ease of notation as it will
be discussed later. Next, we first describe how �j(t) is structured
and then we discuss how sj(t) is computed given �j(t).

Prompt Construction: The prompt �j(t) consists of the fol-
lowing parts (see Fig. 3): (a) System description that defines the
action space and the objective of the LLM. (b) Environment
description that describes the semantic objects that exist in
the environment; (c) Task description that includes the task
description φ; (d) Response structure describing the desired
structure of the LLM output for an example task. (e) History
of actions that includes the sequence of decisions made by all
robots up to time t− 1 and for all robots 1, . . . , j − 1 up to time
t. (f) Current time step t and index to the robot j that is now
responsible for picking an action.

Plan Design: Assume that at time t, it is robot’s j turn to
select sj(t) as per I. First, robot j constructs �j(t) using the
prompt �j−1(t) that the previous robot j − 1 constructed (or
�N (t− 1), if j = 1) [line 8-9, Alg. 1]. Parts (a)-(c) in �j(t) are the
same for all j and t ≥ 1 (since the environment is static/known);
part (d) is the same for all j and t ≥ 1; part (e) includes the
history of actions and can be found in part (e) of �j−1(t); and
part (f) is constructed as discussed above. The initial prompt
�1(1) is manually constructed given a scenario ξ with part (d)
being empty [line 3, Alg. 1].

Given �j(t), selection of sj(t) is represented as an MCQA
problem that is solved by the LLM for robot j. Specifically,
given �j(t) (‘question’ in MCQA), the LLM j has to pick
decision sj(t) among all available ones included in part (a)
(‘choices’ in MCQA). Given any sj(t) ∈ S , LLMs can provide
a confidence score g(sj(t)|�j(t)); the higher the score, the
more likely the decision sj(t) is a valid next step to positively
progress the task [7]. Note that if the robots do not share
the same LLM model, then g(sj(t)|�j(t)) should be replaced
by gj(sj(t)|�j(t)) throughout the paper. To get the scores
g(sj(t)|�j(t)) for all sj(t) ∈ S , we query the model over all
potential decisions sj . Using these scores, a possible approach

to select the sj(t) is by simply choosing the decision with the
highest score, i.e., sj(t) = argmaxsj∈S g(sj |�j(t)). However,
this point-prediction approach is uncertainty-agnostic as these
scores do not represent calibrated confidence [19]. A much
preferred approach would be to generate a set of actions (called,
hereafter, prediction set), denoted by C(�j(t)), that contains the
ground truth action with a user-specified high-probability [line
10, Alg. 1]. Hereafter, we assume that such prediction sets are
provided. We defer their construction to Section III-D (see (8))
but we emphasize that these sets are critical to achieving desired
1− α mission completion rates.

Given C(�j(t)), we select decisions sj(t) as follows. If
C(�j(t)) is singleton, then we select the action included in
C(�j(t)) as it contributes to mission progress with high prob-
ability [line 18, Alg. 1]. Otherwise, robot j seeks assistance
from its teammates asking all robots to select new decisions
for time t as a per a different order I. If this does not result
in singleton prediction sets, robot j asks a human operator
to select sj(t) [lines 11-14, Alg. 1]. The process of seeking
assistance is discussed in more detail in Section III-C. Once
sj(t) is selected, robot j records sj(t) into part (e) of �j(t).
With slight abuse of notation, we denote this prompt update
by �j+1(t) = �j(t) + sj(t), where the summation means con-
catenation of text [line 19, Alg. 1]. Then, robot j sends the
resulting prompt �j(t) to the next robot j + 1 [line 20, Alg.
1] We repeat the above procedure sequentially over all robots
j as per I. This way, we construct the multi-robot action s(t)
[lines 21-22, Alg. 1]. Once s(t) is constructed the current time
step is updated to t+ 1. The above process is repeated to design
s(t+ 1) and terminates at t = H . This way, we generate a plan
τ = s(1), . . . , s(t), . . . , s(H). The robots execute the plan τ
synchronously once it is fully constructed.

C. Seeking Assistance From Teammates and Human Operators

As discussed in Section III-B, if C(�j(t)) is singleton, then
this means that the LLM is sufficiently certain that the decision
sj(t) ∈ C(�j(t)) will contribute to making mission progress.
Otherwise, the corresponding robot j should seek assistance
in the following two ways [lines 11-14, Alg. 1]. First, robot
j generates a new order I which is forwarded to all robots
along with a message to redesign s(t) from scratch, as per
the new ordered set I [lines 11-13, Alg. 1]. Our empirical
analysis has shown that I can potentially affect the size of
prediction sets even though this change affects only part (f) in the
constructed prompts; see Section V. We remark that this step can
significantly increase computational complexity of our method,
and, therefore, it may be neglected for large robot teams and
sets S . The second type of assistance is pursued when a suitable
set I cannot be found within a user-specified number W ≥ 0
of attempts. Then, robot j requests help from human operators
[lines 13-14, Alg. 1]. Particularly, robot j presents to a user
the set C(�j(t)) (along with the prompt �j(t)) and asks them to
choose an action from it. The user either picks an action for the
corresponding robot or decides to halt the operation; see also
Remark 4.3.

D. Constructing Local Prediction Sets Using CP

In this section, we discuss how the prediction sets C(�j(t)), in-
troduced in Section III-B, are constructed, given a required task
success rate 1− α (see Problem 1). The MCQA setup allows
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us to apply conformal prediction (CP) to construct these sets.
To illustrate the challenges of their construction, we consider
the following cases: (i) single-robot & single-step plans and (ii)
multi-robot & multi-step plans.

Single-robot & Single-step Plans: Initially, we focus on
scenarios with N = 1 and H = 1. First, we sample M i.i.d.
scenarios from D called, hereafter, calibration scenarios. For
each calibration scenario i, we construct its equivalent prompt
�ij,calib associated with (the single) robot j. For each prompt,
we (manually) compute the ground truth plan τ icalib = sij,calib(1)
accomplishing this task. For simplicity, we assume that there
exists a unique correct decision sij,calib for each �ij,calib; this
assumption is relaxed in Remark 3.4. Hereafter, we drop
the dependence of the robot decisions and prompts on the time
step, since we consider single-step plans. This way we construct
a calibration dataset M = {(�ij,calib, τ

i
calib)}Mi=1.

Consider a new scenario drawn from D, called validation/test
scenario. We convert this scenario into its equivalent prompt
�j,test. Since the calibration and the validation scenario are i.i.d.,
CP can generate a prediction setC(�j,test) of decisions sj contain-
ing the correct one, denoted by sj,test, with probability greater
than a desired value 1− α ∈ (0, 1), i.e.,

P (sj,test ∈ C(�j,test)) ≥ 1− α. (1)

To generate C(�j,test), CP first uses the LLM’s confidence g
to compute the set of non-conformity scores (NCS) {ri =
1− g(sij,calib | �ij,calib)}Mi=1 over the calibration set. The higher
the score is, the less each calibration point conforms to the
data used for training the LLM. Then we perform calibration
by computing the (M+1)(1−α)

M empirical quantile of r1, . . . , rM
denoted by q. Using q, CP constructs the prediction set

C(�j,test) = {sj ∈ S | g(sj |�j,test) > 1− q}, (2)

that includes all decisions that the model is at least 1− q confi-
dent in. This set is used for decision making as per Section III-B
for single-robot/step tasks. By construction of these sets, we
have that sj = argmaxsj∈S g(sj |�j,test) ∈ C(�j,test).

Multi-robot & Multi-step Plans: Next, we generalize the
above result to the case where N ≥ 1 and H ≥ 1. Here we can-
not apply directly (1)-(2) to compute individual sets C(�j,test(t))
for each robot, as this violates the i.i.d. assumption required
to apply CP. Particularly, the distribution of prompts �j,test(t)
depends on the previous prompts i.e., the multi-robot decisions
at t′ < t as well as the decisions of robots 1, . . . , j − 1 at time t.
Inspired by [19], we address this challenge by (i) lifting the data
to sequences, and (ii) performing calibration at the sequence
level using a carefully designed NCS.

We sample M ≥ 1 independent calibration scenarios from
D. Each scenario corresponds to various tasks φi, numbers of
robots Ni, and mission horizons Hi. Each task φi is broken
into a sequence of Ti = Hi ·Ni ≥ 1 prompts defined as in
Section III-B. This sequence of Ti prompts is denoted by

�̄icalib = �i1,calib(1), . . . , �
i
j,calib(1), . . . , �

i
Ni,calib(1)

︸ ︷︷ ︸

t=1

, . . . ,

�i1,calib(t
′), . . . , �ij,calib(t

′), . . . , �iNi,calib(t
′)

︸ ︷︷ ︸

t=t′

, . . . ,

�i1,calib(Hi), . . . , �
i
j,calib(Hi), . . . , �

i
Ni,calib(Hi)

︸ ︷︷ ︸

t=Hi

. (3)

where, by construction, each prompt �̄icalib contains a history of
ground truth decisions made so far. We define the corresponding
sequence of ground truth decisions as:3

τ icalib = s1,calib(1), . . . , sj,calib(1), . . . , sNi,calib(1)
︸ ︷︷ ︸

=scalib(1)

, . . . ,

s1,calib(t
′), . . . , sj,calib(t

′), . . . , sNi,calib(t
′)

︸ ︷︷ ︸

=scalib(t′)

, . . . ,

s1,calib(Hi), . . . , sj,calib(Hi), . . . , sNi,calib(Hi)
︸ ︷︷ ︸

=scalib(Hi)

. (4)

This gives rise to a calibration set M = {(�̄icalib, τ
i
calib)}Mi=1.

As before, for simplicity, we assume that each context �̄icalib
has a unique correct plan τ icalib; this assumption is relaxed in
Remark 3.4. We denote by �̄icalib(k) and τ icalib(k) the k-th entry
in �̄icalib and τ icalib, respectively, where k ∈ {1, . . . , Ti}. Note that
the iterations k are different from the time steps t ∈ {1, . . . , Hi}.
Each iteration k refers to the prompt/decision corresponding to
a specific robot index j at time step t.

Next, for each calibration sequence, we define the NCS
similarly to the single-robot-single-step plan case. Specifically,
the NCS of the i-th calibration sequence, denoted by r̄i, is
computed based on the lowest NCS over k ∈ {1, . . . , Ti}, i.e.,
r̄i = 1− ḡ(τ icalib|�̄icalib), where

ḡ(τ icalib | �̄icalib) = min
k∈{1,...,T }

g(sicalib(k) | �̄icalib(k)). (5)

Consider a new validation scenario drawn from D associated
with a task φtest that is defined over Ntest robots and horizonHtest
corresponding to a sequence of prompts

�̄test = �̄test(1), . . . , �̄test(k), . . . , �̄test(Ttest),

where Ttest = Htest ·Ntest. Using the set M, CP can generate
a prediction set C̄(�̄test) of plans τ , containing the correct one,
denoted by τtest, with probability greater than 1− α, i.e.,

P (τtest ∈ C̄(�̄test)) ≥ 1− α. (6)

The prediction set C̄(�̄test) is defined as:

C̄(�̄test) = {τ | ḡ(τ |�̄test) > 1− q̄}, (7)

where q̄ is the (M+1)(1−α)
M empirical quantile of r̄1, . . . , r̄M . The

size of the prediction sets can be used to evaluate uncertainty of
the LLM. Specifically, if |C̄(�̄test)| = 1, then this means that the
LLM is certain with probability at least 1− α that the designed
plan accomplishes the assigned task.

On-the-fly and Local Construction: Notice that C̄(�̄test) in (7)
is constructed after the entire sequence �̄test = �̄test(1), . . . , �̄test
(Ttest) is obtained. However, at test time, we do not see the entire

3The distribution D induces a distribution over data sequences (3) [19].
These data sequences are equivalent representations of the sampled scenarios
augmented with the correct decisions. Observe that in these sequences the
order of robots is determined by an ordered set Ii (generated by the induced
distribution). For ease of notation, in this section, we assume that the ordered
set is defined as Ii = {1, . . . ,Ni} and Itest = {1, . . . ,Ntest} for all calibration
and validation sequences, respectively, and for all t. However, in general, these
ordered sets do not need to be the same across the calibration sequences and/or
across the time steps t within the i-th calibration sequence. For instance, the
induced distribution may randomly pick a set I from a finite set of possible sets
I for each time t. Then, in Section III-C, when ‘help from robots’ is needed, a
new set I from this finite set can be randomly selected.
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sequence of prompts all at once; instead, the contexts �̄test(k)
are revealed sequentially over iterations k, as the robots pick
their actions. Thus, next we construct the prediction set C̄(�̄test)
on-the-fly and incrementally, using only the current and past
information, as the robots take turns in querying their LLMs for
action selection. At every iteration k ∈ {1, . . . , T}, we construct
the local prediction set associated with a robot j and a time step
t,

C(�̄test(k)) = {τtest(k) | g(τtest(k)|�̄test(k))) > 1− q̄}, (8)

where g refers to the (uncalibrated) LLM score used in
Section III-B. The prediction set C(�̄test(k))) in (8) should be
used by the respective robot j to select a decision sj(t). Es-
sentially, C(�̄test(k))) corresponds to the set C(�j(t))) used in
Section III-B and in [line 10, Alg. 1]. For instance, the set
C(�̄test(k))with k = Ntest + 1 refers to the prediction set of robot
I(1) at time t = 2. As it will be shown in Section IV, it holds
that C̄(�̄test) = Ĉ(�̄test), where

Ĉ(�̄test) = C(�̄test(1))× · · · × C(�̄test(k)) · · · × C(�̄test(Ttest)).
(9)

Remark 3.2 (Prediction sets): Construction of prediction sets
requires generating a new calibration set for every new test sce-
nario to ensure the desired coverage level. A dataset-conditional
guarantee which holds for a fixed calibration set can also be
applied [27]. Also, obtaining a non-empty prediction set for a
fixed α, requires M ≥ �(M + 1)(1− α)�.

Remark 3.3 (Efficiency Benefits): Given a quantile q̄ and the
scores for each decision, the complexity of constructing the
prediction sets C(�j(t)) for all robots j at time t is O(N · |S|).
This is notably more efficient than the centralized approach of
Section III-A, where the corresponding complexity of construct-
ing multi-robot/global prediction sets is O(|S|N ).

Remark 3.4 (Multiple Feasible Solutions): The above CP
analysis assumes that D generates scenarios with a unique
solution. To relax this assumption, the key modification lies
in the construction of the calibration dataset. Specifically, for
each calibration mission scenario, among all feasible plans, we
select the one constructed by picking the decision with the
highest LLM confidence score at each planning step. CP can
then be applied as usual, yielding prediction sets that contain,
with user-specified probability, the plan τtest consisting of the
decisions with the highest LLM confidence scores among all
feasible decisions. This can also be formally shown by following
the same steps as in the Appendices A3-A4 of [19].

Remark 3.5 (i.i.d. Assumption): The guarantees in (6) hold
only if calibration and test scenarios are i.i.d. This can be
relaxed by employing robust CP to obtain valid prediction sets
for all distributions D′ that are ‘close’ to D (based on the
f−divergence) [28].

IV. THEORETICAL MISSION SUCCESS RATE GUARANTEES

In this section, we show that Algorithm 1 achieves user-
specified 1− α mission success rates. To show this, we need
first to state the following result; its proof can be found in [29]
and follows the same logic as the proof of Claim 1 in [19].

Proposition 4.1: The prediction set C̄(�̄test) defined in (7) is
the same as the on-the-fly constructed prediction set Ĉ(�̄test)

defined in (9), i.e., C̄(�̄test) = Ĉ(�̄test).
Theorem 4.2 (Mission Success Rate): Assume that prediction

sets are constructed on-the-fly/causally with coverage level 1−

α and that the robots seek help from a user whenever the local
prediction setC(�̄test(k)) - defined in (8) - is not singleton afterW
attempts; see Section III-C. (a) Assuming error-free execution
of the designed plans, the mission success rate over new test
scenarios (and the randomness of the calibration sets) drawn
from D is at least 1− α. (b) If ḡ(τ |�̄test), used in (8), models
true conditional probabilities, then the average amount of user
help, modeled by the average size of the prediction sets C̄(�̄test),
is minimized among possible prediction schemes that achieve
1− α mission success rates.

Proof: (a) To show this result, we consider the following
cases. Case I: We have that |C(�̄test(k))| = 1, ∀k ∈ {1, . . . , Ttest}
(with or without the robots ‘helping’ each other) and τtest ∈
Ĉ(�̄test) where τtest is the correct plan and Ĉ(�̄test) is defined as in
(9). In this case, the robots will select the correct plan. Case II:
We have that τtest ∈ Ĉ(�̄test), regardless of the size of the local
prediction sets C(�̄test(k)), ∀k ∈ {1, . . . , Ttest}. Here, the robots
will select the correct plan assuming users who faithfully provide
help; otherwise a distribution shift may occur as calibration
sequences are constructed using correct decisions. Case III:
We have that τtest /∈ Ĉ(�̄test). The latter means that there exists
at least one iteration k such that τtest(k) /∈ C(�̄test(k)). In this
case, the robots will compute an incorrect plan. Observe that the
probability that either Case I or II will occur is equivalent to the
probability P (τtest ∈ Ĉ(�̄test)). Due to Proposition 4.1 and (6),
we have that P (τtest ∈ Ĉ(�̄test)) ≥ 1− α. Thus, either of Case I
and II will occur with probability that is at least equal to 1− α.
Since Cases I-III are mutually and collectively exhaustive, we
conclude that the probability that Case III will occur is less than
α. This implies that the mission success rate is at least 1− α.
(b) This result holds directly due to Theorem 1 in [30]. �

Remark 4.3 (Multiple Feasible Solutions): The above results
hold in case of multiple feasible solutions too. The proof of
Theorem 4.2 follows the same steps, with the only differences
being that (i) the correct plan τtest refers to the feasible plan
comprising the decisions with the highest LLM confidence
scores at each step, and (ii) when user help is needed, the user
selects the feasible action with the highest LLM confidence score
from the prediction set. Thus, the robot must return to the user
the scores for each action in the set.

V. EXPERIMENTS

In this section, we empirically validate S-ATLAS using the
AI2THOR simulator [31] and compare it to the centralized
baselines from Section III-A. Comparisons against planners that
do not allow robots to ask for help can be found in the Appendix
of [29]. In all case studies, we pick GPT-3.5, Llama-2-7b, and
Llama-3-8b as the LLM for all robots.

A. Empirical Validation of Mission Success Rates

We consider home service tasks defined over 12 semantic ob-
jects: ‘Apple’, ‘Kettle’, ‘Tomato’, ‘Bread’, ‘Potato’, and ‘Knife’.
The set A includes the actions ‘go to, grab object, put object
down, open door, remain idle’. The action ‘remain idle’ is useful
when all sub-tasks in φ have been assigned to other robots or
when the task has been accomplished before the given horizon
H . Thus, we have that |S| = 28.

We generate 110 test scenarios ξ with N ∈ {1, 3, 10, 15} in
various environments. Each mission consists ofK sub-tasks and
at most one safety requirement. Each sub-task requires moving
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Fig. 4. Execution of a three-robot plan for the mission: ‘Deliver the bread,
apple and tomato to the table; Deliver the potato to the sink. Also, Robot 1
should never pick up a knife’. Each snapshot illustrates the plan, generated by
S-ATLAS, followed by each robot to accomplish the task.

a specific object, possibly located inside closed containers (e.g.,
drawers and fridge), to either a desired location or one of sev-
eral possible destinations. The safety constraint requires certain
robots to avoid approaching/grabbing specific objects. We select
K ≤ 4 for N = 1, 4 ≤ K ≤ 8 for N ∈ {3, 10}, and K = 10
when N = 15. Observe that N ≤ K implies that a robot will
have to accomplish at least one sub-task while N ≤ K means
that at least one robot will stay idle throughout the mission.
An example of a task for N = 3, along with the plan designed
by Algorithm 1 coupled with GPT 3.5, is shown in Fig. 4; see
also [32]. Notice that the considered tasks may have multiple
feasible plans and, therefore, CP is applied as in Remarks 3.4
and 4.3.

In what follows, we empirically validate the mission success
rate guarantees provided in Section IV on our validation sce-
narios. For each validation scenario, we generate 30 calibration
sequences to construct prediction sets. Then, for each scenario,
we compute the plan using Algorithm 1 with W = 0 (to min-
imize API calls) and manually check if it is the correct one.
We compute the ratio of how many of the corresponding 110
generated plans are the correct ones. We repeat this 50 times. The
average ratio across all experiments is the (empirical) mission
success rate. When 1− α = 0.90 and 1− α = 0.95, the mission
success rate was 94.59% and 96.57% respectively, using GPT
3.5, validating Theorem 4.2. The average runtime to design a
plan was 0.4 minutes. When 1− α = 0.90 and 1− α = 0.95,
help was requested in making 4.44% and 8.1% of all decisions
sj(t), respectively. As expected, the frequency of help requests
increases as 1− α increases. Help rates also depend on the
selected LLM. For instance, when our planner is paired with
Llama 3-8b, which is significantly smaller and, therefore, less
effective than GPT 3.5, the help rate increases to 8.9% and 15.6%
for 1− α = 0.90 and 1− α = 0.95, respectively. When Llama
2-7b, which preceded Llama 3-8b, is considered, the help rates
increase to 25% and 40% for 1− α = 0.90 and 1− α = 0.95,
respectively.

B. Comparisons Against Conformal Centralized Baselines

First, we compare our planner against the centralized base-
line discussed in Section III-A, in terms of help rates and
computational efficiency. Evaluating the baseline in multi-robot

TABLE I
COMPARISON OF S-ATLAS AGAINST THE BASELINE (B) FOR N = 2

scenarios is computationally challenging and impractical due
to the large number |S|N of multi-robot decisions that need to
be considered; e.g., for N = 15, we have |S|N = 5.0977 · 1021.
Specifically, the baseline designs s(t) by solving a single MCQA
problem with |S|N choices. In contrast, our planner solves
sequentially N MCQA problems with |S| choices each. Also,
recall that application of CP requires obtaining the LLM confi-
dence scores for each option in the MCQA problem. To obtain
them, our implementation requires one LLM query per option.
Thus, the baseline requires |S|N queries to apply CP at time
t (while ours require N · |S|). This results in prohibitively
high API costs (using GPT 3.5) and further compromises the
computational efficiency of the baseline (using either model).
To enable comparisons, we consider small teams with N = 2
robots and |S| = 28 using Llama 2-7b and Llama 3-8b; see
Table I. We generate 20 test scenarios and, for each scenario,
we collect 20 calibration sequences. We compute plans using
S-ATLAS (with W = 0) and the baseline. We repeat this 50
times. Both methods were exposed to the same validation and
calibration data. Observe in Table I that our method (i) requires
significantly lower help rates from users than the baseline,4 and
(ii) computes plans faster.5 We attribute these to the distributed
nature of our planner enabling it to solve ‘smaller’ MCQA
scenarios, compared to the baseline, to design s(t). 6

Second, we evaluate the baseline on the previously consid-
ered case studies, using the more efficient setup discussed in
Remark 3.1. We query GPT-3.5 to generate a set of X = 4
multi-robot decisions as in [19]. Our empirical results show that
the LLM’s ability to generate options containing a valid choice
decreases as N increases. For N = 1, 2, 3 and 10, valid options
were included in the LLM-generated set in only 95%, 85%, 48%,
and 20% of the planning steps, leading to incomplete plans. Note
that increasing X does not necessarily yield better results; e.g.,
for N = 3, the corresponding percentages for X = 6, 8, and 10
are 52%, 48%, and 48%.

C. Asking for Help From Robot Teammates

In this section, we select five scenarios from Section V-A, with
N = 3, where non-singleton prediction sets were constructed
using GPT 3.5. We show that re-computing s(t) using a dif-
ferent set I can potentially result in smaller prediction sets. In
each of these scenarios, we select W = 1, and we observe that
two scenarios switched to singleton prediction sets. In the first
scenario, the task requires the robots to move a tomato and a
water bottle to the sink, put the kettle to stove burner, and the

4We observed that larger sets of options tend to increase help rates.
5Note that these runtimes are implementation-specific. For example, our

method (and, similarly, the baseline) can be accelerated by parallelizing the
extraction of |S| LLM confidence scores during the construction of C(�j(t)).

6Our implementation of S-ATLAS, paired with Llama 3-8b, in an unseen test
scenario with N = 2 robots, can be found on this https://drive.google.com/file/
d/1Ds5wulsNRdXPb1KE6gJyMU9LZlUkcs1N/view?usp=sharinglink.
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bread at the table. We initialize the ordered set of robot indices
as I = {1, 2, 3}. In this scenario, the bottle of water is inside the
closed fridge. The prediction set C(�1(1)) for the robot I(1) = 1
at t = 1 is non-singleton and contains the actions: (go to location
of water bottle), (go to the location of the fridge). In this case,
robot 1 (randomly) generates a new ordered set: I′ = {2, 1, 3}
and asks all robots to select their decisions as per I′. Thus,
the robot I′(1) = 2 will select first an action. In this case,
the corresponding prediction set is singleton defined as (go to
the location of the fridge). Similar observations were made in the
second scenario. We note again here that changing the set I may
not always result in smaller prediction sets, as this minimally
affects the prompts.

VI. CONCLUSIONS AND FUTURE WORK

We proposed S-ATLAS, a new multi-robot LLM-based plan-
ner that can achieve desired mission success rates. In our future
work we plan to relax the assumption of perfect robot skills
by leveraging CP to reason simultaneously about uncertainties
arising from LLMs and robot skill execution.
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